当前位置:文档之家› 光合细菌培养基组成对类胡萝卜素产量的影响

光合细菌培养基组成对类胡萝卜素产量的影响

光合细菌培养基组成对类胡萝卜素产量的影响
光合细菌培养基组成对类胡萝卜素产量的影响

光合细菌培养基组成对类胡萝卜素产量的影响*

摘要:采用响应面法对光合细菌培养基主要成分进行了优化,研究了培养基组成对类胡萝卜素产量的影响。经过逐步回归分析建立了类胡萝卜素产量对培养基主要成分的二次回归模型,其回归方程的决定系数达到了0.958。得到的最适培养基主要组成为:0,81%柠檬酸、0.35%NH4CI和0.18%玉米浆,类胡萝卜素产量最大预测值达到13.34m岁L,是优化前的2.04倍。

关键词:光合细菌,培养基,类胡萝卜素,响应面法

类胡萝卜素是自然界存在的一类重要色素,目前已知结构的类胡萝卜素近以X)种,其

中约有40多种可为人类食用[’1。FAo和WHo等国际组织认定类胡萝卜素为A类营养色素,并在50多个国家和地区获准作为营养、着色双重功能的添加剂,因而被广泛用于保

健食品及化妆品工业。光合细菌(Photo一syniheticbacteria)是生产类胡萝卜素的主要微生物之一,迄今发现可由其合成的类胡萝卜素已超过80种L’〕。利用光合细菌发酵生产天然类胡萝卜素因生产周期短、不受季节限制而备受重视E’」。色素提取后的菌体中富含蛋白质、氨基酸和维生素等,可作为单细胞蛋白加以利用。光合细菌培养基组成对类胡萝卜

素产量的影响目前主要采用单因素研究,而对影响其产量的诸因素交互作用缺乏研究。

本文采用响应面法对光合细菌培养基主要成分进行了优化,研究培养基组成对类胡萝卜

素产量的影响,以期为深人研究和规模化生产类胡萝卜素提供依据。

1材料与方法

1.1菌种来源

光合细菌:由南京工业大学生物技术中心提供。

1.2基础培养基组成

苹果酸2.59,酵母膏19,(NH4)25041.259,Mgso40.29,CaC12o.079,Feso4

.

019,KHZPO40.159,用蒸馏水溶解并定容至IL,pH7.0。

1.3培养方法

按10%接种量将活化后的液体种子接种于新鲜的液体培养基中,在培养温度为

28℃、光照强度1,sooh(化S一1330照度计测得)和厌氧条件下培养5d。

1.4试验设计

1.4.1单因素试验:对基础培养基分别进行碳源、氮源和生长因子替代物筛选和水平

优化。待筛选的8种碳源分别为乙酸钠、苹果酸、柠檬酸、葡萄糖、乳糖、蔗糖、酒

石酸和可溶性淀粉,浓度范围为0.05%一1.50%;待筛选的6种氮源分别为NH4CI,

(NH4)2504,NaNoZ,NaNo3,谷氨酸钠和玉米浆,浓度范围为0.05%一2.00%;待筛

选的5种生长因子替代物分别为酵母膏、牛肉膏、蛋白豚、胰蛋白陈和玉米浆,浓度

范围为0.02%一0.20%。

1.4.2响应面试验:根据单因素试验结果,以柠檬酸、NH4CI和玉米浆浓度为3因素,

进行中心组合响应面设计,以类胡萝卜素产量为响应指标。通过Designexpert软件对实

验数据进行回归分析,预测光合细菌用于生产类胡萝卜素的最佳培养基。试验设计见

表7。

1.5测定方法

1.5.1菌体产量:在Maria等[4]的基础上加以改进。菌液在10,以刃r/min条件下离心

20min,弃去上清夜,菌体用蒸馏水洗涤两次后再次离心。所得菌体在65℃下烘干至

恒重。

1.5.2类胡萝卜素产量:在王岁楼等〔’」的基础上加以改进。菌体加人浓度为3moFL

的盐酸,28℃下振荡1.sh后沸水浴4min,迅速冷却,10,(兀旧r/min离心20min弃上

清液,沉淀用双蒸水洗涤2遍。在所得菌体中加人丙酮,28℃水浴振荡浸提30min,

10,以洲〕r/min冷冻离心20min,取上清液。适当稀释类胡萝卜素提取液,于480nm处

测定吸光值。按以下公式计算类胡萝卜素产量。

类胡萝卜素产量(m岁L)=A·Dvl/0.16vZ

式中:A一一一480nm处吸光值;D—稀释倍数;0.16—类胡萝卜素消光系数;Vl—加人的提取剂体积;VZ—用于提取色素的发酵液体积。

2结果与分析

2.1碳源筛选及水平优化

2.1.1碳源筛选:当培养基分别以苹果酸或柠檬酸为碳源时,菌体产量和类胡萝卜素

产量最大,两者之间无显著差异(表l)。这是因为光合细菌对有机酸及其盐类的利用

程度要高于糖类物质。由于苹果酸价格是柠檬酸的4一5倍,生产上宜用柠檬酸作为碳

源。2以拓年33(3)微生物学通报

表1碳源对菌体产t和类胡萝卜素产t的影响

指标源(%)

乙酸钠柠檬酸

酒石酸乳糖蔗糖

菌体产量

(岁L)

类胡萝卜素

产量(m岁L)

1.171

士0.160曲

4.05

士0.25e

苹果酸

1.250

士01!X)a

6

.

52

士0.35a

1.042

士0.061ab

0.791

士0.Zlled

6

.

31

土0.19a

4

.

28

士0.Zle

葡萄糖

.

312

土0.052f

.

62

士0.ole

0.671

士0.121de

.

421

士0,121ef

可溶性淀粉

0.921

士0.(涎iZbC

1.75

士0.17d

0.63

土0.02e

4.75

士0.23b

注:碳源浓度均为0.25%;不同字母表示处理间在0.05水平上差异显著

2.1.2柠檬酸水平优化:培养基中柠檬酸在0.05%一1.50%浓度范围内时,光合细菌菌体产量和类胡萝卜素产量最高时的柠檬酸浓度为0.6%一0.8%(表2)。柠檬酸浓度过低时造成碳源供应不足,浓度过高时则表现出明显的抑制作用。

表2柠檬酸浓度对菌体产t和类胡萝卜素产最的影响

柠檬酸(%)

指标

.

050.150.250.400.以)0.801.《X)1.50

菌体产量0.540.631.211.882.502.712.421.25

(岁L)土0.07d士0.(X)d土0.07e土0.(X)b土0.12a士0.07a土0.51a士0.25e 类胡萝卜素产量1.172.133.857.108.989.105.751.80

(m盯L)士0.43f士0.58e土0.32d士0,37b士0.62a土0.29a士0.50e士0.23ef

2.2氮源筛选及水平优化

2.2.1氮源筛选:由表3可知,光合细菌既能利用氨盐和硝酸盐等无机氮源,也能利用氨基酸以及玉米浆等有机氮源,NH4CI为氮源时菌体产量和类胡萝卜素产量均达最大值,分别比(NH4):504为氮源时高出40.00%和57.43%。

表3氮源对菌体产t和类胡萝卜素产t的影响

氮源(%)

指标

氯化氨硫酸铁亚硝酸钠硝酸钠谷氨酸钠玉米浆

菌体产量2.6251.8750.9171.7501.8751.792

(酬L)士0.102a士0.270b士0.Z12e士0.102b士0.102b土0.118b

类胡萝卜素产量7.794.952.074.915.785.91

(m『L)土020a士0.04c土0.15d土0.63e士0.39b土0.43b

注:氮源浓度均为0.125%。

2.2.2NH4CI水平优化:菌体产量和类胡萝卜素产量均随NH4CI浓度增加呈先上升后下降的趋势,两者达最大时的NH4CI浓度为0.3%(表4)。

表4Nlll4CI浓度对菌体产t和类胡萝卜素产t的影响

NH4CI(%)

指标

.

