当前位置:文档之家› 第二节真核基因转录水平的调控(精)

第二节真核基因转录水平的调控(精)

第二节真核基因转录水平的调控(精)
第二节真核基因转录水平的调控(精)

第二节真核基因转录水平的调控

一、真核生物的RNA聚合酶

有三种RNA聚合酶:RNA聚合酶Ⅰ;RNA聚合酶Ⅱ;RNA聚合酶Ⅲ。

二、真核基因顺式作用元件

(一)、顺式作用元件概念

指DNA上对基因表达在调节活性的某些特定的调控序列,其活性仅影响其自身处于同一DNA分子上的基因。

(二)、种类

启动子、增强子、静止子

1、启动子的结构和功能

启动子与原核启动子的含义相同,是指RNA聚合酶结合并起动转录的DNA序列。

但真核同启动子间不像原核那样有明显共同一致的序列。而且单靠RNA聚合酶难以结合DNA而起动转录,而是需要多种蛋白质因子的相互协调作用。

RNA聚合酶Ⅱ启动子结构

1)TATA框(TATA frame):其一致顺序为TATAA(TAA(T。TATA框中心在-30附近,相当于原核的-10序列(pribnow box)。

对大多数真核生物来说,RNA聚合酶与TATA框牢固结合之后才能开始转录。 TATA框的左右富含G┇C 序列,这就有利于该框与RNA聚合酶形成开放性启动子复合物。

2)CAAT框(CAAT frame):位置在-75附近,一致序列为GG

C(TCAATCT。CAAT框可能控制着转录起始的频率。

(3)GC框

在-90bp左右的GGGCGG序列称为GC框。

一个在-30—+15即核心启动子(core promoter element,另一为上游启动子区(upstream promoter element在-150—-50,不同物种的启动子因子有显著差异,启动子区没有和mRNA的TATA和CAAT盒顺序,故物种间大前体-rRNA基因的转录起始是不同的。基因间间隔含一个或几个终止信号可终止其之前的基因的转录而其本身不转录,间隔区含多种反向顺序可作为增强子结合转录因子

2、增强子的结构和功能

增强子(enhancer):又称为远上游序列(far upstream sequence 。它是远距离调节启动子以增加转录速率的DNA序列,其增强作用与序列的方向无关,与它在基因的上下游位置无关。增强子有强烈的细胞类型选择,即不同细胞类型,增强作用不同。

1)它能通过启动子大幅度地增加同一条DNA链上靶基因转录的频率,一般能增加 10~200倍,有的甚至可达千倍。

(2)增强子的作用对同源或异源的基因同样有效,如把SV40 的增强子连接到兔β-珠蛋白的基因上,可使转录强度增大100倍;

(3)增强子的位置可在基因5′上游、基因内或其3′下游的序列中,而其作用与所在基因旁侧部位的方向似无关系,因为无论正向还是反向,它都具有增强效应;

(4)增强子所含核苷酸序列大多为重复序列,其内部含有的核心序列,对于它进入到另一宿主之后重新产生增强子效应至关重要;

(5)增强子一般都具有组织和细胞特异性;

(6)增强子在DNA双链中没有5′与3′固定的方向性;

(7)增强子可远离转录起始点,通常在 1~4 kb(个别情况可达30 kb)外起作用;

(8)增强子的活性与其在DNA双螺旋结构中的空间方向性有关。另外,许多增强子还受到外部信号的调控,如金属硫蛋白基因的增强子就可对环境中的锌、镉浓度作出反应。

3、静止子

类似增强子但起负调控作用的顺式元件。静止子与反式作用因子(蛋白质)结合后,使正调控系统失去作用。

三、转录的起始调节

(一)转录起始因子与起始复合物的装置

RNA聚合酶需要先分别同SL1、TFⅡD、TFⅢB等一些转录起始因子结合,形成转录起始复合物(initiation complex)才能开始其转录活动。

转录因子都属于多蛋白复合物,是由 TATA结合蛋白和各自独有的一套TBP 相关因子组成。

类型II基因的转录因子普遍性转录因子: 作用于基本核心启动子如TATA box、INR(转录起始区,每种细胞类型都必需的,如TFIID/A/B/E/F/G/H/I等。

特异性转录因子: 作用于转录起始复合物形成过程的靶分子和控制位点,含DNA特异性序列结合结构域普遍性转录因子的结构与功能 TFIID的TBP(TATA binding protein结构域结合启动子的TATA box,促进其它转录因子的结合。TFII I

结合INR。许多普遍性转录因子含有与RNA聚合酶因子相似的结构域,识别特异启动子起始转录。

和激活结构域(有的两者都有。

RNA pol.II的结构与功能: CTD结构域含YSPTSPS的重复单位, 不同物种重复数不同,CTD对转录活性是必需的,其Ser/Thr可以被不同程度磷酸化在转录起始与延伸中具有重要作用。

例:RNA聚合酶Ⅱ转录起始复合物的组装

第一步是转录因子 TFⅡD与 TATA框特异性结合,形成 TFⅡD-启动子复合体,后者进而指导聚合酶Ⅱ和其他基本转录因子与启动子进行有序装配,最后形成一个稳定的起始复合物。

四、调控转录的反式作用因子

能识别或结合在顺式作用元件核心序列上参与调控靶基因转录效率的结合蛋白,称为反式作用因子。

(一)反式作用因子的结构特征

1、DNA识别或DNA结合结构域

2、激活基因转录的功能结构域

3、结合其他蛋白或调控蛋白的调节结构域

(二序列特异性DNA结合蛋白的几种结构域

1.螺旋-转角-螺旋结构螺旋-转角-螺旋(helix-turn-helix)

2.锌指结构锌指(zinc finger)是由一小群氨基酸与一个锌原子结合,在蛋白质中形成相对独立的一个结构域,故而得名 .

