当前位置:文档之家› 飞行数据管理记录系统关键技术研究

飞行数据管理记录系统关键技术研究

飞行数据管理记录系统关键技术研究
飞行数据管理记录系统关键技术研究

西北工业大学

硕士学位论文

飞行数据管理记录系统关键技术研究

姓名:汤丽

申请学位级别:硕士

专业:计算机应用技术

指导教师:翟正军

20040301

ATA 22 自动飞行系统

ATA22 AFS自动飞行系统 自动飞行系统是现代化数字系统,它能在飞机的整个飞行过程中,从起飞到自动进近着陆和滑跑,为飞机提供制导。它是目前最先进的自动飞行系统。 一、AFS简介: 1、基本工作原理: 图22——1 自动飞行系统(AFS)用飞机传感器提供的所需信息进行飞机位置计算。另外,在它的存储器中有几个飞行计划,这些飞行计划由航空公司预制。每个飞行计划包括一个从离港到到达目的地的完整的飞行过程,包括垂直信息和中途的航路点。 知道了飞机位置和设置的飞行计划(由飞行员选择的),该系统能计算出指令信号送到飞行控制系统和发动机控制系统,以使飞机按飞行计划飞行。 2.基本组成: 图22——2

自动飞行系统(AFS)可分为四个主要部分: ——飞行管理(FM) ——飞行制导(FG) ——飞行增稳(FA) ——故障隔离和探测系统(FIDS) 前两部分功能由飞行管理与制导计算机系统(FMGCS)实现。 后两个功能由飞行增稳计算机系统(FACS)实现。 3.飞行管理与制导计算机系统(FMGCS) 图22——3 飞行管理(FM)部分主要提供飞行计划的计算。飞行计划包括纵向和横向制导功能。 飞行制导(FG)部分主要有以下三个功能: ——自动驾驶(AP) ——飞行指引(FD) ——自动油门(A/THR) FMGCs飞行管理与制导功能是由两个多功能控制显示组件(MCDU)和一个飞行控制组件(FCU)控制。 一般由MCDU提供机组与FMGCs之间的长期信息接口(如:飞行计划的选择和修改);而FCU提供短期的信息交换接口(如:AP自驾,FD飞行指引和A/THR自动油门功能的衔接)。 除MCDU和FCU外,FM和FG的信息主要显示在EFIS电子飞行仪表系统的显示器上,即主飞行显示器(PFD)和导航显示器(ND)。 (1)自动驾驶(AP)/飞行指引(FD)

飞行区围界管理系统规定

飞行区围界管理规定版本:01 编号:飞行区施工管理-G03 签发人:日期:2009-08-05审阅人:陆柯 编写人:畅 1.0 飞行区围界概述 1.1 飞行区围界作用或功能 首都机场飞行区围界是用于将飞行控制区与公共区进行有效隔离。其主要功能是防止任何人员从围界进入飞行控制区对空防造成的影响而采取的一种物理防设施。因此,围界应具备一定的防攀扒、防钻入功能。 飞行区围界实体长度是34.8KM(不含围界上建筑物),围界设施及其外3米的围是飞行区管理围。 1.2 围界分类及技术标准 1.2.1 围界的分类 首都机场飞行区围界依据各区域特点及使用时限不同,分为正式围界、临时围界和其它围界(防窥板) 1.2.2 围界的技术标准 飞行区围界技术标准是依据《国际民用航空公约—附件十七》、《民用航空运输机场安全保卫设施建设标准》、《民用机场飞行区技术标准》等规章而制定。 1.3 围界的细节描述 钢筋网围界(标准围界)

V型网 外挂刺圈 网片 桩柱 地梁 1.4 飞行区围界分布图 2.0 围界巡视及维护 围界巡视的目的是保障飞行区围界设施完好,并对巡视中发现的围界

破损及时进行修补。同时,围界巡视应针对不同围界特点,及时发现围界及围界周边可能存在的安全隐患,并采取有效的防措施,确保首都机场飞行区的运行安全和空防安全。 2.1 围界巡视检查 围界巡视维护工作包括日常性检查和周期性检查。 2.1.1 日常性检查 日常性检查的目的是及时保证现有的围界与围界建设标准一致,已确保围界的完好性。 日常检查围:围界立柱、网片及V型网、刺圈、围界底部及地梁以及围界立柱与网片之间的连接件等部位。 日常检查以工作人员每日通过徒步行走,以看的方式检查围界外观,还要对立柱及网片等关键部位用手触碰等方式进行检查。 注:人工检查Z2滑行东桥附近围界等距离滑行道中线较近的围界时,应注意避让航空器。 2.1.1.1 检查标准及措施 1)刺圈