050.100.300.500.701.的1.502.的

又功菌体产量

(岁L)

类胡萝卜素产量

(m岁L)

1.875

土0.153bC

2

.

0以)

土0.144ab

250

153a

1.750

土0.088ed

1.625

士0.088ed

1.459

土0.059de

1.375

士0.088de

l‘500

士0,153de

6oo

士0.06b

6,13

士0.05b

7.35

土0.3la

2

.

19

士0.05e

2.28

士0.05e

.

99048

士0.13d士0.02e

0,47

士0.03e

2。3

2。3。1

天然复合物筛选及水平优化

天然复合物筛选:5种天然复合物均可为光合细菌提供生长因子,其中以酵母l4微生物学通报2(兀巧年33(3)

膏和玉米浆的效果最佳(表5),由于玉米浆是玉米深加工过程中的副产物,来源广,

价格低,生产上可考虑用它取代酵母膏。

表5天然复合物对菌体产t和类胡萝卜素产t的影响

天然复合物(%)

指标

酵母膏牛肉膏蛋白脉胰蛋白膝玉米浆

菌体产量(『L)2.4(X)土0173a2.417士0.144a1.8(X)土0.087b2.083士0.144b2.5(X)土0.250a

类胡萝卜素产量(m『L)10.肠土0.15a8.97士0.08b7.52士0.03e6.56土o.10d9.94士0.05a 注:天然复合物浓度均为0.1%

2.3.2玉米浆水平优化:培养基玉米浆浓度为0.02%一0.20%时,光合细菌以在含

0.10%玉米浆培养基中培养时所得的菌体产量和类胡萝卜素产量最大(表6)。

表‘玉米桨浓度对菌体产t和类胡萝卜素产t的影响

玉米浆浓度(%)

指标

0.020.(HO(巧0.100.20

菌体产量(留L)2.307士0.080b2.333土0.103b2.350士0.108b2.750土0.2以a2.5仪)士0.204ab

类胡萝卜素产量(m岁L)10.33士009e10.19士0.04e10.30土0.24e11.86士olxa11.11士o.llb

2.4类胡萝卜素产t响应面优化

固定培养基中的无机盐组成,对柠檬酸(A)、NH4CI(B)和玉米浆(C)浓度进

行3因素5水平响应面分析试验,结果见表7。

表7响应面分析方案与实验结果

试验号柠檬酸(%)抓化按(%)玉米浆(%)

类胡萝卜素产量(m群L)

实际值预测值

063l一l(0.2)

1(l)

1

(0,I)一l(0.02)

1

(05)

l

2

.

58

2

.

27

2.85

3

.

95

2.63

门.8)

l

3

.

56

11.56

4.63

9

.

75

3.00

3

.

29

10.29

光合细菌使用方法

一.使用方法: 1.水体喷洒。适合改良水质,防治鱼病和培养优良藻类时使用。选择晴天上午或下午,将扩繁好的光合细菌菌液用池水稀释后,全池均匀泼洒,一般用量:苗种池:150ml/L每5―10天用一次。成鱼池:第一次5ml/L以后2ml/L,或第一次5―8公斤/亩,以后3―5公斤/亩,每10―20天用一次。施光合细菌的次数最好根据水质情况具体研究,水质好可每隔15天施一次,水质较差、较肥,应每隔7―10天施一次。由于光合细菌形态微细,比重小,若采用直接泼洒养殖水体的方法,其活菌不易沉降到池塘底部,无法起到良好的改善底环境效果。因此建议全池泼洒时,尽量将其与沸石粉合剂合用这样既能将活菌迅速沉降到底部,同时沸石也可起到吸附氨的效果,或拌土洒入鱼池。 2.饲料添加。内服拌饵作为饲料添加剂使用时,将扩繁好的光合细菌菌液喷洒干饲料中拌匀,如用投饵机投喂的可拌菌后散开吹晒一段时间再喂,当天拌当天喂完。 二、注意事项: 1.不可与消毒杀菌剂混合使用,使用前后一周内不得使用消毒剂,否则杀死光合细菌影响使用效果。 2.使用前,将菌液光照10小时以上,使用效果好,晴天水温20℃以上时使用;阴雨天勿用。 3.水体呈碱性时施用效果好。用生石灰或烧碱调节PH值至中性或偏碱程度。 4.应灵活掌握用量和使用的连续性,因光合细菌在水体中只有形成优势群落后,才能发挥作用。 5.光合细菌菌液不能用金属器皿贮存。 6.培育鱼苗时,在苗种入池前7天全池泼洒,以利于浮游生物生长;光合细菌菌液与粪肥配合使用,效果明显,增产增效特别显著。 7.若要同时施用不同的净水制剂,应该注意制剂之间的共容性。例如:硝化细菌和光合细菌并不适合同时放养在同一水池中,因为它们净化水质的过程互有抑制作用,可能会降低其净化效果。

常用细菌培养基配方

常用抗生素 氨苄青霉素(ampicillin)(100mg/ml) 溶解1g氨苄青霉素钠盐于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以25ug/ml~50ug/ml的终浓度添加于生长培养基。 羧苄青霉素(carbenicillin)(50mg/ml) 溶解0.5g羧苄青霉素二钠盐于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以25ug/ml~50ug/ml的终浓度添加于生长培养基。 甲氧西林(methicillin)(100mg/ml) 溶解1g甲氧西林钠于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以37.5ug/ml终浓度与100ug/ml氨苄青霉素一起添加于生长培养基。 卡那霉素(kanamycin)(10mg/ml) 溶解100mg卡那霉素于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以10ug/ml~50ug/ml的终浓度添加于生长培养基。 氯霉素(chloramphenicol)(25mg/ml) 溶解250mg氯霉素足量的无水乙醇中,最后定容至10ml。分装成小份于-20℃贮存。常以12.5ug/ml~25ug/ml的终浓度添加于生长培养基。 链霉素(streptomycin)(50mg/ml) 溶解0.5g链霉素硫酸盐于足量的无水乙醇中,最后定容至10ml。分装成小份于-20℃贮存。常以10ug/ml~50ug/ml的终浓度添加于生长培养基。 萘啶酮酸(nalidixic acid)(5mg/ml) 溶解50mg萘啶酮酸钠盐于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以15ug/ml的终浓度添加于生长培养基。 四环素(tetracyyline)(10mg/ml) 溶解100mg四环素盐酸盐于足量的水中,或者将无碱的四环素溶于无水乙醇,定容至10ml。分装成小份用铝箔包裹装液管以免溶液见光,于-20℃贮存。常以10ug/ml~50ug/ml的终浓度添加于生长培养基。 常用培养基 LB培养基 将下列组分溶解在0.9L水中: 蛋白胨10g 酵母提取物5g 氯化钠10g 如果需要用1N NaOH(~1ml)调整pH至7.0,再补足水至1L。注:琼脂平板需添加琼脂粉12g/L,上层琼脂平板添加琼脂粉7g/L。(实验室一般都不调PH) SOB培养基 将下列组分溶解在0.9L水中: 蛋白胨20g 酵母提取物5g 氯化钠0.5g 1 mol/L 氯化钾2.5ml

