当前位置:文档之家› 函数的对称性82629

函数的对称性82629

函数的对称性82629
函数的对称性82629

数的对称性

知识梳理 一、对称性的概念及常见函数的对称性

1、对称性的概念

①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。

②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。

2、常见函数的对称性(所有函数自变量可取有意义的所有值)

①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数;

⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d

+=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c

-。 二、抽象函数的对称性

【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】

1、函数)(x f y =图象本身的对称性(自对称问题)

(1)轴对称

①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -=

②)()(x b f x a f -=+ ?)(x f y =的图象关于直线2

2)()(b a x b x a x +=-++=对称. 特别地,函数)(x f y =的图像关于y 轴对称的充要条件是()()f x f x =-.

(2)中心对称

①)(x f y =的图象关于点),(b a 对称?b x a f x a f 2)()(=-++ ?b x a f x f 2)2()(=-+

?b x a f x f 2)2()(=++-。

②c x b f x a f 2)()(=-++ ?)(x f y =的图象关于点),2

(c b a +对称. 特别地,函数)(x f y =的图像关于原点(0,0)对称的充要条件是()()0f x f x +-=.

(3)对称性与周期性之间的联系

①若函数()f x 既关于直线x a =对称,又关于直线x b =对称()a b ≠,则函数()f x 关于无数条直线对称,相邻对称轴的距离为b a -;且函数()f x 为周期函数,周期2T b a =-;

特别地:若)(x f y =是偶函数,其图像又关于直线x a =对称,则()f x 是周期为2a 的周期函数;

②若函数()f x 既关于点(,0)a 对称,又关于点(,0)b 对称()a b ≠,则函数()f x 关于无数个点对称,相邻对称中心的距离为b a -;且函数()f x 为周期函数,周期2T b a =-;

③若函数()f x 既关于直线x a =对称,又关于点(,0)b 对称()a b ≠,则函数()f x 关于无数个点和直线对称,相邻对称轴和中心的距离为b a -,相邻对称轴或中心的距离为2b a -;且函数()f x 为周期函数,周期4T b a =-。

特别地:若)(x f y =是奇函数,其图像又关于直线x a =对称,则()f x 是周期为a 4的周期函数。

典例精讲

关于直线对称

例1. (★★)已知二次函数

)0()(2≠+=a bx ax x f 满足条件)3()5(-=-x f x f 且方程x x f =)(有等根,则)

(x f = .

例2.(★★)已知函数)(x f 对一切实数x 满足条件)3()1(x f x f +=-,已知2≥x 时,x x x f -=2)(, 求2

巩固练习(自对称)

1.(★★)已知函数()f x 定义域为R ,且对于任意实数x 满足(2)(6)f x f x -=-,当02x ≤≤时,

2()235

f x x x x =++++,则(1)(3)f f = . 2. (★★)设()f x 是定义在R 上以6为周期的函数,()f x 在(0,3)内单调递减,

且()y f x =的图像关于直线3x =对称,则下面正确的结论是 ( )

3. (★★)设函数)(x f 是定义在R 上的偶函数,它的图象关于直线2x =对称,已知[]2,2-∈x 时,1)(2+-=x x f ,求[]2,6--∈x 时,)(x f 的解析式.

例3. (★★)已知函数

x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .

()22()x f x e x R =∈ B . )0(ln 2ln )2(>?=x x x f C .()22()x f x e x R =∈ D .()2ln ln 2(0)f x x x =+>

例4. (★★)已知函数

2()3f x x x =++,函数()g x 与()f x 的图像关于轴03x =对称,求函数()g x 在区间[]34,上的最值.

巩固练习

1.(★★)若函数)(x g y =图像与函数

)1()1(2≤-=x x y 的图像关于直线x y =对称,则(4)g =_; 2.在同一直角坐标系中,函数()y g x =的图像与x y e =的图像关于直线y x =对称,而函数()y f x =的图像与()y g x =的图像关于y 轴对称,若()1f a =-,则a 的值是( )

A .e -;

B .1e

-; C .1e ; D .e . 3.若函数)(x f 的图像与对数函数

x y 4log =的图像关于直线0=+y x 对称,则)(x f 的解析式为 4.(★★)函数()101x y a a =+<<的反函数的图象大致是

(A ) (B ) (C ) (D )

