当前位置:文档之家› 页岩储层微地震多元数据裂缝建模与产能预测技术

页岩储层微地震多元数据裂缝建模与产能预测技术

页岩储层微地震多元数据裂缝建模与产能预测技术
页岩储层微地震多元数据裂缝建模与产能预测技术

分析砌体结构物在地震中产生裂缝的原因

分析砌体结构物在地震中产生裂缝的原因 摘要:建筑物墙体在地震作用下产生裂缝是一个普遍存在的实际问题,文章对地震作用下墙体产生裂缝的进行分析,并针对一些具体情况提出了相关处理措施。 关键词:地震作用;裂缝;建议 近年来,世界已进入多地震活跃期,地震活动非常频繁。这些大地震不仅造成了巨大的人员伤亡,同时还造成了大量的建筑物的破坏,给人类社会带来了巨大的损失,同时破坏了人类赖以生存的环境。工程结构物在地震中的破坏是造成人民财产安全损失的主要原因,所以,对于如何做好建筑物的抗震设计,是防止灾害的有效途径。首先,我们要正确了解建筑物在地震下的受力状态,只有正确的分析结构物的受力状态,才能最大的减少建筑物在地震中所受的损害。其次,就是通过构造上的措施来提高建筑物的抗震性能。文章通过基本力学知识分析房屋在地震作用下墙体裂缝产生的原因,及在裂缝危害不大的情况下,如何进行加固处理。 1地震中常见的裂缝 对于地震中的多数建筑物,由于受到地震波的影响,都受到不同程度的损坏,尤其是未经抗震设防的砌体结构,其破坏最为严重,这是由于砌体结构主要是由黏土砖、砌块等通过砂浆砌筑而成承重墙和各种混凝土楼面板组成,其墙体材料为脆性,整体性能较差,抗震性能较差,故砌体结构中往往在地震中最先发生破坏,产生斜裂缝,同时在地震反复作用下,形成交叉裂,最终导致破坏。 1.1墙体的破坏 由于在地震水平力的作用下,墙体是主要的抗侧力构件,当其体内的主拉应力超过极限应力时,就会产生裂缝,通过大量的现场资料观察分析,在高宽比较小的横墙上,中部容易出现水平的剪切裂缝,这种裂缝的产生往往底层比上层更为严重。在纵墙上,交叉裂缝出现在窗间墙,当房屋墙体达到极限强度后,随着水平力的继续作用,将会导致墙体的原地塌落。墙体的水平裂缝主要出现在纵墙的窗口上截面。 1.2墙角处的破坏 对于房屋的墙角,主要包括房屋的四角和部分凸出阳角的墙面,易出现纵横两个方向的V形斜裂缝,严重者该部分墙体发生倒塌。 1.3纵横墙连接处的破坏 纵横墙连接处的破环通常在底层表现明显,其他楼层基本无破坏。连接处的

地震储层预测技术

地震储层预测技术 3.地震储层预测技术 地震储层预测是以高分辨率地震和测井资料为基础,以地质与钻井资料为参考,波阻抗反演和属性分析为主要技术来进行的,因此,波阻抗反演的效果和属性参数的运用成为储层预测的关键。 3.1 波阻抗反演 基于自激自收的地震褶积模型,声波阻抗己成为储层预测的关键参数。近年来波阻抗反演技术发展十分迅速,各种商业化波阻抗反演软件己有几‘十种,但目前国内比较流行的反演软件也就10种左右,如Jason反演,ISRS反演等。叠后波阻抗反演可以分为递推直接反演和迭代约束反演两大类,以迭代反演为主流发展方向。在生产中也用得较为普遍。迭代波阻抗反演的关键技术组成有地震子波提取、地质模型建立和反演的优化算法等,而模型的建立和优化算法往往依赖于资料的品质和地质特征,对于不同的地震地质条件可能有不同的最佳反演优化算法。目前应用于波阻抗反演的主要算法有全局优化反演技术,随机逆反演,稀疏脉冲谱技术等。近年来发展了模拟退火和遗传算法,在特定的地质和地震数据下效果非常明显。

尽管有了测井资料的约束和地质资料的参考,但是波阻抗反演的多解性还是非常普遍,这是由于测井资料的辐射半径过小和介质横向变化所造成的。解决预测精度和多解性问题需要有多学科综合应用的知识。特别是将层序地层学理论和波阻抗反演联合起来将会大大提高预测质量,这也是今后声波阻抗反演的一个主要方向。 与叠后声波阻抗形成对比的是叠前弹性波阻抗反演。Connolly(l999)基于Zoepprittz公式和声波阻抗的原理,建立了弹性波阻抗反演技术,其处理模式与AVO类似,均在叠前CMP道集上完成。Whitcombe等(2002)对弹性波阻抗进行了修正,提出了扩展弹性波阻抗的概念,在此基础上建立了流体识别与预测因子,对于油气储层的预测和流体性质有很好的描述。王保丽等从Gray公式出发,通过弹性波阻抗反演原理,直接从地震数据中提取拉梅常数等弹性参数,更适合于流体预测。马劲风研究了广义弹性波阻抗反演理论与算法。王仰华等则提出了射线波阻抗的概念,在实现上更加容易。与常规波阻抗反演相此,弹性波阻抗能更确切地反映出地层岩性的变化,消除了由于叠加过程中的平均效应而损失的岩性信息,更适合于储层描述和油气预测,近年来的应用趋势有所上升。 3.2地震属性分析 地震属性技术是储层预测的重要手段。目前,包括时间、振幅、频率、相位和吸收衰减等方面的地震属性已多达60多种。加上几何方面、统计

