当前位置:文档之家› 模态参数(频率、阻尼比、振型)作业指导书

模态参数(频率、阻尼比、振型)作业指导书

模态参数(频率、阻尼比、振型)作业指导书
模态参数(频率、阻尼比、振型)作业指导书

17.3 模态参数(频率、振型、阻尼比)作业指导书1 目的

测试桥梁的模态参数,了解桥梁的自振特性。

2 适用范围

适用于桥梁或结构构件的模态参数测试及分析。

3 试验准备

3.1 仪器、设备、材料

3.2 资料

①、桥梁或结构构件拾振器测点布置图

②、相关仪器、软件使用说明书

③、原始记录表格(见附表1~2)

④、仪器、设备、材料清单表确认单(见附表3)

3.3 检查仪器、设备及软件是否正常运行(见附表4)

4 试验流程

4.1 测点布置:

试验前应对桥梁结构进行有限元分析,计算理论的振型图,根据振型图确定测点布置(测点布置的原则和数量要求见5.1)。由于试验用的拾振器可能有限,所以应在桥上选择合适的参考点(参考点的选择要求见5.2),分批搬动其他拾振器到所有测点。

4.2 拾振器安装:

拾振器安装前,应将测点位置清洁除尘。安装时,将拾振器通过橡皮泥牢固粘贴在测点位置,保证拾振器和构件能共同移动,同时传感器的主轴方向应与测点主振方向一致。

4.3 仪器连接:

仪器连接详见《DH5922N动态信号测试分析系统使用说明书》。

4.4 数据采集:

在数据采集之前,应对软件及拾振器各参数进行设置(参数设置要点见5.3)。仪器参数设置及采集软件的操作详见《DHDAS4.1.3基本分析软件说明书》。

为了消除随机因素影响,应对采集的长样本信号进行能量平均。对于悬索桥、斜拉桥等自振频率较低的桥型,为保证频率分辨率和提高信嘈比,采集时间不宜小于20分钟,一般采集时间取20~45分钟,对于小跨径桥梁,采集时间可酌情减小。

4.5 数据处理:

自振频率:可采用频谱分析法、波形分析法或模态分析法得到桥梁结构自振频率。

阻尼比:采用波形分析法、半功率带宽法或模态分析法得到。

振型参数:采用环境激振等方法进行模态参数识别。

数据后期处理及分析的软件操作详见《DHDAS4.1.3基本分析软件说明书》。

4.6模态参数的评定:

1结构的自振最低频率应大于有关标准限值,结构最大振幅应小于相应标准限值。

2根据结构振动图形,可分析出结构的冲击现象,共振现象和有无缺陷。

3桥梁本身的动力特性的全面资料,可作为评价结构物抗风力和抗地震力性能的计算参数。复杂结构的桥梁动力性能,还需要借助于模型的动力试验和风洞试验进行研究。

4定期检验的桥梁,通过前后两次动力结果的比较,可检查结构工作的缺陷,如果结构刚度降低及频率显著减小,应查明结构可能产生的损坏。

5 注意事项及要点

5.1测点数量及位置:测点数目的确定应根据合同及试验方案要求的振型阶数,并保证测点能连成曲线,且尽可能布置在控制断面上。一般情况测点纵向布置于桥梁的偶数等分点上;横向布置:当测试桥梁的横向振型时,应布置于桥面横向中心处;当测试桥梁竖向振型时,应对称布置于桥面两侧栏杆附近。

5.2参考点的选择:一般选择最大的振幅附件的测点处,在整个测试过程中,参考点的拾振器严禁移动。

5.3主要参数设置:

5.2.1 拾振器档位选择:一般桥梁测试时,拾振器的档位设置为小速度档“1”档,或是加速度档“2”档。

5.2.2 采集频率设置:模态实验时的采样频率一般建议不用太大,100Hz 或者200Hz即可,对于某些大型、特大型桥梁,选取50Hz的采样频率也已足够。

编写:审核:批准:

附件:

附件1 桥梁结构检测与监测模态参数试验记录表附件2 桥梁结构检测与监测模态参数试验检测报告附件3 仪器、设备、材料清单表确认单

附件4 仪器、设备是否正常运行确认单

附件1 桥梁结构检测与监测模态参数试验记录表

经办人:项目负责人:日期:年月日

附件4 仪器、设备是否正常运行确认单

经办人:项目负责人:日期:年月日

基于应变能的各振型阻尼比的计算方法

基于应变能的各振型阻尼比的计算方法 当结构中使用不同的材料或者设置了阻尼器时,各单元的阻尼特性可能会不一样,并且阻尼矩阵为非古典阻尼矩阵,不能按常规方法分离各模态。而这时在时程分析中要使用振型叠加法,需要使用基于应变能的阻尼比计算方法。 具有粘性阻尼特性的单自由度振动体系的阻尼比,可以定义为谐振动(harmonic motion)中的消散能(dissipated energy)和结构中储藏的应变能(strain energy)的比值。 4D S E E ξπ= 在此 E D : 消散能 E S : 应变能 在多自由度体系中,计算某单元的消散能和应变能时使用两个假定。 首先假定结构的变形与振型形状成比例。第i 个振型的单元节点的位移和速度向量如下。 () (),,,,sin cos i n i n i i i n i i n i i t t ωθωωθ=+=+u φu φ 在此, ,i n u : 第i 振型中第n 个单元的位移 ,i n u : 第i 振型中第n 个单元的速度 ?i ,n : 第n 个单元的相应自由度的第i 振型形状 ωi : 第i 振型的固有圆频率 θi : 第i 振型的位相角(phase angle) 其次,假定单元的阻尼与单元的刚度成比例。 2n n n i h ω= C K 在此, C n : 第n 个单元的阻尼矩阵 K n : 第n 个单元的刚度矩阵 h n : 第n 个单元的阻尼比 基于上述假定,单元的消散能和应变能的计算如下: ()(),,,,,,,,,211,22T T D i n n i n n i n n i n T T S i n n i n i n n i n E i n h E i n ππ====u C u φK φu K u φK φ 在此, E D (i , n ) : 第i 振型的第n 个单元的消散能 E S (i , n ) : 第i 振型的第n 个单元的应变能 全体结构的第i 振型的阻尼比可以使用所有单元的第i 振型的能量的和来计算。

ansys提阻尼比

请教,ANSYS模态分析后,如何得到各阶模态的模态阻尼比 *get entity=mode ,item1=damp 请教1楼,命令流*GET, Par, Entity, ENTNUM, Item1, IT1NUM, Item2, IT2NUM 中其他几项分别如何设置,如Par,ENTNUM,等,另外输入命令流如何显示其模态阻尼比,本人初学命令流,谢谢! par是随便一个参数名,其他的默认,,,只有逗号即可, 在后在参数里看 ANSYS动力学分析中提供了各种的阻尼形式,这些阻尼在分析中是如何计算,并对分析有什么影响呢?本文将就此做一些说明何介绍. 一.首先要清楚,在完全方法和模态叠加法中定义的阻尼是不同。因为前者使用节点坐标,而后者使用总体坐标. 1.在完全的模态分析、谐相应分析和瞬态分析中,振动方程为: 阻尼矩阵为下面的各阻尼形式之和: α为常值质量阻尼(α阻尼)(ALPHAD命令) β为常值刚度阻尼(β阻尼)(BETA命令) ξ为常值阻尼比,f为当前的频率(DMPRAT命令) βj为第j种材料的常值刚度矩阵系数(MP,DAMP命令) [C]为单元阻尼矩阵(支持该形式阻尼的单元) where: [C] = structure damping matrix α = mass matrix multiplier (input on ALPHAD command) [M] = structure mass matrix β = stiffness matrix multiplier (input on BETAD command) βc = varia ble stiffness matrix multiplier (see Equation 15–23) [K] = structure stiffness matrix Nm = number of materials with DAMP or DMPR input = stiffness matrix multiplier for material j (input as DAMP on MP command) = constant (frequency-independent) stiffness matrix coefficient for material j (input as DMPR on MP command) Ω = circular excitation frequency Kj = portion of structure stiffness matrix based on material j Ne = number of elements with specified damping Ck = element damping matrix Cξ = fre quency-dependent damping matrix (see Equation 15–21) 2.对模态叠加方法进行的谐相应分析、瞬态分析何谱分析,动力学求解方程为:

几种阻尼比识别的方法1

几种参数识别的方法 A 基于时域的参数识别方法推导 A1 Ibrahim 时域方法 Irrahim 时域识别方法是需要测量自由响应信号或者脉冲信号。系统为二阶线性系统,被测自由响应信号为x(t),二阶线性系统为复指数之和。 )()(~)(t n t p t x +?ψ= (A-1) []***ψψψψψψ=ψN N ,,,,,,,2121 (A-2) {} t t t t t t N N e e e e e e t p ***=λλλλλλ,,,,,,,)(~2121 (A-3) 其中n(t)为输出噪音信号,N 是振动模态数,它由被测的二阶系统和通过模拟低通滤波截断频率所共同决定,Ψi 和λi 为二阶系统的本征矢量和特征值,m 为测量点数,其中m=1。 通常认为m 等于N ,N 为振动模态数量,为求出)(~ t p ,它为2N*1矩阵,必须在时域上扩展响应信号矢量,例如,在t+T3时刻,响应信号可表示为: )()(~),()(333131t n t p e e diag T t x T T +??ψ=+??*λλ (A-4) 其中n3(t )为在t+T3时刻的噪音矢量,联合公式1和4可得出: )()(~~)(t N t p t u +?ψ= (A-5) 其中: ???? ??+=)()()(3T t x t x t u (A-6) ?? ?????ψψ=ψ??*),(~3131T T e e diag λλ (A-7) 或者, [] ***ψψψψψψ=ψN N ~,,~,~,~,,~,~~2121 ? ?????=)()()(3t n t n t N (A-8) 同样的,可以很容易地得出以下公式: )()(~),(~)(113131t N t p e e diag T t u T T +??ψ=+λλ (A-9) 看公式5,假设复指数是线性独立的,我们可以得到: )(~)(~)(~11t N t u t p ?ψ-?ψ=-- (A-10) 将公式10代到9中,我么和可以得到: )()(~),(~)(~),(~)(111131313131t N t N e e diag t u e e diag T t u T T T T +?ψ??ψ-?ψ??ψ=+-??-??**λλλλ