光合细菌

光合细菌(Photosynthetic bacteria,简称PSB)是具有原始光能合成体系的原核生物的总称,它广泛存在于自然界的水田、湖泊、江河、海洋、活性污泥及土壤内,是一类以光作为能源、能在厌氧光照或好氧黑暗条件下利用自然界中的有机物、硫化物、氨等作为供氢体兼碳源进行光合作用的微生物。 第一节光合细菌的生物学和营养价值 一、光合细菌的生物学 光合细菌包括产氧光合细菌(蓝细菌)和不产氧光合细菌两大部分,在实际中应用的大部分是不产氧型光合细菌。不产氧光合细菌包括紫细菌、绿细菌和日光杆菌属、红色杆菌属等总共 27个属 66个种。不产氧光合细菌是代谢类型复杂、生理功能最为广泛的微生物类群。各种光合细菌获取能量和利用有机质的能力不同,它们的代谢途径随环境变化可以发生改变。光合细菌从营养类型看包括光能自养型、光能异养型及兼性营养类型;从呼吸类型看包括好氧、厌氧和兼性厌氧型。 光合细菌是革兰氏阴性菌,在10~45℃范围内均可生长繁殖,最佳温度在30~40℃。绝大多数光合细菌的最佳pH值范围在7~8.5之间。钠、钾、钙、钴、镁和铁等是光合细菌生理代谢中的必需元素。 二、光合细菌的营养价值 光合细菌的菌体无毒,营养丰富,蛋白质含量高达65%,而且氨基酸组成齐全,含有机体需要的8种必需氨基酸,各种氨基酸的比例也比较合理。PSB还含有丰富的B族维生素,尤其是B12、叶酸、生物素的含量相当高是啤酒酵母和小球藻的20到60多倍。PSB 菌体内含有较高浓度的类胡萝素,而且种类繁多,迄今已从光合细菌中分离出80种以上的类胡萝卜素。除此之外,细胞内还含有碳素储存物质糖原和聚β一羟基丁酸、辅酶Q、抗病毒物质和生长促进因子,具有很高的营养价值。 光合细菌在虾、贝类的幼体培育中应用非常广泛,其一方面能净化水质,改善幼体的环境条件,另一方面作为饵料被幼体摄食(贝类幼体相对虾幼体的蚤状阶段都能直接摄食光合细菌),对促进幼体生长、变态和提高成活率有明显效果。 第二节光合细菌的培养方法 一、培养方式 光合细菌的大量培养通常采用全封闭式厌气光照培养和开放式微气光照培养两种方式。 (一)全封闭式厌气光照培养 全封闭式厌气光照培养是采用无色透明的玻璃容器或塑料薄膜袋,消毒后装入消毒好的培养液,接入20%~50%的菌种母液,使整个容器均被液体充满,加盖(或扎紧接口), 造成厌气的培养环境,置于有阳光的地方或用人工光源进行培养,定时搅动,在适宜的温度下,一般经过5~10天的培养,即可达到指数生长期高峰,此时可采收或进一步扩大培养。 (二)开放式微气光照培养 开放式微气光照培养一般采用容量为l00~200升的塑料桶为培养容器。在桶底部装一气石,培养时微充气、使桶内的光合细菌呈上下缓慢翻动。在桶的正上方距捅面30厘米左有装一有罩的白炽灯泡,使被面照度达2000 lx左右。培养前先把容器消毒,加入消毒好的培养液,接入20%~50%的菌种母液,照明,微充气培养。在适宜的温度下,一般经7~10天的培养,即可达到指数生长期高峰,此时,进行采收或近一步扩大培养。 两种培养方式相比,以厌气培养方式较为理想,微气培养方式虽然设备比较简单,易于大量培养,但杂菌污染程度大,培养达到的菌细胞密度低。 二、菌种分离、保藏 培养光合细菌首先要有菌种。目前,应用于水产养殖业的光合细菌,主要是红螺菌科即紫色非硫细菌中的一些种类。它们共同的特征是具鞭毛,能运动,不产生气泡,细胞内不积累硫磺。光合细菌分离成功的关键在于选择适宜的富集、分离培养基,和提供适于光合细菌生长需要的厌气环境及适宜的温度、光照条件。 (一)采样 红螺菌科细菌可用有机物作为光合作用的供氢体兼碳源,广泛分布在被有机物污染的地方,如河底、湖底、海底、水田、沟渠和污水塘的泥土以及豆制品厂、淀粉厂和食品工业 等废水排水沟处呈橙黄色或粉红色的泥土中。浅水处直接用杯舀取少量泥土作样品,深水处借用采水器和采泥器采样。 (二)富集培养 富集培养均采用液体培养基。将采回的样品(土壤或水)装入玻璃圆筒或大型试管或具塞的磨口玻璃瓶中,倒入配制好的培养液,充分搅拌。为造成厌气环境,在玻璃圆筒或大型

光合细菌培养基配方

光合细菌培养基配方 光合细菌是兼性厌氧的,不同的光合细菌用的培养基不一样我现在就在做关于光合细菌的问题,这几中细菌都是常见的细菌,培养基在许多微生物上后面都有,光合细菌的富集培养基是: NH4Cl0.1g NaHCO3 0.1g KH2PO4 0.02g CH3COONa 0.1-0.5g MgSO4.7HO2 0.02g NaCl0.05-0.2g 三生长因子1ml 微量元素溶液1ml 蒸馏水97ml PH7.0 生长培养基加氮源(谷氨酸钠)和碳源(乙酸.丙酸.丁酸盐等)及可.其他菌的分离只要选择不同的培养基就可以选择分离啊 光合细菌富集纯化详见网易网盘 光合细菌培养基配方 氯化氨1克,磷酸氢二钾0.5克,氯化镁0.2克,氯化钠2克,酵母膏0.1克,水900毫升。 各成份溶解后15磅灭菌20分钟,然后无菌的加入过滤的碳酸氢钠5.0克/50毫升水;50毫升过滤的乙醇。用过滤的0.1N 磷酸调PH=7.0即可。 响应面设计法优化光合细菌培养基配方。培养基成分中醋酸钠和蛋白胨对于光合细菌的生长影响最为显著,最优培

养基配方为:醋酸钠1.145g/L、蛋白胨0.055g/L、碳酸氢钠0.6g/L、硫代硫酸钠0.4g/L、氯化钠0.3g/L、硫酸镁0.1g/L、磷酸二氢钾0.05g/L。在此条件下,光合细菌生长最为良好,经过5d培养以后,培养液OD600可以达到0.5以上 光合细菌(含生产工艺) 优良的光合细菌菌种的外观质量是啥样? 一般优良的光合细菌菌种和产品的外观质量有以下几点: 1、外观上看比较均匀,基本无上下分层。相反,市场上有许多光合细菌是上下分层的,包括我中心初期的产品也是这样,上层比较清淡,下层则比较深厚,上层颜色浅,下层颜色深,最底层可能还会有一层黑黑的沉淀。 而优秀的光合细菌菌种和产品,上下都是比较均匀的,没有较明显的分层,颜色比较均匀,外观看起来也悦目。(当然,除了培养基溶解时,会与硬水中的重金属离子反应产生的絮装沉淀除外) 这种上下无分层,颜色均匀,不是靠加悬浮剂,或增稠剂而造成的,而是自然培养出来的,不加任何修饰而成的。少数地方,由于水质的原因,可能会产生稍稍的差别。 2、没有粘壁现象。很多市场上的产品都有粘壁现象,即在容器的壁上形成一层红紫色的颜色层,就象是油漆一