3、亮氨酸拉链结构亮氨酸拉链(leucine zipper,ZIP)结构也是转录因子DNA结合区的一种结构模式

4.螺旋-环-螺旋结构螺旋-环-螺旋(helix-loop-helix,HLH)是新近发现的一种DNA结合区的结构模式

多细胞真核生物的一些基因表达常受体内外激素(hormone)的控制,

五、真核基因表达的激素调节

1、激素(hormone)的调控基因转录

(1)种类:甾类激素:

多肽激系

(2)甾体激素作用机制

甾体激素与受体蛋白结合,与靶基因 DNA上激素应答成分结合,再和其他因子协同作用来调控该基因的转录(如下图)。

六、Britten-Davidson模型

(一)Britten-Davidson调节模型

在个体发育期,许多基因可被协同调控,且重复序列在调控中具有重要的作用。

(二)参与调控的遗传因子:

1、受体位点,位于结构基因5′端,可被激活因子激活因子激活。

2、整合基因,产生激活因子的基因。

3、感受位点,接受生物体对基因表达调控的信号。

通过特定的激活因子可以同时控制不连锁但含用相应受体位点的多个结构基因协同表达。

含有相同受体位点的基因组成一组基因,类似原核生物的一个操纵子。

而整合基因类似于调节基因,但其转录受感受位点控制。

受体位点类似操纵基因,如果一个结构基因附近具有几个不同的受体位点,各个受体位点可以被特异的激活因子所识别,结构基因能在不同的情况下表达,也就是说一个结构基因可以属于几个不同的组(图10-12B)

。如果一个感受位点可控制几个整合基因,则可同时产生几种激活因子,使不同组的基因也能同时被激活而进行协同表达。

(二)重复序列在协同调控中的作用

真核生物基因表达的协同调控是多级别,也是经济的调控方式,一种信号可以使不同的基因得到协同表达,其基础是整合基因、受体位点上具有重复序列

DNA启动子概述

启动子概述 启动子是DNA链上一段能与RNA聚合酶结合并能起始mRNA合成的序列,它是基因表达不可缺少的重要调控序列。启动子是一段位于结构基因5’-端上游区的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地结合,并具有转录起始的特异性。基因的特异性转录取决于酶与启动子能否有效地形成二元复合物。启动子分三类:启动子Ⅰ、启动子Ⅱ、启动子Ⅲ.只有启动子Ⅱ指导mRNA的转录。真核生物启动子Ⅱ由两大部分组成:上游元件(upstream element)和启动子核心(core promoter)。上游元件与转录的效率有关;启动子核心包括3部分:TATA 盒、起始子(initinator)及下游元件(downstream element)。TATA盒为转录调控因子包括各种调节蛋白的结合区,与转录起始位点的精确选择及转录有关,起始子是转录起始所必须,下游元件作用尚不清楚。原核生物启动子区范围较小,包括TATAAT区(Pribnow区)及其上游的TTGACA区。 启动子是一段提供RNA聚合酶识别和结合位点的DNA序列,位于基因上游。启动子具有如下特征: 1序列特异性。在启动子的DNA序列中,通常含有几个保守的序列框,序列框中碱基的变化会导致转录启动活性的改变。 2方向性。启动子是一种有方向性的顺式调控元件,有单向启动子和双向启动子两类。 3位置特性。启动子一般位于所启动转录基因的上游或基因内的前端。处于基因的下4种属特异性。原核生物的不同种、属,真核生物的不同组织都具有不同类型的启动 没有启动子,基因就不能转录。原核生物启动子是由两段彼此分开且又高度保守的核苷酸序列组成,对mRNA的合成极为重要。启动子区域:(1)Pribnow盒,位于转录起始位点上游5—10bp,一般由6~8个碱基组成,富含A和T, 故又称为TATA盒或—10区。启动子来源不同,Pribnow盒的碱基顺序稍有变化。(2)—35区,位于转录起始位点上游35bp处,故称—35区,一般由10个碱基组成。 质粒设计时都需要加入启动子序列,以保证目的基因的表达。启动子可分为诱导型启动子和组成型启动子两大类,后者包括CMV,SV40,T7,pMC1,PGK启动子等。一下介绍几个常见的启动子。 (1)U6启动子 U6是二型启动子,一般发现是启动小片段,不带PolyA尾的序列。由Ⅲ类RNA聚合酶启动子U6启动子转录产生shRNA,经剪切后产生成熟siRNA,产生干扰效果。这一类 启动子在腺病毒和慢病毒干扰载体的构建中应用很多。U6更多的是用在shRNA的启动,来达到敲低一个基因的作用。

真核生物的基因转录及调控

8 真核生物的基因转录及调控 一选择题(单选或多选) 1锌指蛋白与锌的结合 ( ) (a)是共价的 (b)必须有DNA的存在 (c)通过保守的恍氨酸和组氨酸残基间协调进行 (d)位于蛋白质的妒螺旋区域 2锌指蛋白与DNA的结合( ) (a)位于DNA大沟 (b) 通过"锌指"的C端进行 (c)利用蛋白的α-螺旋区域 (d)每个"指"通过形成两个序列特异的DNA接触位点 (e)通过"指"中保守的氨基酸同DNA结合 3 甾醇类受体转录因子( ) (a)结合的激素都是相同的 (b) 与DNA的结合不具序列特异性 (c)与锌结合的保守序列不同于锌指蛋白" (d)通过第二"指"C端的氨基酸形成二聚体 (e)参与转录激活,与DNA和激素结合分别由不同的结构域完成 4糖皮质激素类的甾醇受体( ) (b)所结合的DNA回文序列都不相同 (c)结合的回文序列相同,但组成回文序列两段DNA间的序列不同 (d)RXR受体通过形成异源二聚体后与同向重复序列结合 (e)这类受体存在于细胞核中 5 同源异型域蛋白( ) (a)形成具有三个α-螺旋的结构 (b) 主要通过α-螺旋3和N端的臂与DNA接触 (c)与原核生物螺旋-转角-螺旋蛋白(如λ阻遏物)的结构很相似 (d)通常存在于细胞核中 (e)在果蝇早期发育调控中起重要作用 6 HLH蛋白( ) (a)在序列组成上与原核生物螺旋-转角-螺旋蛋白具有相关性 (b)向通过环区与DNA结合 (c)形成两个α-螺旋与DNA的大沟结合 (d)形成两性螺旋,其中疏水残基位于螺旋的一侧 (e)以上都不是 7 bHLH蛋白( ) (a)在环中含有保守的碱性氨基酸 (b) 不能形成同源二聚体 (c)非诱导表达 (d)通过它们碱性区与HLH相互作用

真核生物基因表达的调控

真核生物基因表达的调控 一、生物基因表达的调控的共性 首先,我们来看看在生物基因表达调控这一过程中体现的共性和一些基本模式。 1、作用范围。生物体内的基因分为管家基因和奢侈基因。管家基因始终表达,奢侈基因只在需要的时候表达,但二者的表达都受到调控。可见,调控是普遍存在的现象。 2、调控方式。基因表达有两种调控方式,即正调控与负调控,原核生物和真核生物都离不开这两种模式。 3、调控水平。一种基因表达的调控可以在多种层面上展开,包括DNA水平、转录水平、转录后加工水平、翻译后加工水平等。然为节省能量起见,转录的起始阶段往往作为最佳调控位点。 二、真核生物基因表达调控的特点 真核生物与原核细胞在结构上就有着诸多不同,这决定了二者在运行方面的迥异途径。真核生物比原核生物复杂,转录与翻译不同时也不同地,基因组与染色体结构复杂,因而有着更为复杂的调控机制。 1、 2、 3、 4、多层次。真核生物的基因表达可发生在染色质水平、转录起始水平、无操纵子和衰减子。 大多数原核生物以负调控为主,而真核生物启动子以正调控为主。 个体发育复杂,而受环境影响较小。真核生物多为多细胞生物,在转录后水平、翻译水平以及翻译后水平。