基于文件系统的高速数据记录系统

收稿日期:2009-06-11 作者简介:王超(1985 ),男,博士生,E mail:w angchao1125@https://www.doczj.com/doc/972915988.html,;刘伟(1976 ),男,博士,讲师,E mail:eliuw ei@https://www.doczj.com/doc/972915988.html,. 第30卷 第5期2010年5月北京理工大学学报 T r ansactio ns of Beijing Institute of T echnolo gy V ol.30 N o.5M ay 2010 基于文件系统的高速数据记录系统 王超, 刘伟 (北京理工大学信息与电子学院,北京 100081) 摘 要:针对高速数据记录系统中记录过程和文件化过程的带宽不匹配问题,分析了影响文件化带宽的因素,提出了一种更具有灵活性和实用性的基于文件系统的记录方法.用该方法建立了文件系统框架,将存储空间划分为连续的管理信息区和数据区,记录过程中顺序记录数据到数据区,记录结束后修改管理信息区.在保证不影响系统记录带宽的前提下,该方法改善了文件化过程的带宽,实现了记录数据的高速文件化.关键词:数据记录;文件化;文件系统;F AT 32 中图分类号:T P 311 52 文献标志码:A 文章编号:1001 0645(2010)05 0543 05 File System Based High Speed Data Recording System WANG Chao, LIU Wei (Scho ol o f Informat ion and Electr onics,Beijing Inst itut e o f T echno lo gy ,Beijing 100081,China) Abstract :Aim ing at the bandw idth mism atch betw een r ecord pro cess and convert pr ocess in hig h speed data r ecording system ,factors that affect convert pr ocess bandw idth are analyzed,and a more flex ible and practical data reco rding method based on file system is proposed.The method divides storag e m em ory into consecutive information manag em ent space and data sto rag e space by establishment of file sy stem in advance.In reco rd pro cess,data is r ecorded in data sto rag e space consecutively and in co nvert process,info rmatio n manag em ent space is m odified.Thus,w ithout decreasing reco rd bandw idth,the method could im pro ve the bandw idth in conv er t process to achieve high speed file conversion. Key words :data recording;conv ert pro cess;file system;FAT 32 随着电子信息产业的迅速发展,高速数据记录系统越来越广泛地应用在各个领域,例如导弹跟踪、高分辨雷达成像、高能物理、电波天文学以及航空航天测试等.这些应用领域要求数据必须快速、可靠地记录在存储设备中,用作后续的分析和使用. 高速数据存储系统需要依托磁盘的海量存储能力以及高速的读写带宽.磁存储技术由最初16 7MB/s 存储带宽,528MB 容量的IDE 磁盘发展到如今拥有超过1T B 容量,300MB/s 带宽的SAT A 磁盘.主要用于工业级存储的SCSI 技术标准也从最初10M B/s 的传输带宽发展到U ltra320SCSI 标准支持的320M B/s 的传输带宽.新一代的存储技 术如串行SCSI (SAS)以及面向光纤网络存储的存储局域网络(SAN),这些都为高速数据存储技术带来了新的发展. 1 问题的提出 传统的数据记录系统直接以文件形式记录数据.文件形式的数据可以在操作系统下方便灵活地访问.但是受到文件系统对文件的管理约束,记录过程中数据不一定连续存储在磁盘连续的逻辑块地址上,磁头在不连续逻辑块地址间的切换会降低磁盘的记录效率[1] .因此直接文件形式的记录在方便进行数据访问的同时约束了系统的记录带宽.为了

飞行数据记录系统浅析

飞行数据记录系统浅析 发表时间:2017-11-06T09:18:13.707Z 来源:《基层建设》2017年第20期作者:梁伟国 [导读] 摘要:当代的民用航空飞机都装配了飞行数据记录系统。 深圳航空有限责任公司维修工程部深圳 518128 摘要:当代的民用航空飞机都装配了飞行数据记录系统。本文阐述了飞行记录器的特点、原理以及在现在航空业中所发挥的作用。 关键词:黑匣子、飞行数据记录器、水下定位信标、事故调查 一.前言 很多的空难发生后只有黑匣子能够向调查人员提供飞机出事故前各系统的运作情况,因为空难时通常发生在一瞬间,飞行员和全部乘客都同时遇难而缺乏当事人的证词,调查事故的原因会有很大困难,而飞行记录器则可以向人们提供飞机失事瞬间和失事前一段时间里,飞机的飞行状况、机上设备的工作情况等;同时,配合驾驶舱话音记录器能帮助人们根据机上人员的各种对话分析事故原因,以便对事故作出正确的结论。 为了保证这种设备在飞机出事故后不被破坏,特地的用合金材料为它制作了一个非常坚固的匣子。这种匣子具有极强的抗火、耐压、耐冲击振动、耐海水(或煤油)浸泡、抗磁干扰等能力,即便飞机已完全损坏黑匣子里的记录数据也能完好保存,或者通过特殊的方法将里面的数据还原。黑匣子并非是黑的,而是常呈橙红色,主要是为了颜色醒目,便于寻找.外观为长方体,外壳坚实。飞行记录仪之所以被称为“黑匣子”可追溯到1954年,当时飞机内所有的电子仪器都是放置在大小、形状都统一的黑色方盒里。当飞机失事时,黑匣子上有定位信标,相当于无线电发射机,在事故后可以自动发射出特定频率,以便搜寻者溯波寻找。除此之外,为了防止记录器内磁性记忆遭到电流或磁场破坏,飞行记录器也要具备抗外界电流、磁场的防护能力。 二.记录内容 飞机数据记录器用来记录各种飞机的状态参数。20世纪60年代问世的黑匣子(FDR)只能记录5个参数,误差较大。70年代开始使用数字记录磁带,能记下100多种参数专门记录飞行中的各种飞行数据。随着科技的迅速发展,记录器也在不断升级,现在的记录器能够记录数百种的参数,如能记录飞机的系统工作状况和引擎工作参数等飞行参数、飞行的航向、飞行姿态、飞行轨迹(航迹)、时间、速度、加速度、经纬度、高度、飞机舵面的偏度、发动机的转速、温度等,还有所有的控制舵面的位置参数,工作状态以及作用在飞机上的各种外力,如阻力、升力、推力等。并可累计记录25小时,超过这个时间,数据记录仪就自动吐故纳新,旧数据被新数据覆盖。起飞前,只要打开黑匣子的开关,飞行时上述的种种数据都将收入黑匣子内。一旦出现空难,整个事故过程中的飞行参数就能从黑匣子中找到,人们便可知道飞机失事的原因。 根据美国联邦航空局对飞行数据记录器的最低要求,必须包括压力高度、空速、磁航向、加速度及经过时间等5项,除了上述五项,美国联邦航空局另外再要求俯仰姿态、滚转姿态、发动机动力及襟翼的位置。另外,每个公司还可以根据自己的实际情况来选装一些需要着重关注的一些参数。 三.主要部件 飞行记录器的外部加装ULB(水下定位信标),只要一碰到水,水分会使其发生短路,蜂鸣器将会发出37.5kHz频率的鸣叫持续30天。