断层、裂缝识别属性

断层、裂缝识别属性 地震相干、倾角和方位角 相干体技术是通过三维数据体来比较局部地震波形、相位的相似性。当地层岩性、特征等地质因素横向发生变化时,必然导致地震波发生变化,从而进一步引起地震波的各种属性变化。反之,作为一种属性应用,地震波横向变化时,根据地震道相干性计算的数值必然发生变化,且变化敏感,相干值低的点与地质不连续性(如断层、地层、特殊岩性体边界)密切相关。因此,相干体切片包含了断层、微断裂的信息,它可直观地显示微断裂的相对发育程度。通常,长度较大的线状或大曲率半经的曲线为断层的显示,长度较短的则为微断裂的显示,微断裂的显示越密集,则预示微断裂越发育。 层倾角和方位角图也有类似的功能,只是各有所长。图片上较长的线性条带显示,一般也是断层的体现,其中短促的线性条带通常是微断裂的体现;而断层之间,方位角的线状或大小(色彩)变化现象则体现了裂缝的发育状况,通常线状显示越密集、色彩越丰富,则预示裂缝越发育。通过地震相干、倾角和方位角的叠合显示,可更加清晰地描述地质体产状的细微变化,有利于分析构造的变形程度和裂缝的发育程度,从而有助于分析储层物性的相对优劣。 SMT中该类属性应用 SMT中所有高级属性都集成在一个模块RSA中,因此要计算该类属性首先从project中找到RSA模块,打开进入属性选取窗口。 RSA模块中相干属性名称为Similarity,这里翻译过来实际上是相似性,意为相似性越差,越不相干,反映横向的不连续性,指示断层、裂缝或者特殊岩性体的存在;相似性越好,越相干,反映横向上地层具有连续性。在实际应用中利用该属性silimarity来检测尺度较大的断层,当然有时候也对小断层有用。 在similarity属性下方为silimarity variance,翻译为相似性的方差。数学上,方差是各个数据与平均数之差的平方的平均数。通俗点讲,就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)。在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。应用到相似性计算时,也就是某三维空间内各样点之间相似性偏离该空间内平均相似性的程度大小。这种属性对小尺度的不连续性很敏感,可以用来检测小断层、裂缝的存在。

薄互层储层预测方法

第43卷第1期2004年1月 石 油 物 探 GEOPHYSICAL PROSPECTIN G FOR PETROL EUM Vol.43,No.1 Jan.,2004 文章编号:100021441(2004)0120033204 薄互层储层预测方法 陈守田1,2,孟宪禄2 (1.石油大学盆地与油藏研究中心,北京102249;2.大庆石油管理局物探公司,黑龙江大庆 163357) 摘要:针对松辽盆地葡萄花油层三角洲沉积薄互层储层的特点,研究不同微相的砂岩与测井特征、地震属性的关系,探讨利用沉积微相、波形特征定性预测砂岩储层发育带的技术。利用地震属性预测技术定量预测储层厚度结果表明,本区整个油层砂岩总厚度与地震属性有很高的相关度,厚砂层的预测符合率较高。 关键词:储层预测;薄互层;沉积微相;地震属性;相关度;波形特征 中图分类号:P631.4 文献标识码:A 松辽盆地中白垩统姚一段沉积时期,盆地古地势平坦,形成的沉积层角度非常低平。随着湖盆整体抬升,湖盆快速收缩,河流—三角洲快速推进,沿长垣向南及东西两侧的三肇凹陷和古龙凹陷分流,由大庆至肇州一带姚一段沉积厚度由60m减薄至不足20m,形成面积巨大的扇型三角洲储集砂体[1]。研究区位于三肇凹陷的卫星地区,处在葡萄花油层河流—三角洲沉积体三角洲平原向三角洲前缘过渡的相带区,主要针对该沉积体系的葡萄花油层开展储层预测研究工作。各井取心显示,葡萄花油层内部含钙质比较普遍。钙质生成于浅水湖湾、封闭沼泽长期蒸发浓缩的环境及枯水期的河道,是三角洲浅水环境中沉积常见矿物。含钙层泥岩形成于封闭的浅水中,含钙层砂岩形成于河道砂体沉积过程的枯水期或干旱期。中、下部泥岩颜色多为灰绿色、棕灰色夹紫红色薄层,中部紫红色多于下部,代表了由三角洲外前缘至三角洲内前缘湖退反旋回沉积过程,沉积环境水体浅,暴露时间增加,泥岩红色和浅色增多。钙质在泥岩层、砂岩层和过渡岩层普遍发育。 1 高钙质薄互层岩石电性、物理特征分析 区内探井在多数葡萄花油层有不同程度取心,为分析研究提供了详细的资料。我们采用描述详尽、资料全面的取心资料井作为“标准井”,如卫10井和卫11井,利用岩心描述、自然电位和双侧向测井曲线,分析沉积结构和岩石成分,建立岩石与电性、地球物理特征关系。 整体上看,油层表现较低的声波时差值,有别于油层顶底湖相泥岩,其原因就是油层的泥岩不纯,普遍含砂含钙质。 钙质胶结层在声波时差曲线上为低值“尖峰”(高速层,一般速度3800~4000m/s),在电阻率曲线上对立高电阻“尖峰”(大于15Ω?m),在SP 曲线上为低值异常。钙质砂岩具有低孔渗特点。 河道粉砂岩层在自然电位曲线上为较高幅度异常,幅度在8.5mV以上,通常呈钟形;电阻率曲线为高值,一般大于10Ω?m,形态有箱形、梯形和斜坡形,一般厚度3~5m;在声波时差曲线上高于平均值,低于纯泥岩层。钙质层和含钙层存在于河道砂层的顶底或者中间。 席状砂边滩砂层,一般厚度1~2m,在自然电位和电阻率曲线上呈刺刀状,因含钙泥较多,达30%~50%,分选差,孔隙低,声波时差与过渡岩性一致,整个油层中具有低声波时差和高阻值的特点。钙质胶结表现为较低的时差值。 过渡岩性是葡萄花油层的主力储层,电阻率中等偏低,为3~5Ω?m,个别高含砂层电阻率较高,但自然电位呈低幅度异常,厚度不一,1~5m均可见到。 2 砂岩储层预测的难点 2.1 葡萄花油层岩性组成 葡萄花油层是由不同速度、密度的钙质粉砂岩、过渡岩性、粉砂岩和泥岩组成,具有不同的波阻抗值,各岩性的速度大小见表1。 一个地震波形包含的属性信息是与之相对应 收稿日期:20030102;改回日期:20030405 作者简介:陈守田(1968—),男,高级工程师,博士,主要从事地震资料解释及石油地质综合研究工作。