振动基础简答题

振动,广义地讲,指一个物理量在它的平均值附近不停地经过极大值和极小值而往复变化。 机械振动指机械或结构在它的静平衡位置附近的往复弹性运动。 任何具有弹性和惯性的力学系统均可能产生机械振动。 振动系统发生振动的原因是由于外界对系统运动状态的影响,即外界对系统的激励或作用,称之为振动系统的激励或输入。 振动的分类1:①线性振动:是指系统在振动过程中,振动系统的惯性力、阻尼力、弹性力分别与绝对加速度、相对加速度、相对位移成线性关系。线性振动系统的振动可以用线性微分方程描述。②非线性振动:非线性振动系统在振动的过程中,系统的惯性力、阻尼力、弹性力与绝对加速度、相对加速度、相对位移的关系没有线性系统那样简单,非线性系统的振动过程只能用非线性微分方程描述。 分类2:①确定性振动:一个振动系统,如果对任意时刻t,都可以预测描述它的物理量的确定的值x,即振动是确定的或可以预测的,这种振动称为确定性振动。②随机振动:无法预测它在未来某个时刻的确定值,如汽车行驶时由于路面不平引起的振动,地震时建筑物的振动。随机振动只能用概率统计(期望、方差、谐方差、相关函数等)方法描述。 系统的自由度数定义为描述系统运动所需要的独立坐标(广义坐标)的数目。 分类3:在实际中遇到的大多数振动系统,其质量和刚度都是连续分布的,通常需要无限多个自由度才能描述它们的振动,它们的运动微分方程是偏微分方程,这就是连续系统。在结构的质量和刚度分布很不均匀时,往往把连续结构简化为若干个集中质量、集中阻尼、集中刚度组成的离散系统,所谓离散系统,是指系统只有有限个自由度。描述离散系统的振动可用常微分方程。 分类4:按激励情况分:①自由振动:系统在初始激励下或原有的激励消失后的振动;②强迫振动:系统在持续的外界激励作用下产生的振动。 分类5:按响应情况分,确定性振动和随机振动。确定性振动分为:①简谐振动:振动的物理量为时间的正弦或余弦函数;②周期振动:振动的物理量为时间的周期函数;③瞬态振动:振动的物理量为时间的非周期函数,通常只在一段时间内存在。 机械或结构产生振动的内在原因:本身具有在振动时储存动能和势能,而且释放动能和势能并能使动能和势能相互转换的能力。 基本元件:惯性元件(储存和释放动能)、弹性元件(储存和释放势能)、阻尼元件(耗散振动能量) 基本元件的基本特征:弹性元件:忽略它的质量和阻尼,在振动过程中储存势能。弹性力与其两端的相对位移成比例,如弹簧:F s=?k?x;扭簧:T s=?k t(θ2?θ1);阻尼元件:阻尼力的大小与阻尼元件两端的相对速度曾比例,方向相反,这种阻尼又称为黏性阻尼。忽略黏性阻尼元件的质量和弹性,则作用力:F d=?c?υ;惯性元件:

几种阻尼比识别的方法

几种参数识别的方法 B .基于多输出时域识别方法 B1 随机衰减 随机衰减方法是一种非常典型的当输入未知识别模态参数方法。由于识别结果,这种方法实际上是一种无参数识别方法,即随机衰减符号差,是对特定的初始条件的自由衰减响应。得到的随机衰减图形可以用来识别系统模态参数。去相关是这一方法的基本理论,一个简单的导数如下: 对于一个单输入单输出的线性系统,任何力输入的系统响应可以这么解释 ??-+?+?=t d f t h t V x t D x t x 0 )()()()0()()0()(τττ (B-1) 其中D(t)是对单位初始位移的响应,V (t )是对单位初始电压的响应,h (t )是脉冲响 应,f (t )是外部输入的力,假设外部输入力f (t )是一个定常的零均值的随机过程,可以证实x (t )也是一个定常的零均值过程,也证明了x (t )的初始条件为0,考虑到系统响应x(t-t i )中的x(t i )要满足以下条件: +-≤≤A t x A i )( (B-2) 由于系统假设是线性的,整个系统的响应包含了3部分: 1. x(t i )的系统响应 2. )(i t x 的系统响应 3.f (t )的系统响应,其中f (t )假设是随机的并且是定常的,即: ??-+-?+-?=-t t i i i i i i d f t h t t V t x t t D t x t t x τττ)()()()()()()( (B-3) 假设X 是x(t-t i )的随机过程,F 是f(t-t i )的随机过程, x (t )的平均值为: [][] τ ττd F E t h A x A x E A x A x E t X E t ??-+≤≤+≤≤=?+-+-0)]([)()0(|)0()0(|)0()]([ (B-4) 由于x (t )是一个平均值为0的定常随机过程,)(i t x 也是一个平均值为0的定常随机系统并且与x (t )是独立的,因此: 0]|)0([)]0([=≤≤=+-A x A x E x E (B-5) 假设 -+-≥≤≤=A A t x A x E A ])(|)0([ (B-6) 且 τττd F E t h t b t ??-=?0 )]([)()( (B-7) X (t )的期望值为: )()()]([t b t D A t x E +?= (B-8) 如果f (t )是零均值、定常、白噪声随机过程,它与x (t )是相互独立的,因此输入的

有关阻尼振动的研究

阻尼振动的探究 摘要: 以弹簧振子的阻尼振动及RLC电路的阻尼振荡为例,探究了阻尼振动。同时,以这两个阻尼振动系统为例分析了阻尼振动衰减时的特点。 关键词: 阻尼振动阻尼系数衰减 R esearch on damped vibration Abstract:: Abstract This article researches into damped vibration by the example of spring oscillator’s damped vibration and the example of RLC’s damped vibration.At the same time,this article researches the points of damped vibration’s attenuation by the two examples. Keyword: damped vibration damping coefficient attenuation 简谐运动又叫做无阻尼自由振动。但实际上,任何的振动系统都是会受到阻力作用的,这种实际振动系统的振动叫做阻尼振动。在阻尼系统中,振动系统要不断地克服阻力做功,

所以它的能量将不断地减少。一定时间后回到平衡位置。弹簧振子在有阻力情况下的振动就是阻尼振动。 分析安置在一个水平光滑表面的弹簧振子。取弹簧处于自然长度时的平衡位置为坐标原点。忽略空气等阻力,则弹簧振子只受到弹簧的弹力作用。即 由牛顿第二定律,可得 此微分方程的通解为 给定初始值,弹簧在t=0时,x=,,则此微分方程的解为 弹簧振子在初始时刻,被拉离坐标原点距离,即弹簧被拉长(而后,弹簧由于弹簧拉力作用而返回原点,很容易就可以想到弹簧将作往复运动。如方程所描述弹簧作简谐振动。如果考虑弹簧振子运动时的阻力,情况将如何呢? 由实验,可知运动物体的速度不太大时,介质对物体的阻力与速度成正比。又阻力总与速度方向相反,所以阻力与速度有如下关系: 为正比例常数。则此时,上面所列弹簧振子的运动方程应为: 考虑此方程,令。可知即为弹簧振子在无阻力振动时的角频率,称为阻尼系数,如此可得: 此微分方程通解为: A,B由弹簧振子的初始值,即t=0时的x,值决定。由上通解无法直观看出弹簧振子的实际运动景象如何。下面以与的大小关系分为三种情况考虑。 时,可将通解化为如下形式: ) 其中 而由弹簧振子的初始值决定。其位移时间图像,大致如下

