当前位置:文档之家› 随机变量独立同分布的概念

随机变量独立同分布的概念

随机变量独立同分布的概念
随机变量独立同分布的概念

1、随机变量独立同分布的概念

随机变量X1和X2独立,是指X1的取值不影响X2的取值,X2的取值也不影响X1的取值。随机变量X1和X2同分布,意味着X1和X2具有相同的分布形状和相同的分布参数,对离散型随机变量具有相同的概率函数,对连续型随机变量具有相同的概率密度函数,有着相同的分布函数,相同的均值、方差与标准差。

反之,若随机变量X1和X2是同类型分布,且分布参数全相同,则X1和X2一定同分布。

一般来说,在相同条件下,进行两次独立试验,则这两次实验结果所对应的随机变量是独立同分布的。

比如,将一枚质地均匀的硬币抛掷两次,设X1为第一次抛掷硬币的结果,X2为第二次抛掷硬币的结果。显然,第一次抛掷硬币的结果对第二次的结果没有影响,反之亦然,故X1和X2相互独立。

同时,X1和X2都只有两种试验结果:正面朝上和背面朝上,以0代表正面朝上,1代表背面朝上,则

P(X1=0)=P(X2=0)=0.5, P(X1=1)=P(X2=1)=0.5,

故X1和X2是独立同分布的随机变量。

随机变量独立同分布的特性可以推广到三个或更多个随机变量。

2、独立同正态分布(定理1)

3、独立同分布(定理2——中心极限定理)

当的分布对称时,只要n 5,那么,近似效果就比较理想;当的分布非对称时,要求n 值较大,一般n 30近似效果较理想。

这个定理表明:无论随机变量服从何种分布,可能是离散分布,也可能是连续分布,连续分布可能是正态分布,也可能是非正态分布,只要独立同分布随机变量的个数n较大,那么,随机变量之和的分布、随机变量均值X-的分布都可以近似为正态分布。这一结论意义深远。

4、标准误

统计学中把均值X-的标准差称为均值的标准误,记为,无论是正态还是非正态,均值X-的标准误都有

SEM随着n的增加而减少。

常常对一个零件的质量特性只观测一次,就用该观测结果去估计过程输出的质量特性。这里建议一种简单有效的减少测量系统误差的方法。对同一个零件的质量特性作两次或更多次重复测量,用其观测结果的平均值去估计过程输出的质量特性,就可以减少标准差。当然,这不是回避使用更精确量具的理由,而是一种提高现有量具精度的简易方法,多次测量值的平均值要比单次测量值更精确。

独立同分布随机变量序列的顺序统计方法(2019)

独立同分布随机变量序列的顺序统计方法 设有限长度离散随机变量序列12,,...,n x x x ,对其按从小到大的顺序排列,得到新的随机序列12,,...,n y y y ,满足:12...n y y y ≤≤≤;假设12,,...,n x x x 是独立同分布的连续取值型随机变量,每个变量的概率分布函数及概率密度分布函数分别为(),()F x f x 。 (1)求(1)k y k n ≤≤的概率密度分布函数()k y f y 解:k y 在y 处无穷小邻域取值的概率()k y f y dy 可以等效为这样一些事件发生的概率之 和:12,,...,n x x x 这n 个随机变量中有任意一个在y 处无穷小邻域取值,而剩余的n -1个随机变量中有任意k -1个的取值小于等于y ,对应的另外n -k 个变量的取值大于等于y 事件的个数(变量的组合数)为111n n k -???? ???-???? ,每个事件的概率为1[()]()[1()]k n k f y dy F y F y ---,则 11()()()[1()]11k k n k y n n f y dy f y dyF y F y k ---????=- ???-???? => 1!()()[1()]() (1)(1)!()! k k n k y n f y F y F y f y k n k n k --= -≤≤-- (2)求随机变量,(1)k l y y k l n ≤<≤的联合概率密度分布函数(,)k l y y f u v 解:(,) ()k l y y k l <在平面上的点(,) ()u v v u ≥处无穷小邻域取值的概率