基于分形理论的地震裂缝检测方法

第42卷第2期2003年6月 石油物探 GDOPlIYSI(:AI。PRfjSPDeTlNGF()RPETROI』EUM Vol_42.No. J1m.,2000 文章编号:10001441(2003)02019卜05 基于分形理论的地震裂缝检测方法 王兴建,曹俊兴,李学民,郑圻森 (成都理工大学“7由气藏地质及开发工程”国家重点实验室,四川成都610()59) 摘要:依据地震渡的动力学参数对裂缝的敏感性和裂缝的分形特征。以地震层位振幅数据为检测时象,基于图像处珲中的分形边缘检测技术,提出了分形理论的裂缝检测力法(多K度分形参数的地毯覆盖方法和分形压缩片法)。用计算机生成了MandeIbrot分彤集和TFS分形.并分别进行了椅测试验.效果显著。垃用多尺度分形参数和分形压缩2种方法对某油田的层位振幅数据进行了裂缝检测,检测结果清楚地反映了裂缝发育带的分布状况。 关键词:分形;裂缝检测;多R度分形参数;分形嘲像压缩;选代函数系统(IFs);子块;父块 中围分类号:TEi22.2+3文献标识码:A SeismicfracturedetectionbasedonfI.actaltheory WangXin由ian,CaoJunxing,I。iXuemin,ZhengQisen(StateKeyl.ah0foilandGasReservolrGeol。gyandExploitati。n,L’hengduUniver出yofTechnoIogy,f11cngdu61()059.China) Abstr扯t:AccordirlgtothesensItjvityofdyrmmicalparameterstofracture,t11efractalcharacterlstIcs。ffracture,arldbased onfractaledgedetectloninlm89eproccssirlg,thispape’presentstwofracluredetectionmethods:m州tl—s∞】ehc训parameter∞掣fcoveragemefhodandn口cfa】compressj。nmetbodTesfs。nda佃ofM柚de卜brotsetanditeratedfuncnonsystems(1FS)fractaIyidddesiredresults.Thctwonlemodshavebeenusedjnthr fracturedetectIononthcrcaldatafrom anoilfield.Thefracture_richzonesarereveaIedclearlv on出edetectionrP一‘ultH Keywor出:f“lctaI;fracturedeIcctEon;multi_scalefractaIparaIlleter;fracta【imagecompresslon;lteratedfuncti。nsy引ems;range bl()ck8;dormjnbIocks 自相似性是分形的本质特征之一,提取分形特征参数,是研究不规则物体的强有力的工具之一[1。,分形特征参数的变化,反映了物体自相似性的程度。基于图像处理的多尺度分形参数变化的目标检测方法,提出了多尺度分形参数的地毯覆盖裂缝检测方法。 分形理论应用到图像压缩是在1987年。1990年,美国数学家M.F.Bamsley的博士生AEJac—quin发表了一种基于方块划分的分形图像压缩方案,以寻找图像的局部自相似性实现全自动图像压缩编码,相应的算法为迭代函数系统和拼帖定理。该方法引起了广泛的注意,使分形图像压缩方法产生了质的飞跃口一。我们把分形图像压缩方法应用于裂缝检测,在局部分割的基础上,应用仿射变换后的父块与子块的相似程度来对裂缝进行检测‘3’“。 低渗透率地层中的裂缝可作为储集体或运移通道.对石油天然气开采有重要的意义,所以对于裂缝检测方法的研究显得尤为重要。理论上认为, 人工地震在各道对应层位上的振幅值是连续变化的,而如果有振幅异常.在排除其他干扰的情况下,则认为是地层属性的局部突变造成的”~一。分形理论应用于裂缝检测正是以此为检测依据。 我们以地震层位解释数据为基础,运用多尺度分形参数的地毯覆盖和分形图像压缩的裂缝检测方法,分别对地震层位振幅数据进行检测,找出层位的裂缝信息,提高地震层位的横向分辨率。 l方法原理 1.1多尺度分形参数的地毯覆盖裂缝检测多尺度分形参数的地毯覆盖即是面积度量维数,地震层位振幅数据可构成一个自然的纹理表面‘“。用厚为2£的地毯进行覆盖,则表面积可由 收稿日期:2003一0605;政回日期:2003一ol2l。 作者简介:王兴建(1974).男,顾士,现从事三维地震裂缝检测鹱其可视化方面的研究工作。 基盒项目:国家自然科学基金项目(49894190.401440l6j。 万方数据