关于点对称

例5.(★★)已知函数()y f x =

满足:(2)()4f x f x -+=,则函数()y f x =的图象( ) A .关于点(1,1)M 对称 B .关于点(0,1)M 对称

C .关于点(1,0)M 对称

D .关于点(1,2)M 对称

例6.(★★)设1>a ,函数

)(x f 的图像与函数2|2|24--?--=x x a a y 的图像关于点)2,1(A 对称.求函数)(x f 的

解析式. 练习

1.(★★★)()f x 是定义在R 上的以3为周期的奇函数,且(2)0f =,则方程()0f x =在区间(0,6)内解的个数的

最小值是( )

A .7

B .3

C .4

D .5

2. (★★)已知函数f(x)=

a x a x -+-1的反函数的图象的对称中心是 (1,2

1),则函数g(x)=)2(log 2x x a -的单调递增区间是 ; 函数对称性与周期性的联系 例7.(★★)若函数)(x f 在R 上是奇函数,且在()01,-上是增函数,且

)()2(x f x f -=+. ①求)(x f 的周期;

②证明)(x f 的图象关于点(2,0)k 中心对称;关于直线21x k =+轴对称, ()k Z ∈;

③讨论)(x f 在(1,2)上的单调性;

练习

1.(★★)设)(x f 是定义在R 上的奇函数,)(x f y =的图象关于直线21=x ,则=++++)5()4()3()2()1(f f f f f .

2.(★★)已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(6)f 的值为( )

(A)-1 (B) 0 (C) 1 (D)2

3.(★★)设)(x f 是定义在R 上的偶函数,且)1()1(x f x f -=+,当01≤≤-x 时,x x f 21)(-=,则=)6.8(f ___________

练习

1. 函数(1)y f x =-与函数()1y f x =-的图象关于关于__________对称。

2. 设函数()y f x =的定义域为R ,且满足

()(1)1f x f x -=-,则()y f x =的图象关于__________对称。 3. 设()y f x =的定义域为R ,且对任意x R ∈ ,有(12)(2)f x f x -=,则(2)y f x =图象关于__________对称,()y f x =关于__________对称。

4. 已知函数()y f x =对一切实数x 满足()(4)2f x f x +=-,且方程()0f x =有5个实根,则这5个实根之和为( ) A 、5 B 、10 C 、15 D 、18

5. 函数()y f x =定义域为R ,且恒满足()(2)2f x f x +=-和()(6)6f x f x +=-,当

26x ≤≤时,1()22

f x x =-,求()f x 解析式。

总结

现在,总结一下本节课的收获吧? 函数图像的对称性

1、(1) 一个图关于点对称:

(Ⅰ)奇函数关于原点对称

(Ⅱ)

c x b f x a f 2)()(=-++ ?)(x f y =的图象关于点(,)2a b c +对称 (2) 一个图关于直线对称:

(Ⅰ)偶函数关于y 轴对称

(Ⅱ) 22()()(0)f a x f b x a b +=-+≠?关于直线2a b x +=

对称 (3) 两个图关于点对称 (Ⅰ)()y f x =关于原点对称的函数:,x x y y →-→-,

即 ()y f x -=- (Ⅱ)()y f x =关于(,)a b 对称的函数:2,2x a x y b y

→-→- 即2(2)b y f a x -=- (4)两个图关于直线对称:

函数()y f a x =+与()y f b x =-图象关于直线()()0a x b x +--=对称即直线2b a x -=对称。

函数对称性与周期性关系

函数 对称性与周期性关系 【知识梳理】 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。 如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即 点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数)(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,