随机变量及其分布列与独立性检验练习题附答案

数学学科自习卷(二) 一、选择题 1.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,() P B A 分别是( ) A.6091,12 B.12,6091 C.518,6091 D.91216,12 2.设随机变量ξ服从正态分布()3,4N ,若()()232P a P a ξξ<-=>+,则a 的值为 A .73 B .53 C .5 D .3 3.已知随机变量ξ~)2,3(2N ,若23ξη=+,则D η= A . 0 B . 1 C . 2 D . 4 4.同时拋掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是( ) A .20 B .25 C. 30 D .40 5. 甲乙两人进行乒乓球比赛, 约定每局胜者得1分, 负者得0分, 比赛进行到有一人比对方多2分或打满6局时停止, 设甲在每局中获胜的概率为 23,乙在每局中获胜的概率为13 ,且各局胜负相互独立, 则比赛停止时已打局数ξ的期望()E ξ为( ) A .24181 B .26681 C .27481 D .670243 6.现在有10奖券,82元的,25元的,某人从中随机无放回地抽取3奖券,则此人得奖金额的数学期望为( ) A .6 B .395 C .415 D .9 7.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,,,(0,1)a b c ∈,且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为 ( ) A .148 B .124 C .112 D .16 8.位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为 23,向右移动的概率为13,则电子兔移动五次后位于点(1,0)-的概率是 ( ) A .4243 B .8243 C .40243 D .80243

独立随机变量期望和方差的性质

第七周多维随机变量,独立性 7.4独立随机变量期望和方差的性质 独立随机变量乘积的期望的性质: Y X ,独立,则()()() Y E X E XY E =以离散型随机变量为例,设二元随机变量(),X Y 的联合分布列() ,i j P X x Y y ==已知,则()()(),i j i j P X x Y y P X x P Y y ====?=, () 1,2,,; 1,2,,i m j n == ()() 11,m n i j i j i j E XY x y P X x Y y =====∑∑()() 11 m n i j i j i j x y P X x P Y y =====∑∑()() 1 1 m n i i j j i j x P X x y P Y y =====∑∑()() E X E Y =***********************************************************************独立随机变量和的方差的性质: Y X ,独立,则()()() Y Var X Var Y X Var +=+()()() 2 2 Var X Y E X Y E X Y ??+=+-+?? ()222E X XY Y =++()()()()22 2E X E X E Y E Y ??-++? ? ()()()()2 2 22E X E X E Y E Y =-+-()()()22E XY E X E Y +-()()()() 2 2 22E X E X E Y E Y =-+-()() Var X Var Y =+若12,,,n X X X 相互独立,且都存在方差,则()() 121 n m k k Var X X X Var X =+++=∑ ***********************************************************************利用独立的0-1分布求和计算二项分布随机变量()~,X b n p 期望和方差 我们在推导二项分布随机变量的方差时,已经利用了独立随机变量和的方差等于方差

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1 ,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概

概率论的基本概念

第一章概率论的基本概念 第一节随机事件、频率与概率 一、教学目的: 1.通过本节起始课序言简介,使学生初步了解概率论简史、特色,从 而引导学生了解本课程概况及学习本课程的思想方法 2.通过本次课教学,使学生理解随机事件概念、频率与概率的概念, 了解随机试验、样本空间的概念,掌握事件的关系和运算,掌握 概率的基本性质及其运算 二、教学重点:概率的概念 三、教学难点:事件关系的分析与运算 四、教学内容: 1.序言:⑴简史⑵学法 2.§1.随机试验: ⑴实例⑵确定性现象⑶随机现象 3.§2.样本空间、随机事件: ⑴样本空间⑵随机事件⑶事件关系 与运算 4.§3. 频率与概率⑴频率定义、性质⑵概率定义、性质 五、小结: 六、布置作业: 标准化作业第一章题目 第二节古典概型、条件概率 一、教学目的: 通过本节教学使学生了解古典概型的定义,理解条件概率的概念,并能够解决一些古典概型、条件概率的有关实际问题. 二、教学重点:古典概率、条件概率计算 三、教学难点:古典概型与条件概率分析与建模 四、教学内容: 1.§4.古典概型 2.§5.条件概率(一) 五、小结: 六、布置作业: 标准化作业第一章题目 第三节乘法公式、全概率公式、Bayes公式、独立性 一、教学目的: 1.通过本节教学使学生在理解条件概率概念的基础上,掌握乘法公