储层预测中有关测井参数的分析及应用

第7卷第3期2010年6月   CHIN ESE J OURNAL OF EN GIN EERIN G GEOP H YSICS Vol 17,No 13 J une ,2010 文章编号:1672—7940(2010)03—0296—04doi :10.3969/j.issn.1672-7940.2010.03.006 储层预测中有关测井参数的分析及应用 曾 婷,桂志先,何加成,易寒婷,章雪松 (油气资源与勘探技术教育部重点实验室,长江大学地球物理与石油资源学院,湖北荆州434023) 作者简介:曾 婷(1985-),女,湖北天门人,硕士研究生,地球探测与信息技术专业,主要从事地震资料解释工作。E -mail : zt851129@https://www.doczj.com/doc/9216030478.html, 摘 要:根据研究区56口井,笔者对岩心、自然伽马、自然电位、声波时差、密度、中子等钻井、测井资料进行 多种统计和交会分析,研究速度、密度、波阻抗、孔隙度与深度、岩性,波阻抗与孔隙度等的关系,分析储层物性特征,并作相关交会图,建立规律关系式。经比较得出利用波阻抗进行下一步的反演工作会比较合理。根据砂岩孔隙度与波阻抗之间的函数关系,可以利用砂岩波阻抗估算砂岩孔隙度。为下一步储层预测研究提供良好的基础资料。 关键词:储层预测;岩性;波阻抗;孔隙度 中图分类号:P631文献标识码:A 收稿日期:2010-03-29 Analysis and Application of Logging Parameters in R eservoir Prediction Zeng Ting ,Gui Zhixian ,He Jiacheng ,Y i Hanting ,Zhang Xuesong (Key L aboratory of Ex ploration Technology f or Oil and Gas Resources (Yangtze Universit y ) Minist ry of Education ,J ingz hou H ubei 434023,China ) Abstract :This paper collect s various logging data of core ,nat ural gamma ,spo ntaneous po 2tential ,acoustic t ravel time ,density ,neut ron etc.and t ries to st udy t he relationship s of t he speed ,density ,wave impedance and porosity wit h t he dept h ,lit hology ,as well as t he relationship s between wave impedance and poro sity.Then it analyzes t he characteristics of t he reservoir forecast.Through comparison ,it is reasonable to go on wit h t he next inver 2sion task by using wave impedance.Based on t he relationship between sand porosity and wave impedance ,we can use t he sand wave impedance to estimate t he sand porosity.This st udy p rovides very good information for t he reservoir p redict research.K ey w ords :reservoir prediction ;lit hology ;wave impedance ;porosity 1 引 言 储层预测是综合地质、地震、测井、试井、分析化验等各种资料研究储集层的分布、岩性变化、厚 度变化、物性特征、所含流体、油气藏等等的一项 综合性研究课题[1]。其目标是发现有利储集体,提高勘探开发的整体效益。地层参数关系的分析是储层研究中一项非常关键的基础工作。在前人研究成果基础上,从本研究区特点出发,在储层预

从勘探领域变化看地震储层预测技术现状和发展趋势

从勘探领域变化看地震储层预测技术现状和发展趋势 摘要:地震储层预测就是以地震信息为主要依据,综合利用其他资料作为约束,对油气储层的品质参数,如几何特征、地质特性、油藏物理特性等,进行预测的 一门专项技术。随着非常规油气勘探技术的兴起,储层预测的内涵也得到了迅速 扩展,已从储层品质预测扩展到源岩品质和工程品质预测。前,地震储层预测技 术已经成为油气勘探生产中储层预测的主导技术之一,它能较好地根据不同勘探 生产阶段的不同需要,提供不同类型、不同精度的储层预测成果,为油气勘探生 产服务。基于此,在接下来的文章中,将对勘探领域变化背景下,地震储层预测 技术现状和发展趋势进行详细分析。 关键词:勘探领域;地震储层;预测技术 引言:地震储层预测是以高分辨率地震和测井资料为基础,以地质与钻井资 料为参考,波阻抗反演和属性分析为主要技术来进行的。因此,波阻抗反演的效 果和属性参数的运用成为储层预测的关键。为了更好的对其现状以及发展趋势进 行了解,在接下来的文章中,将基于勘探领域变化下,对其技术现状以及发展趋 势进行详细分析。 一、地震储层预测技术 (一)地震裂缝预测技术 裂缝预测技术的研究应用成为国内外储层及含油气预测的热门。裂缝是碳酸 盐岩、火山岩中重要的油气储集空间,也是大部分非常规油气的主要存储地方, 如页岩气、煤层气、致密砂岩气等主要以吸附和游离态储存在裂缝或孔隙中.岩 石性质、不同受力类型等因素决定了裂缝的成因、产状、密度、大小、宽度、方 向等呈现复杂多样性,这决定了裂缝预测的超难度和超复杂性。地震裂缝预测技 术的应用起步于计算岩石物理中等效介质理论的提出与应用。等效介质理论将实 验岩石物理模型微观的裂缝参数与地震波场表征的宏观介质性质有机的联系起来,在此基础上发展形成多种各向异性裂缝检测方法和技术,如多波多分量技术预测 裂缝、方位各向异性预测裂缝等.中石油将裂缝预测方法和技术的研究列为“十二五”物探技术研究主要方向之一。 (二)岩石物理分析技术 岩石物理分析技术的应用主要表现在理论岩石物理模型的实际应用、理论模 型与测井岩石物理分析的结合应用及测井岩石物理分析应用等三个方面。岩石物 理针对岩石机理的研究使其成为现今地震储层及油气预测技术发展应用的理论来源。近几年SEG每年都将岩石物理分析及应用作为专题进行讨论[1]。 二、地震储层预测技术现状 目前,由于地震技术储备跟不上勘探领域变化带来的技术需要,物探技术人 员总感到力不从心、疲于应付。地震储层预测技术的发展历程可以清晰证实这个 观点。早在二十世纪八十年代初期,勘探领域从构造转向岩性,地震勘探先后出 现了“亮点”和AVO技术、波阻抗反演技术、模式识别技术等,到了九十年代末岩 性目标的描述在地震领域已经是非常成熟的技术,此时地质上才逐步提出了岩性 地层勘探的理念。也就是说地震技术领先于勘探领域对技术的需求,所以物探人 员可以从容应对。随后在本世纪初又从波阻抗反演进一步延伸到叠前反演,岩性 地层勘探问题可以得到更好地解决。但是,近几年勘探目标很快转到了火山岩、 碳酸盐岩等复杂岩性,接着又转入了致密油气,甚至是页岩油气,勘探目标的快 速变化,使原来的地震储层预测技术的介质假设不适应勘探新领域的实际介质条