函数的对称性与周期性

函数的对称性与周期性 一、相关结论 1.关于x 轴、y 轴、原点、x y =对称 2.周期性(内同) ① 若)()(x f T x f =+(0≠T ),则)(x f 为周期函数,T 为一个周期。 ② 若)()(b x f a x f +=+(b a ≠),则)(x f 为周期函数,||a b -为一个周期。 ③ 若)()(x f a x f -=+(0≠a ),则)(x f 为周期函数,a 2为一个周期。 ④ 若) (1 )(x f a x f =+(0≠a ),则)(x f 为周期函数,a 2为一个周期。 3.自对称性(内反) ①若)()(x b f x a f -=+,则)(x f 的图像关于直线2 b a x += 对称;特别地,若)()(x a f x a f -=+,则)(x f 的图像关于直线a x =对称;0=a 为偶函数。 ②若)()(x b f x a f --=+,则)(x f 的图像关于点)0,2 ( b a +对称;特别地,若)()(x a f x a f --=+,则)(x f 的图像关于点)0,(a 对称;0=a 为奇函数。 ③若c x b f x a f =-++)()(,则)(x f 的图像关于点)2 ,2(c b a +对称。 4.互对称性 ①函数)(x a f y +=与函数)(x b f y -=的图像关于直线2a b x -=对称; ②函数)(x a f y +=与函数)(x b f y --=的图像关于点)0,2 (a b -对称; ③函数)(x a f y +=与函数)(x a f y -=的图像关于直线0=x 对称。 5. 对称性与周期性的关系 ①若)(x f 的图像有两条对称轴a x =和b x =(b a ≠),则)(x f 为周期函数, ||2a b -为一个周期。 ②若)(x f 的图像有两个对称中心)0,(a 和)0,(b (b a ≠),则)(x f 为周期函数, ||2a b -为一个周期。 若)(x f 的图像有一条对称轴a x =和一个对称中心)0,(b (b a ≠),则)(x f 为周期函 数,||4a b -为一个周期。

函数的周期性与对称性

第5炼 函数的对称性与周期性 一、基础知识 (一)函数的对称性 1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称 2、轴对称的等价描述: (1)()()f a x f a x -=+?()f x 关于x a =轴对称(当0a =时,恰好就是偶函数) (2)()()()f a x f b x f x -=+?关于2 a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2 a b x +=为所给对称轴即可。例如:()f x 关于1x =轴对称()()2f x f x ?=-,或得到()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便 (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。 ① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分: 若()f x 是偶函数,则()()f x a f x a +=-+????:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+???? ② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。

二次函数对称性的专题复习

二次函数图象对称性的应用 一、几个重要结论: 1、抛物线的对称轴是直线__________。 2、对于抛物线上两个不同点P1(),P2(),若有,则P1,P2两点是关于_________对称的点,且这时抛物线的对称轴是直线_____________;反之亦然。 3、若抛物线与轴的两个交点是A(,0),B(,0),则抛物线的对称轴是__________(此结论是第2条性质的特例,但在实际解题中经常用到)。 4、若已知抛物线与轴相交的其中一个交点是A(,0),且其对称轴是,则另一个交点B 的坐标可以用____表示出来(注:应由A、B两点处在对称轴的左右情况而定,在应用时要把图画出)。 5、若抛物线与轴的两个交点是B(,0),C(,0),其顶点是点A,则?ABC是____三角形,且?ABC的外接圆与内切圆的圆心都在抛物线的_______上。 二、在解题中的应用: 例1已知二次函数的图象经过A(-1,0)、B(3,0),且函数有最小值-8,试求二次函数的解析式。 例2已知抛物线,设,是抛物线与轴两个交点的横坐标,且满足 . (1)求抛物线的解析式; (2)设点P(,),Q(,)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,求的值。 例3已知抛物线经过点A(-2,7)、B(6,7)、C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是。 例4已知抛物线的顶点A在直线上。 (1)求抛物线顶点的坐标; (2)抛物线与轴交于B、C两点,求B、C两点的坐标; (3)求?ABC的外接圆的面积。

y O x -1 -2 1 2 - 3 3 -1 1 2 -2 二次函数专题训练——对称性与增减性 一、选择 1、若二次函数 ,当x 取 , ( ≠ )时,函数值相等,则 当x 取+时,函数值为( ) (A )a+c (B )a-c (C )-c (D )c 2、抛物线2)1(2++=x a y 的一部分如图所示,该抛物线在y 轴右 侧部分与x 轴交点的坐标是 (A )( 2 1 ,0) (B )(1,0) (C )(2,0) (D )(3,0) 3、已知抛物线2 (1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB 的长度为( ) A.1 B.2 C.3 D.4 4、抛物线c bx x y ++-=2 的部分图象如图所示,若0>y ,则的取值范围是( ) A.14<<-x B. 13<<-x C. 4-x D.3-x 5、函数y =x 2-x +m (m 为常数)的图象如图,如果x =a 时,y <0; 那么x =a -1时,函数值( ) A .y <0 B .0<y <m C .y >m D .y =m 6、抛物线y=ax 2 +2ax+a 2 +2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是( ) A .(0.5,0) B .(1,0) C .(2,0) D .(3,0) 7、老师出示了小黑板上的题后(如图),小华说:过点(3,0); 小彬 说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截 得的线段长为2.你认为四人的说法中,正确的有( ) A .1个 B .2个 C .3个 D .4个 8、若二次函数2 y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x + 时,函数值为( ) A.a c + B.a c - C.c - D.c 9、二次函数 c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ) A .x =4 B. x =3 C. x =-5 D. x =-1。 10、已知关于x 的方程32 =++c bx ax 的一个根为1x =2,且二次函数c bx ax y ++=2 的对称轴直线是x =2,则抛物线的顶点坐标是( ) A .(2,-3 ) B .(2,1) C .(2,3) D .(3,2) 11、已知函数215 322 y x x =- --,设自变量的值分别为x 1,x 2,x 3,且-3< x 1< x 2