光合细菌培养参数的研究审批稿

光合细菌培养参数的研 究 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

光合细菌PS3培养参数的研究 摘要:为有效提高光合细菌邢3在工厂化生产中的生物量,对其主要培养参数进行了系统的研究。所涉及的培养参数包括:光源、光照度、溶解氧、培养基pH、盐度、接种浓度等。结果表明:PS3在厌氧条件下生长较好,而其最适接种浓度、光照度、光源、pH及盐度分别为10%、4以刃h(钨丝灯)、一、5。 关键词:光合细菌;培养参数 ThestudyoncultivatingParametersofPhotosyntheticbacteria PS3 光合细菌(photosyntheticbacteria)广泛分布提供质优价廉的产品,本实验对光合细菌PS3培养 于淡水、海水、极地或温泉(包括高热水体)以的主要参数进行了较系统的观察和研究,现将实验 及高盐、高有机质含量等不同的生态环境中,是一情况总结如下。 类行不产氧光合作用、具有复杂代谢功能的微生 花”上石草.:二二或二议一二二几二”公二二万二1材料与方法物,它能利用多种基质,可营异养、自养或兼性营一’,‘,’‘’‘’一 养;存在着好氧、厌氧和兼性厌氧类型[l]。光合菌株 细菌在维持自然界的生态平衡、废污水的处理等方试验菌株PS3由中国水产科学研究院南海水产 面有着重要作用,同时光合细菌作为单细胞生物可研究所饲料与健康养殖开发中心富集、分离。 以从中获得较丰富的单细胞蛋白,其广泛应用于农实验方法 牧渔业尤其在水产养殖中的应用更为广泛〔,一3〕。为本实验所采用的培养条件是不同光源和光照 生产更好的优质菌液,促进工厂化生产,为养殖业度、溶解氧、培养基pH值、盐度、接种浓度。试 收稿日期: 资助项目: 作者简介: 通讯作者: 2以」6切刀3;修回日期:2〕拓刀8一17 广东省重大科技兴渔项目(B200201A01);国家“十五”科技攻关计划专题(2004BA526BO202) 洪敏娜(1980一),女,技术员,从事水产微生态制剂的研究与开发。E一mail:hmnIgso@163.。。m 杨莺莺南方水产第2卷 -今-荧光灯(1500lx)fiuorescent 一.一钨丝灯(600lx)tungsten -查-钨丝灯(1500lx)tUngsten -片-钨丝灯Q700lx)tungsten -喂卜-钨丝灯(4000lx)tungsten 叫.-自然光(50000~70000lx)naturallighting

光合细菌的分离、培养和鉴定

光合细菌的分离、培养和鉴定 摘要:从南湾水库大坝下层水域取水样获得一株光合细菌。采用多种培养基分离方法分离出纯培养物。进行了菌落形态学观察和亚显微观察。于不同条件下培养后分别测定光密度和生长曲线。实验证实分离到的菌种为沼泽红假单胞菌。 关键词:生长曲线;沼泽红假单胞菌;光合细菌 The separation and culture and identified of photosynthetic bacteria Abstract:A strain sample of photosynthetic bacteria was got from the lower water in South Bay Reservoir. using a variety of separation methods to get pure cultures. It was cultured with various medium to culture the pure strains. Transmission election micrographs and microscope were observed of the strain. The optical density (OD) and the growth curve were measured under different conditions. The results suggested that the strain was Rhodopseudomonas palustris. Keywords:Colony and cell; Growth curve; Rhodopseudomonas palustris; Photosynthetic bacteria 引言 光合细菌由于碳、氮代谢途径和光合作用机制的独特性和其生理类群的多样性, 而被大量关注。多年来, 光合细菌一直被作为研究光合作用以及生物固氮作用机理的重要材料。经过研究发现光合细菌在环保、农业、医药等方面均有较高的应用价值。下面就光合细菌目前的开发应用研究近况作一概述。 光合细菌细胞营养价值极高。首先,光合细菌细胞干物质中蛋白质含量高达60%以上, 比目前生产的单细胞蛋白酵母中蛋白质的含量还高。而且其蛋白质氨基酸组成齐全, 是一种优质蛋白源。其次,光合细菌细胞含有多种维生素, 特别是B族维生素, VB12、叶酸、泛酸、生物素的含量远远高于酵母菌。另外, 光合细菌细胞还含有大量的类胡萝卜素、辅酶Q等活性物质。因此, 光合细菌具有很高的营养价值。在水产养殖中, 光合细菌可被用于饵料或饲料添加剂。光合细菌促进鱼虾的生长, 无论是成活率或是产量的提高均可达10%-40%以上。同时,光合细菌还具有防治鱼虾疾病,净化养殖场所水质等方面的功能。使用光合细菌喂养的家禽, 成活率可提高5%-7%, 料肉比降低33%左右,肉鸡增重15%-17%, 产蛋率提高12.7%。而且所产

水产养殖―池塘养殖中氨氮的危害及其控制方法

水产养殖—池塘养殖中氨氮的危害及其控制方法相关专题: 水产养殖 时间:2012-03-13 15:25 阿里巴巴农业频道 【阿里巴巴农业】 在水产养殖过程中,我们经常碰到池塘中氨氮过高的问题,在高密度精养池塘中这个问题更加严重,给养殖造成了一定的危害。下面,我们就池塘中氨氮的形成、氨氮的危害、氨氮的消除途径以及氨氮的控制方法一一加以阐述。 一、xxxx氨氮的形成 池塘中的氨氮主要来源于三种途径,即水生动物的排泄物、施加的肥料和被微生物菌分解的饲料、粪便及动植物尸体。鱼类可通过鳃和尿液、甲壳类能通过鳃和触角腺向水中排出体内的氨氮,以免发生体内氨中毒。水生动物的粪便及动植物尸体中含有大量蛋白质,被池塘中的微生物菌分解后形成氨基酸,再进?步分解成氨氮。 二、氨氮对水生动物的危害 1.氨氮的中毒机理氨氮以两种形式存在于水中,一种是氨(NH3),又叫非离子氨,对水生生物有毒,极易溶于水。另一种是铵(NH4+),又叫离子氨,对水生生物无毒。当氨(NH3)通过鳃进入水生生物体内时,会直接增加水生生物氨氮排泄的负担,氨氮在血液中的浓度升高,血液pH随之相应上升,水生生物体内的多种酶活性受到抑制,并可降低血液的输氧能力,破坏鳃表皮组织,降低血液的携氧能力,导致氧气和废物交换不畅而窒息。此外,水中氨浓度高也影响水对水生生物的渗透性,降低内部离子浓度。 2.氨氮对水生动物的危害有急性和慢性之分。慢性氨氮中毒危害为:

摄食降低,生长减慢;组织损伤,降低氧在组织问的输送;鱼和虾均需要与水体进行离子交换(钠,钙等),氨氮过高会增加鳃的通透性,损害鳃的离子交换功能;使水生生物长期处于应激状态,增加动物对疾病的易感性,降低生长速度;降低生殖能力,减少怀卵量,降低卵的存活力,延迟产卵繁殖。急性氨氮中毒危害为: 水生生物表现为亢奋、在水中丧失平衡、抽搐,严重者甚至死亡。 三、氨氮的消除途径 1.硝化和脱氮铵(NH3)被亚硝化细菌氧化成亚硝酸,亚硝酸再被硝化细菌氧化成硝酸,称为硝化作用,硝化作用需要消耗氧气,当水中溶氧浓度低于1~2毫克/升时硝化作用速度明显降低。在水中溶氧缺乏的情况下,反硝化细菌能将硝酸还原为亚硝酸、次硝酸、羟胺或氮时,这种过程称为硝酸还原,当形成的气态氮作为代谢物释放并从系统中流失时,就称之为脱氮作用。 2.藻类和植物的吸收因为藻类和水生植物能利用铵(NH4+)合成氨基酸,所以藻类对氨氮的吸收是池塘中氨氮去除的主要方法,冬天藻类的减少和死亡会使水中的氨氮含量明显上升。 3.挥发及底泥吸收在池塘中氨氮浓度高、高pH值、采取增氧措施、有风浪、搅动水流等情况下,都会有利于氨氮的挥发。底泥土壤中的阴离子可以结合铵离予(NH4+),在拉网或发生类似的引起底部搅动的操作时,池底沉积物会暂时悬浮在水中,铵离子(NH4+)就会被释放出来。 4.矿化及回到生物体内所谓矿化,即部分氨氮以有机物的形式存在于池底土壤中,这些有机物质分解后又回到水中,分解速度依赖于温度、pH、溶氧以及有机物质的数量和质量。进入水生动物体内即当水中氨氮浓度高时,氨(NH3而不是NH4+)能通过鳃进入水生生物体内。 四、氨氮的控制方法 1.清淤、干塘每年养殖结束后,进行清淤、干塘,曝晒池底,使用生石灰、强氯精、漂白粉等对池底彻底消毒,可去除氨氮,增强水体对pH的缓冲能力,保持水体微碱性。

生物饵料培养学习题及解析

填空题: 1.在所有卤虫品系的脂肪酸组成中几乎没有_DHA__,所以对卤虫必须进行营养强化。 2.微藻藻种保藏的基本条件是_低温和弱光__。 3.光合细菌培养基灭菌的方式有_常压蒸汽灭菌和过滤灭菌__和高压蒸汽灭菌。 4.“绿水育苗”是指在育苗过程中利用__微藻___的育苗方式。 5.微藻基因工程育种是引入__外源基因__在微藻内表达以改良微藻遗传品质的方法。 6._褶皱臂尾_轮虫在海水鱼虾蟹苗种培育过程中应用最为广泛。 7.在开放式培养螺旋藻时,施用__碳酸氢铵__可以杀死藻液中的轮虫和原生动物,还可以作为肥料。 名词解释: 1.营养强化:指针对生物饵料的营养缺陷,有意识地通过其摄食特定食物进行改善和补偿,达到营养平衡和满足鱼虾幼体发育的 需求。 2.诱变育种: 是指人为地利用物理的或化学的因素,诱发微藻产生遗传变异,通过对突变体的选择和鉴定,培育出有利用价值 的新品种或新的种质资源 3.单种培养: 指在培养过程中不排除细菌存在的一种培养方式 4.生物饵料:指经过筛选的优质饵料生物,进行人工培养后投喂给养殖对象食用的活的饵料。 5.指数生长期: 指微藻细胞迅速地生长繁殖,细胞数目以几何级数增加的时期. 判断题: 1、所有卤虫卵都是在低盐度下有较高的孵化率。 X 2、小新月菱形藻的最佳培养生态条件和应用途径与三角褐指藻相似。√ 3、角毛藻在低盐度下比高盐度下生长好。√ 4、褶皱臂尾轮虫对低氧含量甚至短时间缺氧的耐受力很强,因此,在高密度培养时,不需要充氧。X 5、微藻对二氧化碳的需要量大,但给微藻培养液过量通入二氧化碳,会对微藻产生毒害作用。√ 6、实验室小型培养微藻,海水的消毒通常采用有效氯消毒。X 7、不同光合细菌体内的颜色在固定的培养条件下具有特征性,因此,每个菌种的颜色不会随着培养条件的变化而发生变化。X 8、刚产出的卤虫休眠卵就具有较高的孵化率。X 9、目前培养的桡足类主要是隶属于猛水蚤目和哲水蚤目的种类。√ 10、轮虫的营养价值与所摄食的饵料有关。√ 选择题: 1、标准的血球计数板盖上盖玻片后,一个大格所在区域的体积是__C_____。 A: 1mm3B: 10mm3C: 0.1mm3D: 0.1mL 2、敌害生物对微藻培养的危害作用主要有_D___。 A:掠食 B:通过分泌有害物质对微藻起抑制和毒害作用 C:竞争营养盐 D: A+B 3、土池培养浮游动物饵料时,采用施放___C______肥料培育浮游植物较佳。 A:无机肥B:有机肥C:无机肥+有机肥D:粪肥 4、红螺菌科光合细菌的获能方式有__D__。 A:光合磷酸化B:氧化磷酸化 C:呼吸作用D: A+B+C 5、用藻类二次强化培养轮虫所需的时间一般至少要在_A___以上。 A:6-12小时B:24-36小时 C:36-48小时D:1-3小时 6、分布于咸水中的枝角类是__A__。 A:蒙古裸腹溞 B:大型溞 C:多刺裸腹溞 D:鸟喙尖头溞 7、在轮虫培养过程中,若以酵母为饵料进行培养,则适宜的轮虫接种量是_C___。 A:0.1个/ml~0.5个/ml B:1个/ml C:14个/ml~70个/ml D:200个/ ml 8、采用酒精对皮肤和器皿表面进行消毒时,常采用的浓度是___C______。 A: 40-45‰B: 60-65‰C: 70-75‰D:80-85‰ 9、在下列藻类中,最佳培养条件为高温、强光和强碱性的是__A__。 A:极大螺旋藻 B:湛江等鞭金藻 C:中肋骨条藻 D:小球藻 10、生产上螺旋藻的培养方式是_A___。

光合细菌的培养操作教程

光合细菌的培养操作教程 1、配制光合细菌菌液: (1)配制比例: 光合细菌培养基、清水、菌种的配制比例为:0.5:80:20。 示例1:0.5公斤(500克)培养基+ 80升水+ 20升菌种(接种),配成100升的光合细菌菌液。 示例2(少量培养):0.05公斤(50克)培养基+ 8升水+ 2升菌种(接种),配成10升的光合细菌菌液。 (2)配制方法: 下面以配制100升光合细菌菌液为例来说明配制方法: ①溶化培养基:取培养基0.5公斤(500克),用少量水溶化(可以用50℃左右的热水,溶化培养基的速度会快些),搅拌均匀,然后倒入一个容量在100升以上的容器中; ②配制培养液:往容器中加水到80升,80升培养液配制完成; ③接种:再加入20升菌种,并搅匀,100升菌液配制完成;