飞行记录器和译码管理规定

飞行记录器和译码管理规定 (送审稿) 第一章总则 第一条『目的依据』为规范飞行记录器安装、使用、检查和译码的管理,保证在事故和事故征候调查、以及事故预防中发挥飞行记录器应有的作用,依据《中华人民共和国民用航空法》,并根据我国批准的国际公约的相关规定,制定本规定。 第二条『适用范围』凡国内航空运营人经营的民用航空器,装备的飞行记录器的安装、使用、检查和译码,须遵守本规定。 第三条『管理责任』民航总局航空器适航主管部门负责飞行记录器适航性管理;民航总局飞行标准主管部门负责飞行记录器安装使用管理;民航总局航空安全主管部门负责飞行记录器译码管理。 第四条『定义』本规定所用名词术语定义如下: (一)飞行记录器:是指航空器上安装的用于事故/事故征候调查、带有保护装置的记录设备。飞行记录器包括驾驶舱话音记录器和飞行数据记录器。 (二)译码:是指从飞行记录器获取记录信息的过程。本规定中的译码是指对事故/事故征候调查及飞行记录器定期检查的译码。 (三)译码资料:是指描述飞行参数记录格式和工程值转换计算的资料。 (四)定期检查:是指为保证飞行记录器持续可用和记录数据的准确与可靠,而进行的记录器定期译码检查。 (五)译码机构:是指经过民航总局认证,可以从事飞行记录器译码的机构。 (六)强制记录参数:是指按照CCAR91部附录E和F“飞行数据记录器规范”的要求应当记录的飞行参数。 第二章安装和使用 第五条『记录器安装』凡由中华人民共和国国内航空运营人经营的民用航空器,应当按照中国民航有关规章安装经批准的飞行记录器。 第六条『译码能力』运营人为航空器安装的飞行记录器应当在国内译码机构能够译码,或者运营人具备该种记录器译码能力。 第七条『译码资料』运营人应当掌握其所经营航空器的译码资料。 第八条『信息报告』运营人在航空器投入运营前应当向民航总局航空安全主管部门提供记录器的相关信息,包括航空器型号、注册号、飞行记录器型号和译码资料。 在航空器运营中,若航空器型号、注册号、飞行记录器型号和译码资料发生变化,运营人应当及时向民航总局航空安全主管部门报告。 第九条『连续工作』运营人应当保证飞行记录器在航空器的运行过程中连续工作,在飞行中不得关断记录器。 第十条『保存记录』当发生事故或需要立即报告局方的事件,运营人应当: (一)在航空器停止后,立即关断飞行记录器,不得抹除舱音记录;未经局方许可,不得重新接通飞行记录器。 (二)保存飞行记录器原始信息至少60天,如果局方另有要求,应当保存更长时间。 第三章定期检查 第十一条『检查间隔』飞行记录器应当每年至少进行一次译码检查。 第十二条『FDR检查内容』飞行数据记录器定期检查内容应当包括: (一)检查持续记录时间,持续记录时间应当满足CCAR91部的规定。 (二)检查记录数据的质量,均匀分布的误码率应当不高于3%。 (三)检查最后飞行航段的飞行数据的连续性。

FMCS飞行管理计算机系统

第一章 1.什么是飞行管理系统?FMS的组成?并简述各组成部分之间的关系? 飞行管理系统是由许多计算机,传感器,无线电导航系统,控制板,电子显示仪表,电子警告组件以及执行机构联系起来的大设备系统。 主要四大部分FMCS、IRS、AFCS、A/T FMCS-包括FMC和CDU,是系统中枢。 IRS是FMC基本传感器,向FMC提供2/3台IRU输出的导航数据,FMC进行加权平均,主要参数有PPOS、GS、TRK、WIND等 AFCS是FMCS的执行部分,FMC对A/P、F/D、STB/TRIM、SPD/TRIM、A/T提供综合控制。AFCS-MCP给FMC提供L NA V、V NA V制导衔接,选择目标空速、目标马赫数,FMC 向FCC提供经济目标空速、目标马赫数。 A/T是FMCS的执行部分,FMC通过FCC向A/T提供目标推力,从而控制飞行速度。A/T 包括油门伺服机构(放大器、电机)和油门杆。 2.简述FMS在各飞行阶段中的性能功能。 起飞——飞行员通过FMCS的CDU输入飞机全重和外界温度,FMC进行计算,为飞机提供最佳起飞目标推力。这个起飞目标推力使飞机在规定时间内达到起飞速度,不会损伤飞机发动机。 爬高——根据飞行员的选择和FMC确定的目标推力和目标速度,FMS提供最佳爬高剖面,(在规定的爬高速度和规定的发动机推力下,以最佳爬高角度到达规定的高度)。FMC还根据情况向飞行员提供分段(阶梯)爬高和爬高顶点高度的建议,供飞行员选用。这些建议一旦实施可使飞行进一步节省燃油。 巡航——FMS根据航线长短、航路情况等选定最佳巡航高度和最佳巡航速度。在飞行的两机场之间采用大圆弧路径,结合无线电甚高频导航获得最优巡航飞行。采用大圆弧路径使两点之间的飞行距离最短。 下降——FMS根据飞行员输入或储存的导航数据确定飞机开始下降的顶点。飞机在下降阶段时,由FMS确定下降速度,最大限度地利用飞机的位能,节省燃油消耗。 进近——FMS在下降结束点,在既定高度、确定航距上,以优化速度引导飞机到跑道上的着陆点。 3.FMCS的传感器有哪些? FMCS的传感器——IRS, ADC, VOR, DME, ILS, 燃油加法器,飞行时钟、空/地继电器4.DADC通过ARINC429给FMC提供哪些信息? 高度、温度、马赫数、空速 5. DME、VOR、ILS、IRS、燃油油量总和器组件、时钟向FMC提供哪些信号? DME提供到某一地面台的距离 VOR提供方位,航道信号 ILS提供航向道和下滑道的偏离信号 IRS提供飞机的纬度位置,真航向,磁航向,南北和东西向速度,俯仰和倾斜角,高度,升降速度,地速 燃油油量总和器组件提供各油箱油量相加得总油量值 时钟提供时间(GMT,ET), 计时,日期 6. FMCS的执行部件有哪些? AFCS, A/T, IRU 7.FMC向AFCS飞行控制计算机(FCC)、A/T计算机输出哪些操纵指令? FMC向FCC输送目标高度,目标计算空速,目标马赫数,目标升降速度,倾斜指令等