生长发育过程中,不仅要随细胞内外环境的变化调节基因表达,还要随发育的不同阶段表达不同基因。前者为短期调控,后者属长期调控。 从整体上看,不可逆的长期调控影响更深远。 三、真核生物基因表达调控的机制 介于真核生物表达以多层次性为最主要特点,我们可以分别从它的几个水平着眼,剖析它的调控机制。 1、染色质水平。真核生物基因组DNA以致密的染色质形式存在,发生在染色质水平的调控也称作转录前水平的调控,产生永久性DNA序列和染色质结构的变化,往往伴随细胞分化。染色质水平的调控包括染色质丢失、基因扩增、基因重排、染色体DNA的修饰,等等。a.基因丢失:丢失一段DNA或整条染色体的现象。在细胞分化过程中,可以通过丢失掉某些基因而去除这些基因的活性。某些原生动物、线虫、昆虫和甲壳类动物在个体发育中,许多体细胞常常丢失掉整条或部分的染色体,只有将来分化产生生殖细胞的那些细胞一直保留着整套的染色体。如马蛔虫2n=2,但染色体上有多个着丝粒。第一次卵裂是横裂,产生上下2个子细胞。第二次卵裂时,一个子细胞仍进行横裂,保持完整的基因组,而另一个子细胞却进行纵向分裂,丢失部分染色体。目前,在高等真核生物(包括动物、植物)中尚未发现类似的基因丢失现象。 b.基因扩增:基因扩增是指某些基因的拷贝数专一性增大的现象,它使得细胞在短期内产生大量的基因产物以满足生长发育的需要,是基因活性调控的一种方式。如非洲爪蟾卵母细胞中rDNA的基因扩增是因发育需要而出现的基因扩增现象;基因组拷贝数增加,即多倍性,在植物中是非常普遍的现象。基因组拷贝数增加使可供遗传重组的物质增多,这可能构成了加速基因进化、基因组重组和最终物种形成的一种方式。 c.基因重排:将一个基因从远离启动子的地方移到距它很近的位点从而启动转录,这种方式被称为基因重排。通过基因重排调节基因活性的典型例子是免疫球蛋白结构基因的表达。在人类基因组中,所有抗体的重链和轻链都不是由固定的完整基因编码的,而是由不同基因片段经重排后形成的完整基因编码的。

真核生物的基因表达调控机制

一、真核基因组的复杂性 与原核生物比较,真核生物的基因组更为复杂,可列举如下。 1. 真核基因组比原核基因组大得多,大肠杆菌基因组约4×106bp,哺乳类基因组在 109bp数量级,比细菌大千倍;大肠杆菌约有4000个基因,人则约有10万个基因。 2. 真核生物主要的遗传物质与组蛋白等构成染色质,被包裹在核膜内,核外还有遗传 成分(如线粒体DNA等),这就增加了基因表达调控的层次和复杂性。 3. 原核生物的基因组基本上是单倍体,而真核基因组是二倍体。 4. 如前所述,细菌多数基因按功能相关成串排列,组成操纵元的基因表达调控的单元, 共同开启或关闭,转录出多顺反子(polycistron)的mRNA;真核生物则是一个结构基因转录生成一条mRNA,即mRNA是单顺反子(monocistron),基本上没有操纵元的结构,而真核细胞的许多活性蛋白是由相同和不同的多肽形成的亚基构成的,这就涉及到多个基因协调表达的问题,真核生物基因协调表达要比原核生物复杂得多。 5. 原核基因组的大部分序列都为基因编码,而核酸杂交等实验表明:哺乳类基因组中 仅约10%的序列为蛋白质、rRNA、tRNA等编码,其余约90%的序列功能至今还不清楚。 6. 原核生物的基因为蛋白质编码的序列绝大多数是连续的,而真核生物为蛋白质编码 的基因绝大多数是不连续的,即有外显子(exon)和内含子(intron),转录后需经剪接(splicing)去除内含子,才能翻译获得完整的蛋白质,这就增加了基因表达调控的环节。 7. 原核基因组中除rRNA、tRNA基因有多个拷贝外,重复序列不多。哺乳动物基因组 中则存在大量重复序列(repetitive sequences)。用复性动力学等实验表明有三类重复序列:1)高度重复序列(highly repetitive sequences),这类序列一般较短,长10-300bp,在哺乳类基因组中重复106次左右,占基因组DNA序列总量的10-60%,人的基因组中这类序列约占20%,功能还不明了。2)中度重复序列(moderately repetitive sequences),这类序列多数长100-500bp,重复101-105次,占基因组10-40%。例如哺乳类中含量最多的一种称为Alu的序列,长约300bp,在哺乳类不同种属间相似,在基因组中重复3×105次,在人的基因组中约占7%,功能也还不很清楚。在人的基因组中18S/28SrRNA基因重复280次,5SrRNA基因重复2000次,tRNA基因重复1300次,5种组蛋白的基因串连成簇重复30-40次,这些基因都可归入中度重复序列范围。3)单拷贝序列(single copy sequences)。这类序列基本上不重复,占哺乳类基因组的50-80%,在人基因组中约占65%。绝大多数真核生物为蛋白质编码的基因在单倍体基因组中都不重复,是单拷贝的基因。 从上述可见真核基因组比原核基因组复杂得多,至今人类对真核基因组的认识还很有限,使现在国际上制订的人基因组研究计划(human gene project)完成,绘出人全部基因的染色体定位图,测出人基因组109bp全部DNA序列后,要搞清楚人全部基因的功能及其相互关系,特别是要明了基因表达调控的全部规律,还需要经历很长期艰巨的研究过程。 二、真核基因表达调控的特点 尽管我们现在对真核基因表达调控知道还不多,但与原核生物比较它具有一些明显的特点。