式、全概率公式、Bayes公式以及能够运用这些公式进行概率计算。 2.理解事件独立性概念,掌握用独立性概念进行计算. 二、教学重点: 1.乘法公式及其使用 2.独立性概念及其应用 三、教学难点:应用公式分析与建模 四、教学内容: 1.§5.条件概率(二、三)2.§6.独立性 五、小结: 六、布置作业: 标准化作业第一章题目 第四节习题课 一、教学目的: 通过本习题课教学使学生全面系统对概率论的基本概念进一步深化,同时熟练掌握本章习题类型,从而提高学生的分析问题与解决问题的能力. 二、教学重点: 1.知识内容系统化 2.几类问题解决方法 三、教学难点:实际问题转化为相应的数学模型 四、教学内容: 1.本章知识内容体系归纳 2.习题类型: ⑴古典概型计算 ⑵事件关系与运算 ⑶条件概率计算 ⑷乘法公式、全概率公式、Bayes公式使用与计算. ⑸独立性问题的计算 五、讲练习题 第二章随机变量及其分布 第一节随机变量、离散型随机变量的概率分布 一、教学目的: 通过本节教学使学生理解随机变量的概念,理解离散型随机变量的分布及其性质,掌握二项分布、泊松分布,并会计算有关事件的概率及其分布.

(完整版)样本及抽样分布.doc

第六章样本及抽样分布 【基本要求】 1、理解总体、个体和样本的概念; 2、理解样本均值、样本方差和样本矩的概念并会计算; 3、理解统计量的概念,掌握几种常用统计量的分布及其结论; 4、理解分位数的概念,会计算几种重要分布的分位数。 【本章重点】样本均值、样本方差和样本矩的计算;抽样分布—— 2 分布,t分布, F分布;分位数的理解和计算。 【本章难点】对样本、统计量及分位数概念的理解;样本矩的计算。 【学时分配】 4 学时 【授课内容】 §6.0前言 前面五章我们研究了概率论的基本内容,从中得知:概率论是研究随机现象统计规律性的一 门数学分支。它是从一个数学模型出发(比如随机变量的分布)去研究它的性质和统计规律性; 而我们下面将要研究的数理统计,也是研究大量随机现象的统计规律性,并且是应用十分广泛的 一门数学分支。所不同的是数理统计是以概率论为理论基础,利用观测随机现象所得到的数据来 选择、构造数学模型(即研究随机现象)。其研究方法是归纳法(部分到整体)。对研究对象的客观规律性做出种种合理性的估计、判断和预测,为决策者和决策行动提供理论依据和建议。数理 统计的内容很丰富,这里我们主要介绍数理统计的基本概念,重点研究参数估计和假设检验。 § 6.1随机样本 1

一、总体与样本 1.总体、个体 在数理统计学中,我们把所研究的全部元素组成的集合称为总体;而把组成总体的每个元素称为个体。 例如:在研究某批灯泡的平均寿命时,该批灯泡的全体就组成了总体,而其中每个灯泡就是 个体;在研究我校男大学生的身高和体重的分布情况时,该校的全体男大学生组成了总体,而每 个男大学生就是个体。 但对于具体问题,由于我们关心的不是每个个体的种种具体特性,而仅仅是它的某一项或几 项数量指标 X ( 可以是向量 ) 和该数量指标X在总体的分布情况。在上述例子中 X 是表示灯泡的寿命或男大学生的身高和体重。在试验中,抽取了若干个个体就观察到了X 的这样或那样的数值,因而这个数量指标X 是一个随机变量(或向量),而 X 的分布就完全描写了总体中我们所关心的那个数量指标的分布状况。由于我们关心的正是这个数量指标,因此我们以后就把总体和数量指标 X 可能取值的全体组成的集合等同起来。 定义 1:把研究对象的全体(通常为数量指标X 可能取值的全体组成的集合)称为总体;总体中的每个元素称为个体。 我们对总体的研究,就是对相应的随机变量X 的分布的研究,所谓总体的分布也就是数量指 标 X 的分布,因此, X 的分布函数和数字特征分别称为总体的分布函数和数字特征。今后将不区分总体与相应的随机变量,笼统称为总体 X 。根据总体中所包括个体的总数,将总体分为:有限总体 和无限总体。 例 1:考察一块试验田中小麦穗的重量: X =所有小麦穗重量的全体(无限总体);个体——每个麦穗重x 2

