当前位置:文档之家› 东北大学 物理实验 用牛顿环测量透镜的曲率半径实际体会详细过程

东北大学 物理实验 用牛顿环测量透镜的曲率半径实际体会详细过程

东北大学 物理实验 用牛顿环测量透镜的曲率半径实际体会详细过程
东北大学 物理实验 用牛顿环测量透镜的曲率半径实际体会详细过程

进实验室"第六弹!东北大学物理实验2.5 用牛顿环测量透镜的曲率半径实际体会

该实验操作很简单,非常简单??如果说稍微有点困难的地方就是在于开始的时候仪器的调整,再就是数据处理吧,不过相信只要细心一些,这些也不是太困难。

指导我们实验的是程显中老师,没有那么严厉,整个实验过程比较轻松。

(1)实验开始前

首先介绍下此次器材。每两张桌子拼在一起,供四个人实验,四个排在一起的仪器即读数显微镜,旁边的小盒装着牛顿环和劈尖。

圆形的为牛顿环,矩形的为劈尖。

读数显微镜(2)实验开始啦

首先是打开钠灯,钠灯位于桌子的中央偏上,开关在旁边,然后将牛顿环放于显微镜上,调节显微镜使得牛顿环的像清晰。

钠灯

调节显微镜镜头下方的反射镜成45?角

调节1使得平面镜旋转,改变倾角使得视野最亮,转动2使得平面镜平移,使得光亮均匀。

一定要看到黄光,如果看到白光说明反射了日光灯的光,要重新找。

注意,这是能否看到像的一个关键点,如下图模拟图

注意反射镜的方向不要错了,否则只会看到视野中一片亮而看不到牛顿环。在转动1的时候注意不要转过头变成右图所示的情况。

正确的倾角方向

其实载物台下面也有一个平面镜(上图),不过此次实验是用不到的,将旋转旁边的旋钮将其翻过去即可(一般都是翻过去的)如下图:

接着是调节目镜(上图中最上方的部分),转动目镜使得分划板(叉丝)清晰,转动目镜下面一点的分划板使得分划板的一条线与下方的主尺大致平行。

然后调节物镜,图中旋钮使得物镜上下移动,先使物镜移动到最下端,平面镜底部快接触牛顿环处,然后转动旋钮使其慢慢上移,使显微镜中牛顿环的像最清晰。

1即为鼓轮,转动的时候可以握住把也可以直接旋转轮,在微调的时候还是旋转轮比较精确。物镜调节完毕后旋转鼓轮使得望远镜处于主尺的中间部分,然后移动牛顿环使得叉丝的交点大致位于牛顿环的圆心。调节完毕后显微镜的调整就结束,接下来就是读数了。

看到的牛顿环的像,这个清晰度就可以了。首先是读数的方法,读数分主尺与鼓轮上的千分尺两部分。

主尺(单位mm)

鼓轮上的千分尺部分千分尺每转一圈主尺上移动1mm,每个小格是0.01mm,读数时须估读。如该图的千分尺部分可以读作0.321mm.主尺部分读数加上千分尺部分读数就是最后数据,所以在实验记录上应记录5位数据(主尺2位+千分尺3位,最后一位是欠准位)。

然后就是转动鼓轮开始读数了,由于长时间盯着明环看会累眼睛所以我们观察暗环,而如果暗环离中心太近会太粗不便观测,离中心太远又太密同样不便观测,所以我们取的是6~24环的数据,一般的步骤是用鼓轮将显微镜向左移26~27环(从第1条暗环开始数)。然后反向转动至叉丝与第24环相切(注意刚开始反向转动的时候叉丝会不动,因为反向的时候鼓轮会空转一会,这也是为什么整个记录数据过程中鼓轮不能反转的原因,所以刚开始

反向转动的时候不要太快,要慢慢地来,否则太快了有可能会错过想要相切的环又因为不能反转从而造成些误差)。

测量数据的整个过程中鼓轮一定不要反转,如果反转了要重新测量。

其实取第几环并不是严格规定的,书中也说第1环位置可以自行确定。6~24只是令叉丝与环相切时比较容易而已,万一错过了第24环也不要紧,同样可以取23,21,19,1 7??9,7,5环的数据,只要保持是相距2环都可以。叉丝与环相切时,如果环较粗则令叉丝与最暗处相切(话虽这么说其实看着哪都大致一样暗,我觉得稍微令叉丝与该宽缝的中线相切的话会好一些?)

叉丝所在处为20多环处(具体是多少我也记不清了,好像是23)

读完第24环的数据后记录在a i行24那列,然后继续转动鼓轮至第22环,继续测量数据,记录在a i行22那列,继续测量一直到第6环,第6环的数据记录完毕后转动鼓轮越过中心暗点至牛顿环的右边且与第6环相切(之前一直在牛顿环的左部分读数),测量,将数据记录到b i行6那列,然后继续转动鼓轮??一直读到第24环,测量,记录数据在b i行24那列,至此牛顿环数据测量完毕(整个过程是U形读数,从24的最左侧到2 4的最右侧)。

注:也可以从到牛顿环右侧第24环开始读数,那样的话第一个数据就要记录在b i 行24那列,其他的也要相应地调整过来。

牛顿环读数完毕以后就是劈尖的读数了,将劈尖放上去以后旋转劈尖使得条纹与叉丝竖线平行,然后转动鼓轮使得叉丝与其中一条暗纹相切,读数,记录在"1"行a i格中。使叉丝划过10条暗纹切于第10条,再次读数,记录在“1”行b i格中。然后取不同的初始位置再重复测两次。(注:由于劈尖的条纹比较宽,所以我觉得相切的时候与中线相切为好)。