函数对称性、周期性和奇偶性的规律总结大全 .分解

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

函数的对称性应用

函数的对称性应用(一) ──含绝对值函数的图象 内蒙古赤峰市翁牛特旗乌丹一中熊明军 在学习函数时,若将函数的自变量或应变量带上绝对值“”,再研究其性质就不仅仅要从函数的角度来考虑,还得结合绝对值的意义来共同探讨。 图象是刻画变量之间关系的一个重要途径。函数图象是函数的一种表示形式,是形象直观地研究函数性质的常用方法,是数形结合的基础和依据。本文针对含绝对值函数的性质进行分析,然后利用对称性作出函数图象,并借助图象来展示绝对值对函数性质特征的影响。 一、含绝对值的函数常见情况的分类: 已知函数,叫做函数的自变量;叫做函数的应变量(函数值)。 ①对自变量取绝对值:;②对应变量取绝对值:; ③对全都取绝对值:;④对整个函数取绝对值:; ⑤对都取绝对值:;⑥部分自变量取绝对值:。 二、分析不同情况含绝对值函数的性质特点及图象作法: ①对自变量取绝对值: 【特征分析:】 已知函数,设是函数图象上任意一点,则该点与点关于 轴对称。因为点与都在函数上,所以其函数图象关于轴对称。 【作图步骤:】 (1)作出函数的图象; (2)保留时函数的图象; (3)当时,利用对称性作出(2)中图象关于轴对称后的图象。 【作图展示:】作函数的图象

②对应变量取绝对值:; 【特征分析:】 已知函数,设是函数图象上任意一点,则该点与点关于 轴对称。因为点与都在函数上,所以其函数图象关于轴对称。 【作图步骤:】 (1)作出函数的图象; (2)保留时函数的图象; (3)当时,利用对称性作出(2)中图象关于轴对称后的图象。 【作图展示:】作函数的图象 ③对全都取绝对值:; 【特征分析:】 已知函数,设是函数图象上任意一点,它与点关于轴对称、与点关于轴对称且与点关于原点对称。因为点、、 与都在函数上,所以函数图象关于轴、轴及原点对称。 【作图步骤:】 (1)作出函数的图象; (2)保留(第一象限)时函数的图象; (3)利用对称性作出(2)中图象关于轴、轴及原点对称后的图象。

(完整版)常见函数对称性和周期性

(一)函数)(x f y =图象本身的对称性(自身对称) 若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。 推论1:)()(x a f x a f -=+ ?)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称 推论1、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称 2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数 3、函数)(x f y =与()y f x =-图象关于X 轴对称 4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

高中的函数对称性的总结

高中函数对称性总结 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。所以这里我对高中阶段所涉及的函数对称性知识做一个粗略的总结。 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图

函数的对称性与周期性例题、习题(供参考)