阻尼比的概念

阻尼就是使自由振动衰减的各种摩擦和其他阻碍作用。 阻尼比在土木、机械、航天等领域是结构动力学的一个重要概念,指阻尼系数与临界阻尼系数之比,表达结构体标准化的阻尼大小。 阻尼比是无单位量纲,表示了结构在受激振后振动的衰减形式。可分为等于1,等于0, 大于1,0~1之间4种,阻尼比=0即不考虑阻尼系统,结构常见的阻尼比都在0~1之间. ζ <1的单自由度系统自由振动下的位移 u(t) = exp(-ζwn t)*A cos (wd t - Φ ), 其中wn 是结构的固有频率,wd = sqrt(1-ζ^2) ,Φ为相位移.Φ和常数A由初始条件决定. 阻尼比的来源及阻尼比影响因素 主要针对土木、机械、航天等领域的阻尼比定义来讲解。阻尼比用于表达结构阻尼的大小,是结构的动力特性之一,是描述结构在振动过程中某种能量耗散的术语,引起结构能量耗散的因素(或称之为影响结构阻尼比的因素)很多,主要有[1](1)材料阻尼、这是能量耗散的主要原因。(2)周围介质对振动的阻尼。(3)节点、支座联接处的阻尼(4)通过支座基础散失一部分能量。 阻尼比的计算 对于小阻尼情况[2]: 1) 阻尼比可以用定义来计算,及ksai=C/C0; 2) ksai=C/(2*m*w) % w为结构圆频率 3) ksai=ita/2 % ita 为材料损耗系数 4) ksai=1/2/Qmax % Qmax 为共振点放大比,无量纲 5) ksai=delta/2/pi % delta是对数衰减率,无量纲 6) ksai=Ed/W/2/pi % 损耗能与机械能之比再除以2pi 阻尼比的取值 对结构基本处于弹性状态的的情况,各国都根据本国的实测数据并参考别国的资料,按结构类型和材料分类给出了共一般分析采用的所谓典型阻尼比的值。综合各国情况,钢结构的阻尼比一般在0.01-0.02之间(虾肝蚁胆:单层钢结构厂房可取0.05),钢筋混凝土结构的阻尼比一般在0.03-0.08之间。以上的典型阻尼比的值即为结构动力学在等效秥滞模态阻尼中,采用的阻尼比的值。该阻尼比即为各阶振型的阻尼比的值。

各种模态分析方法总结及比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机内存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成内置选项。然而随着计算机的发展,内存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

模态参数(频率、阻尼比、振型)作业指导书讲解

17.3 模态参数(频率、振型、阻尼比)作业指导书1 目的 测试桥梁的模态参数,了解桥梁的自振特性。 2 适用范围 适用于桥梁或结构构件的模态参数测试及分析。 3 试验准备 3.1 仪器、设备、材料 3.2 资料 ①、桥梁或结构构件拾振器测点布置图 ②、相关仪器、软件使用说明书 ③、原始记录表格(见附表1~2) ④、仪器、设备、材料清单表确认单(见附表3) 3.3 检查仪器、设备及软件是否正常运行(见附表4) 4 试验流程

4.1 测点布置: 试验前应对桥梁结构进行有限元分析,计算理论的振型图,根据振型图确定测点布置(测点布置的原则和数量要求见5.1)。由于试验用的拾振器可能有限,所以应在桥上选择合适的参考点(参考点的选择要求见5.2),分批搬动其他拾振器到所有测点。 4.2 拾振器安装: 拾振器安装前,应将测点位置清洁除尘。安装时,将拾振器通过橡皮泥牢固粘贴在测点位置,保证拾振器和构件能共同移动,同时传感器的主轴方向应与测点主振方向一致。 4.3 仪器连接: 仪器连接详见《DH5922N动态信号测试分析系统使用说明书》。 4.4 数据采集: 在数据采集之前,应对软件及拾振器各参数进行设置(参数设置要点见5.3)。仪器参数设置及采集软件的操作详见《DHDAS4.1.3基本分析软件说明书》。 为了消除随机因素影响,应对采集的长样本信号进行能量平均。对于悬索桥、斜拉桥等自振频率较低的桥型,为保证频率分辨率和提高信嘈比,采集时间不宜小于20分钟,一般采集时间取20~45分钟,对于小跨径桥梁,采集时间可酌情减小。 4.5 数据处理: 自振频率:可采用频谱分析法、波形分析法或模态分析法得到桥梁结构自振频率。 阻尼比:采用波形分析法、半功率带宽法或模态分析法得到。 振型参数:采用环境激振等方法进行模态参数识别。 数据后期处理及分析的软件操作详见《DHDAS4.1.3基本分析软件说明书》。 4.6模态参数的评定: 1结构的自振最低频率应大于有关标准限值,结构最大振幅应小于相应标准限值。

减振器阻尼对汽车大冲击性能的影响分析

减振器阻尼对汽车大冲击性能的影响分析 作者:长安汽车股份有限公司董益亮彭旭阳 摘要:本文简要介绍了汽车大冲击性能分析评价指标和分析评价方法。利用ADAMS软件建立了某轿车四通道平顺性分析模型,分析了减震器阻尼在不同车速下对大冲击性能的影响,提出了优化方案。实车验证结果表明,该方法是一种有效的汽车大冲击性能分析评价方法。 关键字:冲击,乘坐舒适性,评价 1 前言 汽车在路面上行驶时,除了随机路面外,偶尔也会遇到冲击路面,如减速带、路面凸块和凹坑、铁路交叉口、路面接缝等,这类路面统称为冲击路面,其特点是冲击较大,冲击的产生间隔足够长的距离,这样在下次冲击来之前,车辆的振动已充分衰减。来自路面的剧烈冲击,通过轮胎、悬架、车身和座椅传给人体,同时会引起悬架和车身的跳动。 大冲击舒适性是用户评价汽车乘坐舒适性的重要内容,也是汽车厂家在汽车开发过程中需要控制的重要指标之一。在汽车开发的底盘调校阶段,一般通过减振器阻、弹簧和缓冲块来优化汽车的大冲击乘坐舒适性,其中减振器阻尼力的优化最为重要和复杂。 2 汽车冲击性能分析评价方法 2.1 冲击乘坐舒适性评价指标 当汽车遇到路面冲击时,会导致以下汽车振动响应: 1) 主振动(Primary Ride):车体的刚体振动响应,如俯仰和侧倾,乘员有时会感受到悬架限位块的撞击。 2) 冲击(Impact):乘员通过座椅和地板感受到的来自路面的较大冲击,以及车体上下运动速度迅速改变。 本文用地板、座椅等所关心位置的最大(绝对值)的加速度,以及车身的最大振动俯仰角和振动衰减的快慢作为大冲击振动下的客观评价指标。