劈尖的干涉条纹劈尖的读数也完成后,整个实验的操作就结束了。整个实验过程不算太长,快的话可以在1个小时左右结束。

(3)实验结束喽

实验处理要用最小二乘法。思考题做(1)、(2)题。

牛顿环测曲率半径

牛顿环测曲率半径 Newton ring experiment 牛顿环是牛顿在1675年观察到的,到19世纪初由科学家杨氏用光的波动理论解释了牛顿环干涉现象。 【实验目的】 理解光的干涉 使用读数显微镜 牛顿环干涉法测量曲率半径 【实验原理】 空气薄层 明暗相间、内疏外密的同心圆环干涉图象 等厚干涉 干涉条纹形成条件为: ???????+==+= 为暗环 为明环2)12(2 2λ δλδλδK K d K K λλλ)(4)(2 222?2 n m D D n m r r R K r R n m n m K --=--=?→?= 【仪器介绍】 读数显微镜、钠灯、牛顿环 牛顿环

【实验内容】 1.按要求布置好器件; 2.观测牛顿环干涉条纹:调节目镜筒上的45°平板玻璃,使光垂直照在平凸透镜装置上,牛顿环放到载物平台上,调节目镜焦距清晰地看到十字叉丝和黄色背景,然后由下向上移动显微镜镜筒看清牛顿干涉环; 3.测量牛顿环直径:取m =24,n=15,转动测微手轮使十字叉丝向左移动到第27环,再倒回到24环,使十字叉丝与暗环的左侧相切,读出x 24左,逐条依次测量x 24左,直到读出x 15左,继续向原方向转动测微手轮,越过牛顿环的中心区域至第15环(右侧相切),读出x 15右,直至x 24右。将数据填入绘制的表格中。 右 右右左左左 242315152324,,...,;,...,,x x x x x x ? 注意:① 十字叉丝跟暗环相切; ② 十字叉丝尽量过圆心;③ 中心明环或暗环的环序数K=0;④ 读数跟螺旋测微计一样,估读到0.001mm 。 【数据处理及误差计算】 ①计算||右左K K K x x D -= ②采用逐差法

普通物理实验思考题及答案

实验一. 1求λ时为何要测几个半波长的总长? 答:多测几个取平均值,误差会减小 2为何波源的簧片振动频率尽可能避开振动源的机械共振频率? 答 当簧片达到某一频率(或其整数倍频率)时,会引起整个振动源(包括弦线)的机械共 振,从而引起振动不稳定。 3弦线的粗细和弹性对实验各有什么影响,应该如何选择? 答 弦线应该比较细,太粗的话会使振动不明显,弹性应该选择较好的,因为弹性不佳会造 成振动不稳定 4横波在弦线上传播的实验中,驻波是由入射波与反射波迭加而成的,弦线上不振动的点称 为波节,振动最大的点称为波腹,两个波节之间的长度是半波长 5因振簧片作水平方向的振动,理论上侧面平视应观察不到波形,你在实验中平视能观察得 到吗?什么情况能观察到,为什么? 答 平视不能观察到,因为。。。。。。 6为了使lg λ—lgT 直线图上的数据点分布比较均匀,砝码盘中的砝码质量应如何改变? 答 每次增加相同重量的砝码 实验二. 1.外延测量法有什么特点?使用时应该注意什么问题? 答 当需要的数据在测量数据范围之外而不能测出,为了求得这个值,采用作图外推求值的 方法,即先用已测的数据绘制出曲线,再将曲线按原规律延长到待求值范围,在延长线部分 求出所需要的值 使用时要注意在所要值两边的点要均衡且不能太少并且在研究的范围内 没有突变的情况 2.物体的固有频率和共振频率有什么不同?它们之间有何联系? 答 物体的固有频率和共振频率是不同的概念,固有频率指与方程的根knl=4.7300对应的振 动频率,它们之间的关系为f 固= f 共2^4/11Q 前者是物体的固有属性,由其结构,质量材质等决定,而后者是当外加强迫力的频率等于物 体基频时,使其发生共振时强迫力的频率 实验三. 1.为什么实验应该在防风筒(即样品室)中进行? 答:因为实验中的对公式 要成立的条件之一是:保证两样品的表面状况相同,周围介质(空气)的性质不变, m:强迫对流时m=1;自然对流时m=5/4; (实验中为自然冷却即自然对流) 所以实验要在防风筒(即样品室)中进行,让金属自然冷却。 2.用比较法测定金属的比热容有什么优点?需具备什么条件? 答:优点是可以简单方便测出待测金属的比热容。如果满足下列条件:两样品的形状尺寸都 相同(例如细小的圆柱体);两样品的表面状况也相同; 于是当周围介质温度不变(即室温恒定),两样品又处于相同温度时,待测金属的比热容为: 3.如何测量不同的金属在同一温度点的冷却速率? 答:法一:测出不同金属在该温度点附近下 降相同的温度差Δθ以及所需要的时间Δt,可 得各个金属在该温度点的冷却速率。 法二:通过实验,作出不同金属的θ~t 冷却曲线,在各个冷却曲线上过该温度点切 线,求出切线的斜率,可得各温度点的冷却速率。 4、可否利用本实验中的方法测量金属在任意温度时的比热容?