《离散型随机变量的概念》教学设计

离散型随机变量的概念》教学设计 一、教材分析 《离散型随机变量的概念》是人教A版《普通高中课程标准实验教科书 数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第一课时。本章是在必修三中学习了基本的概率统计知识的基础上,进一步学习 随机变量及其分布的知识。本节内容一方面承接了必修三的知识;另一方面,掌握好这一节课将有助于后续的学习,因此它在知识体系上起着承上启下的作用。随机变量是连接随机现象和实数空间的一座桥梁,从而使得更多的数学工具有了用武之地。离散型随机变量是最简单的随机变量。本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法。 二、学情分析 学生在必修3概率一章中学习过的随机试验、随机事件、简单的概率模型和必修1中学习过的变量、函数、映射等知识是学习、领悟和“接纳”随机变量概念的重要知识基础,教学时应充分注意这一教学条件;另外,为更好地形成随机变量和离散型随机变量两个概念,教学中可借助媒体列举和展现丰富的实例和问题,以留给学生更多的时间思考和概括。 三、教学策略分析 学生是教学的主体,本节课要给学生提供各种参与机会。本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,培养学生分析问题、解决问题的能力。 四、目标分析 1、知识与技能目标:理解随机变量和离散型随机变量的概念,能够运用随机变量表示随机事件,学会恰当的定义随机变量; 2、过程与方法目标:在教学过程中,以不同的实际问题为导向,弓I导学生分析问题的特点,归纳问题的共性,提高理解分析能力和抽象概括能力;

I 基本概念与抽样分布1-8#

应用数理统计概述 不确定性数学:1 . 概率论、数理统计),,(P F Ω 2 . 模糊数学 )}(,{x x ?M 3 . 灰色数学 ],[b a H 4 . 未确知数学 )}(],,{[x F b a 对于上述各个数学分支,各自有相应的运算法则和适用范围。 (一) 概率论: 1.),,(P F Ω: E 是一个随机试验,Ω 为E 的全体基本事件的集合 F 由Ω的一些子集为元素 所构成的集合 人们通过对某事件A 的频率)(A f 的研究,发现了概率 )(A P 和性质及运算 2.讨论的一般方法: 随机变量 → 分布 → 数学期望、方差等(宏观指标) ① 对于一维 : )(ωξξ= )(i i x ωξ= ∑ <= <=x x i i p x P x F }{)(ξ, i i p x P ==}{ξ ; ? ∞ -= <=x dt t p x P x F )(}{)(ξ, 0)(≥x p . ? ∑ ∞ +∞ -∞ == dx x xp p x E i i i )(1 或 ξ; 2)(ξξξE E D -= ② 对于n 维 : 随机变量),,,(21n ξξξ → 实数),,,(21n x x x },{})({),,(22111 21n n n i i i n x x x P x p x x x F <<<=<==ξξξωξω ; (二) 数理统计: 1.基础:统计量?? ?? ? =∑=数据分区间处理经验型,如:公式型,n i i n 11ξξ 及其分布 ???经验分布(直方图) 分布 如:统计分布2 χ 2. 样本的处理:① 参数估计; ② 假设检验(参数假设检验<本科>、非参数假设检 验<分布拟合 与 两总体相等性检验>); ③ 回归分析; ④ 方差分析 与 正交试验设计.

随机变量独立同分布的概念

1、随机变量独立同分布的概念 随机变量X1和X2独立,是指X1的取值不影响X2的取值,X2的取值也不影响X1的取值。随机变量X1和X2同分布,意味着X1和X2具有相同的分布形状和相同的分布参数,对离散型随机变量具有相同的概率函数,对连续型随机变量具有相同的概率密度函数,有着相同的分布函数,相同的均值、方差与标准差。 反之,若随机变量X1和X2是同类型分布,且分布参数全相同,则X1和X2一定同分布。 一般来说,在相同条件下,进行两次独立试验,则这两次实验结果所对应的随机变量是独立同分布的。 比如,将一枚质地均匀的硬币抛掷两次,设X1为第一次抛掷硬币的结果,X2为第二次抛掷硬币的结果。显然,第一次抛掷硬币的结果对第二次的结果没有影响,反之亦然,故X1和X2相互独立。 同时,X1和X2都只有两种试验结果:正面朝上和背面朝上,以0代表正面朝上,1代表背面朝上,则 P(X1=0)=P(X2=0)=0.5, P(X1=1)=P(X2=1)=0.5, 故X1和X2是独立同分布的随机变量。 随机变量独立同分布的特性可以推广到三个或更多个随机变量。 2、独立同正态分布(定理1) 3、独立同分布(定理2——中心极限定理) 当的分布对称时,只要n 5,那么,近似效果就比较理想;当的分布非对称时,要求n 值较大,一般n 30近似效果较理想。 这个定理表明:无论随机变量服从何种分布,可能是离散分布,也可能是连续分布,连续分布可能是正态分布,也可能是非正态分布,只要独立同分布随机变量的个数n较大,那么,随机变量之和的分布、随机变量均值X-的分布都可以近似为正态分布。这一结论意义深远。 4、标准误 统计学中把均值X-的标准差称为均值的标准误,记为,无论是正态还是非正态,均值X-的标准误都有 SEM随着n的增加而减少。 常常对一个零件的质量特性只观测一次,就用该观测结果去估计过程输出的质量特性。这里建议一种简单有效的减少测量系统误差的方法。对同一个零件的质量特性作两次或更多次重复测量,用其观测结果的平均值去估计过程输出的质量特性,就可以减少标准差。当然,这不是回避使用更精确量具的理由,而是一种提高现有量具精度的简易方法,多次测量值的平均值要比单次测量值更精确。