2.2 大冲击仿真分析方法 目前,大冲击CAE分析方法主要有两类,一是基于平顺性轮胎模型的整车道路仿真分析方法,二是基于四通道的整车台架仿真分析方法。 第一种方法必须使用平顺性轮胎模型,常用的平顺性轮胎模型主要有ftire、swift 轮胎模型等,并配合使用冲击路面模型,冲击路面模型主要有三角形凸块路面、矩形凸块路面、锯齿形凸块路面等[1],见图1。 图1 基于平顺性轮胎模型的整车道路仿真分析 第二种方法用四通道实验台模拟路面垂向冲击激励[4],可以使用普通的操稳轮胎模型,如Pacjka 轮胎模型,见图2。 图2 基于四通道的整车台架仿真分析 第一种方法能够同时仿真分析大冲击引起的纵向和垂向振动响应,与比较接近实际情况,仿真结果较精确,但国内对平顺性轮胎模型研究较少,而且没有建立平顺性轮胎模型的试验条件,限制了其推广应用。第二种方法只能仿真路面冲击引起的垂向振动响应,与实际情况有差距,但可避开使用平顺性轮胎模型,另外,操稳轮胎模型国内研究较多,也有建立操稳轮胎模型的试验条件。 由于减振器阻尼力主要影响汽车的垂向振动响应,本文使用基于四通道的仿真分析方法。

建筑结构阻尼比

建筑结构阻尼比 一、阻尼比用于表达结构阻尼的大小,是结构的动力特性之一,是描述结构在振动过程中某种能量耗散的术语,引起结构能量耗散的因素(或称之为影响结构阻尼比的因素)很多,主要有:(1)材料阻尼、这是能量耗散的主要原因。 (2)周围介质对振动的阻尼。 (3)节点、支座联接处的阻尼 (4)通过支座基础散失一部分能量。 结构类型和材料分类给出了共一般分析采用的所谓典型阻尼比的值。综合各国情况,钢结构的阻尼比一般在0.01-0.02之间(单层钢结构厂房可取0.05),钢筋混凝土结构的阻尼比一般在0.03-0.08之间。以上的典型阻尼比的值即为结构动力学在等效秥滞模态阻尼中,采用的阻尼比的值。在等效秥滞模态阻尼中,混凝土结构刚性较大,而且破坏过程(钢筋屈服和混凝土破碎)中也能够吸收大量能量;钢结构较为柔软主要通过弹塑性变形吸收能量,较混凝土而言脆断的可能性低得多,变形量也较大,一般认为10层以下的钢结构建筑物基本不会发生倒塌事故。综上可以看出,钢结构体系变形大,破环程度小是其优势,钢结构抗震方面的优势更多是从材料较轻,承载力高,地震过程中弹塑性变形较大,基本不会发生断裂,构造措施(如柱间支撑)等方面表现出来的。 二、现行设计规范关于结构阻尼比的取值内容: GB50011-2010建筑抗震设计规范规定: 第5.1.5条:建筑结构地震影响系数曲线(图5.1.5)的阻尼调整和形状参数应符合下列要求: 1 除有专门规定外,建筑结构的阻尼比应取0.05,……。 其中专门规定有: 8 多层和高层钢结构房屋中8.2 计算要点中第8.2.2条钢结构抗震计算的阻尼比宜符合下列规定: 1 多遇地震下的计算,高度不大于50m时可取0.04;高度大于50m且小于200m时,可取0.03;高度不小于200m时,宜取0.02。 2 当偏心支撑框架部分承担的地震倾覆力矩大于结构总地震倾覆力矩的50%时,其阻尼比可比本条1款相应增加0.005。 3 在罕遇地震下的弹塑性分析,阻尼比可取0.05。 9 单层工业厂房中9.2 单层钢结构厂房中第9.2.5条····单层厂房的阻尼比,可依据屋盖和围护墙的类型,取0.045~0.05。 其中条文说明:9.2.5 通常设计时,单层钢结构厂房的阻尼比与混凝土柱厂房相同。本次修订,考虑到轻型围护的单层钢结构厂房,在弹性状态工作的阻尼比较小,根据单层、多层到高层钢结构房屋的阻尼比由大到小变化的规律,建议阻尼比按屋盖和围护墙的类型区别对待。 10 空旷房屋和大跨屋盖建筑中第10.2.8 屋盖钢结构和下部支承结构协同分析时,阻尼比应符合下列规定: 1 当下部支承结构为钢结构或屋盖直接支承在地面时,阻尼比可取0.02。 2 当下部支承结构为混凝土结构时,阻尼比可取0.025~0.035。 其中条文说明:本条规定了整体、协同计算时的阻尼比取值。 屋盖钢结构和下部混凝土支承结构的阻尼比不伺,协同分析时阻尼比取值方面的研究较少。