大学物理仿真实验报告牛顿环法测曲率半径

大学物理仿真实验报告-牛顿环法测曲率半径

————————————————————————————————作者: ————————————————————————————————日期:

大学物理仿真实验报告 实验名称 牛顿环法测曲率半径 班级: 姓名: 学号: 日期:

牛顿环法测曲率半径 实验目的 1.学会用牛顿环测定透镜曲率半径。 2.正确使用读书显微镜,学习用逐差法处理数据。 实验原理 如下图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于膜厚度e的两倍。此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为 (1) 当?满足条件(2) 时,发生相长干涉,出现第K级亮纹,而当 (k = 0,1,2…) (3) 时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。 如图所示,设第k级条纹的半径为,对应的膜厚度为,则

(4) 在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R>> ek,ek 2相对于2Re 是一个小量,可以忽略,所以上式可以简化为 k (5) 如果rk是第k级暗条纹的半径,由式(1)和(3)可得 (6) 代入式(5)得透镜曲率半径的计算公式 (7) 对给定的装置,R为常数,暗纹半径 (8) 和级数k的平方根成正比,即随着k的增大,条纹越来越细。 同理,如果r k是第k级明纹,则由式(1)和(2)得 (9) 代入式(5),可以算出 (10)

牛顿环思考题及答案

(1)牛顿环的中心在什么情况下是暗的,在什么情况下是亮的? 中心处是暗斑,这是因为中心接触处的空气厚度,而光在平面玻璃面上反射时有半波损失,所以形成牛顿环中心处为暗斑(用反射光观察时)。当没有半波损失时则为亮斑。 当有半波损失时为暗纹,没有半波损失时为亮纹。 (2)实验中为什么用测量式 λ )(42 2 n m D D R n m --= ,而不用更简单的λ K r R k 2 = 函数关系式求出 R 值? 因为用后面个关系式时往往误差较大,原因在于凸面和平面不可能是理想的点接触,接触压力会引起局部形变,使接触点成为一个圆面,干涉环中心为一暗斑,所以无法确定环的几何中心。所以比较准确的方法是测量干涉环的直径。测出个对应k 环环直径Dk ,由rk 2 =k λR 可知Dk 2=4R λk,又由于灰尘等存在,是接触点的dk ≠0,其级数也是未知的,则是任意暗环的级数和直径Dk 难以确定,故取任意两个不相邻的暗环,记其直径分别为Dm 和Dn(m>n),求其平方差即为 Dm 2-Dn 2=4(m-n)R λ,则R=(Dm 2-Dn 2)/4(m-n) λ (3) 在本实验中若遇到下列情况,对实验结果是否有影响?为什么? ①牛顿环中心是亮斑而非暗斑。 ②测各个D m 时,叉丝交点未通过圆环的中心,因而测量的是弦长而非真正的直径。 1. 环中心出现亮斑是因为球面和平面之间没有紧密接触(接触处有尘埃,或有破损或磨毛),从而产生了附加光程差。这对测量结果并无影响(可作数学证明)。 2.( 提示:从左图A ,看能否证 明:2 2 2 2 n m n m D D d d -=-) 没有影响.可能的附加光程差会导致中心不是暗点而是亮斑,但在整个测量过程中附加光程差是恒定的,因此可以采用不同暗环逐差的方式消除 (4)在测量过程中,读数显微镜为什么只准单方向前进,而不准后退? 会产生回程误差,即测量器具对同一 个尺寸进行正向和反向测量时,由于 结构上的原因,其指示值不可能完全相同,从而产生误差. d d m Dn Dm h r n r m n 图A R d n =1 H 图B

物理实验思考题答案

物理实验全解 实验一霍尔效应及其应用 【预习思考题】 1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。 霍尔系数,载流子浓度,电导率,迁移率。 2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型? 以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。 3.本实验为什么要用3个换向开关? 为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。总之,一共需要3个换向开关。 【分析讨论题】 1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行? 若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B 和霍尔器件平面的夹角。 2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些来源? 误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。实验二声速的测量 【预习思考题】 1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定? 答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。若在这样一个最佳状态移动S1至每一个波节处,媒质压缩形变最大,则产生的声压最大,接收换能器S2接收到的声压为最大,转变成电信号,晶体管电压表会显示出最大值。由数显表头读出每一个电压最大值时的位置,即对应的波节位置。因此在系统处于共振的条件下进行声速测定,可以容易和准确地测定波节的位置,提高测量的准确度。 2. 压电陶瓷超声换能器是怎样实现机械信号和电信号之间的相互转换的? 答:压电陶瓷超声换能器的重要组成部分是压电陶瓷环。压电陶瓷环由多晶结构的压电材料制成。这种材料在受到机械应力,发生机械形变时,会发生极化,同时在极化方向产生电场,这种特性称为压电效应。反之,如果在压电材料上加交变电场,材料会发生机械形变,这被称为逆压电效应。声速测量仪中换能器S1作为声波的发射器是利用了压电材料的逆压电效应,压电陶瓷环片在交变电压作用下,发生纵向机械振动,在空气中激发超声波,把电信号转变成了声信号。换能器S2作为声波的接收器是利用了压电材料的压电效应,空气的振动使压电陶瓷环片发生机械形变,从而产生电场,把声信号转变成了电信号。

用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜曲率半径 [实验目的] 1.观察光的等厚干涉现象,了解干涉条纹特点。 2.利用干涉原理测透镜曲率半径。 3.学习用逐差法处理实验数据的方法。 [实验原理] 牛顿环条纹是等厚干涉条纹。 由图中几何关系可得 22222)(k k k k d Rd d R R r -=--= 因为R>>d k 所以 k k Rd r 22= (1) 由干涉条件可知,当光程差 ??? ???? =+=+=?==+=?暗条纹 明条纹 )0,1,2(k 2)12(22 )1,2,(k 22ΛΛλλλλk d k d k k (2) 其干涉条纹仅与空气层厚度有关,因此为等厚干涉。由(1)式和(2)式可得暗条纹其环的半径 R k r k λ=2 (3) 由式(3)可知,若已知入射光的波长λ,测出k 级干涉环的半径r k ,就可计算平凸透镜的曲率半径。 所以 λ m D D R k m k 42 2-=+ (4) 只要测出D k 和D k+m ,知道级差m ,并已知光的波长λ,便可计算R 。