随机变量附其分布列概念公式总结

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --===,其中 mi n {,}m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列

为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ, (k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

随机变量及其分布列与独立性检验练习题附答案

随机变量及其分布列与独 立性检验练习题附答案 It was last revised on January 2, 2021

数学学科自习卷(二) 一、选择题 1.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,()P B A 分别是( ) A. 6091,12 B.12,6091 C.518,6091 D.91216,12 2.设随机变量ξ服从正态分布()3,4N ,若()()232P a P a ξξ<-=>+,则a 的值为 A .73 B .5 3 C .5 D .3 3.已知随机变量ξ~)2,3(2N ,若23ξη=+,则D η= A . 0 B . 1 C . 2 D . 4 4.同时抛掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是( ) A .20 B .25 C. 30 D .40 5. 甲乙两人进行乒乓球比赛, 约定每局胜者得1分, 负者得0分, 比赛进行到有一人比对方多2分或打满6局时停止, 设甲在每局中获胜的概率为 2 3 ,乙在每局中获胜的概率为1 3,且各局胜负相互独立, 则比赛停止时已打局数ξ的期望()E ξ为( ) A .24181 B .26681 C .27481 D .670243 6.现在有10张奖券,8张2元的,2张5元的,某人从中随机无放回地抽取3张奖券,则此人得奖金额的数学期望为( ) A .6 B . 395 C .41 5 D .9

7.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,,,(0,1)a b c ∈,且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为 ( ) A . 148 B . 124 C . 112 D .16 8.位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为23,向右移动的概率为1 3 ,则电子兔移动五次后位于点(1,0)-的概率是 ( ) A . 4243 B .8243 C .40 243 D . 80 243 二、填空题 9.已知55104)1()1()1)(2(++???+++=-+x a x a a x x ,则=++531a a a ______. 10.乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_____________________. 11.设ξ是离散型随机变量, 21 (),()33P a P b ξξ==== ,且a b <,又42 ,39E D ξξ== ,则a b +的值为______ _. 12.某车站每天8:009:00,9:0010:00--都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律为 到站的时刻 8:10 9:10 8:30 9:30 8:50 9:50 概率 一旅客8:20到站,则它候车时间的数学期望为_______。(精确到分) 三、解答题

分布列概念

1. 分布列定义: 设离散型随机变量所有可能取得的值为x 1,x 2,…,x 3,…x n ,若取每一个值x i (i=1,2,…,n)的概率为,则称表 为随机变量的概率分布,简称的分布列. 离散型随机变量的分布列都具有下面两个性质: (1)P i ≥0,i=1,2,…,n ;(2)P 1+P 2+…+P n =1 要点四、两类特殊的分布列 1. 两点分布 像上面这样的分布列称为两点分布列. 要点诠释: (1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率. (2)两点分布又称为0-1分布或伯努利分布 (3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是否为正品;新生 婴儿的性别; 投篮是否命中等等;都可以用两点分布列来研究. 2. 超几何分布 一般地,在含有件次品的件产品中,任取件,其中恰有件次品,则则事件 {X=k } 发生的概率为, 其中,且 . 称分布列为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布 ξξi i P x P ==)(ξξξM N n X (),0,1,2,,k n k M N M n N C C P X k k m C --===min{,}m M n =,,,,n N M N n M N N *≤≤∈