浅谈建筑结构的阻尼与阻尼比

浅谈建筑结构的阻尼与阻尼比 浅谈建筑结构的阻尼与阻尼比 摘要:阻尼是建筑结构进行动力分析一个重要的参数。文章首先简要介绍阻尼的实质、表达方法及其对反应谱的影响,重点对空间结构弹性分析时的阻尼比取值进行讨论,并给出了阻尼比的建议值,可供设计分析参考。 关键词:阻尼;阻尼比;空间结构;反应谱 1 阻尼 1.1 阻尼的实质 阻尼是反映结构体系振动过程中能量耗散的特征参数。实际结构的振动耗能是多方面的,具体形式相当复杂,且耗能不具有构件尺寸、结构质量、刚度等有明确的、直接的测量手段和相应的分析方法,使得阻尼问题难以采用精细的理论分析方法。 阻尼的表达方法主要分为两大类: (1)粘滞阻尼,即假定阻尼力与速度成正比,无论对简谐振动还是非简谐振动得到的振动方程均是线性方程。 (2)滞回阻尼,即假定应力应变间存在一相位差,从而振动一周有耗能发生,其特点是可以得到不随频率而改变的振型阻尼比。 1.2 阻尼的表达方法 传统上,总是将系统假定为比例阻尼来处理,应用最为广泛有:(1)Rayleigh 阻尼C = αM + βK;(2)Clough 广义阻尼C =ΣCb = MΣab ( M-1 K)b,(-∞

钢结构抗震计算-阻尼比

阻尼比 阻尼就是使自由振动衰减的各种摩擦和其他阻碍作用。在土木、机械、航天等领域是结构动力学的一个重要概念,指阻尼系数与临界阻尼系数之比,表达结构体标准化的阻尼大小。 主要概念 阻尼比是无单位量纲,表示了结构在受激振后振动的衰减形式。可分为等于1,等于0, 大于1,0~1之间4种,阻尼比=0即不考虑阻尼系统,结构常见的阻尼比都在0~1之间。 ζ<1的单自由度系统自由振动下的位移u(t) = exp(-ζ wn t)*A cos (wd t - Φ ), 其中wn 是结构的固有频率,wd = wn*sqrt(1-ζ^2) ,Φ为相位移.Φ和常数A 由初始条件决定。 影响因素 主要针对土木、机械、航天等领域的阻尼比定义来讲解。阻尼比用于表达结构阻尼的大小,是结构的动力特性之一,是描述结构在振动过程中某种能量耗散的术语,引起结构能量耗散的因素(或称之为影响结构阻尼比的因素)很多,主要有(1)材料阻尼、这是能量耗散的主要原因。(2)周围介质对振动的阻尼。(3)节点、支座联接处的阻尼(4)通过支座基础散失一部分能量。(5)结构的工艺性对振动的阻尼。 计算方法 对于小阻尼情况[1]: 1) 阻尼比可以用定义来计算,及ζ=C/C0; 2) ζ=C/(2*m*w) % w为结构圆频率 3) ζ=ita/2 % ita 为材料损耗系数 4) ζ=1/2/Qmax % Qmax 为共振点放大比,无量纲 5) ζ=delta/2/pi % delta是对数衰减率,无量纲 6) ζ=Ed/W/2/pi % 损耗能与机械能之比再除以4pi 取值方式 对结构基本处于弹性状态的的情况,各国都根据本国的实测数据并参考别国的资料,按结构类型和材料分类给出了供一般分析采用的所谓典型阻尼比的值。《建筑抗震设计规范》GB50011-2010第8.2.2条规定,钢结构抗震计算的阻尼比宜符合下列规定:(1)多遇地震下的计算,高度不大于50m是可取0.04,高度大于50m且小于200m时可取0.03,高度不小于200m时宜取0.02.(3)罕遇地震下的弹塑性分析,阻尼比可取0.05。 钢筋混凝土结构的阻尼比一般在0.03-0.08之间,对于钢-混凝土结构则根据钢和混凝土对结构整体刚度的贡献率取为0.025-0.035。以上的典型阻尼比的值即为结构动力学在等效秥滞模态阻尼中,采用的阻尼比的值。该阻尼比即为各阶