④装瓶(袋):将配制好的菌液装入干净的透明容器(瓶、壶、塑料袋等),容器中留5%的空气在里面,密封待用。 菌液配制说明及注意事项: a. 以上各成分的数量是以配制100升菌液为例来说明配制方法的,如配制其他数量的光合细菌菌液,各成分数量按比例增减即可; b. 培养用水源的选择: 一般含杂菌较低的清洁淡水、海水或加粗食盐的淡水都可以,如井水、河水、自来水、蒸馏水和纯净水等,甚至干净的池塘水也行。 从经济、实用的角度考虑,地下水(如井水)含杂菌低,是最理想的培养水源; 清洁的地表水也可使用,如河水、池塘水等; 含氯量较高的自来水应敞口放置两天或调PH值至偏碱后使用; 蒸馏水及纯净水固然很好,但成本太高,可用于提纯菌种; c. 培养用容器的选择: 必须为透明容器并清洗干净,透明的容器可让光合细菌最大限度的吸收到充分的光线,少量培养如饮料瓶、食用油壶等,规模培养如透明塑料桶、透明塑料袋等。 d. 菌种的接种量: 一般接种量为20-50%,即培养液与菌种的比例为4:1(4升培养液加1升菌种)到1:1(1升培养液加1升菌种),接种量最低不能低于20%。 接种量越高,光合细菌菌种越容易形成优势菌群而抑制其他杂菌生长,培养速度快,且培养成熟的浓度更高。但产出效率也越低,光合细菌易老化。 接种量越低,培养产出效率越高,但如果低于20%的接种量,光合细菌不容易形成优势菌群,培养初期易染杂菌,培养的成功率低。 我们推荐的接种量为20%,如果用太阳光培养,推荐的接种量为25-40%。

光合细菌不同属类的分离培养

光合细菌的分离培养 光合细菌(Photosynthetic Bacteria,略作PSB)是一大类能进行光合作用的原核生物的总称。除蓝细菌外,都能在厌氧光照条件下进行不产氧的光合作用。研究与应用的实践表明,光合细菌在高浓度有机废水处理与资源化、水产养殖的水质调控与促进健康生长、在农业生产中作为高效活性菌肥等方面,发挥着十分有益的和令人瞩目的作用。关于光合细菌的类群、形态与生理特征、在生态系统中的地位和作用等内容,请参考有关文献与专著。这里仅就光合细菌的分离、培养方法作一介绍。 1光合细菌的富集培养的一般方法 ①分离源 光合细菌四个科-红螺菌科(Rhodospirillaceae)、着色菌科(Chromatiaceae)、绿菌科(Chlorobiaceae)、绿色丝状菌科(Chloroflexaceae)的各种菌,广泛分布于地球生物圈的各处。作为光合细菌的分离源,一般可从富营养化的湖泊、池沼、海滩、以及水田、硫黄泉、灌水土壤、和污水厂活性污泥、畜牧场水沟等厌氧或缺氧环境采样。在较深的水体,可使用采水器采取厌氧层的水。在较浅的地方,可直接用吸管吸取带底泥的水。采样的同时记录水温、pH、有无H2S气味等项内容。将采集到的水样或泥样放在厌氧、低温条件下,带回实验室进行分离。 ②光合细菌富集培养基 用于光合细菌富集培养用的培养基有许多配方,这里仅介绍日本星野氏推荐的基本培养基I和基本培养基II。前者适合于红螺菌科的光合细菌,后者适用于着色菌科和绿菌科的菌。 基本培养基I: KH2PO4 0.5g K2HPO4 0.6g (NH4)2SO4 1.0g MgSO4·7H2O 0.2g NaCl 0.2g CaCl2·2H2O 0.05g酵母浸出汁 0.1g微量元素溶液(见后)1mL 生长因子溶液(见后)1mL蒸馏水1000ml以上配制成的培养基pH值约6.7 根据需要,可在上述培养基中添加一些成分,如富集的是缺少同化型硫酸还原系的菌种,则可在基本培养基I中加入0.01%硫代硫酸钠;如是海洋

水产养殖中的主要安全危害及其来源

水产养殖中的主要安全危害及其来源 一、化学危害 1. 渔用药品和农药 杀虫剂、杀菌剂、杀藻剂、除草剂、消毒剂、防腐剂和抗氧化剂等污染水体后,可在养殖水产品中富集。可以富集的化学物质至少具备3个特性:不溶于水;在食物链的生物体内稳定存在;对生物体的毒性较低。这些特性使化学物质在食物链中不会断裂并形成逐级积累。一些很难代谢分解并直接排出生物体的化学物质,其富集作用的危害是不能低估的[1]。 2. 抗菌药 水产养殖业中越来越多地使用兽用或渔用抗菌药,它们的残留对人体健康的影响已受到人们的关注。作为治疗剂抗菌药(包括抗菌素)在水产养殖业中使用会对水环境产生潜在的影响,同时也会对人类健康产生潜在危害。 3. 激素 我国是大规模使用催产剂对鱼类进行人工繁殖的国家。近些年来,大量的团头鲂、异育银鲫、彭泽鲫、鲤鱼、鳜鱼、黄颡鱼在催产以后直接作食用鱼在市场上出售。也有用避孕药喂养黄鳝的报道。为了获得全雄或全雌鱼,用激素进行性转变,常用的有己烯雌酚、甲基睾酮、去甲睾酮等。食品中激素类药物残留会使正常人的生理功能发生紊乱,使儿童患肥胖症或性早熟。水产品中激素残留的潜在危害需要进一步研究。 4. 重金属与有害元素 水是一种高效溶剂,源于自然界和人类活动的大量化学物质都会溶入水中,其中重金属对水产养殖动物的毒性一般以汞最大,银、铜、镉、铅、锌次之。从食品安全考虑,重金属对人类健康危害是很大的。重金属污染以镉(Cd)最为严重,其次是汞(Hg)、铅(Pb)和非金属砷(As)。在水产养殖产品中主要有:镉、汞、铅、砷和酚类物质的残留。 5. 环境激素污染物 环境激素污染物是特指具有干扰人类和其他动物内分泌、免疫和神经系统的有毒污染物。2001年5月22日,在瑞典斯德哥尔摩,中国及其他90个国家的环境部长签署了与难降解有机物相关的控制公约,规定禁止或限制使用12种有机物:艾氏剂、氯丹、狄氏剂、异狄氏剂、七氯、毒杀酚、灭蚊灵、滴滴涕、六氯苯、多氯联苯、多氯二苯并对二噁英和多氯二苯并呋喃。前8种属农药类;后4种为工业副产物和燃烧产物。这12种物质在环境中不易降解,不仅破坏生态环境,而且干扰人类和其他动物的内分泌系统,影响生育能力,均属于环境激素类污染物。 二、生物危害 1. 寄生虫类 寄生虫类的生物危害主要包括吸虫、绦虫、线虫等,它一般以螺类、鱼类或甲壳类作为中间寄主,并以人和一些哺乳动物是它的最终寄主,并引起人类疾病。 2. 细菌 病原菌对养殖产品的污染程度取决于环境以及养殖水体中细菌的种类,引起水产品污染的细菌主要有2大类:本地区微生物区系;由环境污染所带来的细菌。主要种类有嗜水气单胞菌、肉毒杆菌、副溶血弧菌、霍乱弧菌、沙门氏菌、贺氏菌、大肠杆菌等。 3. 病毒 病毒是一类体积微小、能通过滤菌器,只能在活细胞内生长增殖的非细胞形态的微生物。病毒对水产动物造成的危害很大,目前已确定的病毒性疾病至少在23种以上,如草鱼出血病、对虾杆状病毒病、三角帆蚌瘟病等。病毒只对特定动物的特定细胞产生感染作用。 因此,食品安全只需考虑对人类有致病作用的病毒。很少量的病毒就可致人生病。病毒