《分子生物学》真核、原核生物 基因组 转座子 DNA复制 转录 翻译 转录后加工 基因调控表达 等比较

3、遗传密码的特征 三联体、通用性、简并性、摆动性、偏好性、连续性、不重叠性、起始、终止密码子。 (1) 遗传密码是三联体密码。一个密码子由mRNA上三个相邻碱基组成。 (2)连续性,密码子之间是连续的,中间没有停顿。如果插入或确实一个就会发生错误。 (3)不重叠性,相邻密码子之间不共用核苷酸 (4)通用性,不同生物共用一套密码子 (5)简并性,多个密码子编码一个氨基酸的情况 (6)摆动性:密码子与反密码子配对时,前两个严格遵守碱基互补配对原则,第三对有一定自由度,可以“摆动” (7)偏好性:不同生物对同义密码子有一定的偏好。 (8) 密码子有起始密码子(AUG、少GUG)和终止密码子(UAG、UGA、UAA)。 4、染色体具备哪些作为遗传物质的特征 5、什么是核小体,简述其形成过程 6、简述DNA的一、二、三级结构 7、什么是转座子?可分为哪些种类。 8、请说说插入序列与复合型转座子之间的异同。 2蛋白质合成后的加工修饰有哪些内容? (6分) (1)N端fMet或Met的切除。 (2)二硫键的形成。 (3)特定氨基酸的修饰,包括磷酸化,糖基化,甲基化,乙基化,羟基化,羧基化等。 (4)切除新生肽链中的非功能片段。 4、请简述乳糖操纵子的控制模型的主要内容。(10分) ① Z、Y、A基因的产物由同一条多顺反子的mRNA分子所编码。 ②这个mRNA分子的启动子紧接着O区,而位于I与O之间的启动子区(P),不能单独起动合成β-半乳糖苷酶和透过酶的生理过程。 ③操纵基因是DNA上的一小段序列(仅为26bp),是阻遏物的结合位点。 ④当阻遏物与操纵基因结合时,lac mRNA的转录起始受到抑制。 ⑤诱导物通过与阻遏物结合,改变它的三维构象,使之不能与操纵基因结合,从而激发lac mRNA的合成。当有诱导物存在时,操纵基因区没有被阻遏物占据,所以启动子能够顺利起始mRNA的合成。 试说明真核细胞与原核细胞在基因转录,翻译及DNA的空间结构方面存在的主要差异,表现在哪些方面? ①在真核细胞中,一条成熟的mRNA链只能翻译出一条多肽链,很少存在原核生物中常见的多基因操纵子形式。 ②真核细胞DNA与组蛋白和大量非组蛋白相结合,只有一小部分DNA是裸露的。 ③高等真核细胞DNA中很大部分是不转录的,大部分真核细胞的基因中间还存在不被翻译的内含子。 ④真核生物能够有序地根据生长发育阶段的需要进行DNA片段重排,还能在需要时增加细胞内某些基因的拷贝数。 ⑤在真核生物中,基因转录的调节区相对较大,它们可能远离启动子达几百个甚至上千个碱基对,这些调节区一般通过改变整个所控制基因5’上游区DNA构型来影响它与RNA聚合酶的结合能力。 在原核生物中,转录的调节区都很小,大都位于启动子上游不远处,调控蛋白结合到调节位点上可直接促进或抑制RNA聚合酶与它的结合。 ⑥真核生物的RNA在细胞核中合成,只有经转运穿过核膜,到达细胞质后,才能被翻译成蛋白质,原核生物中不存在这样严格的空间间隔。 ⑦许多真核生物的基因只有经过复杂的成熟和剪接过程,才能顺利地翻译成蛋白质。

原核生物的转录及调控 习题

原核生物的转录及转录调控习题 一填空题 1 能够诱导操纵子但不是代谢底物的化合物称为诱导物。能够诱导乳糖操纵子的化合物就是其中一例。这种化合物同蛋白质结合,并使之与分离。乳糖操纵子的体内功能性诱导物是。 2色氨酸是一种调节分子,被视为。它与一种蛋白质结合形成乳糖操纵子和色氨酸操纵子是两个控制的例子。cAMP-CAP蛋白通过控制起作用。色氨酸操纵子受另一种系统一一的调控,它涉及到第一个结构基因被转录前的转录。 二、选择题(单选或多选) 1 标出以下所有正确表述:( ) (a)转录是以半保留方式获得序列相同的两条DNA链的过程 (b)依赖DNA的DNA聚合酶是多亚基酶,它负责DNA的转录 (c)细菌的转录物(mRNA)是多基因的 (d)σ因子指导真核生物hnRNA的转录后加工,最后形成mRNA (e)促旋酶在模板链产生缺口,决定转录的起始和终止 2·下面哪些真正是乳糖操纵子的诱导物?( ) (a)乳糖 (b)蜜二糖 (c)O-硝基苯酚-β-半乳糖苷(ONPG) (d)异丙基-卜半乳糖甘 (e)异乳糖 3·σ因子的结合依靠( ) (a)对启动子共有序列的长度和间隔的识别 (b)与核心酶的相互作用 (c)弥补启动子与共有序列部分偏差的反式作用因子的存在 (d)转录单位的长度 (e)翻译起始密码子的距离 4·下面哪一项是对三元转录复合物的正确描述:( ) (a)σ因子、核心酶和双链DNA在启动子形成的复合物 (b)全酶、TFⅠ和解链DNA双链形成的复合物 (c)全酶、模板DNA和新生RNA形成的复合物 (d)三个全酶在转录起始位点(tsp)形成的复合物 (e)σ因子、核心酶和促旋酶形成的复合物 5 σ因子和DNA之间相互作用的最佳描述是:( ) (a)游离和与DNA结合的σ因子的数量是一样的,而且σ因子合成得越多,转录起始的机会越大 (b) σ因子通常与DNA结合,且沿着DNA搜寻,直到在启动子碰到核心酶。它与DNA的结合不需依靠核心酶