飞行记录本常用英语

电阻 resistor 线路 wire 在…之间 between…and… 引线 lead 跳开关 circuit breaker 继电器 relay 螺帽 nut 螺栓 bolt 螺钉 screw 松动 loose 脱落 fall off 拧紧 tighten 丢失 lost 或 missing 鸟击 birdstrike 凹坑 dent 损坏 damaged 烧蚀 burn through 烧坏 burn out 扎伤 punctured 磨损 wearing 或 worn 在范围内 within limits 超标 out of limits 见线 exposed threads 油箱 tank 燃油 fuel 滑油 oil 液压油 hydraulic fluid 泄露 leak(注:也常用名词leakage) & 是and的简写符号,表示“和”,“又”等意思No. 是number的缩写,表示号码,例如1号为 机长 captain 副驾驶 first officer 缩写F/O 观察员 observer 乘务员 attendant 飞机大概 机头 nose 机腹 belly 蒙皮 skin 机身 airframe

翼肋 rib 翼梁 spar 机翼 wing 翼尖 wing tip 前缘 leading edge 后缘 trailing edge 操纵面 control surface 客舱 cabin 或 passenger compartment 座位 seat 排 row(如:第5排译作row 5) 过道 aisle 地板 floor 天花板 ceiling 隔板 partition 厨房 galley 厕所 toilet 驾驶舱 cockpit 货舱 cargo 轮舱 wheel well 缩写W/W 设备舱 bay ATA 21空调 空调 air-conditioning 缩写a/c 空调舱 air-conditioning pack 自动驾驶 autopilot 冲压空气作动器 ram air actuator 出气活门 air outlet valve 排气活门 exhaust valve 温度控制活门 TEMP CONT valve 引气 bleed air 自动 automatic缩写AUTO 人工 manual 正常 normal 缩写NORM 备用 alternate 缩写ALTN 设备冷却 equipment cooling 排气扇 exhaust fan 供气扇 supply fan 低流量 low flow 头顶分配管 overhead distribution duct 进气管 inlet duct

国外民用飞机飞行管理系统发展现状与趋势

国外民用飞机飞行管理系统发展现状与趋势 飞行管理系统(FMS)是大型飞机数字化电子系统的核心,它通过组织、协调和综合机上多个电子和机电子系统的功能与作用,生成飞行计划,并在整个飞行进程中全程保证该飞行计划的实施,实现飞行任务的自动控制。现代飞机上广泛采用的飞行管理系统是综合化的自动飞行控制系统(AFCS),它集导航、制导、控制、显示、性能优化与管理功能为一体,实现飞机在整个飞行过程中的自动管理与控制。装备了飞行管理系统的飞机,不仅可以大量节省燃油,提高机场的吞吐能力,保证飞机的飞行安全和飞行品质,而且可以大大提高驾驶舱的综合化、自动化程度,减轻驾驶员的工作负担,带来巨大的无可估量的经济效益。目前,一个典型的飞行管理系统不仅能够根据飞机、发动机性能、起飞着陆机场、航路设施能力、航路气象条件及其装载情况,生成具体的全剖面飞行计划,而且能够实现多种功能,包括:通过主飞行显示系统显示和指示有关飞行信息;通过无线电通信与导航系统获得通信、空中交通和无线电导航数据;通过飞行操纵系统控制飞机的姿态;通过自动油门系统调节发动机功率;通过中央数据采集系统收集、记录和综合处理数据;通过空地数据链系统收发航行数据;通过机上告警系统提供系统监控和告警等功能。 1 飞行管理系统的发展历程 飞行管理的概念最早可以追溯到20世纪20年代。自从1929年杜立特上尉历史性的盲目飞行后,人们感到借助一个系统摆脱完全依靠飞行员的感官进行飞行的重要性。但飞行管理系统直到20世纪60年代才真正开始发展起来,并大致经历以下5个发展阶段:区域导航系统、性能管理系统、飞行管理系统、四维导航和新一代飞行管理系统。 2 飞行管理系统的基本构成和功能 飞行管理系统通常由一个飞行管理计算机系统(FMCS)和所需的相关接口设备组成,如电子飞行仪表系统(EFIS)和自动飞行系统等设备。而一个典型的FMCS通常由飞行管理计算机(FMC)和控制与显示单元(CDU)两种组件构成。一个飞行管理系统通常能完成或辅助飞行员完成的基本功能包括:飞行计划、导航与制导、性能优化与预测、电子飞行仪表系统显示、人/机交互和空地数据链。 3 国外民用飞机飞行管理系统发展现状 目前,美国是世界上飞行管理系统的产品的主要供应方,核心技术主要掌握在美国霍尼韦尔公司等少数公司手中。为保障欧洲电子核心产品逐渐进入民用飞机的装备领域,从上世纪80年代起,在航空电子系统承包时,欧洲空中客车公司就十分强调以欧洲公司为主,扶植研发欧洲自己的飞行管理系统,以凭借飞机平台的发展机会,为欧洲航空电子厂家创造掌握核心知识产权的机会和条件。同时对于飞机的市场销售采取了灵活的应用方式,即由飞机买主决定装备欧洲还是美国的飞行管理系统产品。这样既削弱了美国供应商一家独大的局面,降低机载设备的装备成本,增强了市场竞争力,又在后继型号发展中不断深入消化、逐步吸纳霍尼韦尔的先进技术,提高欧洲的自研能力,保障其飞机及航空电子系统的核心技术和知识产权效益不断增长。 4 世界主要的FMS生产商及其FMS系统 从当前世界上飞行管理系统的应用情况来看,目前生产飞行管理系统产品的公司主要有美国的霍尼韦尔有限公司、罗克韦尔·柯林斯公司和通用航空电子系统集团,英国的史密斯航空航天公司,法国的泰莱斯航空电子公司和加拿大的CMC电子组件有限公司。具体情况如表1所示。 表1 飞行管理系统产品应用情况