函数的对称性与周期性 【知识梳理】 1. 周期的概念:设函数(),y f x x D =∈,如果存在非零常数T ,使得对任意x D ∈都有 ,则函数()y f x =为周期函数,T 为()y f x =的一个周期; 2. 周期函数的其它形式 ()()f x a f x b +=+? ;()()f x a f x +=-? ;()()1f x a f x +=? ; ()()1f x a f x +=-? ;)(1)(1)(x f x f a x f +-=+? ,)(1)(1)(x f x f a x f -+=+? )()()2(x f a x f a x f -+=+? 1 )(1)(+-=+x f a x f ? , 3. 函数图像的对称性 1).若()()f x f x =-,则()y f x =的图像关于直线 对称; 2).若()()0f x f x +-=,则()y f x =的图像关于点 对称; 3)若()()f a x f a x +=-,则()y f x =的图像关于直线 对称; 4)若()()2f x f a x =-,则()y f x =的图像关于直线 对称; 5)若()()2f a x f a x b ++-=,则()y f x =的图像关于点 对称; 6)若()()22f x f a x b +-=,则()y f x =的图像关于点 对称; 4. 常见函数的对称性 1)函数()()0ax b f x c cx d +=≠+的图像关于点 对称; 2)函数()()0f x ax b a =-≠的图像关于直线 对称; 3)函数()()20f x ax bx c a =++≠的图像关于直线 对称; 【例题选讲】 题型一 根据解析式判断函数图像的对称性 1. 函数()2331 x f x x +=-的图像关于 对称; 2. 函数()f x 的定义域为R ,且()()1f x f x -=,则()f x 的图像关于 对称; 3. 函数()23f x x =-的图像关于 对称; 4. 函数()3sin 23f x x π??=- ?? ?的图像关于直线 对称;关于点 对称; 题型二 平移变换后,函数图像的对称性 1.已知函数()y f x =是偶函数,()2f x -在[]0,2递减,则( ) 2.已知()2y f x =-是偶函数,则()y f x =的图像关于 对称; 3.已知()y f x =是奇函数,则()12y f x =+-的图像关于 对称; 题型三 函数图像的对称性求函数解析式

(完整版)函数的周期性与对称性总结

一:有关周期性的讨论 在已知条件()()f a x f b x +=-或 ()()f x a f x b +=-中, (1) 等式两端的两自变量部分相加得常数,如()()a x b x a b ++-=+,说明f x ()的图像具有对称性,其对称轴为2 b a x +=。 (2)等式两端的两自变量部分相减得常数,如()()x a x b a b +--=+,说明 f (x )的图像具有周期性,其周期T=a +b 。 设a 为非零常数,若对于)(x f 定义域内的任意x 恒有下列条件之一成立 周期性规律 对称性规律 (1))()(a x f a x f +=- a T 2=? (1))()(x a f x a f -=+ a x =? (2))()(a x f x f += a T =? (2))()(x b f x a f -=+ 2 b a x += ? (3))()(x f a x f -=+ a T 2=? (3) )()(x b f x a f +=- 2b a x +=? (4))(1)(x f a x f =+ a T 2=? (4) )()(x b f x a f --=+ 中心点)0,2 (b a +? (5))(1)(x f a x f - =+ a T 2=? (5) )()(x a f x a f --=+ 为对称中心点)0,(a ? (6)1 )(1)()(-+=+x f x f a x f a T 2=? (7) 1()()1() f x f x a f x -+=+ a T 2=? (8) 1()()1()f x f x a f x -+=- + a T 4=? (9) ) (1)(1)(x f x f a x f -+=+ a T 4=? (10) )()()(a x f a x f x f ++-=, 0>a a T 6=?

函数的周期性与对称性

函数的周期性与对称性 1、函数的周期性 若a 是非零常数,若对于函数y =f(x)定义域内的任一变量x 点有下列条件之一成立,则函数y =f(x)是周期函数,且2|a|是它的一个周期。 ①f(x+a)=f(x -a) ②f(x+a)=-f(x) ③f(x+a)=1/f(x) ④f(x+a)=-1/f(x) 2、函数的对称性与周期性 性质5 若函数y =f(x)同时关于直线x =a 与x =b 轴对称,则函数f(x)必为周期函数,且T =2|a -b| 性质6、若函数y =f(x)同时关于点(a ,0)与点(b ,0)中心对称,则函数f(x)必为周期函数,且T =2|a -b| 性质7、若函数y =f(x)既关于点(a ,0)中心对称,又关于直线x =b 轴对称,则函数f(x)必为周期函数,且T =4|a -b| 3.函数)(x f y =图象本身的对称性(自身对称) 若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。 1、)()(x b f x a f -=+ ?)(x f y =图象关于直线2 2)()(b a x b x a x += -++= 对称 推论1:)()(x a f x a f -=+ ?)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称 2、c x b f x a f 2)()(=-++ ?)(x f y =的图象关于点),2 ( c b a +对称 推论1、 b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称 例题分析: 1.设)(x f 是),(+∞-∞上的奇函数,)()2(x f x f -=+,当10≤≤x 时,x x f =)(,则 )5.47(f 等于 ( ) (A )0.5 (B )5.0- (C )1.5 (D )5.1- 2、(山东)已知定义在R 上的奇函数)(x f 满足(2)()f x f x +=-,则(6)f 的值为( ) A .-1 B .0 C .1 D .2 3.设)(x f 是定义在R 上的奇函数,(1)2,(1)(6),f f x f x =+=+求(10).f 4.函数)(x f 对于任意实数x 满足条件1 (2)() f x f x += ,若(1)5f =-,则[(5)]f f =___