光合细菌培养参数的研究

光合细菌PS3培养参数的研究 摘要:为有效提高光合细菌邢3在工厂化生产中的生物量,对其主要培养参数进行了系统的研究。所涉及的培养参数包括:光源、光照度、溶解氧、培养基pH、盐度、接种浓度等。结果表明:PS3在厌氧条件下生长较好,而其最适接种浓度、光照度、光源、pH及盐度分别为10%、4以刃h(钨丝灯)、6.5一7.0、5。 关键词:光合细菌;培养参数 ThestudyoncultivatingParametersofPhotosyntheticbacteria PS3 光合细菌(photosyntheticbacteria)广泛分布提供质优价廉的产品,本实验对光合细菌PS3培养 于淡水、海水、极地或温泉(包括高热水体)以的主要参数进行了较系统的观察和研究,现将实验 及高盐、高有机质含量等不同的生态环境中,是一情况总结如下。 类行不产氧光合作用、具有复杂代谢功能的微生 花”上石草.:二二或二议一二二几二”公二二万二1材料与方法物,它能利用多种基质,可营异养、自养或兼性营一’,‘,’‘’‘’一 养;存在着好氧、厌氧和兼性厌氧类型[l]。光合1.1菌株 细菌在维持自然界的生态平衡、废污水的处理等方试验菌株PS3由中国水产科学研究院南海水产 面有着重要作用,同时光合细菌作为单细胞生物可研究所饲料与健康养殖开发中心富集、分离。 以从中获得较丰富的单细胞蛋白,其广泛应用于农1.2实验方法 牧渔业尤其在水产养殖中的应用更为广泛〔,一3〕。为本实验所采用的培养条件是不同光源和光照 生产更好的优质菌液,促进工厂化生产,为养殖业度、溶解氧、培养基pH值、盐度、接种浓度。试 收稿日期: 资助项目: 作者简介: 通讯作者: 2以」6切刀3;修回日期:2〕拓刀8一17 广东省重大科技兴渔项目(B200201A01);国家“十五”科技攻关计划专题(2004BA526BO202) 洪敏娜(1980一),女,技术员,从事水产微生态制剂的研究与开发。E一mail:hmnIgso@163.。。m 杨莺莺,E~mail:”y402@https://www.doczj.com/doc/921647804.html,南方水产第2卷 -今-荧光灯(1500lx)fiuorescent 一.一钨丝灯(600lx)tungsten -查-钨丝灯(1500lx)tUngsten -片-钨丝灯Q700lx)tungsten -喂卜-钨丝灯(4000lx)tungsten 叫.-自然光(50000~70000lx)naturallighting

光合细菌的培养及应用技术

光合细菌的培养及应用技术 1 引言 光合细菌(photosynthetic bacteria,简称PSB)是一群能在厌氧光照或好氧黑暗条件下利用有机物作供氧体兼碳源,进行不放氧光合作用的细菌,广泛分布于水田、湖沼、江河、海洋、活性污泥和土壤中,依据《伯杰细菌鉴定手册》(第九版)可分为6 个类群,27 个属。不产氧光合作用的红螺菌目分为紫细菌(purple bacteria)、绿细菌(Greenbacteria)和日光杆菌属(Heliobacteria)、红色杆菌属(Erybrobacter)。其中紫细菌中包含有红螺菌科(Rhodolspirillaceae)、着色菌科(Chromatiaceae)、外硫红螺菌科(Eceothiorhodospiraceae),包含16属49种。其中在生产上有意义的红螺菌科包括红螺菌属、红假单胞菌属和红微菌属[1]。PSB 均为革兰氏阴性细菌,一般为球型、卵形、杆形、弧形、螺旋形、环形、半环形丝形,也可随培养条件和生长阶段而改变,大部分单个存在。PSB的一般菌体组成及营养成分见表1[2].表1 光合细菌菌体的组成与小球藻等比较Tab. 1 Components comparison betweenphotosynthetic bacteria and ChlorellaP S B 含有较高的优良蛋白质,粗蛋白含量为 65.45%,含有17 种氨基酸而且消化率较高;粗脂肪约7%;可溶性糖类约20%;粗纤维约3%[1];维生素B12 含量是酵母的200 倍、小球藻的4 倍[2],生物素含量也比较丰富;菌体的脂类成份含有大量的叶绿素、类胡萝卜素和辅酶Q(泛醌),迄今已从PSB中分离出80 种以上的类胡萝卜素。叶绿素和类胡萝卜素对养殖生物的健康生长,增强对疾病的抵抗力有很大的益处。辅酶Q4 是与生命活动有重大关系的生理活性物质,PSB 中的含量特高,是酵母的13 倍。以上特点决定了PSB 可做为畜禽、鱼虾的饲料。但PSB 中缺乏ω3 系列20 碳以上的高度不饱和脂肪酸,单独作为仔鱼的初期饵料时,需与其它富含高度不饱和脂肪酸的饵料同时使用。 2 光合细菌的培养 水产养殖市场对PSB 活体菌种的需求缺口很大,为了满足水产养殖对PSB 活体菌种的需求,PSB的生产方法有很多,但是到目前为止,还没有进行产业化生产PSB的报道。冯云等[3]用50L的塑料桶来厌氧培养PSB,使培养密度达到2.1 × 109 个/ml;杨绍斌[4]在塑料大棚内建大小2000~5000L 的水池使其厌氧发酵富集扩大培养,培养液中含PSB 活菌数可达5 × 106 个/毫升;鄂春宇[5]用塑料薄膜袋培养PSB,培养密度达到2.5~3×105个/ml,12个月生产50 多吨,但是在PSB的密度检测时,很容易染菌。由中科院开发的PSB 大规模生产工艺,产品含菌量达到5 × 1010个/毫升,保质期3 个月以上,并可根据客户要求,设计和建设不同规模的生产线[6]。 2.1 菌种 菌种可从采集的池塘底泥或海水中重复富集、分离纯化获得.若用保存下来的菌种,在培养前必须提纯复壮,才能有效地进行扩大培养。光合细菌的生产需要采用优良菌种,要求菌种活性高,菌液中菌体分布均匀、无下沉现象,目前养殖中使用的PSB多为红螺菌科和一部分着色菌科的复合菌株[7]。 2.2 培养基及培养条件 PSB 培养中除碳、氮、磷等主要营养元素外,还需要一定量的镁、钙、钠和有关的微量元素,将所需的营养元素按一定的比例配成适于菌体生长繁殖的培养基。本实验室采用酵母膏、蛋白胨培养基,基本配方为:CaCL2 0.3g,MgSO4·7H2O0.5g,酵母膏3g,蛋白胨3g,蒸馏水1000ml,pH: 6.8. 如需制固体培养基再加2%琼脂。培养温度:25℃~30℃最佳,光照强度:2000LX~5000LX,PH:7.5~8.5 最佳。