飞行管理系统

第16章飞行管理系统 16.1飞行管理系统概述 随着飞机性能的不断提高,要求飞行控制系统实现的功能越来越多,系统变得越来越复杂,从而迫使系统系统设计师们在可用的技术条件、任务和用户要求,飞机可用空间和动力,飞机的气动力特性及规范要求等诸因素的限制下,把许多分系统综合起来,实施有效的统一控制和管理。于是便出现了新一代数字化、智能化、综合化的电子系统-飞行管理系统(FMS-Flight Management System)。在1981年12月,飞行管理系统首次安装在B767型飞机上。此后生产的大中型飞机广泛采用飞行管理系统。 16.2飞行管理系统的组成和功能 16.2.1飞行管理系统的组成 飞行管理系统由几个独立的系统组成。典型的飞行管理系统一般由四个分系统组成,如图16-1,包括: (1)处理分系统-飞行管理计算机系统(FMCS),是整个系统的核心; (2)执行分系统-自动飞行指引系统和自动油门,见自动飞行控制系统; (3)显示分系统-电子飞行仪表系统(EFIS),见仪表系统; (4)传感器分系统-惯性基准系统(IRS)、数字大气数据计算机(DADC)和无线电导航设备。 驾驶舱主要控制组件是自动飞行指引系统的方式控制面板(AFDS MCP)、两部控制显示组件(CDU)、两部电子飞行仪表系统(EFIS)控制面板。主要显示装置是CDU、电子姿态指引仪(EADI)、电子水平状态指示器(EHSI)和推力方式显示。各部分都是一个独立的系统,既可以单独使用,又可以有多种组合形式。飞行管理系统一词的概念是将这些独立的部分组成一个综合系统,它可提供连续的自动导航、指引和性能管理。

图16-1飞行管理系统 16.2.2飞行管理系统的功能 FMS的主要功能包括导航/制导、自动飞行控制、性能管理和咨询/报警功能。FMS实现了全自动导航,大大减轻了驾驶员的工作负担。另外,飞机可以在FMS的控制下,以最佳的飞行路径、最佳的飞行剖面和最省油的飞行方式完成从起飞直到进近着陆的整个飞行过程。 FMS在各飞行阶段的性能管理功能: (1)起飞前 通过FMS的控制显示组件人工向FMC输入飞行计划、飞机全重和外界温度。如果飞行计划已经存入FMC的导航数据库,则可直接调入。飞行计划包括起飞机场、沿途航路点和目的机场的经纬度、高度等。 (2)起飞 根据驾驶员输入的飞机全重和外界温度,FMC计算最佳起飞目标推力。 (3)爬升 根据驾驶员的选择,FMC计算最佳爬升剖面。FMC还根据情况向驾驶员提供阶梯爬升和爬升地点的建议,供驾驶员选择,以进一步节约燃油。 (4)巡航 FMC根据航线长短、航路情况等因素,选择最佳巡航高度和速度。结合导航设施,确定起飞机场至目的机场的大圆航线,以缩短飞行距离。 (5)下降 FMC根据驾驶员输入或存储的导航数据确定飞机下降的顶点。在下降阶段,FMC确定下降速度,最大限度利用飞机的势能,节约燃油。 (6)进近 FMS以优化速度引导飞机到达跑道入口和着陆点。 16.2.3飞行管理计算机系统 由飞行管理计算机(FMC)和控制显示组件(CDU)组成。

飞行管理系统介绍

飞行管理系统介绍 一、飞行管理系统(FMC)组成和基本功用 (一)、飞行管理系统(FLIGHT MANAGEMENT SYS)由五个分系统组成:1、飞行控制系统(DFCS) 包括自动驾驶(A/P)和飞行指引(F/D),其核心为两台飞行控制计算机,该系统用于自动飞行控制(FCC)和飞行指引。 2、自动油门系统(A/T) 其核心是一台自动油门计算机和两台发动机油门操纵的伺服机构,A/T 提供从起飞到着陆全飞行过程的油门控制。 3、飞行管理计算机系统(FMCS) 其核心是一台飞行管理计算机FMC和两台控制显示组件CDU,它用于从起飞到进近的几乎全部飞行过程的横向(LATERAL)剖面和纵向(VERTICAL)剖面的飞行管理。 我部的34N型飞机装有两部FMCS,这使飞行管理系统的可靠性更高。 4、惯性基准系统(IRUS) 其核心为两台惯导基准组件IRU,其主要功用为提供飞机的姿态基准和定位参数,也可用于飞机自备、远距导航。 5、电子飞行仪表系统(EFIS) 33A和34N型飞机装备的是电子飞行仪表系统,3T0型飞机装备的还是旧式的机械式仪表。由于飞行仪表的电子化,逐渐淘汰老式的机械式仪表,而电子飞行仪表必须有相应的字符,符号等图形信号发生器,以提供阴极射线管CRT或液晶LCD显示。EFIS就是起这个作用的电子式飞行仪表显示系统,它主要包括两台符号发生器(EFIS SG)和两套姿态指引仪(EADI)、两套水平状态指示器(EHSI)。