函数的周期性和对称性(解析版)

专题二:函数的周期性和对称性 【高考地位】 函数的周期性和对称性是函数的两个基本性质。在高中数学中,研究一个函数,首看定义域、值域,然后就要研究对称性(中心对称、轴对称),并且在高考中也经常考查函数的对称性和周期性,以及它们之间的联系。因此,我们应该掌握一些简单常见的几类函数的周期性与对称性的基本方法。 【方法点评】 一、函数的周期性求法 使用情景:几类特殊函数类型 解题模板:第一步 合理利用已知函数关系并进行适当地变形; 第二步 准确求出函数的周期性; 第三步 运用函数的周期性求解实际问题. 例1 (1) 函数)(x f 对于任意实数x 满足条件) (1 )2(x f x f = +,若5)1(-=f ,则=))5((f f ( ) A .5- B .5 C .51 D .5 1- 【答案】D 考点:函数的周期性. (2) 已知()x f 在R 上是奇函数,且满足()()x f x f -=+5,当()5,0∈x 时,()x x x f -=2 ,则()=2016f ( ) A 、-12 B 、-16 C 、-20 D 、0 【答案】A 试题分析:因为()()5f x f x +=-,所以()()()105f x f x f x +=-+=,()f x 的周期为10,因此 ()()()()20164416412f f f =-=-=--=-,故选A . 考点:1、函数的奇偶性;2、函数的解析式及单调性. 【点评】(1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.(2)求函数周期的方法 【变式演练1】已知定义在R 上的函数()f x 满足()()f x f x -=-,(3)()f x f x -=,则(2019)f =( ) A .3- B .0 C .1 D .3 【答案】B

函数对称性与周期性几个重要结论赏析

函数对称性与周期性几个重要结论赏析 对称性和周期性是函数的两个重要性质,下面总结这两个性质的几个重要结论及运用它们解决抽象型函数的有关习题。 一、 几个重要的结论 (一)函数图象本身的对称性(自身对称) 1、函数)(x f y =满足)()(x T f x T f -=+(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。 2、函数)(x f y =满足)2()(x T f x f -=(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。 3、函数)(x f y =满足)()(x b f x a f -=+的充要条件是)(x f y =图象关于直线2 2)()(b a x b x a x +=-++=对称。 4、如果函数 )(x f y =满足)()(11x T f x T f -=+且)()(22x T f x T f -=+,(1T 和2T 是不相等的常数),则)(x f y =是以为)(212T T -为周期的周期函数。 5、如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以4T 为周期的周期性函数。 6、如果偶函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以2T 为周期的周期性函数。 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、曲线 )(x f y =与)(x f y -=关于X 轴对称。 2、曲线)(x f y =与)(x f y -=关于Y 轴对称。 3、曲线)(x f y =与)2(x a f y -=关于直线a x =对称。 4、曲线0),(=y x f 关于直线b x =对称曲线为0)2,(=-y b x f 。 5、曲线0),(=y x f 关于直线0=++c y x 对称曲线为0),(=----c x c y f 。 6、曲线0),(=y x f 关于直线0=+-c y x 对称曲线为0),(=+-c x c y f 。 7、曲线0),(=y x f 关于点),(b a P 对称曲线为0)2,2(=--y b x a f 。 二、试试看,练练笔 1、定义在实数集上的奇函数 )(x f 恒满足)1()1(x f x f -=+,且)0,1(-∈x 时, 512)(+=x x f ,则=)20(log 2f ________。 2、已知函数)(x f y =满足0)2()(=-+x f x f ,则)(x f y =图象关于__________对称。 3、函数)1(-=x f y 与函数)1(x f y -=的图象关于关于__________对称。 4、设函数)(x f y =的定义域为R ,且满足)1()1(x f x f -=-,则)(x f y =的图象关于__________ 对称。 5、设函数)(x f y =的定义域为R ,且满足)1()1(x f x f -=+,则)1(+=x f y 的图象关于__________对称。)(x f y =图象关于__________对称。 6、设)(x f y =的定义域为R ,且对任意R x ∈,有)2()21(x f x f =-,则)2(x f y =图象关于__________对称,)(x f y =关于__________对称。 7、已知函数)(x f y =对一切实数x 满足)4()2(x f x f +=-,且方程0)(=x f 有5个实根,则这5个实根之和为( ) A 、5 B 、10 C 、15 D 、18 8、设函数 )(x f y =的定义域为R ,则下列命题中,①若)(x f y =是偶函数,则)2(+=x f y 图象