[实验仪器] 钠光灯,读数显微镜,牛顿环。 [实验内容] 1.将牛顿环置于读数显微镜载物合上,并调节物镜前反射玻璃片的角度,使显微镜的视场中充满亮光。 2.调节升降螺旋,使镜筒处于能使看到清晰干涉条纹的位置,移动牛顿环装置使干涉环中心在视场中央。并观察牛顿环干涉条纹的特点。 3.测量牛顿环的直径。由于中心圆环较模糊,不易测准,所以中央几级暗环直径不要测,只须数出其圈数,转动测微鼓轮向右(或左)侧转动18条暗纹以上,再退回到第18条,并使十字叉丝对准第18条暗纹中心,记下读数,再依次测第17条、第16条…至第3条暗纹中心,再移至左(或右)侧从第3条暗纹中心测至第18条暗纹中心,正式测试时测微鼓轮只能向一个方向转动,只途不能进进退退,否则会引起空回测量误差。 4.用逐差法进行数据处理及第18圈对第8圈,第17圈对第7圈…。其级差m=10,用(4)式计算R 。 [实验数据处理] 在本实验中,由于在不同的环半径情况下测得的R 的值是非等精度的测量,故对各次测量的结果进行数据处理时,要计算总的测量不确定度是个较复杂的问题。为了简化实验的计算,避免在复杂的推导计算中耗费过多时间,本实验中研究测量的不确定度时仅按等精度测量的情况估算(22k m k D D -+)的标准偏差,而忽略B 类不确定度的估算和在计算中因不等精度测量所带来的偏差。 表1 牛顿环测量数据 m =10,λ=5.893×10-4mm

最新物理实验思考题答案讲课教案

1、电磁感应【Q】在实验中我们发现,旋转的铝盘会对磁铁产生牵引力,发过来磁铁也会对铝盘有一个反作用力(磁阻尼力),这个阻尼力会影响实验精度吗?【A】并不会影响实验精度,且铝盘会以一个恒定的频率在转动!原因:步进电机的工作原理,是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。因此,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响。【Q】大家是否发现在我们这个实验中,铝盘上面挖了六个小孔,你们认为这些小孔会对牵引力产生影响吗?【A】小孔会对牵引力产生影响,牵引力相比没孔的铝盘会变小;每一根铝丝两端都会产生感应电动势,铝盘就相当于多个电源的并联,但是由于小孔的存在,产生的电流可能不稳定,牵引力会有小幅波动,但是小孔并不是改变磁通量的“罪魁祸首【Q】测量磁悬浮力或牵引力时,永磁体的位置对结果有什么影响?比如正对着铝盘圆心与偏离角度的区别;还有永磁体靠近铝盘中心时所受的力与磁体位于铝盘边缘时相比,大小

如何?【A】做了几次试验,发现当磁铁在盘内较大距离时力不大,到盘边时较大,远离盘后减小。可推知力与磁铁到盘中心的距离是一个单峰的函数,有水平渐近线。【Q】大家想一下,如果那个轴承完全无摩擦,那么它的转速会无限增大吗?【A】【Q】如何改进??【A】此实验的磁悬浮力和磁牵引力装置应增加一个角度指针,因为我们在做距离和力的大小的关系试验中,每次都要将测力器杆取出,然后重新固定,这当中是不是会因为角度的不同产生较大的误差呢?所以可以增加一个角度小指针,来校正测力杆放置的方向,减免误差我们是准备加一个升降装置的,最好带刻度的。 1.测量磁悬浮传动系统的轴承转速时,测得的转速不是很稳定,而转速的测定时以一定时间内通过轴承的光束的个数为依据的。所以我建议增加轴承上计数孔的个数,这样测得的数目会增多,可以减小不稳定因素的干扰,所得读数会相对集中一些。 2.我做实验时的传感器支架稳定性不好,每次垫一个垫片测磁牵引力和磁悬浮力时,旋转的铝盘很容易擦到永磁铁。不仅如此,

大学物理实验

一、选择题(每小题3 分,共30分) 1. 以下说法正确的是( ) A. 多次测量可以减小随机误差 B.多次测量可以消除随机误差 C.多次测量可以减小系统误差 D.多次测量可以消除系统误差 2. 用分度值为 0.05 的游标尺测量一物体的长度,下面读数正确的是( ) A. 12.63mm B.12.64mm C. 12.60mm C.12.635mm 3. 牛顿环测曲率半径实验中,观测到的同心干涉圆环的疏密分布是什么( A.均匀分布 C.从内到外逐渐变得密集 4.0.070 的有效数字有( ) A. 1 位 B.2 位 5. 某电流值的测量结果为 I=(30.55±0.05)mA ,则下面关于被测电流的真值 I 0 的哪种理解是正 确的( ) (A ) I 0=30.55mA (B ) I 0=30.50mA 或 I 0=30.60mA (C ) 30.50mA

牛顿环法测曲率半径

牛顿环法测曲率半径2014年11月28日

牛顿环法测曲率半径 光的干涉现象表明了光的波动的性质,干涉现象在科学研究与计量技术中有着广 泛的应用。在干涉现象中,不论何种干涉,相邻干涉条纹的光程差的改变都等于相干光 的波长,可见光的波长虽然很小,但干涉条纹间的距离或干涉条纹的数目是可以计量的 因此,通过对干涉条纹数目或条纹移动数目的计量,可以得到以光的波长为单位的光程 差。 利用光的等厚干涉可以测量光的波长,检验表面的平面度,球面度,光洁度,以 及精确测量长度,角度和微小形变等 一 ?实验内容 图1 本实验的主要内容为利用干射法测量平凸透镜的曲率半径。 1.观察牛顿环 将牛顿环按图2所示放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的 角度,使通过显微镜目镜观察时视场最亮。 调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近牛顿环仪然后 缓慢上升,直到观察到干涉条纹,再微调玻璃片角度和显微镜,使条纹清晰。 2. 测牛顿环半径