储层预测技术详解

4.1 LPM 储层预测技术 LPM 是斯伦贝谢公司GeoFrame 地震解释系统中最新推出的储层预测软件,利用地震属性体来指导储层参数(如砂岩厚度)在平面的展布,以此来实现储层参数的准确预测。 LPM 预测储层砂体可分两步进行:首先,它是将提取的地震属性特征参数与井孔处的砂岩厚度、有效厚度进行数据分析,将对储层预测起关键作用的地震属性特征参数优选出来,根据线性相关程度的大小,建立线性或非线性方程。线性方程的建立主要采用多元线性回归方法;非线性方程的建立主要采用神经网络方法;其次,根据建立的方程,利用网格化的地震属性体来指导储层参数(如砂岩厚度)在平面的成图。 设因变量y 与自变量x 1, x 2 ,…,x m 有线性关系,那么建立y 的m元线性回归模型: ξβββ++++=m m x x y 110 (4.1) 其中β0,β1,…,βm 为回归系数;ξ是遵从正态分布N(0,σ2)的随机误差。 在实际问题中,对y 与x 1, x 2 ,…,x m 作n 次观测,即x 1t , x 2t ,…,x mt ,即有: t mt m t t x x y ξβββ++++= 110 (4.2) 建立多元回归方程的基本方法是: (1)由观测值确定回归系数β0,β1,…,βm 的估计b 0,b 1, …,b m 得到y t 对x 1t ,x 2t ,…,x mt ;的线性回归方程: t mt m t t e x x y ++++=βββ 110 (4.3) 其中t y 表示t y 的估计;t e 是误差估计或称为残差。 (2)对回归效果进行统计检验。 (3)利用回归方程进行预报。 回归系数的最小二乘法估计 根据最小二乘法,要选择这样的回归系数b 0,b 1, …,b m 使 ∑∑∑===----=-==n t n t mt m t t t t n t t x b x b b y y y e Q 11211012 )()( (4.4) 达到极小。为此,将Q 分别对b 0,b 1, …,b m 求偏导数,并令 0=??b Q ,经化简整理可以得到b 0,b 1, …,b m ,必须满足下列正规方程组: ??? ????=+++=+++=+++my m mm m m y m m y m m S b S b S b S S b S b S b S S b S b S b S 22112222212111212111 (4.5)