高一数学函数的对称性知识点总结

高一数学《函数的对称性》知识点总结 高一数学《函数的对称性》知识点总结 一、函数自身的对称性探究 定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上,∴ 2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。 推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0 定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是 f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者) 推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x) 定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2 a-b是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f (x)是周期函数,且2 a-b是其一个周期。 ③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠b),则y = f (x)是周期函数,且4 a-b是其一个周期。 ①②的证明留给读者,以下给出③的证明: ∵函数y = f (x)图像既关于点A (a ,c) 成中心对称, ∴f (x) + f (2a-x) =2c,用2b-x代x得:

抽象函数的对称性与周期性

抽象函数的对称性与周期性 一、 抽象函数的对称性 定理1. 若函数y=f (x) 定义域为R ,且满足条件:f (a+x)=f (b -x),则函数y=f (x) 的图象 关于直线x= 2a b +对称。 推论1. 若函数y=f (x) 定义域为R ,且满足条件:f (a+x)=f (a -x) (或f (2a -x)= f (x) ),则函数y=f (x) 的图像关于直线x= a 对称。 推论2. 若函数y=f (x) 定义域为R ,且满足条件:f (a+x)=f (a -x), 又若方程f (x)=0有n 个根,则此n 个根的和为na 。 定理2. 若函数y=f (x) 定义域为R ,且满足条件:f (a+x)+f (b -x)=c ,(a,b,c 为常数),则 函数y=f (x) 的图象关于点( ,)22a b c + 对称。 推论1.若函数y=f (x) 定义域为R ,且满足条件:f (a+x)+f (a -x)=0,(a 为常数),则函数 y=f (x) 的图象关于点(a ,0)对称。 定理3.若函数y=f (x) 定义域为R ,则函数y=f (a+x) 与y=f (b -x)两函数的图象关于直线x=2b a -对称。 定理4.若函数y=f (x) 定义域为R ,则函数y=f (a+x) 与y=c -f (b -x)两函数的图象关于点 (,)22b a c -对称。 性质1:对函数y=f(x),若f(a+x)= -f(b -x)成立,则y=f(x)的图象关于点( 2b a +,0)对称。 性质2:函数y=f(x -a)与函数y=f(a -x)的图象关于直线x=a 对称。 性质3:函数y=f(a+x)与函数y=f(a -x)的图象关于直线x=0对称。 性质4:函数y=f(a+x)与函数y=-f(b -x)图象关于点( 2a b -,0)对称。 二、抽象函数的周期性 定理5.若函数y=f (x) 定义域为R ,且满足条件f (x +a)=f (x -b),则y=f (x) 是以T=a +b 为 周期的周期函数。 定理6.若函数y=f (x) 定义域为R ,且满足条件f (x +a)= -f (x -b),则y=f (x) 是以T=2(a +b )为周期的周期函数。 定理7.若函数y=f (x)的图象关于直线 x=a 与 x=b (a ≠b)对称,则y=f (x) 是以T=2(b -a) 为周期的周期函数。 定理8.若函数y=f (x)的图象关于点(a,0)与点(b,0) , (a ≠b)对称,则y=f (x) 是以T=2(b -a) 为周期的周期函数。 定理9.若函数y=f (x)的图象关于直线 x=a 与 点(b,0),(a ≠b)对称,则y=f (x) 是以 T=4(b -a)为周期的周期函数。 性质1:若函数f(x)满足f(a -x)=f(a +x)及f(b -x)=f(b +x) (a ≠b,ab ≠0),则函数f(x)有周期2(a -b); 性质2:若函数f(x)满足f(a -x)= - f(a +x)及f(b -x)=- f(b +x),(a ≠b,ab ≠0),则函数有周 期2(a -b). 特别:若函数f(x)满足f(a -x)=f(a +x) (a ≠0)且f(x)是偶函数,则函数f(x)有周期2a. 性质3:若函数f(x)满足f(a -x)=f(a +x)及f(b -x)= - f(b +x) (a ≠b,ab ≠0),则函数有周期 4(a -b). 特别:若函数f(x)满足f(a -x)=f(a +x) (a ≠0)且f(x)是奇函数,则函数f(x)有周期4a 。