真核生物基因表达调控

第十章作业 1. 简述真核生物基因表达调控的7个层次。 ①染色体和染色质水平上的结构变化与基因活化 ②转录水平上的调控,包括基因的开与关,转录效率的高与低 ③RNA加工水平的调控,包括对出事转录产物的特异性剪接、修饰、编辑等。 ④转录后加工产物在从细胞核向细胞质转运过程中所受到的调控 ⑤在翻译水平上的控制,即对哪一种mRNA结合核糖体进行翻译的选择以及蛋白质成量的控制 ⑥对蛋白质合成后选择性地被激活的控制,蛋白质和酶分子水平上的剪接等的控制 ⑦对mRNA选择性降解的调控 2. 真核基因表达调控与原核生物相比有何异同? 相同点:①与原核基因的调控一样,真核基因表达调控也有转录水平调控和转录后水平的调控,并且也以转录水平调控为最重要; ②在真核结构基因的上游和下游(甚至内部)也存在着许多特异的调控成分,并依靠特异蛋白因子与这些调控成分的结合与否调控基因的转录。 不同点:①原核细胞的染色质是裸露的DNA,而真核细胞染色质则是由DNA与组蛋白紧密结合形成的核小体。 ②在原核基因转录的调控中,既有激活物参与的正调控,也有阻遏物参与的负调控,二者同等重要。 ③原核基因的转录和翻译通常是相互偶联的,即在转录尚未完成之前翻译便已开始。 ④真核生物大都为多细胞生物,在个体发育过程中发生细胞分化后,不同细胞的功能不同,基因表达的情况也就不一样,某些基因仅特异地在某种细胞中表达,称为细胞特异性或组织特异性表达,因而具有调控这种特异性表达的机制。 3. DNA 甲基化对基因表达的调控机制。 甲基化抑制基因转录的机制:DNA甲基化会导致某些区域DNA构象改变,包括甲基化后染色质对于核酸酶或限制性内切酶的敏感度下降,更容易与组蛋白H1相结合,DNaseⅠ超敏感位点丢失,使染色质高度螺旋化, 凝缩成团, 直接影响了转录因子与启动区DNA的结合效率的结合活性,不能启始基因转录。DNA的甲基化不利于模板与RNA聚合酶的结合,降低了转录活性。 4. 转录因子结合DNA的结构基序(结构域)有哪几类? ①螺旋-转折-螺旋 ②锌指结构 ③碱性-亮氨酸拉链 ④碱性-螺旋-环-螺旋 5. 真核基因转调控中有几种方式能够置换核小体? ①占先模式:可以解释转录时染色质结构的变化。该模型认为基因能否转录取决于特定位置上组蛋白和转录因子之间的不可逆竞争性结合。 ②动态模式该模型认为转录因子与组蛋白处于动态竞争之中,基因转录前染色质必须经历结构上的改变,即转换核小体中的全部或部分成分并重新组装,这个耗能的基因活化过程称为染色质重构 6. 简述真核生物转录水平调控过程。 真核生物在转录水平的调控主要是通过反式作用因子、顺式作用元件和RNA聚合酶的相互作用来完成的,主要是反式作用因子结合顺式作用元件后影响转录起始复合物的形成过程:①转录起始复合物的形成:真核生物RNA聚合酶识别的是由通用转录因子与DNA形成的

真核生物与原核生物基因表达调控的区别

原核生物和真核生物基因表达调控特点的比较1.相同点:转录起始是基因表达调控的关键环节2.不同点:A.原核基因的表达调控主要包括转录和翻译水平 真核基因的表达调 控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次B.原核基因表达调控主要为负调控,真核主要为正调控C.原核转录不需要转录因子,RNA聚合酶直接结合启 动子,由sita因子决定基因表的的特异性 真核基因转录起始需要基础特异两类转录因子 依赖DNA-蛋白质、蛋白质-蛋白质相互作用 调控转录激活D.原核基因表达调控主要采用操纵子模型 转录出多顺反子RNA 实现协调调节 真核基因转录产物为单顺反子RNA 功能相关蛋白的协调表达机制更为复杂。真核生物基因表达调控的环节主要在转录水平 其次是翻译水平。原核生物基因以操纵子的形式存在。转录水平调控涉及到启动子、sita因子 与RNA聚合酶结合 、阻遏蛋白 负调控 、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。翻译水平的调控涉及SD序列、mRNA的稳定性 不稳定(5’端和3’端的发夹结构可保护不被酶水解mRNA的5’端与核糖体结合 可明显提高稳定性)、翻译产物及小分子RNA的调控作用。真核生物基因表达的调控环节较多 在DNA水平上可以通过染色体 丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。在转录水平主要通过反式作用因子调控转录因子与TATA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。在翻译水平有影响起始翻译的阻遏蛋白、5’AUG、5’端非编码区长度、mRNA 的稳定性调节及小分子RNA。真核基因调控中最重要的环节是基因转录 真核生物基因表达需要转录因子、启动子、沉默子和增强子。葡萄糖存在 乳糖不存在 此时无诱导剂

真核生物基因表达调控

真核生物基因表达的调控远比原核生物复杂,可以发生在DNA水平、转录水平、转录后的修饰、翻译水平和翻译后的修饰等多种不同层次。但是,最经济、最主要的调控环节仍然是在转录水平上。 DNA水平的调控 DNA水平上的调控主要指通过染色体DNA的断裂,删除,扩增,重排,修饰(如甲基化与去甲基化,乙酰化与去乙酰化等)和染色质结构变化等改变基因的数量、结构顺序和活性而控制基因的表达。 转录水平的调控 转录水平的调控包括染色质的活化和基因的活化。通过染色质改型,组蛋白乙酰化,染色质变得疏松化及DNA去甲基化以便被酶和调节蛋白作用,基因的表达受顺式作用元件包括启动子及应答元件,转座元件,增强子,抑制子的调控,同时受反式作用因子包括基本转录因子,上游转录因子和转录调节因子等的调控。 转录后调控 转录后调控包括hnRNA的选择性加工运输和RNA编辑 在真核生物中,蛋白质基因的转录产物统称为hn RNA,必须经过加工才能成为成熟的mRNA分子。加工过程包括三个方面:加帽、加尾和去掉内含子。同一初级转录产物在不同细胞中可以用不同方式剪接加工,形成不同的成熟mRNA分子,使翻译成的蛋白质都可能不同。转录后的RNA在编码区发生碱基插入,缺失或转换的现象。

翻译水平的调控 阻遏蛋白与mRNA结合,可以阻止蛋白质的翻译并使成熟的mRNA变为失活状态贮存起来。一些调控作用的micRNAh和siRNA 还可以与mRNA作用降解mRNA,阻止其翻译 此外,还可以控制mRNA的稳定性和有选择的进行翻译。 翻译后调控 直接来自核糖体的线状多肽链是没有功能的,必须经过加工才具有活性。在蛋白质翻译后的加工过程中,还有一系列的调控机制。 1.蛋白质折叠 线性多肽链必须折叠成一定的空间结构,才具有生物学功能。在细胞中,蛋白质的折叠必须有分子伴侣的作用下才能完成折叠。 2.蛋白酶切割 末端切割 有些膜蛋白、分泌蛋白,在氨基端具有一段疏水性强的氨基酸序列,称为信号肽,用于前体蛋白质在细胞中的定位。信号肽必须切除多肽链才具有功能。 多聚蛋白质的切割 有些新合成的多肽链含有几个蛋白质分子的序列,切割以后产生具有不同功能的蛋白质分子。