混凝土重力坝的地震裂缝分析

混凝土重力坝的地震裂缝分析 1.介绍 由于地震的随机性质[1、2],混凝土大坝有可能受到强烈地震,可能超过他们纳入的范围。一旦混凝土重力大坝遭受强烈地震,他们可能维持裂缝。裂缝可以穿透这些庞然大物,整个大坝可能会碎成几块。当没有后续地震或只有轻微的地震发生时,分离前的滑块是可以预防的在破解网站现有的摩擦力,使紫坪铺水库大坝保持稳定。一旦受到强有力的地震,然而,紫坪铺水库大坝的稳定性被破坏。分离前块可能下滑,推翻,甚至崩溃。分离最高大楼倒塌后,水库大坝的阻挡水失败,造成巨大的生命和财产损失。如果一个工程在施工阶段注意细节,那么大部分现有的建筑可以持续的在地震情况下不受相当大的损害[1]。因此,研究行为地震波下的大坝破裂和有效的抗震措施是至关重要的。 数值和实验方法都表明,大坝一旦受损,他们不再是结构而成块分离的系统渗透裂缝(3 - 6)。这激励了无数研究人员最近关注大坝破裂的失效分析。koyna大坝的稳定,持续渗透裂纹,赛和克里希纳首先对摇摆进行了研究[7],他们假定渗透裂纹位于海拔下游坡突然改变了。进行了振动台试验[8]检查裂纹的过程发生和传播。维兰德也研究了分离的动态稳定一个拱坝混凝土块在分离时的动态稳定等。[9]和马拉et al。[10]。但是,解决动态接触裂纹网站已经成为一个主要的条件挑战的研究。处罚的方法是采用 增量位移约束方程(IDCE)模型[11]来模拟裂纹的接触条件。一个理论模型考虑瞬态水压力[12]变化沿拉伸地震混凝土裂缝发展;到有限元程序实现的模型分析混凝土重力坝的抗震结构稳定性。也称重力大坝可能接受开裂和滑动在上层部分的强烈地震时地面运动。通过这种方式,他们开发了简化计算过程[13]生成的建议,以及大坝安全指南需求,评估组件的残余滑动位移的断裂的混凝土重力坝。 然而,大多数研究都集中在确定损伤位置和分析了大坝的稳定性。也大多数文献关注的这些大坝的加固效果的评价没有一个初始裂纹。各种各样的钢筋本构模型在这些文献介绍了。为了解决采用的限制债券模型、分析模型来预测粘结滑移的影响没有引入了双节点[14]。一个修改埋置钢筋模型相结合的方法加强钢筋钢轻的分区方法。 本文实际project-JINANQIAO碾压混凝土(RCC)重力坝,分析检查它抗震性能。裂缝的位置可能是首先采用混凝土坝——确定 age-plasticity模型。然后,紫坪铺水库大坝的失败过程详细讨论,没有钢筋。 动态接触模型 2.1。动态接触本构模型 分开的两个表面的裂纹,即主表面和从表面上看,由这两个额外联系面临的动态接触模型。接触对可以定义的节点的奴隶表面和近点美国东部时间的从节点的主表面可能会相互影响。这些点被称为打击和目标点,分别。线连接的方向和目标点的定义是正常的 方向,垂直于切线方向。打击和目标之间的相对位移点在正常和切向方向代表联合开放和滑动位移。 2.2.钢筋本构模型 精确地模拟常见的钢筋的强化效应的数值方法是困难的,因为复杂的几何混凝土和钢筋之间的接触关系,以及当地的机械性能。在这项研究中,离散维桁架采用元素安排在裂缝位置代表着钢筋。这些元素被认为是销连接到混凝土和拥有两个学位在每个节点的自由。钢筋无效时,两个裂纹表面处于关闭状态。在一个开放的地位,然而,钢筋只熊的拉应力裂纹。钢筋的应变是赞成的

汶川地震裂缝整理

裂缝篇 (1) 斜裂缝与交叉裂缝 (1) 1)非承重墙体交叉裂缝 (1) 2)承重墙贯穿斜裂缝 (3) 3)窗间墙裂缝 (4) 4)窗下墙交叉裂缝 (6) 水平裂缝 (7) 1)墙体水平裂缝 (7) 2)楼梯板水平裂缝 (7) 3)基础顶部水平裂缝 (8) 竖向裂缝 (8) 1)纵横墙连接处竖向裂缝 (8) 其它裂缝 (8) 1)屋面突出物的裂缝 (8) 2)楼板板间裂缝 (8) 裂缝篇 斜裂缝与交叉裂缝 根据斜裂缝与交叉裂缝产生部位的不同可以分为以下几个类别 1)非承重墙体交叉裂缝 产生部位: 非承重纵墙上非常普遍,基本上每个楼层都有。 产生原因: 由于水平地震剪力在墙体中引起的主拉应力超过墙体的抗拉强度所致,部分墙体采用非承重砌块或120厚半砖墙,稳定性和承载力都很差。当这些墙体内有预埋的管线、线槽或接线盒时,由于截面的削弱导致震害更加严重。【10】 案例: 【10】 极震区映秀镇漩口中学附近的砌体结构外纵墙X形裂缝

墙体出现贯通裂缝 【10】 青川县某砌体结构房屋外纵墙的X形裂缝(连同砖墩一并破坏) 【2】 空间分布特点 由于底层地震剪力比上层大,沿结构的高度方向,受损一般呈现下层重、向上逐渐减轻的特点。【8】 案例:

墙体交叉裂缝逐层减【8】 上图为汉旺客运站职工宿舍楼,第一、二层横墙、纵墙出现较大的交叉裂缝,随着层数的增加,墙上的裂缝逐层减轻,一些墙体出现了单向斜裂缝,再轻损伤楼层在洞口角部出现短裂缝。【8】 2)承重墙贯穿斜裂缝 产生部位 在一至三层的承重横墙上比较多见。 产生原因 教学楼由于横墙间距较大且数量少,地震时可以承担的地震作用有限,很容易在地震时发生破坏,并引起结构坍塌。 住宅楼横墙间距较小,数量较多,地震时可以承担较多的地震作用,受损相对于教学楼较轻。 主拉应力超过砌体强度所引起的剪切破坏现象。【2】 案例: 【2】 案例3:在盐亭县对十几所在这次地震中受损学校评估过程中,发现一种规律,多层砖混结构房屋中,教学楼受损最严重,很多横墙出现严重开裂;学校职工住宅楼受损要轻一些,