函数图象的对称性在高考中的应用

函数图象的对称性在高考中的应用 众所周知,函数历来是高考的重点内容之一,高考对函数的考查离不开函数性质的研究应用,特别是函数的单调性与奇偶性更是高考命题的热点,理应成为高三复习的重点.函数图像的对称性作为奇偶性拓展与延伸,在各类高考试题和模拟题中更是屡见不鲜,同时也是出错率非常高的题目. 如果从图象的角度审视函数,有两类比较特殊的函数,一类是它们图象成中心对称,一类是它们图象成轴对称,那么这样的函数具有什么性质呢?不难发现,这两类函数图象总可以通过适当的平移,转化为具有奇偶性的函数,下面就对有关函数对称性和奇偶性的性质做一总结. 有关函数对称性与奇偶性的一些重要性质:自对称与互对称问题 (1)若函数()f x 为奇函数,则()()()()0f x f x f x f x -=-+-=;;()f x 的图象关于原点对称,反之亦成立. (2)若函数()f x 为偶函数,则()()()()2()f x f x f x f x f x -=+-=;;()()f x f x =;()f x 的图象关于y 轴对称,反之亦成立. 推论:函数()-f x a 的图象关于直线x a =对称. (3)若函数()f x 对任意自变量x 都有()()f x a f a x -=-,则()f x 的图象关于直线0x =对称,反之亦成立. (4)若函数()f x 对任意自变量x 都有()()f a x f a x -=+,则()f x 的图象关于直线x a =对称,反之亦成立. (5)若函数()f x 对任意自变量x 都有()+()=2f a x f a x b -+,则()f x 的图象关于点(,)a b 对称,反之亦成立. (6)若函数()f x 对任意自变量x 都有(2)()f a x f x -=,则()f x 的图象关于直线x a =对称,反之亦成立. (7)若函数()f x 对任意自变量x 都有()()f a x f b x +=-,则()f x 的图象关于直线2 a b x +=对称,反之亦成立. (8)函数()f x 与函数()f x -的图象关于y 轴对称,反之亦成立.

函数的奇偶性、对称性与周期性总结,史上最全

函数的奇偶性、对称性与周期性常用结论,史上最全 函数是高中数学的重点与难点,在高考数学中占分比重巨大。高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。需要WORD 电子文档的同学,可以入群领取。 1.奇偶函数: 设[][][]b a a b x b a x x f y ,,,),(Y --∈∈=或奇偶函数的定义域关于原点对称。 ①若为奇函数;则称)(),()(x f y x f x f =-=-() ()()0,1() f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。() ()-()0,1() f x f x f x f x -==- 2.周期函数的定义: 对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。 分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。把)()(a b K KT x x f y -==轴平移沿个单位即按向量 )()0,(x f y kT ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。 [][]?? ?++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f

知识点:函数的对称性总结

知识点:函数的对称性总结 函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个 方面来探讨函数与对称有关的性质。 一、函数自身的对称性探究 定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上, 2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。 (充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2bf (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P

与点P'关于点A (a ,b)对称,充分性得征。 推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0 定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是 f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者) 推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x) 定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(ab),则y = f (x)是周期函数,且 2| a-b|是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b 成轴对称(ab),则y = f (x)是周期函数,且2| a-b|是其一个周期。 ③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(ab),则y = f (x)是周期函数,且4| a-b|是其一个周期。 ①②的证明留给读者,以下给出③的证明: ∵函数y = f (x)图像既关于点A (a ,c) 成中心对称, f (x) + f (2a-x) =2c,用2b-x代x得: f (2b-x) + f [2a-(2b-x) ] =2c(*)

相关主题
文本预览
相关文档 最新文档