人CIITA基因启动子IV不同单倍型DNA真核表达载体的构建

MHCⅡ类反式激活因子 (CIITA)对MHCⅡ类分子的表达起着严格且专一的调控作用。CIITA基因的转录调节是被4种独立的启动子(PI,PⅡ,PⅢ 和PⅣ)所控制[1],每种启动子转录一种特异的第一外显子。其中PIV主要是非骨髓衍生细胞的IFN诱导性CIITA表达的启动子。国外研究发现CIITA基因存在多态性[2,3],我们前期的研究也发现中国人CI- ITA基因启动子IV区有4个SNPs,但CIITA基因 启动子区多态性及不同单倍型是否对CIITA分子 人CIITA基因启动子IV不同单倍型DNA真核表达载体的构建 洪晓俊,张绪清,柏秀娟 (第三军医大学西南医院全军感染病研究所,重庆 400038) 【摘 要】目的:构建人MHCⅡ类反式激活因子(CIITA)基因启动子IV4种不同单倍型DNA的真核表达载体。方法:根据人 CIITA基因启动子IV区的2个单个核苷酸多态性(SNPs)位点C-1350T和G-944C,可以构建出4种单倍型(CG、CC、TG和 TC)。分别以CG/CG、CC/CC、TG/TG和TC/TC4种基因型的人基因组DNA为模板,用PCR法扩增出包含启动子IV两个SNP位点的长487bp的DNA片断,TA克隆至pMD18-TSimple载体后用MluI/HindⅢ双酶切,纯化回收后分别与同样双酶切的荧光素酶报告基因载体PGL3-Basic和PGL3-Promoter相连接,构建CG-PGL3-Basic、CG-PGL3-Promoter、CC-PGL3-Basic、 CC-PGL3-Promoter、TG-PGL3-Basic、TG-PGL3-Promoter、TC-PGL3-Basic、TC-PGL3-Promoter8个表达载体,并测序验证其DNA 序列。结果:实验得到含有人CIITA基因启动子IV4种不同单倍型DNA序列的真核表达载体8个,且测序证实了这8个表达载体序列与理论序列完全一致。结论:成功构建人CIITA基因启动子IV不同单倍型的真核表达载体,为CIITA基因启动子IV不同单倍型的功能研究奠定基础。 【关键词】MHCⅡ类反式激活因子;单个核苷酸多态性;单倍型【中国图书分类法分类号】R394.3 【文献标识码】A 【收稿日期】2007-04-27 ConstructionoftheeukaryoticexpressionvectorscontainingdifferenthaplotypesDNAofhumanCIITAgenepromoterIV HONGXiaojun,etal (InfectiousDiseaseInstituteofPLA,SouthwestHospital,theThirdMilitaryMedicalUniversity) 【Abstract】Objective:ToConstructtheeukaryoticexpressionvectorscontainingfourdifferenthaplotypesDNAofhumanCIITA genepromoterIV.Methods:Fourhaplotypes(CG,CC,TGandTC)canbeconstructedbasedontwosinglenucleotide polymorphism(SNPs)sites(G-944CandT-1350C)inpromoterIVofhumanCIITAgene.The487bpDNAfragmentsofCIITApromoterIVincludingthetwoSNPswereobtainedbypolymerasechainreaction(PCR)basedonhumangenomeDNAfromthesubjectswiththeCG/CG,CC/CC,TG/TGandTC/TCgenotypes,whichwereTAclonedtopMD18-TSimplevectorsandthenweredigestedbyrestrictionendonucleasesMluIandHindⅢ.Afterfragmentrecovery,thosewereligatedtofourPGL3-BasicVectorsandfourPGL3-PromoterVectorsrespectively,whichweredigestedbyrestrictionendonucleasesMluIandHindⅢaswell.Allrecombinantplasmidswereidentifiedbysequencing.Results:Eightrecombinantplasmids(CG-PGL3-Basic,CG-PGL3-Promoter,CC-PGL3-Basic,CC-PGL3-Promoter,TG-PGL3-Basic,TG-PGL3-Promoter,TC-PGL3-Basic,TC-PGL3-Promoter)containingfourdifferenthaplotypesDNAofhumanCIITApromoterIVwereobtained,whosesequencescompletelymatchedwiththetheoreticalpredictiondemonstratedbysequencing.Conclusions:TheeukaryoticexpressionvectorscontainingfourdifferenthaplotypesDNAofhumanCIITApromoterIVaresuccessfullyconstructed,anditlaysthegroundworkforthefurtherstudyofdifferenthaplotypefunction. 【Keywords】ClassⅡtransactivator(CIITA);Singlenucleotidepolymorphism(SNP);Haplotype 作者介绍:洪晓俊(1978- ),男,硕士研究生, 主要研究方向:乙型病毒性肝炎的发病机理。 基金项目:国家自然科学基金资助项目(30371283)。 文章编号:0253-3626(2007)11-1126-05 论著

第十三章-基因表达的调控讲课教案

第十三章基因表达的调控 一、基因表达调控基本概念与原理: 1.基因表达的概念:基因表达(gene expression)就是指在一定调节因素的作用下,DNA分子上特定的基因被激活并转录生成特定的RNA,或由此引起特异性蛋白质合成的过程。 2.基因表达的时间性及空间性: ⑴时间特异性:基因表达的时间特异性(temporal specificity)是指特定基因的表达严格按照特定的时间顺序发生,以适应细胞或个体特定分化、发育阶段的需要。故又称为阶段特异性。 ⑵空间特异性:基因表达的空间特异性(spatial specificity)是指多细胞生物个体在某一特定生长发育阶段,同一基因的表达在不同的细胞或组织器官不同,从而导致特异性的蛋白质分布于不同的细胞或组织器官。故又称为细胞特异性或组织特异性。 3.基因表达的方式: ⑴组成性表达:组成性基因表达(constitutive gene expression)是指在个体发育的任一阶段都能在大多数细胞中持续进行的基因表达。其基因表达产物通常是对生命过程必需的或必不可少的,且较少受环境因素的影响。这类基因通常被称为管家基因(housekeeping gene)。 ⑵诱导和阻遏表达:诱导表达(induction)是指在特定环境因素刺激下,基因被激活,从而使基因的表达产物增加。这类基因称为可诱导基因。阻遏表达(repression)是指在特定环境因素刺激下,基因被抑制,从而使基因的表达产物减少。这类基因称为可阻遏基因。 4.基因表达的生物学意义:①适应环境、维持生长和增殖。②维持个体发育与分化。 5.基因表达调控的基本原理: ⑴基因表达的多级调控:基因表达调控可见于从基因激活到蛋白质生物合成的各个阶段,因此基因表达的调控可分为转录水平(基因激活及转录起始),转录后水平(加工及转运),翻译水平及翻译后水平,但以转录水平的基因表达调控最重要。 ⑵基因转录激活调节基本要素:①顺式作用元件:顺式作用元件(cis-acting element)又称分子内作用元件,指存在于DNA分子上的一些与基因转录调控有关的特殊顺序。②反式作用因子:反式作用因子(trans-acting factor)又称为分子间作用因子,指一些与基因表达调控有关的蛋白质因子。反式作用因子与顺式作用元件之间的共同作用,才能够达到对特定基因进行调控的目的。③顺式作用元件与反式作用因子之间的相互作用:大多数调节蛋白在与DNA结合之前,需先通过蛋白质-蛋白质相互作用,形成二聚体或多聚体,然后再通过识别特定的顺式作用元件,而与DNA分子结合。这种结合通常是非共价键结合。 二、操纵子的结构与功能: 在原核生物中,若干结构基因可串联在一起,其表达受到同一调控系统的调控,这种基因的组