阻尼振动

阻尼振动是否具有“周期性”和“等时性” 简谐运动在不考虑摩擦和其他阻力等因素的影响时,振动过程中系统的机械能守恒,所以不管是单摆还是弹簧振子在振动过程中振幅始终保持不变,这种振动称为无阻尼振动。然而,实际的振动总要受到阻力的影响,由于要克服阻力做功,振动系统的机械能不断减少。同时振动系统与周围介质相互作用,振动向外传播形成波,随着波的传播,系统的机械能不断减少,因此振幅也逐渐减小。这种振幅逐渐减小的振动叫做阻尼振动,阻尼振动的图象如 图1所示。 学生学完这节内容后,存在两方面疑问:一是阻尼振动是否具有“周期性”,二是阻尼振动是否具有“等时性”(振子连续两次通过平衡位置的时间间隔相同)。这两个问题教材没有涉及,在图象中也不能反映出来,但是课后有些学生会提出,有些资料中也会出现相 关的问题。 一、定性分析 要想知道阻尼振动是否具有“周期性”,首先要知道什么是机械振动的周期。人教版高二《物理》教材(必修加选修)中对周期的定义是这样的:物体完成一次全振动所需的时间,叫做振动的周期。在周期的定义中存在全振动这个概念,全振动是指做机械振动的物体从某个点出发,等到下次回到该点时的运动状态和开始振动时的运动状态完全相同,且所用时间最短。所以能重复原来的运动状态(位移、速度、加速度等)的机械振动才是全振动,非等幅的阻尼振动不是全振动,所以它是没有周期的。 关于阻尼振动是否具有“等时性”,有两种不同的说法。第一种说法认为具有“等时性”,理由是阻尼振动的振幅虽然在不断减小,但可以看成是由很多个振幅不断减小的简谐运动的叠加,由于简谐运动具有等时性,它的周期与振幅无关,所以阻尼振动和简谐运动的相位是一致的,节奏也是相同的,所以具有“等时性”。第二种说法认为不具有“等时性”,理由是物体做阻尼振动时,由于机械能的损失。振子前后两次通过同一点时,后一次的速度肯定比前一次的小。这样,从平衡位置到达最大位移处的平均速度总比返回时的平均速度大,所以回来就变慢了,对应的时间也就长了。按这种推理,阻尼振动的振动节奏会变得越来越慢,最后停止下来,周期变为无穷大,所以不具有“等时性”。 二、定量分析 以上是对阻尼振动所做的定性分析,接下来我们做定量分析。

阻尼振动概念及形式

4.阻尼振动的概念 教学目标 1 知道什么叫自由振动,理解固有频率的含义。 2 知道什么叫阻尼振动,能从能量的角度分析阻尼振动产生的原因。 3 知道什么叫驱动力,理解它是按效果命名的力。 4 知道什么叫受迫振动。理解系统做受迫振动的频率等于驱动力的频率,而与系统的固有频率无关。 5 知道什么叫共振,理解共振发生的条件,了解常见的共振应用和防止的实例。 教学重点:1受迫振动的频率等于驱动力的频率,而与系统的固有频率无关。 2 什么是共振及共振的产生条件。 教学难点: 1 对受迫振动的频率等于驱动力的频率,而与系统固有频率无关的理解。 2 当f驱=f固时,物体做受迫振动的振幅最大,即对共振发生条件的理解。 教学内容:复习:1.前几节已经学过哪些类型的简谐运动? 2. 简谐运动的能量与什么因素有关?简谐运动中什么形式的能量之间发生相互转化?机械能是否守恒? 3.简谐运动是等幅振动吗? 教师总结:之前学习的简谐运动就是自由振动,即无阻尼振动 新课:一自由振动 1.定义:系统不受外力作用,也不受任何阻力,只在自身回复力作用下的振动,称为自由振动,又叫做无阻尼振动。 2.自由振动的周期和频率叫系统的固有周期和固有频率,由系统本身的特征决定,与振幅无关。弹簧振子和单摆的周期? 二、阻尼振动 1.定义:系统在振动过程中受到阻力的作用,振动逐渐消逝,振动能量逐步转化为其他能量,这种振动叫做阻尼振动。 2.特点:①振幅逐渐减小,又叫减幅振动 ②周期为固有周期不变(摆长始终不变),与振动有无阻尼 及阻尼大小无关。 3.位移-时间图像(振动图象):在一段不太长时间内振幅没 有明显减小,可近似为简谐运动。 思考:①钟摆在摆动过程中不可避免的受到空气等阻力作 用,但它的振幅始终保持不变,怎样获得持续振动?

相关主题
文本预览
相关文档 最新文档