要点一、条件概率的概念 1.定义 设、为两个事件,且,在已知事件发生的条件下,事件B 发生的概率叫做条件概率。用符号表示。 读作:发生的条件下B 发生的概率。 要点诠释 在条件概率的定义中,事件A 在“事件B 已发生”这个附加条件下的概率与没有这个附加条件的概率是不同的,应该说,每一个随机试验都是在一定条件下进行的.而这里所说的条件概率,则是当试验结果的一部分信息已知,求另一事件在此条件下发生的概率. 2.P (A |B )、P (AB )、P (B )的区别 P (A |B )是在事件B 发生的条件下,事件A 发生的概率。 P (AB )是事件A 与事件B 同时发生的概率,无附加条件。 P (B )是事件B 发生的概率,无附加条件. 它们的联系是:. 要点诠释 一般说来,对于概率P(A|B)与概率P(A),它们都以基本事件空间Ω为总样本,但它们取概率的前提是不相同的。概率P(A)是指在整个基本事件空间Ω的条件下事件A 发生的可能性大小,而条件概率P(A|B)是指在事件B 发生的条件下,事件A 发生的可能性大小。 例如,盒中球的个数如下表。从中任取一球,记A=“取得蓝球”,B=“取得玻璃球”。基本事件空间Ω包含的样本点总数为16,事件A 包含的样本点总数为11,故。 如果已知取得玻璃球的条件下取得蓝球的概率就是事件B 发生的条件下事件A 发生的条件概率,那么在事件B 发生的条件下可能取得的样本点总数应为“玻璃球的总数”,即把样本空间压缩到玻璃球全体。而在事件B 发生的条件下事件A 包含的样本点数为蓝玻璃球数,故。 要点二、条件概率的公式 A B ()0P A >A (|)P B A (|)P B A A () (|)() P AB P A B P B =11()16 P A = 42(|)63 P A B = =

(完整版)分布列概念

1. 分布列定义: 设离散型随机变量 所有可能取得的值为 x i ,x 2,…3X …x 若 取每一个值x i (i=1,2, , -n) 的概率为P( x i ) P i ,则称表 为随机变量 的概率分布,简称 的分布列 离散型随机变量的分布列都具有下面两个性 质: (1) P i > 0,i=1,2 …,n ; (2) P i +P 2+n+P n =1 要点四、两类特殊的分布列 1. 两点分布 随机变量X 的分布列是 像上面这样的分布列称为两点分布列. 要点诠释: (1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1)为成功率. (2) 两点分布又称为0-1分布或伯努利分布 (3) 两点分布列的应用十分广泛 ,如抽取的彩票是否中奖; 买回的一 件产品是否为正品; 新生 婴儿的性别; 投篮是否命中等等;都可以用两点分布列来研究 2. 超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有 X 件次品,则则事件{X=k } n N,M N,n, M,N N ? 称分布列为超几何分布列.如果随机变量 X 的分布列为超几何分布列, 则称随机变量 X 服 从超几何分布 1. 定义 设A 、B 为两个事件,且P(A) 0,在已知事件 A 发生的条件下,事件B 发生的概 率叫做条件概率。用符号 P(B | A) 表示。 发生的概率为P(X k) k n k C M C N M C N ,k 0,1,2,L ,m ,其中 min{ M , n},且

P(B| A)读作:A发生的条件下B发生的概率。 要点诠释 在条件概率的定义中,事件A在事件B已发生”这个附加条件下的概率与没有这个附加 条件的概率是不同的,应该说,每一个随机试验都是在一定条件下进行的. 而这里所说的条 件概率,则是当试验结果的一部分信息已知,求另一事件在此条件下发生的概率. 2 . P ( A | B)、P (AB)、P (B)的区别 P (A | B)是在事件B发生的条件下,事件A发生的概率。 P (AB)是事件A与事件B同时发生的概率,无附加条件。 P ( B)是事件B发生的概率,无附加条件. 它们的联系是:P(A| B) P(AB). P(B) 要点诠释 一般说来,对于概率P(A|B)与概率P(A),它们都以基本事件空间Q为总样本,但它们取概率的前提是不相同的。概率P(A)是指在整个基本事件空间Q的条件下事件A发生的可能性大小,而条件概率P(A|B)是指在事件B 发生的条件下,事件A发生的可能性大小。 例如,盒中球的个数如下表。从中任取一球,记A='取得蓝球” B='取得玻璃球”。基本 事件空间Q包含的样本点总数为16,事件A包含的样本点总数为11,故P(A) 11。 16 如果已知取得玻璃球的条件下取得蓝球的概率就是事件B发生的条件下事件A发生的条 件概率,那么在事件B发生的条件下可能取得的样本点总数应为玻璃球的总数”即把样本空间压缩到玻璃球全体。而在事件B发生的条件下事件A包含的样本点数为蓝玻璃球数, 4 2 故P(A| B) 6 3 要点二、条件概率的公式