使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行()与显微镜移动方向平行)。记录标尺读数。 转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第N环相切为止(N根据实验要求决定)。记录标尺读数。 3.重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R和R 的标准差。 二.实验原理 图1 如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差△'等于膜厚度e的两倍, 即厶=2e 此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差,与之对应的光程差为/2,所以相干的两条光线还 具有/2的附加光程差,总的光程差为 A = A'-4-2/2 = + (1) 当△满足条件

大学物理实验思考题答案

大学物理实验思考题答案 实验一:用三线摆测物体的转动惯量 1. 是否可以测摆动一次的时间作周期值?为什么? 答:不可以。因为一次测量随机误差较大,多次测量可减少随机误差。 2. 将一半径小于下圆盘半径的圆盘,放在下圆盘上,并使中心一致,讨论此时三线摆的周期和空载时的周期相比是增大、减小还是不一定?说明理由。 答:当两个圆盘的质量为均匀分布时,与空载时比较,摆动周期将会减小。因为此时若把两 盘看成为一个半径等于原下盘的圆盘时,其转动惯量10小于质量与此相等的同直径的圆盘, 根据公式(3-1-5),摆动周期T0将会减小。 3. 三线摆在摆动中受空气阻尼,振幅越来越小,它的周期是否会变化?对测量结果影响大吗?为什么?答:周期减小,对测量结果影响不大,因为本实验测量的时间比较短。 [实验二]金属丝弹性模量的测量 1. 光杠杆有什么优点,怎样提高光杠杆测量的灵敏度? 本帖隐藏的内容需要回复才可以浏览 答:优点是:可以测量微小长度变化量。提高放大倍数即适当地增大标尺距离D或适当地 减小光杠杆前后脚的垂直距离b,可以提高灵敏度,因为光杠杆的放大倍数为2D/b。2?何谓视差,怎样判断与消除视差? 答:眼睛对着目镜上、下移动,若望远镜十字叉丝的水平线与标尺的刻度有相对位移,这种现象叫视差,细调调焦手轮可消除视差。 3.为什么要用逐差法处理实验数据? 答:逐差法是实验数据处理的一种基本方法,实质就是充分利用实验所得的数据,减少随机误差,具有对数据取平均的效果。因为对有些实验数据,若简单的取各次测量的平均值,中间各测量值将全部消掉,只剩始末两个读数,实际等于单次测量。为了保持多次测量的优越性,一般对这种自变量等间隔变化的情况,常把数据分成两组,两组逐次求差再算这个差 的平均值。 [实验三]随机误差的统计规律 1?什么是统计直方图?什么是正态分布曲线?两者有何关系与区别?本帖隐藏的内容需要回复才可以浏览答:对某一物理量在相同条件下做n次重复测量,得到一系列测量值,找出它的最大值和最小值,然后确定一个区间,使其包含全部测量数据,将区间分成若干小区间,统计测量结果出现在各小区间的频数M,以测量数据为横坐标,以频数M为纵坐标,划出各小区间及其对应的频数高度,则可得到一个矩形图,即统计直方图。 如果测量次数愈多,区间愈分愈小,则统计直方图将逐渐接近一条光滑的曲线,当n趋向于 无穷大时的分布称为正态分布,分布曲线为正态分布曲线。 2. 如果所测得的一组数据,其离散程度比表中数据大,也就是即S(x)比较大,则所得到的周期平均值是否也会差异很大? 答:(不会有很大差距,根据随机误差的统计规律的特点规律,我们知道当测量次数比较大时,对测量数据取和求平均,正负误差几乎相互抵消,各误差的代数和趋于零。

大学物理实验讲义实验牛顿环.docx

实验09用牛顿环测曲率半径 光的干涉现象证实了光在传播过程中具有波动性。光的干涉现象在工程技术和科学研究方面有着广 泛的应用。获得相干光的方法有两种:分波阵面法(例如杨氏双缝干涉、菲涅尔双棱镜干涉等)和 分振幅法(例如牛顿环等厚干涉、迈克尔逊干涉仪干涉等)。本实验主要研究光的等厚干涉中的两个典型 干涉现象,即牛顿环和劈尖干涉,它们都是用分振幅方法产生的干涉,其特点是同一条干涉条纹 处两反射面间的厚度相等,故牛顿环和劈尖都属于等厚干涉。在实际工作中,通常利用牛顿环来测量 光波波长,检查光学元件表面的光洁度、平整度和加工精度,利用劈尖来测量微小长度、薄膜的厚度 和固体的热膨胀系数等。 【实验目的】 1.观察光的干涉现象及其特点。 2.学习使用读数显微镜。 3.利用牛顿环干涉测量平凸透镜的曲率半径R 。入射光 4.利用劈尖干涉测量微小厚度。 【仪器用具】 R 读数显微镜、钠光灯、牛顿环装置、劈尖 r K d K 【实验原理】O (a) 1.牛顿环 牛顿环干涉现象是 1675 年牛顿在制作天文望远镜时,偶 然地将一个望远镜的物镜放在平面玻璃上而发现的。 如图 8-1 所示,将一个曲率半径为R(R很大)的平凸 透镜的凸面放在一块平面玻璃板上,即组成了一个牛 顿环装置。在透镜的凸面与平面玻璃板上表面间,构成了 一个空气薄层,其厚度从中心触点O (该处厚度为零) 向外逐渐增加,在以中心触点O 为圆心的任一圆周上的各点,薄空气层的厚度都相等。因此,当波长为的单色 光垂直入射时,经空气薄层上、下表面反射的两束相干光 形成的干涉图象应是中心为暗斑的宽窄不等的明暗相间 的同心圆环。此圆环即被称之为牛顿环。由于这种干涉条 纹的特点是在空气薄层同一厚度处形成同一级干涉条纹,因 此牛顿环干涉属于等厚干涉。 D 1 X (左)X(右 ) 11 D 4 X 4(左)X 4(右 ) (b) 图8-1 牛顿环的产生 设距离中心触点O 半径为 r K的圆周上某处,对应的空气薄层厚度为 d K,则由空气薄层上、下表面反射的两束相干光的光程差为 K 2d K 2 ( 8-1)