储层预测和油藏描述中的一些沉积学问题

文章编号:100020550(2004)022******* ① 中国科学院资源环境领域知识创新工程重要方向项目(编号:K ZCX 32SW 2128204)资助收稿日期:2003205206 收修改稿日期:2003209203 储层预测和油藏描述中的一些沉积学问题 ① 王多云李凤杰王峰刘自亮王志坤李树同秦 红 (中国科学院兰州地质研究所 兰州730000) 摘 要 储层预测和油藏描述方法技术已经在油气资源勘探开发工程中发挥着日益重要的作用。然而,在重视其方法进步与技术创新的同时,更要注重其丰富的石油地质学内涵。特别是研究对象为岩性、地层等隐蔽油气藏时,其核心内容涉及到沉积地质学的诸多理论问题。基于此因,本文针对我国陆相盆地河流-三角洲-湖泊沉积体系中岩性油气藏的特点,对储层预测和油藏描述中一些诸如:研究对象的背景及其地质基础;油气藏的储层相构形描述;三角洲前缘储层的成因类型及其描述;小尺度岩相制图、成藏要素及目标优选以及以流动单元为对象的储层三维构形研究与油藏描述等沉积地质学的问题给予了阐述。强调储层预测和油藏描述技术离不开沉积地质学这一根本基础。关键词 储层预测,油藏描述,河流三角洲,沉积学第一作者简介王多云男 1956年出生研究员沉积学 中图分类号 P512.2 文献标识码A 1导言 目前,储层预测和油藏描述方法技术已成为油气资源勘探开发工程中必不可少的核心技术。随着易于寻找的构造型油气藏的减少,油气资源勘探已趋向岩性、地层等隐蔽油气藏方向和面对陆相中小盆地等过去未顾及的领域和地区,加之地表条件趋于恶劣(沙漠、冻土、森林、沼泽和黄土塬等)和地下情况更加复杂,使得勘探目标选择变得困难。比较准确的、精细的储层预测和油藏描述无疑能够回答勘探实践中的一些重要问题,基于此原因,重视以地球物理勘探资料为主要地下信息载体的储层预测和油藏描述技术就在情理之中了。然而,任何先进的方法技术都离不开先进理论基础的支撑,任何先进的计算技术和实现软件都离不开能够反映客观事物本质的数学模型和正确算法,储层预测和油藏描述技术如果仅仅把它视为一种技术,而忽视它的极其丰富的石油地质学内涵,有可能极大地限制其在勘探实践中的作用。事实上,针对岩性、 地层等隐蔽油气藏的储层预测和油藏描述的基础问题,很多是涉及沉积地质学的理论问题,本文拟对一些问题给予阐明。2 研究对象的背景及其地质基础众所周知,我国石油资源的80%以上蕴藏于陆相地层中,河流—三角洲—湖泊沉积体系在陆相环境中占有绝对主导地位。有两个储油相带最为重要,一是 三角洲体系中的分流河道和河口砂坝等,二是河流体系中不同类型的河道沉积物,在这两种成因储层中赋存着我国石油大约60%以上的资源和90%以上的探明储量。同时,自二十世纪九十年代以来,岩性油藏逐渐成为我国石油产区主要的勘探目标,例如松辽盆地的侏罗白垩系;东部裂谷盆地的白垩系和第三系;鄂尔多斯盆地的三叠系、侏罗系;准葛尔盆地的三叠系、侏罗系;柴达木盆地的侏罗系;塔里木盆地的三叠系、侏罗系、白垩系等等。可以预测,在未来10—20年中,我国石油资源主要来自上述盆地的河流—三角洲—湖泊沉积体系,主要的油藏类型之一是岩性油藏。因此,目前,对我国陆相盆地,特别是对西部陆相盆地的储层预测和描述研究主要是以对河流—三角洲—湖泊沉积体系研究为背景的,其储层成因大多是冲积作用为主的各种河道类型的碎屑岩类储集体。 储层和油藏是具有特定的发展演化过程及其轨迹的沉积盆地的产物,不论是单旋回演化的相对简单盆 地,还是多旋回演化的复杂叠合盆地,一套有勘探意义的生储组合是盆地演化过程中某一特定时间段的必然响应。因此,我国中新生代的陆相盆地,不论是东部裂 陷型盆地,还是中部像陕甘宁盆地那样的在稳定克拉 通上叠合的拗陷盆地以及西部准葛尔、柴达木和塔里木等受原型盆地周边造山带控制的压扭性的拗陷盆地,在每一套生储油气组合的形成期,有其特定的古地  第22卷 第2期2004年6月 沉积学报ACT A SE DI ME NT O LOGIC A SI NIC A V ol.22 N o 12Jun 12004