§3.1多维随机变量的概念

第三章多维随机变量及其分布 在实际应用中,有些随机现象需要同时用两个或两个以上的随机变量来描述.例如,研究某地区学龄前儿童的发育情况时,就要同时抽查儿童的身高H 、体重 W ,这里,H 和W 是定义在同一个样本空间上的两个随机变量.又如,考察某次射 击中弹着点的位置时,就要同时考察弹着点的横坐标X 和纵坐标Y .在这种情况下,我们不但要研究多个随机变量各自的统计规律,而且还要研究它们之间的统计相依关系,因而还需考察它们的联合取值的统计规律,即多为随机变量的分布.由于从二维推广到多维一般无实质性的困难,故我们重点讨论二维随机变量. §3.1多维随机变量的概念 一、二维随机变量及分布函数 1定义:由随机变量,X Y 构成的有序数),(Y X ,称),(Y X 为二维随机变量或二维随机向量. 注:(),X Y 在几何上,二维随机变量可看作平面上的随机点的坐标. 2定义:设),(Y X 是二维随机变量,对任意实数y x ,,二元函数 },{)} {()}{(),(y Y x X P y Y P x X P y x F ≤≤≤≤=记为 称为二维随机变量),(Y X 的分布函数或称为随机变量X 和Y 的联合分布函数. 3二元分布函数的几何意义 (,)(,)X Y X Y 若将二维随机变量看成是平面上随机点的,(,)(,)F x y X Y 的坐标则分布函数就表示随机点落在以点(,)x y 为顶点的左下方的无限矩形域内的概率 4随机点(,)X Y 落在矩形区域:1212,x X x y Y y <≤<≤内的概率为

1212{,}P x X x y Y y <≤<≤=22122111(,)(,)(,)(,)F x y F x y F x y F x y --+ 5分布函数(,)F x y 的性质: (1),1),(0≤≤y x F 且对任意固定的,y ,0),(=-∞y F 对任意固定的, 0),(,=-∞x F x ;1),(,0),(=+∞+∞=-∞-∞F F (2)),(y x F 关于x 和y 均为单调不减函数,即 对任意固定的,y 当),,(),(,1212y x F y x F x x ≥> 对任意固定的,x 当);,(),(,1212y x F y x F y y ≥> (3)),(y x F 关于x 和y 均为右连续,即).0,(),(),,0(),(+=+=y x F y x F y x F y x F 4()对任意的11221212(,),(,),,x y x y x x y y <<有 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 注:上述四条性质是二维随机变量分布函数的最基本的性质,即任何二维随机变量的分布函数都具有这四条性质;更进一步地,我们还可以证明:如果某一二元函数。具有这四条性质,那么,它一定是某一二维随机变量的分布函数.破坏之一,则不是。 二、二维离散型随机变量及其概率分布 1定义:若二维随机变量),(Y X 只取有限对或可数对值,则称),(Y X 为二维离散型随机变量. 结论:),(Y X 为二维离散型随机变量当且仅当Y X ,均为离散型随机变量. 2定义:若二维离散型随机变量),(Y X 所有可能的取值为),(j i y x ,,2,1, =j i 则

常见的分布函数

6数理统计的基本概念 6.1 基本要求 1 理解总体、样本(品)、样本容量、简单随机样本的概念。能在总体分布给定情况下,正确无误地写出样本的联合分布,这是本章的难点。 2*了解样本的频率分布、经验分布函数的定义,了解频率直方图的作法。 3 了解χ2分布、t分布和F分布的概念及性质,了解临界值的概念并会查表计算。 4 理解样本均值、样本方差及样本矩的概念。了解样本矩的性质,能借助计算器快速完成样本均值、样本方差观察值的计算。了解正态总体的某些常用抽样分布。 6.2 内容提要 6.2.1 总体和样本 1 总体和个体研究对象的某项特征指标值的全体称为总体(或母体),组成总体的每个元素称为个体。总体是一个随机变量,常用X,Y等来表示。 2 样本从总体中随机抽出n个个体称为容量为n的样本,其中每个个体称为样品,它们都是随机变量。 3 简单随机样本设X1,X2,…,X n是来自总体X的容量为n 的样本,如果这n个随机变量X1,X2,…,X n相互独立且每个样品X i与总体X具有相同的分布,则称X1,X2,…,X n为总体X的简单随机样本。 4 样本的联合分布 *该部分内容考研不作要求。 149