研究真核生物启动子结构与功能的方法

研究真核生物启动子结构与功能的方法 研究启动子结构与功能的方法主要有缺失、点突变和足迹法。在分析得到了启动子的功能序列后,还要弄清与之结合的蛋白质及两者间的相互作用。在研究真核生物启动子的结构与功能时,常采用下列方法。 (1)卵细胞系统(oocyte system)该方法是将DNA直接注射人爪蟾卵细胞的细胞核,分析和观察RNA的转录情况。该方法的局限性在于试验条件受卵细胞内条件的限制。可以用来分析:DNA片段的特性,不能用于分析蛋白质因子与DNA间的结合。 (2)转染系统(transfection system)将外源DNA导人转染的细胞并使之表达。表达可分为瞬时表达(transient expression)和整合表达(integrant expression)。由于转录是在细胞内完成的,可以看成是一种体内试验系统。但外源基因又不是细胞所固有的,和细胞固有基因的表达尚有差别。使用多种宿主细胞,可提高该系统的应用价值。(4)转基因系统(transgenic system)转基因系统将外源基因整合人动物的生殖细胞,使外源基因在部分或全部组织中表达。该系统和转染系统有一些相同的局限性,即外源基因常以多拷贝存在,整合的位置也和内源性基因不同。 (4)体外转录系统(in vitro system)体外转录系统是一种经典的方法。它应用体外转录的方法,结合缺失突变和点突变,来筛选哪些序列是启动子的功能所必需的,哪些序列对启动子的功能有影响,以及

哪些辅助因子对启动子或启动子中的某一片段有何种作用。 启动子研究的第一步是确定启动子的位置及长度。主要方法是用缺失试验来确定启动子的上游边界,即当缺失影响转录始时,说明该处就是启动子的上游边界;用缺失试验结合重组试验来确定下游边界。确定了启动子的位置后,可采用点突变来研究每个碱基在启动子中所起的作用。 研究蛋白质辅助因子与DNA(启动子)的相互作用可采用DNase、足迹法、凝胶阻滞法和硫酸二甲酯方法等。 关于转录调控或基因启动子的研究方法很多,除了较常用的报告基因(Luciferase), CHip, EMSA, pull-down外,还有结合芯片的方法.下面重点介绍五种: 1.Protein Arrays(蛋白芯片) What they are:固定的转录因子阵列,利用标记的基因序列或蛋白质进行探索. What to use them for:用于发现和证实转录因子的结合位点或蛋白-蛋白相互作用. Pros(优点):能提供一种在广泛的因子中检测与特定序列结合的因子.

真核生物三类启动子

真核生物启动子有三类,分别由RNA 聚合酶Ⅰ、Ⅱ和Ⅲ进行转录。 类别Ⅰ(class Ⅰ)启动子: 只控制rRNA 前体基因的转录,转录产物经切割和加工后生成各种成熟rRNA 。 类别Ⅰ启动子由两部分保守序列组成: 核心启动子(core promoter ):位于转录起点附近,从-45至+20; 上游控制元件(upstream control element ,UCE ):位于-180至-107; RNA 聚合酶Ⅰ对其转录需要2种因子参与: UBF1:一条M 为97000的多肽链,结合在上述两部分的富含GC 区; 1个TBP ,即TATA 结合蛋白(TA TA-binding protein ,TBP ); SL1:一个四聚体蛋白,含有 3个不同的转录辅助因子TAF Ⅰ; 在SL1因子介导下RNA 聚合酶Ⅰ结合在转录起点上并开始转录。 类别Ⅱ(class Ⅱ)启动子: 类别Ⅱ启动子涉及众多编码蛋白质的基因表达的控制。 该类启动子包含4类控制元件: 基本启动子(basal promoter ):序列为中心在-25至-30左右的7 bp 保守区,TA TAAAA/T , 称为TATA 框或Goldberg-Hogness 框。与RNA 聚合酶的定 位有关,DNA 双链在此解开并决定转录的起点位置。失去 TATA 框,转录将在许多位点上开始。 起始子(initiator ):转录起点位置处的一保守序列,共有序列为:P y P y ANT(A)P y P y P y 为嘧啶碱(C 或T ),N 为任意碱基,A 为转录的起点。DNA 在此 解开并起始转录。 上游元件(upstream factor ):普遍存在的上游元件有CAAT 框、GC 框和八聚体(octamer ) 框等。CAAT 框的共有序列是GCCAATCT ,GC 框的共有序 列为GGGCGG 和CCGCCC ,八聚体框含有8bp ,共有序列 为ATGCAAA T ; 应答元件(response element ):诱导调节产生的转录激活因子与靶基因上的应答元件结合。 如热休克效应元件HSE 的共有序列是 CNNGAANNTCCNNG ,可被热休克因子HSF 识别和作用; 血清效应元件SRE 的共有序列CCA TATTAGG ,可被血清效 应因子SRF 识别和作用。 +1

真核生物基因表达调控

真核生物基因表达的调控 河南大学民生学院王磊生物技术 一、生物基因表达的调控的共性 首先,我们来看看在生物基因表达调控这一过程中体现的共性和一些基本模式。 1、作用范围。生物体内的基因分为管家基因和奢侈基因。管家基因始终表达,奢侈基因只在需要的时候表达,但二者的表达都受到调控。可见,调控是普遍存在的现象。 2、调控方式。基因表达有两种调控方式,即正调控与负调控,原核生物和真核生物都离不开这两种模式。 3、调控水平。一种基因表达的调控可以在多种层面上展开,包括DNA水平、转录水平、转录后加工水平、翻译后加工水平等。然为节省能量起见,转录的起始阶段往往作为最佳调控位点。 二、真核生物基因表达调控的特点 真核生物与原核细胞在结构上就有着诸多不同,这决定了二者在运行方面的迥异途径。真核生物比原核生物复杂,转录与翻译不同时也不同地,基因组与染色体结构复杂,因而有着更为复杂的调控机制。 1、多层次。真核生物的基因表达可发生在染色质水平、转录起始水平、转录后水平、翻译水平以及翻译后水平。 2、无操纵子和衰减子。 3、大多数原核生物以负调控为主,而真核生物启动子以正调控为主。 4、个体发育复杂,而受环境影响较小。真核生物多为多细胞生物,在生长发育过程中,不仅要随细胞内外环境的变化调节基因表达,还要随发育的不同阶段表达不同基因。前者为短期调控,后者属长期调控。从整体上看,不可逆的长期调控影响更深远。 三、真核生物基因表达调控的机制 介于真核生物表达以多层次性为最主要特点,我们可以分别从它的几个水平着眼,剖析它的调控机制。 1、染色质水平。真核生物基因组DNA以致密的染色质形式存在,发生在染色质水平的调控也称作转录前水平的调控,产生永久性DNA序列和染色质结构的变化,往往伴随细胞分化。染色质水平的调控包括染色质丢失、基因扩增、基因重排、染色体DNA的修饰,等等。 a.基因丢失:丢失一段DNA或整条染色体的现象。在细胞分化过程中,可以通过丢失掉某些基因而去除这些基因的活性。某些原生动物、线虫、昆虫和甲壳类动物在个体发育中,许多体细胞常常丢失掉整条或部分的染色体,只有将来分化产生生殖细胞的那些细胞一直保留着整套的染色体。如马蛔虫2n=2,但染色体上有多个着丝粒。第一次卵裂是横裂,产生上下2个子细胞。第二次卵裂时,一个子细胞仍进行横裂,保持完整的基因组,而另一个子细胞却进行纵向分裂,丢失部分染色体。目前,在高等真核生物(包括动物、植物)中尚未发现类似的基因丢失现象。 b.基因扩增:基因扩增是指某些基因的拷贝数专一性增大的现象,它使得细胞在短期内产生大量的基因产物以满足生长发育的需要,是基因活性调控的一种方式。如非洲爪蟾卵母细胞中rDNA的基因扩增是因发育需要而出现的基因扩增现象;基因组拷贝数增加,即多