(二)、飞行管理系统的基本作用: 这套系统技术先进,设备量大,承担的任务多,其中最根本的功用是:1、实现飞行的自动化,大大减轻了飞行员的工作负担,减少人为操作所不可避免的差错和失误。 2、实现飞行全程的优化: (1)起飞阶段(TO)—根据飞机的全重和环境温度提供最佳目标推力。(2)爬升降段(CLB)—提供最佳爬升剖面:包括爬升点,阶段爬升的设置,目标推力和目标空速的设定。 (3)巡航(CRZ)—提供最佳高度和巡航速度,以及大圆航线和导航系统的选择和自动调谐。 (4)下降阶段(DSE)—提供下降顶点,目标下降速度和分段,以充分利用飞机高度下降所得到的动能,并以最佳的高度,速度和距离转入进近阶段。(5)进近(APP)—确定飞机在五边进近基准点时的高度、空速和距离。 飞行的优化不仅得到最合理的飞行路径,节省燃油和飞行时间,而且飞机机体的损耗率最少。 3、实现自动着陆 由于有两套自动驾驶通道,具有余度通道,借助仪表着陆系统可实现Ⅱ类气象标准的自动着陆(决断高度50英尺,跑道能见距离700英尺)和自动复飞。 二、FMC控制飞行过程工作概述 飞行过程可归纳为正常程序和辅助正常程序 1、正常程序 所谓正常程序就是自动飞行的标准程序,可分为如下七个飞行阶段:(1)起飞TAKE OFF 在完成起飞前准备后,只要按压TO/GA开关,即开始起飞程序,此时推力杆自动前进到起飞目标N1值,当飞机滑跑达到60节时,F/D指令杆提

飞行管理系统介绍

飞行管理系统介绍 飞行管理系统介绍 一、飞行管理系统(FMC)组成与基本功用 (一)、飞行管理系统(FLIGHT MANAGEMENT SYS)由五个分系统组成: 1、飞行控制系统(DFCS) 包括自动驾驶(A/P)与飞行指引(F/D),其核心为两台飞行控制计算机,该系统用于自动飞行控制(FCC)与飞行指引。 2、自动油门系统(A/T) 其核心就是一台自动油门计算机与两台发动机油门操纵的伺服机构,A/T提供从起飞到着陆全飞行过程的油门控制。 3、飞行管理计算机系统(FMCS) 其核心就是一台飞行管理计算机FMC与两台控制显示组件CDU,它用于从起飞到进近的几乎全部飞行过程的横向(LATERAL)剖面与纵向(VERTICAL)剖面的飞行管理。 我部的34N型飞机装有两部FMCS,这使飞行管理系统的可靠性更高。 4、惯性基准系统(IRUS) 其核心为两台惯导基准组件IRU,其主要功用为提供飞机的姿态基准与定位参数,也可用于飞机自备、远距导航。 5、电子飞行仪表系统(EFIS) 33A与34N型飞机装备的就是电子飞行仪表系统,3T0型飞机装备的还就是旧式的机械式仪表。由于飞行仪表的电子化,逐渐淘汰老式的机械式仪表,而电子飞行仪表必须有相应的字符,符号等图形信号发生器,以提供阴极射线管CRT或液晶LCD显示。EFIS就就是起这个作用的电子式飞行仪表显示系统,它主要包括两台符号发生器(EFIS SG)与两套姿态指引仪(EADI)、两套水平状态指示器(EHSI)。

飞行管理系统介绍

飞行管理系统介绍 (二)、飞行管理系统的基本作用: 这套系统技术先进,设备量大,承担的任务多,其中最根本的功用就是: 1、实现飞行的自动化,大大减轻了飞行员的工作负担,减少人为操作所不可避免的差错与失误。 2、实现飞行全程的优化: (1)起飞阶段(TO)—根据飞机的全重与环境温度提供最佳目标推力。 (2)爬升降段(CLB)—提供最佳爬升剖面:包括爬升点,阶段爬升的设置,目标推力与目标空速的设定。 (3)巡航(CRZ)—提供最佳高度与巡航速度,以及大圆航线与导航系统的选择与自动调谐。 (4)下降阶段(DSE)—提供下降顶点,目标下降速度与分段,以充分利用飞机高度下降所得到的动能,并以最佳的高度,速度与距离转入进近阶段。 (5)进近(APP)—确定飞机在五边进近基准点时的高度、空速与距离。 飞行的优化不仅得到最合理的飞行路径,节省燃油与飞行时间,而且飞机机体的损耗率最少。 3、实现自动着陆 由于有两套自动驾驶通道,具有余度通道,借助仪表着陆系统可实现Ⅱ类气象标准的自动着陆(决断高度50英尺,跑道能见距离700英尺)与自动复飞。 二、FMC控制飞行过程工作概述 飞行过程可归纳为正常程序与辅助正常程序 1、正常程序 所谓正常程序就就是自动飞行的标准程序,可分为如下七个飞行阶段: (1)起飞TAKE OFF 在完成起飞前准备后,只要按压TO/GA开关,即开始起飞程序,此时推力杆自动前进到起飞目标N1值,当飞机滑跑达到60节时,F/D指令杆提供俯仰指令,起飞后400英尺RA高度以上,A/P衔接,同时选择L NA V(水平导航)与V

飞行管理系统

第16章飞行管理系统 16、1飞行管理系统概述 随着飞机性能得不断提高,要求飞行控制系统实现得功能越来越多,系统变得越来越复杂,从而迫使系统系统设计师们在可用得技术条件、任务与用户要求,飞机可用空间与动力,飞机得气动力特性及规范要求等诸因素得限制下,把许多分系统综合起来,实施有效得统一控制与管理。于就是便出现了新一代数字化、智能化、综合化得电子系统-飞行管理系统(FMSFlight Management System)。在1981年12月,飞行管理系统首次安装在B767型飞机上。此后生产得大中型飞机广泛采用飞行管理系统。 16、2飞行管理系统得组成与功能 16、2、1飞行管理系统得组成 飞行管理系统由几个独立得系统组成。典型得飞行管理系统一般由四个分系统组成,如图161,包括: (1)处理分系统-飞行管理计算机系统(FMCS),就是整个系统得核心; (2)执行分系统-自动飞行指引系统与自动油门,见自动飞行控制系统; (3)显示分系统-电子飞行仪表系统(EFIS),见仪表系统; (4)传感器分系统-惯性基准系统(IRS)、数字大气数据计算机(DADC)与无线电导航设备。 驾驶舱主要控制组件就是自动飞行指引系统得方式控制面板(AFDS MCP)、两部控制显示组件(CDU)、两部电子飞行仪表系统(EFIS)控制面板。主要显示装置就是CDU、电子姿态指引仪(EADI)、电子水平状态指示器(EHSI)与推力方式显示。各部分都就是一个独立得系统,既可以单独使用,又可以有多种组合形式。飞行管理系统一词得概念就是将这些独立得部分组成一个综合系统,它可提供连续得自动导航、指引与性能管理。