150 若总体X 具有分布函数F (x ),则样本(X 1,X 2,…,X n )的联合分布函数为 ∏== n i i n x F x x x F 1 21) (),,,( 若总体X 为连续型随机变量,其概率密度函数为f (x ),则样本的联合概率密度为 ∏ == n i i n x f x x x f 1 21) (),,,( (6.1) 若总体X 为离散型随机变量,其分布律为P {X =a i }=p i (i =1,2,…n),则样本的联合分布为 ∏=== ===n i i i n n x X P x X x X x X P 1 22 11} {},,,{ (6.2) 其中),,,(21n x x x 为),,,(21n X X X 的任一组可能的观察值。 6.2.2 样本分布 1 频率分布 设样本值(x 1,x 2,…,x n )中不同的数值是x 1*,x 2*,…,x l *,记相应的频数分别为n 1,n 2,…,n l ,其中x 1*< x 2*<…< x l * 且n n l i i =∑=1 。 则样本的频数分布及频率分布可由表6-1给出。

5 个统计学基本概念

统计学基本概念 在数据科学的世界里,如果数据科学家是魔法师,那统计学就是他们的魔杖。 总的来说,统计,就是利用数学对数据进行技术性分析。当然,像条形图这样的简单可视化图像也能给你提供一些高等级的信息,但利用统计学,我们将能以一种更有针对性,更”信息驱动“的方式来处理数据。这其中涉及的数学知识能帮助我们形成关于数据的具体结论,而不仅仅是猜测。 使用统计数据,我们可以获得更深入、更细微的洞察能力,可以了解我们的数据是如何构建的。在了解结构的基础上,我们将能发现应用其他数据科学技术的最佳方式,并以此获取更多信息。 今天,我们将一起了解数据科学家必学必会的5个基本统计概念,以及如何最有效地应用它们! 1. 统计特征 统计特征可能是数据科学中最常用的统计概念之一。它通常是你在探索数据集时使用的第一种统计技术。常见的统计特征包括偏差、方差、均值、中位数、百分位数等等。它们其实非常容易理解,也很容易在代码中实现! 让我们看看下面这个图吧:

一个简单的箱形图 中间的这条横线是数据的中位数。相对于平均数,中位数在数据中有异常值的时候能更加忠实地反应数据的特征。下四分位数基本上是数据的25% 点,也就是数据中25%的点低于该值。上四分位数是数据的75% 点,也就是数据中75%的点低于该值。最小值和最大值表示数据范围的上端和下端。 箱形图能很好地表现出基本统计特征的用途: ?如果箱形图很短,就意味着你的大部分数据点都很相似,因为很多数据都集中在很小的范围内 ?如果箱形图很长,就意味着你的大部分数据点都差异很大,因为这些值分布在很宽的范围内 ?如果中位数接近底部,那么我们就能知道大多数数据具有较低的值。如果中位数接近顶部,那么我们就能知道大多数数据具有更高的值。基本上,如果中位数不在框的中间,则表明数据存在偏斜。

常见统计分布及其特点

附录一】常见分布汇总 一、二项分布 二项分布( Binomial Distribution ),即重复n 次的伯努利试验( Bernoulli Experiment ),用E表示随机试验的结果,如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是。 二、泊松poisson 分布 1 、概念 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中入为np。通常当nM 10,p三0.1时,就可以用泊松公式近似得计算。 2、特点 - 期望和方差均为入。 3、应用(固定速率出现的事物。)——在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客,以固定的平均瞬时速 率入(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布 三、均匀分布uniform 设连续型随机变量X的分布函数F(x)=(x-a)/(b-a) ,a

2)无记忆性 当s,t >0时有P(T>s+t|T>t)=P(T>s)即,如果T是某一元件的寿命,已知元件使用了t 小时,它总共使用至少s+t 小时的条件概率,与从开始使用时算起它使用至少s 小时的概率相等。 3、应用在电子元器件的可靠性研究中,通常用于描述对发生的缺陷数或系统故障数的测量结果 五、正态分布Normal distribution 1、概念 2、中心极限定理与正态分布(说明了正态分布的广泛存在,是统计分析的基础)中心极限定理:设从均值为□、方差为a A2;(有限)的任意一个总体中抽取 样本量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为卩、方差为a A2/n的正态分布。 3 、特点——在总体的随机抽样中广泛存在。 4、应用一一正态分布是假设检验以及极大似然估计法ML的理论基础 定理一:设XI,X2,X3. 00 Xn是来自正态总体N(u,3 2)的样本,则有样本均值X?N(u,3 2/n )――总体方差常常未知,用t分布较多 六、X 2 卡方分布(与方差有关)chi-square distribution 1 、概念 若n个相互独立的随机变量 E ?、E ?……、E n,均服从标准正态分布(也 称独立同分布于标准正态分布),则这n 个服从标准正态分布的随机变量的平方 Q=D? 和—T 构成一新的随机变量,其分布规律称为卡方分布(chi-square

相关主题
文本预览
相关文档 最新文档