水产养殖中硫化氢的危害及处理

在日常养殖中,我们经常需要检测硫化氢,那么什么才是硫化氢?对养殖有哪些危害?如何处理呢? 下面我们简单的聊聊 首先,硫化氢的来源,在缺氧条件下,含硫的有机物经厌氧细菌分解而产生;在富硫酸盐的池水中,经硫酸盐还原细菌的作用,使硫酸盐转化成硫化物,在缺氧条件下进一步生成硫化氢。 硫化物和硫化氢均具毒性。硫化氢有臭蛋味,具刺激、麻醉作用。硫化氢在有氧条件下很不稳定,可通过化学或微生物作用转化为硫酸盐。在底层水中有一定量的活性铁,可被转化为无毒的硫或硫化铁。 硫化氢对鱼类的毒害作用 水体中的硫化氢通过鱼鳃表面和粘膜可很快被吸收,与组织中的钠离子结合形成具有强烈刺激作用的硫化钠,并还可与细胞色素氧化酶中的铁相结合,使血红素量减少,因而影响鱼类呼吸,为此H2S对鱼类具有较强毒性,检测水中的硫化氢可以使用奥克丹水产养殖水质检测仪。在养殖水体中硫化氢含量达0.1毫克/升就可影响幼鱼的生存和生长,当达到6.3毫克/升时可使鲤鱼全部死亡。中毒鱼类的主要症状为鳃呈紫红色,鳃盖、胸鳍张开、鱼体失去光泽,漂浮在水面上。 (三)控制硫化氢具体措施: 提高水中含氧量。严重的鱼池可每亩泼洒300毫升~500毫升双氧水;使用氧化铁剂每亩放入一定量的铁屑。 硫化氢一般是在缺氧条件下,含硫的有机物经厌氧细菌分解而产生的,因为水体中的硫化氢通过呼吸系统表面和粘膜可很快被吸收,与组织中的钠离子结合形成具有强烈刺激作用的硫化钠,并还可与细胞色素氧化酶中的铁相结合,使血红素量减少,因而影响呼吸,为此H2S对小龙虾具有较强毒性,在养殖水体中硫化氢含量达0.1mg/L就可影响幼小龙虾的生存和生长。奥克丹水产养殖水质检测仪可以快速准确检测硫化氢,氨氮,亚硝酸盐等常规理化指标。 解决方法:提高水中含氧量。严重的鱼池可每亩泼洒300毫升~500毫升双氧水;使用氧化铁剂每亩放入一定量的铁屑。

光合细菌培养基

红螺菌培养基: 1、富集培养基: 经典的紫色非硫细菌(红螺菌)的富集培养基的配方为:NH4Cl:0.1g;NaHCO3:0.1g;K2HPO4:0.02g;CH3COONa:0.1~0.5g;MgSO4·7H2O:0.02g;NaCl:0.05~0.2g;生长因子1ml,蒸馏水97ml,微量元素溶液 1ml,pH为7.0。 其中,①5%NaHCO 3 水溶液,过滤除菌取2m1加入无菌培养基中。②生长因子:维生素B10.001mg、乙尼克丁酸0.1mg、对氨基苯甲酸0.1mg、生物素0.001mg,以上药品溶于蒸馏水中,定容至10ml,然后过滤除菌。③ 微量元素溶液:FeCl 3·6H 2 O :5mg;CuS0 4 ·5H 2 O:0.05mg;H 3 BO 4 lmg; MnCl 2·4H 2 O:0.05mg;ZnSO 4 ·7H 2 O:1mg;Co(NO 3 ) 2 ·6H 2 O: 0.5mg。以上药 品分别溶于蒸馏水中,并定容至1000m1。 除①、②、③外,各成分溶解后100 Pa灭菌20min。然后分别加入①、 ②、③,如加入0.1%~0.3%的蛋白胨则能促进该菌生长。 2、分离培养基: 传统的红螺科分离培养基的配方为:NH 4Cl:0.1g; MgCl 2 :0.02g;酵 母膏:0.01g; K 2HPO 4 :0.05g; NaCl: 0.2g;琼脂2g,蒸馏水90ml。 100Pa灭菌20min。 灭菌后,无菌操作加入经过滤除菌的0.5g/5mlNaHCO 3 ,再无菌加入过 滤除菌的0.1g或0.1mlNa 2S·9H 2 O(降低培养基的氧化还原值),最后再加 入5ml经过滤除菌的乙醇、戊醇或4%丙氨酸。用过滤灭菌的0.1mol/H 3PO 3 调pH至7.0。 摘自百度知道。 筛选富集培养基为: NH4Cl 1g/L, NaHCO3 1g/L, CH3COONa 3g/L, KH2PO4 0.3g/L, MgSO4 0.1g/L, 酵母膏0.5g/L, 微量元素母液1g, 自然pH值。扩大培养培养基以海水代替微量元素母液。1000~4000lx光照, (30±2)℃恒温培养。 参考文献:固定化海洋光合细菌处理生活污水的研究* 黄宝兴,李兰生,赵亮,张微,唐迎迎海洋湖沼通报 基础培养基:NH4Cl:1g; Na2HPO4: 0.5g; MgSO4: 0.2g; NaCl: 2g; NaHCO3: 5g; 酵母膏:2g ; 乙醇2ml,用0.1N H3PO4调至pH7.0。 划线培养基:采用固体琼脂培养基,即在基础培养基的基础上添加1.0%的琼脂。 以上培养基初始pH值均用H3PO4调至7.0,经121℃灭菌30分钟,NaHCO3过滤除 菌后加入。培养条件:光照培养箱温度控制在30℃、光照强度控制在3000uE.m-2s-1培养。光合细菌是一种兼性嫌气细菌,需要深层培养或在真空干燥器内达到嫌气或半嫌气状态,一般将混合菌放入培养液中先富集再分离。具体方法:将混合菌装入10ml试管中,加入培养

光合细菌的优化培养和生长动力学

光合细菌的优化培养和生长动力学 摘要:对光合细菌(PSB)培养的最适温度、光照、pH、溶解氧等条件进行了较系统的研究.通过正交试验,得出PSB生长的 最适条件为光照度3000 lx、微好氧、30℃、pH 7.0.在此基础上,建立了PSB在模拟味精废水条件下以乙酸钠为底物的生长 动力学模型,其参数为:饱和常数Ks=0.20-0.24 g·L-1,最大比生长速率Lmax=0.038-0.044 h-1,试验表明该模型能够较 好地描述PSB的生长情况. 关键词:光合细菌;正交试验;优化培养;动力学模型 Optimal cultivation and growth kinetics of photosynthetic bacteria Abstract: This paper gives a detail study on the optimal growth conditions of temperature, illumination, pH and dissolved oxygen for photosynthetic bacteria. With the orthogonal experiment, the optimal culture conditions for the growth of photosynthetic bacteria were determined: illumination intensity 3000 lx, faintly aerobic, 30℃, pH 7.0. Under the optimal cultivation and the simulated monosodium-glutmate wastewater conditions, a kinetics model on the growth of photosynthetic bacteria in the substrate of CH3COONa was set up. The parameters in the model are as follows: the saturation constantKs0. 20-0.24 g·L-1and the maximum specific growth rateLmax0.038-0.044 h-1. The experiment results showed that this model could describe the growth data of PSB very well. Key words: photosynthetic bacteria; orthogonal experiment; optimal cultivation; kinetics model 光合细菌(photosynthetic bacteria,简称PSB)是自然界中广泛存在,比较古老的细菌类群,是一大类能 进行光合作用的原核生物的总称[1].近年来,随着人们对PSB形态、结构、生理生化以及生态等特性研究 和认识的不断深入,发现PSB,特别是其中的红螺菌科能利用多种硫化物或有机物作为其光合作用的供氢 体和碳源,在厌氧光照、好氧光照、甚至好氧黑暗环境中都能很好地增殖,且能耐受很高盐度和浓度的有机 物,具有很强的分解、去除有机物的能力,显示其在高浓度、高盐度有机废水处理中的独特优势和广阔应用 前景,成为废水处理技术研究的一个新方向[2].同时,因其菌体富含蛋白质和胡萝卜素,可作为单细胞蛋白 应用于种植业、养畜业和渔业以及作为各种食用色素[3-5].PSB的上述特点,吸引着人们对其进行发掘、研 究和商品化生产.研究PSB的优化培养条件和生长动力学,对其规模化生产和资源化开发利用

相关主题
文本预览
相关文档 最新文档