飞行数据记录系统——机务经验交流

飞行数据记录系统“OFF”灯的亮与不亮——浅谈飞行数据记录系统典型故障与放行 (本网通讯员尹科强报道)包含俗称“黑匣子”之一的飞行数据记录系统是飞机重要的系统,安装在驾驶舱的飞行数据记录器“OFF” (关断)灯,是用来告知飞行机组和维护人员,飞行数据记录系统工作状态。在飞行过程中,如果“OFF”灯不亮,说明系统工作正常;如果“OFF”灯亮,说明系统出现故障;在正常情况下,地面发动机未启动时,“OFF”灯是亮的,说明系统暂停工作,如果不亮——说明系统出现问题。以下以 737NG系列飞机为例,从飞行数据记录系统“OFF”灯的亮与不亮入手,对系统常见故障进行简单分析说明。 一、系统简介: 飞行数据记录系统主要包括飞行数据记录器、飞行数据采集组件、加速度计以及状态继电器、发动机起动继电器等部件。飞行数据采集组件负责接收飞机传感器和系统的模拟,离散和数字信号,并处理转变为哈佛双向格式的数字数据,发送到飞行数据记录器的固态存储器内保存。状态继电器是用于反映系统工作状态,当系统出现故障时,点亮警告灯。飞行数据记录器最少能存储最近25小时的飞行数据,在记录器组件前部装有一个水下定位信标。 当系统出现故障时,首先须进行故障确认,如果飞行记录器系统“OFF”灯不亮,说明故障为时瞬时故障,系统工作正常;至少故障不影响FDR的必要功能;如果飞行记录器系统OFF灯一直亮,则说明故障一直存在,会影响FDR的必要功能。根据MEL,一般可以按A类放行。 二、系统典型故障与放行 1

下面介绍两个飞行数据记录系统典型故障: 1、机组反映“空中FLIGHT RECORDER OFF灯常亮” 故障确认:当机组反映“空中FLIGHT RECORDER OFF灯常亮”故障时,首先,通过将NORMAL/TEST开关(在头顶P5上的飞行数据记录/马赫空速警告面板)放测试位来确认故障。如果飞行记录器系统OFF灯一直亮,说明故障存在。 故障分析:飞行数据记录器“OFF”灯,是从飞行数据采集组件(FDAU)、飞行数据记录器(FDR)接收故障信号。如果FDAU故障、FDR故障或不工作、FDAU状态继电器没有被激活,可以造成“OFF”灯长亮。FDR故障,可以通过FDAU测试发现。因此,在实际排故过程中,按照维护手册,首先,进行FDAU测试。然后,根据故障指示或引起故障可能的大小,检查、更换相应部件。在实际维护过程中,最有可能引起故障的部件可能性顺序为:飞行数据采集组件(FDAU)、飞行数据记录器(FDR)、FDAU状态继电器、飞行数据记录器/马赫速度配平警告板、线路故障。 如果确认故障存在,可以根据MEL31-2放行按A类放行。(A类放行修复时间为:1天;放行条件为:允许失效,但要求:CVR驾驶舱话音记录器工作正常,仅允许调机飞行一个航段到有维修或更换条件的地点,且在FDR拆下维修期间,飞机可以进行不超过15天的非商业飞行) 2、机组反映“地面飞行数据记录器“OFF”灯不亮” 故障确认:当机组反映“地面飞行数据记录器“OFF”灯不亮”时,首先同样通过将NORMAL/TEST开关放测试位来确认故障。如果在测试时,飞行记录器系统“OFF”灯不亮,说明故障不影响FDR的必要功能,进一步在飞行数据采集组件上做测试,可以确认是否影响ACMS功能。 2

自动飞行控制系统 AFCS

涡轮发动机飞机 第六章自动飞行控制系统AFCS 自动飞行控制系统的组成和基本功能 自动驾驶仪(AP)飞行指引(FD)偏航阻尼系统(YDS)俯仰配平系统(Auto Trim)自动油门系统(ATS) 6.1自动飞行控制系统AFCS的组成和基本功能 系统的功用——自动飞行控制系统可在除起飞的飞机的整个飞行阶段中使用:离场、爬升、巡航、下降和进近着陆。 6.1.1 自动飞行控制系统AFCS由下列分系统组成: 自动驾驶仪(A/P)—既可用于控制飞行轨迹,也可用于控制飞行速度减轻飞行员 的工作负担,还可实现飞机的自动着陆。 飞行指引仪(F/D) 在PFD或EADI上显示计算机提供的自动飞行的指令使飞行 员按照飞行指引杆的指引驾驶飞机,或监控飞机的姿态。自动配平系统自动调节飞机的水平安定门,改善飞机的俯仰稳定性 偏航阻尼系统(Y/D)改善飞机整个飞行阶段的动态稳定性 自动油门系统(ATS)自动调节发动机输出功率,实现最佳飞行,并减轻飞行 员的负担。 偏航阻尼系统与自动配平系统合称为增稳系统。 飞行管理系统FMS 在现代飞机上,利用飞行管理系统FMS,可完成对飞机的全自动导航; 提供从起飞到进近着陆的最优侧向飞行轨迹和垂直飞行剖面的计算, 实现最佳飞行。FMS的输出信号加到AFCS,控制自动飞行控制系统 的工作,实现对飞机的制导和推力管理;同时监测AFCS的工作,防止 飞机在不正常条件下的自动飞行。 6.1.3 AFCS的基本结构 AFCS的基本组成: 飞行控制计算机——计算控制指令。 控制板——(方式控制板MCP)是人机接口,用于向计算机输入飞行员的控制 指令,如飞行方式、速度、高度等。 输出设备——将计算机产生的控制信号加到飞行控制系统(通过舵机控制飞行操 纵面等),将显示信息输往显示器。 数字式AFCS的结构 80年代AP/FD计算机集成为FCC。 电子飞行控制系统EFCS的结构