原核生物和真核生物基因表达调控复制、转录、翻译特点的比较

原核生物和真核生物基因表达调控、复制、转录、翻译特点的比较 1.相同点:转录起始是基因表达调控的关键环节 ①结构基因均有调控序列; ②表达过程都具有复杂性,表现为多环节; ③表达的时空性,表现为不同发育阶段和不同组织器官上的表达的复杂性; 2.不同点: ①原核基因的表达调控主要包括转录和翻译水平。真核基因的表达调控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次。 ②原核基因表达调控主要为负调控,真核主要为正调控。 ③原核转录不需要转录因子,RNA聚合酶直接结合启动子,由sita因子决定基因表的的特异性,真核基因转录起始需要基础特异两类转录因子,依赖DNA-蛋白质、蛋白质-蛋白质相互作用调控转录激活。 ④原核基因表达调控主要采用操纵子模型,转录出多顺反子RNA,实现协调调节;真核基因转录产物为单顺反子RNA,功能相关蛋白的协调表达机制更为复杂。 ⑤真核生物基因表达调控的环节主要在转录水平,其次是翻译水平。原核生物基因以操纵子的形式存在。转录水平调控涉及到启动子、sita因子与RNA聚合酶结合、阻遏蛋白、负调控、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。翻译水平的调控涉及SD序列、mRNA的稳定性不稳定(5’端和3’端的发夹结构可保护不被酶水解mRNA的5’端与核糖体结合可明显提高稳定性)、翻译产物及小分子RNA的调控作用。 真核生物基因表达的调控环节较多: 在DNA水平上可以通过染色体丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。 在转录水平主要通过反式作用因子调控转录因子与TA TA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。 在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。 在翻译水平有影响起始翻译的阻遏蛋白、5’AUG、5’端非编码区长度、mRNA的稳定性调节及小分子RNA。 真核基因调控中最重要的环节是基因转录,真核生物基因表达需要转录因子、启动子、沉默子和增强子。 真核生物和原核生物复制的不同点: ①真核生物DNA的合成只是在细胞周期的S期进行,而原核生物则在整个细胞生长过程中都可进行DNA合成 ②原核生物DNA的复制是单起点的,而真核生物染色体的复制则为多起点的。真核生物中前导链的合成并不像原核生物那样是连续的,而是以半连续的方式,由一个复制起点控制一个复制子的合成,最后由连接酶将其连接成一条完整的新链。 ③真核生物DNA的合成所需的RNA引物及后随链上合成的冈崎片段的长度比原

第二节真核基因转录水平的调控(精)

第二节真核基因转录水平的调控 一、真核生物的RNA聚合酶 有三种RNA聚合酶:RNA聚合酶Ⅰ;RNA聚合酶Ⅱ;RNA聚合酶Ⅲ。 二、真核基因顺式作用元件 (一)、顺式作用元件概念 指DNA上对基因表达在调节活性的某些特定的调控序列,其活性仅影响其自身处于同一DNA分子上的基因。 (二)、种类 启动子、增强子、静止子 1、启动子的结构和功能 启动子与原核启动子的含义相同,是指RNA聚合酶结合并起动转录的DNA序列。 但真核同启动子间不像原核那样有明显共同一致的序列。而且单靠RNA聚合酶难以结合DNA而起动转录,而是需要多种蛋白质因子的相互协调作用。 RNA聚合酶Ⅱ启动子结构 1)TATA框(TATA frame):其一致顺序为TATAA(TAA(T。TATA框中心在-30附近,相当于原核的-10序列(pribnow box)。 对大多数真核生物来说,RNA聚合酶与TATA框牢固结合之后才能开始转录。 TATA框的左右富含G┇C 序列,这就有利于该框与RNA聚合酶形成开放性启动子复合物。

2)CAAT框(CAAT frame):位置在-75附近,一致序列为GG C(TCAATCT。CAAT框可能控制着转录起始的频率。 (3)GC框 在-90bp左右的GGGCGG序列称为GC框。 一个在-30—+15即核心启动子(core promoter element,另一为上游启动子区(upstream promoter element在-150—-50,不同物种的启动子因子有显著差异,启动子区没有和mRNA的TATA和CAAT盒顺序,故物种间大前体-rRNA基因的转录起始是不同的。基因间间隔含一个或几个终止信号可终止其之前的基因的转录而其本身不转录,间隔区含多种反向顺序可作为增强子结合转录因子 2、增强子的结构和功能 增强子(enhancer):又称为远上游序列(far upstream sequence 。它是远距离调节启动子以增加转录速率的DNA序列,其增强作用与序列的方向无关,与它在基因的上下游位置无关。增强子有强烈的细胞类型选择,即不同细胞类型,增强作用不同。 1)它能通过启动子大幅度地增加同一条DNA链上靶基因转录的频率,一般能增加 10~200倍,有的甚至可达千倍。 (2)增强子的作用对同源或异源的基因同样有效,如把SV40 的增强子连接到兔β-珠蛋白的基因上,可使转录强度增大100倍; (3)增强子的位置可在基因5′上游、基因内或其3′下游的序列中,而其作用与所在基因旁侧部位的方向似无关系,因为无论正向还是反向,它都具有增强效应; (4)增强子所含核苷酸序列大多为重复序列,其内部含有的核心序列,对于它进入到另一宿主之后重新产生增强子效应至关重要;

相关主题
文本预览
相关文档 最新文档