大学物理仿真实验报告牛顿环分析

大学物理仿真实验报告 实验名称:牛顿环法测曲率半径实验日期: 专业班级: 姓名:学号: 教师签字:________________ 一、实验目的 1.学会用牛顿环测定透镜曲率半径。 2.正确使用读书显微镜,学习用逐差法处理数据。 二、实验仪器 牛顿环仪,读数显微镜,钠光灯,入射光调节架。 三、实验原理 如图所示,在平板玻璃面DCF上放一个曲率半径很大的平 凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形 成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到 透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜 的上下表面反射的两条光线来自同一条入射光线,它们满 足相干条件并在膜的上表面相遇而产生干涉,干涉后的强 度由相遇的两条光线的光程差决定,由图可见,二者的光 程差等于膜厚度e的两倍,即 此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为(1) 当?满足条件(2)时,发生相长干涉,出现第K级亮纹,而当(k = 0,1,2…)(3)时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。

如图所示,设第k级条纹的半径为,对应的膜厚度为,则 (4) 在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> e k,e k2相对于2Re k是一个小量,可以忽略,所以上式可以简化为 (5) 如果r k是第k级暗条纹的半径,由式(1)和(3)可得 (6) 代入式(5)得透镜曲率半径的计算公式 (7) 对给定的装置,R为常数,暗纹半径 (8) 和级数k的平方根成正比,即随着k的增大,条纹越来越细。 同理,如果r k是第k级明纹,则由式(1)和(2)得 (9) 代入式(5),可以算出(10)由式(8)和(10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出R。

物理实验思考题答案

光学实验思考题集 一、 薄透镜焦距的测定 ⒈远方物体经透镜成像的像距为什么可视为焦距 答:根据高斯公式v f u f '+=1,有其空气中的表达式为'111f v u =+-,对于远方的物体有u =-,代入上式得f′=v ,即像距为焦距。 ⒉如何把几个光学元件调至等高共轴粗调和细调应怎样进行 答:对于几个放在光具座上的光学元件,一般先粗调后细调将它们调至共轴等高。 ⑴ 粗调 将光学元件依次放在光具座上,使它们靠拢,用眼睛观察各光学元件是否共轴等高。可分别调整: 1) 等高。升降各光学元件支架,使各光学元件中心在同一高度。 2) ; 3) 共轴。调整各光学元件支架底座的位移调节螺丝,使支架位于光具座中心轴线 上,再调各光学元件表面与光具座轴线垂直。 ⑵细调(根据光学规律调整) 利用二次成像法调节。使屏与物之间的距离大于4倍焦距,且二者的位置固定。移动透镜,使屏上先后出现清晰的大、小像,调节透镜或物,使透镜在屏上成的大、小像在同一条直线上,并且其中心重合。 ⒊能用什么方法辨别出透镜的正负 答:方法一:手持透镜观察一近处物体,放大者为凸透镜,缩小者为凹透镜。方法 二:将透镜放入光具座上,对箭物能成像于屏上者为凸透镜,不能成像于屏上 者为凹透镜。 ⒋测凹透镜焦距的实验成像条件是什么两种测量方法的要领是什么 答: 一是要光线近轴,这可通过在透镜前加一光阑档去边缘光线和调节共轴等高来实现;二是由于凹透镜为虚焦点,要测其焦距,必须借助凸透镜作为辅助透镜来实现。 物距像距法测凹透镜的要领是固定箭物,先放凸透镜于光路中,移动辅助凸透 镜与光屏,使箭物在光屏上成缩小的像(不应太小)后固定凸透镜,记下像的坐标位置(P );再放凹透镜于光路中,并移动光屏和凹透镜,成像后固定凹透镜(O 2),并记下像的坐标位置(P′);此时O 2P =u ,O 2P′=v 。 用自准法测凹透镜焦距的要领是固定箭物,取凸透镜与箭物间距略小于两倍凸 透镜的焦距后固定凸透镜(O 1),记下像的坐标位置(P );再放凹透镜和平面镜于O 1P 之间,移动凹透镜,看到箭物平面上成清晰倒立实像时,记下凹透镜的坐标位置(O 2),则有f 2 =O 2P 。 ⒌共轭法测凸透镜焦距时,二次成像的条件是什么有何优点 @ 答:二次成像的条件是箭物与屏的距离D 必须大于4倍凸透镜的焦距。用这种方 法测量焦距,避免了测量物距、像距时估计光心位置不准所带来的误差,在理 论上比较准确。 6.如何用自准成像法调平行光其要领是什么 答:固定箭物和平面镜,移动箭物与平面镜之间的凸透镜,使其成清晰倒立实像于

牛顿环思考题

1.等厚干涉的特征:等厚干涉是因为平行光入射到厚度有变化的薄膜上、下表面而形成的干涉条纹.薄膜厚度相同的地方形成相同级数的明暗干涉条纹,故称等厚干涉。条纹特点是对于劈尖干涉,条纹是明暗相间的平行的等间距的干涉条纹。如果是牛顿环,干涉条纹则是不等间距的环状条纹。 2.测λ的方法 1)分光计测量光波波长 当一束平行光垂直入射到光栅上,产生一组明暗相间的衍射条纹,原理如图所示,其夫朗和费衍射主极大下式决定: dsin Φ= m λ (9 — 1) 式中:d :光栅常数 d = a + b θ:衍射角 m :主极大级次 m = 0 , 1, 2 此式称光栅方程 由(9 — 1)式得 : 由此可以看出:只要测出任意级次的某一条光谱线的衍射角,即可计算出该光波长。 2)用双缝干涉测量光的波长 如图所示,电灯发生的光,经过滤光片后变成单色光,再经过单缝S 时 发生衍射,这时单缝S 相当于一单色光源,衍射光波同时到达双缝S1 和S2之后,再次发生衍射,S1、S2双缝相当于二个步调完全一致的单 色相干光源透过S1、S2双缝的单色光波在屏上相遇并叠加,S1、S2到 屏上P 点的路程分别是rl 、r2,两列光波传到P 的路程差Δr=21r r , 设光波波长为λ。 (1)若Δr=nλ (n=0,±1,±2,…),两列波传到P 点同相,互相加强,出现明条纹. (2)若Δr=(2n -1)λ (n=±1,±2,±3,…),两列波传到P 点反相,互相减弱,出现暗纹. 这样就在屏上得到了平行于双缝S1、S2的明暗相间的干涉条纹.相邻两条明条纹间的距离