飞行数据记录器

飞行数据记录器 一、飞行数据记录器系统概述 1、飞行数据记录器用来提供前阶段飞行中记录的重要飞行参数。它记录飞机在最后25小时的飞行状况,记录的信号来至飞机的其它系统和传感器。 2、数据记录器系统包括一个飞行数据记录器,加速度计,航班和日期编码器(3T0飞机上),飞行数据采集组件(33A和34N飞机上),记录器控制面板。 3、记录器记录范围:高度0至50000英尺;空速0至350海里;航向0至360度;垂直加速度-3至+6g。

二、系统部件 飞行数据记录器系统由飞行数据记录器、控制面板、加速度计、水下定位信标、数据采集组件(33A和34N飞机)、航班日期编码器(3T0飞机)等组成。 (一)、飞行数据记录器 1、安装 飞行数据记录器装在后登机门过道天花板内。 飞机的飞行数据记录器分为磁带式和固态存储器式,在34N飞机上装的是固态存储器式的,在3T0和33A飞机上是磁带式的。固态式记录器内部没有了复杂的磁带和走带机构,使机件更稳定可靠。 2、结构: 飞行数据记录器装在一个1/2ATR机匣内,重29磅(含水下信标),外表橙黄色带黑色斜条(俗称黑匣子)。其记忆芯片或磁带及传动机构装于一

个特制的盒子内,此盒子可抗1100℃的高温,1000G的重力加速度(5毫秒内)和任一轴相2000磅的冲击力。此外还能抗海水腐蚀,以尽可能保存记录的飞行数据。 3、磁带 飞行数据记录器所使用的磁带是由一种叫KAPTON的材料做成的。磁带宽1/4英寸,长388英尺,自润滑。 磁带格式为双向8磁道,奇数磁道使用正向走带,反向走带时使用偶数磁道,当一磁道用完自动换向走带。 4、走带机构 由两个卷带轮分别供带和收带,此两带轮由一橡皮带摩擦传动,皮带由一个皮带轮带动,而皮带轮又由一个装在保护盒外的步进马达驱动。马达驱动带进出保护盒的小孔周围是一个膨胀栓,在受到巨大的冲击或高温时,膨胀栓将小孔堵死,使磁带完全密封起来。

飞行品质监控的基础记录参数解析

飞行品质监控的基础—记录参数解析 民航总局航空安全技术中心李斌 山东航空股份有限公司王群宁引言 迄今为止航空公司开展飞行品质监控(Flight Operational Quality Assurance,以下简称FOQA)工作已有多年,FOQA在航空公司的日常运营、安全管理和飞行部队的技术管理等方面发挥着重要作用。FOQA的核心内容是应用实际飞行产生的飞行数据,按照设定的项目与标准,对飞行操纵、飞机性能等进行监控。目前国内航空公司使用的FOQA监控软件主要是FLIDRAS、AGS、GRAF、LOMS等。无论航空公司使用哪一种监控软件,一个必须完成的基础前提工作就是在监控软件上建立译码参数库。 飞行数据以二进制数据流的形式记录于FDR或QAR中,在监控软件上按照波音或空客的记录参数定义规范建立译码参数库,就可以把二进制数据转换为工程值数据。译码参数库的准确性将直接影响飞行品质监控的结果。因此,从事飞行品质监控工作的人员必须对记录参数有准确的理解和认识,包括参数的定义、数据来源、记录精度、记录频率、转换方法等内容,还要及时总结建立译码参数库的注意事项。 记录参数的发展 记录参数的发展经历了从5参数~11参数~17参数~28参数~34参数~57参数~88参数的过程,这里所指的参数是强制性参数,即必须记录的参数。 按照ARINC542记录器规范,数据采集和记录组成一个部件,即数据记录器。模拟参数直接传输到记录器,数据量很小。最初只记录五个参数:高度、空速、航向、垂直加速度和时间计数。 1991年10月国际民航组织(ICAO)、美国联邦航空局(FAA)等一些民航组织机构提高了记录参数标准,强制性要求在1991年以前生产的飞机上安装的记录器至少要记录11个(类)参数,1991年以后生产的飞机上安装的记录器至少要记录28个(类)参数。记录参数增加了俯仰、滚转、纵向加速度、发动机推力和驾驶杆位置等,但这些参数还都是模拟信号,即从机载传感器直接获得信号。 按照ICAO和FAA的要求,波音公司为以后生产的B737、B757和B767飞机建立了标准记录器字帧格式,以满足不同国家和地区的飞行数据记录器的规范要求,并称为91规则。例如:B737-300飞机,737-1字帧格式是FAA和ICAO标准;737-2字帧格式是英国民用航空管理局(CAA)、FAA和欧洲民用航空电子标准(EUROCAE);737-I字帧格式是ICAO标准。 为了充分发挥飞行数据在事故调查的作用,ICAO和FAA接受NTSB提出的建议(No.A-95-25/A-95-26/A-95-27),于1997年再次修改了对飞行数据记录器的记录参数规范要求,并称为97规则。参考资料1对记录参数进行了如下说明:对于没有安装飞行数据获得组件的飞机,在2001年8月20日前,参数要增加到17/18个(类);2000年8月18日以后制造的飞机要记录57个(类)参数;在2002年8月19日以后制造的飞机要记录88个(类)参数等。 随后一些飞机制造公司纷纷新增或改进记录器的字帧格式。以B737型飞机为例: z新增737-3系列的字帧格式(针对B737-600/-700/-700C/-800/-900飞机) z新增737-4/-4A的字帧格式(55参数或88参数,针对B737-300/-400/-500飞机)z将737-1/-2字帧格式改进为737-5字帧格式 z将737-I字帧格式改进为737-6字帧格式

相关主题
文本预览
相关文档 最新文档