Δx 与入射光波长λ,双缝S1、S2间距离d 及双缝与屏的距离L 有关,其关系式为:Δx=d L λ,由此,只要测出Δx 、d 、L 即可测出波长λ. 3)双棱镜测量光波波长 菲涅耳双棱镜(简称双棱镜)实际上是一个顶角极大的等腰三棱镜,如图1所示。它可看成由两个楔角很小的直角三棱镜所组成,故名双棱镜。当一个单色缝光源垂直入射时,通过上半个棱镜的光束向下偏折,通过下半个棱镜的光束向上偏折,相当于形成S ′1和S ′2两个虚光源。与杨氏实验中的两个小孔形成的干涉一样,把观察屏放在两光束的交叠区,就可看到干涉条纹。 图1 其中,d是两虚光源的间距,D 是光源到观察屏的距离,λ是光的波长。用测微目镜的分划板作为观察屏,就可直接从该测微目镜中读出条纹间距△x 值,D 为几十厘米,可直接量出,因而只要设法测出d,即可从上式算出光的波长λ,即 △ λχd D = , λ=△xd/D (1) 测量d的方法很多,其中之一是“二次成像法”,如图2所示,即在双棱镜与测微目镜之间加入一个焦距为?的凸透镜L ,当D >4?时,可移动L 而在测微目镜中看到两虚光源的缩 则由几何光学可知: d=21d d (2)

大学物理实验思考题答案

实验一:用三线摆测物体的转动惯量 1. 是否可以测摆动一次的时间作周期值?为什么? 答:不可以。因为一次测量随机误差较大,多次测量可减少随机误差。 2. 将一半径小于下圆盘半径的圆盘,放在下圆盘上,并使中心一致,讨论此时三线摆的周期和空载时的周期相比是增大、减小还是不一定?说明理由。 答:当两个圆盘的质量为均匀分布时,与空载时比较,摆动周期将会减小。因为此时若把两盘看成为一个半径等于原下盘的圆盘时,其转动惯量I0小于质量与此相等的同直径的圆盘,根据公式(3-1-5),摆动周期T0将会减小。 3. 三线摆在摆动中受空气阻尼,振幅越来越小,它的周期是否会变化?对测量结果影响大吗?为什么? 答:周期减小,对测量结果影响不大,因为本实验测量的时间比较短。 [实验二] 金属丝弹性模量的测量 1. 光杠杆有什么优点,怎样提高光杠杆测量的灵敏度? 答:优点是:可以测量微小长度变化量。提高放大倍数即适当地增大标尺距离D或适当地减小光杠杆前后脚的垂直距离b,可以提高灵敏度,因为光杠杆的放大倍数为2D/b。 2. 何谓视差,怎样判断与消除视差? 答:眼睛对着目镜上、下移动,若望远镜十字叉丝的水平线与标尺的刻度有相对位移,这种现象叫视差,细调调焦手轮可消除视差。 3. 为什么要用逐差法处理实验数据? 答:逐差法是实验数据处理的一种基本方法,实质就是充分利用实验所得的数据,减少随机误差,具有对数据取平均的效果。因为对有些实验数据,若简单的取各次测量的平均值,中间各测量值将全部消掉,只剩始末两个读数,实际等于单次测量。为了保持多次测量的优越性,一般对这种自变量等间隔变化的情况,常把数据分成两组,两组逐次求差再算这个差的平均值。 [实验三]

牛顿环测量曲率半径---大学物理仿真实验报告

牛顿环测量曲率半径---仿真实验报告 实验日期:教师审批签字: 实验人:审批日期: 一.实验目的: 1.观察等厚干涉现象,了解等厚干涉的原理及特点; 2.学习使用利用干涉法测量平凸透镜的曲率半径的方法; 3.正确使用读数显微镜镜,学习用逐差法处理实验数据。 二.实验仪器及其使用方法: (一)实验仪器: ○1读数显微镜(测微鼓轮的分度值为0.01mm);○2钠光灯,入射光调节架;○3牛顿环仪。 (二)使用方法: 1.将牛顿环放置在读数显微镜镜筒和入射光调节架下方,打开钠灯,调节玻璃片的角 度,使通过显微镜目镜观察时视场最亮。 2用鼠标点区域的入射光调节架,按住鼠标左键不放,调节架作顺时针旋转(从观察者角度),点右键则作相反动作。当目镜观察窗中的条纹最明亮(未必清晰)时结束调整 3.打开标尺窗口。用鼠标点击标尺窗口调整镜身的横向移动,左键点击时镜身向 左移动(所以目镜观察窗口中牛顿环向右移),右键则相反。使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行(与显微镜移动方向平行),此时不要关闭标尺窗口;记录标尺读数。 4.转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗 环数,从第16环开始直到竖丝与第50环相切为止;记录标尺读数。

5.重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R 和R的标准差。 三、实验原理: 如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生薄膜干涉。在实验中选择两个离中心较远的暗环,假定他们的级数为m和n,分别测出它们的直径d m、d n,由薄膜干涉 原理可推知平凸透镜的曲率半径 22 4m n m n d d R λ + = - () 四、测量内容及数据处理: 将牛顿环按要求放置,调节好玻璃片的角度、显微镜镜筒、牛顿环,目镜观察窗中的横向叉丝经过牛顿环圆心观测到以下干涉图样: 仿真实验提供了自动计算R值的工具,把所实验测得的数据录入表格,得到下表:

牛顿环实验报告

北京师范大学珠海分校大学物理实验报告 实验名称:牛顿环实验测量 学院工程技术学院 专业测控技术与仪器 学号 1218060075 姓名钟建洲 同组实验者 1218060067余浪威 1218010100杨孟雄 2013 年 1 月 17日

实验名称 牛顿环实验测量 一、实验目的 1.观察牛顿环干涉现象条纹特征; 2.学习用光的干涉做微小长度的测量; 3.利用牛顿环干涉测量平凸透镜的曲率半径; 4.通过实验掌握移测显微镜的使用方法 二、实验原理 在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点 o 附近就形成一层空 气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以 o 为圆心的明暗相间的环状干涉图样,称为牛顿环。如果已知入射光波长,并测得第 k 级 暗环的半径 r k ,则可求得透镜的曲率半径 R 。但 实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。第m 环与第n 环 用直径 D m 、 D n 。 () λ n m n D m D R +-= 42 2此为计算 R 用的公式,它与附加厚度、

圆心位置、绝对级次无关,克服了由这些因素带来的系统误差,并且D m 、 D n 可以是弦长。 三、实验内容与步骤 用牛顿环测量透镜曲率半径 (1).按图布置好实验器材,使用单色扩展光源,将牛顿环装置放在读数显微镜工作台毛玻璃中央,并使显微镜筒正对牛顿环装置中心。 (2).调节读数显微镜。 1.调节目镜,使分划板上的十字刻度线清晰可见,并转动目镜,使十字刻度线的横线与显微镜筒的移动方向平行。 2.调节45度反射镜,使显微镜视觉中亮度最大,这时基本上满足入射光垂直于待测量透镜的要求。 1.转动手轮A,使显微镜平移到标尺中部,并调节调焦手轮B,使物镜接近牛顿环装置表面。 2.对显微镜调焦。缓慢地转动调焦手轮B,使显微镜筒由下而上移动进行调焦,直到从目镜中清楚地看到牛顿环干涉条纹且无视差为止;然后移动牛顿环装置,使目镜中十字刻度线交点与牛顿环中心重合 (1).观察条纹的特征。 观察各级条纹的粗细是否一致,其间距有无差异,并做出解释。观察牛顿环中心是亮斑还是暗斑? (2).测量暗环的直径 转动读数显微镜的读数鼓轮,同时在目镜中观察,使十字刻度线由牛顿环中心缓慢地向一侧移动到43环;然后再回到第42环。自42环起,单方向移动十字刻度,每移3环读数一——直到测量完成另一侧的第42环。并将所测量的第42环到第15环各直径的左右两边的读数记录在表格内。 四、数据处理与结果 1.求透镜的曲率半径。 测出第15环到第42环暗环的直径,取m-n=15,用逐差法求出暗环的直径平方 差的平均值,按算出透镜的曲率半径的平均值R。 R1=(d422-d272)/[4(42-27]λ= 895.85 mm R2=(d392-d242)/[4(39-24]λ= 896.97 mm R3=(d362-d212)/(4(36-21)λ= 887.94mm R4=(d332-d182)/(4(33-18)λ= 893.30mm

用牛顿环测量透镜的曲率半径(附数据处理)

007大学实验报告评分: 课程:学期:指导老师:007 年级专业:学号:姓名:习惯一个人007 实验3-11 用牛顿环测量透镜的曲率半径 一. 实验目的 1.进一步熟悉移测显微镜使用,观察牛顿环的条纹特征。 2.利用等厚干涉测量平凸透镜曲率半径。 3. 学习用逐差法处理实验数据的方法。 二.实验仪器 牛顿环仪,移测显微镜,低压钠灯 三.实验原理 牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,以其凸面放在一块光学玻璃平板(平晶)上构成的,如图1所示。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到 边缘逐渐增加,若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光 束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是 以玻璃接触点为中心的一系列明暗相间的圆环(如图2所示),称为牛顿环。由于同一干涉 环上各处的空气层厚度是相同的,因此它属于等厚干涉。 由图1可见,如设透镜的曲率半径为R,与接触点O相距为r处空气层的厚度为d,其几

何关系式为: 由于R>>d,可以略去d 2 得 (3-11-1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃板上反射会有半波损失,从而带来λ/2的附加程差,所以总程差为 产生暗环的条件是: 其中k=0,1,2,3,...为干涉暗条纹的级数。综合(23-1)、(23-2)和(23-3)式可得第k级暗环的半径为: (3-11-2) 由(4)式可知,如果单色光源的波长 已知,测出第m级的暗环半径rm ,即可得出平凸透镜 的曲率半径R;反之,如果R已知,测出rm 后,就可计算出入射单色光波的波长 。但是 用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会 引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层中有了尘埃,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环的半径rm 和rn 的平方差来计算曲率半径R。因为 rm 2 =mR rn 2 =nR (3-11-3) 两式相减可得 所以半径 R 为 λ )(42 2 n m D D R n m --= (3-11-4) 四.实验步骤与内容 1.调整显微镜的十字叉丝与牛顿环中心大致重合。 2.转动测微鼓轮,使叉丝的交点移近某暗环,当竖直叉丝与条纹相切时(观察时要注意视 差),从测微鼓轮及主尺上读下其位置x。为了熟练操作和正确读数,在正式读数前 应反复练习几次,直到同一个方向每次移到该环时的读数都很接近为止。 3.在测量各干涉环的直经时,只可沿同一个方向旋转鼓轮,不能进进退退,以避免测微

相关主题
文本预览
相关文档 最新文档