储层精细预测技术在周青庄油田的应用

第28卷第6期石油学报V01.28No.62007年11月ACTAPETROI.EISINICANov.2007文章编号:0253-2697(2007)06—0092—05 储层精细预测技术在周青庄油田的应用 苏明军“2王西文2刘彩燕2易定红2袁克峰3 (1中国石油大学资源与信息学院北京102249}2.中国石油勘探开发研究院西北分院甘肃兰州730020 3中国石油国际海外研究中心北京100083) 摘要:周青庄油田小断裂发育,构造复杂,油气分布受构造和储层变化的控制。利用等时地层对比技术和基于小液变换的地震相干体技术,研究了断裂分布;综合测井和地震数据进行沉积相反演和沉积相控制下的相控储层预测技术,研究了储层空问晨布。应用储层精细预测技术,对周青庄油田古近系霹油组的构造和储层砂体展布规律进行了分析和预测,提出了井位都署意见.钻井后获得了高产工业油流,扩大了含油面积,增加了石油地质储量。 关键词:周青庄油田;储层特征;小波变换技术;储层预测技术;沉积相反演 中图分类号:TEl33文献标识码;A AppIicationofhigh—precisionI.eservoirspredictiontechniques inZhouqingzhuangoilfield suMin函u小。wangxiwenlljIJcaiyan2YlDinghon92YuanKe{en矿 u.&h∞z。fRe蚰“州口nai%,。r榭t{。nnrhM。kgy,chc越U戚键r“时nf P。t阳zc“矾,BP曲ingt02249.chi越; 2Normuw“Bmn曲,PP£M曲inaE_r声Zo旭£i。H。”dD日w如户mP"£RP5洲^JⅪ5£if“抛,Ld般加“730020,(冼iM;3CNPcInfPrM£坤”n£R靠Fdr曲(■n拈r,BP玎ing100083,(Mtn。) Abstract:Zhouqingzhua“golificldwascharacterizedbynumerous10calfauItsandcomplicatedstructure.Thcspatialdistr|butionofhydmcarbonaccumulationwaspredominatedbythestructurcand lateraI variation3ofreservoIrformations.Anewsetofhlgh_preci—sjo腓5ervojrpredjctjontechnjque㈣sap脚iedj力tbe州andgasp丑yz㈣ofthisoⅢjeld。ThePre拼ctiontechnlquesincJudetherec ognltiontechniqueoffaultsystembasedonintegrationoftmstratigraphiccofreIationand3DscmiccoherencecubeprocessedbywavelettransforrIlation,thesedimentaryfaclesrecognitiontechnIqueby讯tegratlonofwelIlogandseismicattnbutes。andthchighvi—tality3Dreservo打attributesouTllningbasedonhighpreci5i。nreservoirprcdictioncontrolledbysedimentarynt}lo{acies.Thestructur—alfeaturesand3Ddlstributionsofsandbedatt“butesofthePaIeogenegreservo打inZhouqi“gzhua“g0ilfieIdweredelineatedwithabovetechniques.AnewwelIplanni“gpmjectwasmade.Asaresuh,manynewwelIsa。quriedhigh—yie】dedo|lflow.Furthcrmore,pay跏eextensionwascon矗mled.andtheodreservesinpIaceincreasedby1.89miIlionLons. Keyw吖ds:Zhouqlngzhuangollflcld;reservoirproperty;wawlettransforrllationtechniqu。;reservc)irp婵dictiontechnique;secIimentary faclesinversion 周清庄油田位于黄骅坳陷歧口叫陷,横跨南、北大 港2个二级构造带,由南、北两部分组成。北部属于港西突起南翼,为断鼻构造;南部属于南大港构造带西北 斜坡的一部分。两者之间以鞍部相连。古近系髯油组是奉区主要目的层段之一,是一个多沉积体系叠置的扇三角洲前缘沉积综合体。由于研究区构造复杂,小断裂发育,储层横向变化大,油气分布受构造和储层变化的控制,制约了油田进一步开发,完钻井尚少。为此,采用了储层精细预测技术,对构造及储层空间展布规律进行研究。1储层精细预测技术研究流程 储层精细预测技术研究流程(图1)主要包括3个部分:①构造精细解释,确定构造形态及断层空间展布,为砂体的精细预测奠定基础;②精细小层对比及沉积相研究,正确认识砂体及其油层的分布规律,为储层反演奠定基础;③储层测井响应分析及相控储层反演,通过储层敏感曲线分析、曲线重构和相控反演,研究储层空间分布规律,为井位部署提供依据。 基盒项目:中国石油天然气集团公司科技攻关项日(kt均2—2—3)。岩性{fII气藏地震资料处理解释一体化研究”部分成果。 作者简介:苏明军,男,1970年2月牛,1991年毕业于中国石油大学(华东),现为中周石油勘探开发研究院西北分院高级工程师,中周石油大学(北京)在读博士研究生,主要从事沉积储集层研究。E咖ll:smjl310@126。。m万方数据

裂缝检测方法介绍

压裂监测的方法很多, (1)裂缝测斜仪:测量原理是依据水力压裂过程中的岩石变形,所以它不受声波等因素的影响,除了地面测斜仪(Tiltmeter)可以用于水力裂缝方位以外,现在开发的施工井和邻井应用的井下测斜仪可以用于确定水力裂缝的几何形态,可以监测裂缝实实扩展过程中的的裂缝情况,如:裂缝的长度、高度和宽度随时间增长情况;压裂作业规模的增加对裂缝的长度或高度的影响情况;裂缝的两翼长度对称情况;水力裂缝与天然裂缝交互情况等。但要得到水力裂缝的方位和几何尺寸,要同时用地面和井下两种方法,而且地面测斜仪需要在施工前静置一段时间,以消除背景影响。 (2)大地电位法:从电磁场基本方程出发导出井下电偶极供电,地面电磁场的三维正演方法。采用物理模拟及数学模拟方法,研究复杂地下介质条件下的各种源与接收器组合的电位响应,分析电位响应与储层电阻率关系。在地面电位响应数值模拟、电位响应特征及反演算法的快速实现与人机交互处理解释等方面得到成果与认识。 (3)井下微地震:压裂过程中,裂缝波及的地层应力增长明显,孔隙压力改变也很大,这两个变化都影响水力裂缝附近的弱应力平面的稳定性,并且使得它们发生剪切滑动,这种剪切滑动就像地震沿着断层滑动,只是规模小很多,因而常用“微地震”来描述这种现象。水力压裂产生的微地震释放弹性波,频率大概在声音频率的范围内。采用合适的接收仪,这些声音信号就能够被检测到,通过分析处理就能够判断它们的具体位置,将布置多个接收仪的线性阵列下入邻井,就可检测到微地震信息。周围井中布置接收仪后,就能够三角测量微地震信息,就像地震检测一样。很多情况下,无法采用多口邻井,只有一口邻井作观察井,就采用竖直多组布置接收仪的方法来确定微地震信息的位置。 (4)放射性示踪测试诊断:(一般来自于美国岩心公司(Core Lab)的子公司ProT echnics。)压裂示踪诊断技术的先进性主要体现在两个方面,一是拥有专利权的零污染示踪剂技术(ZeroWash ),二是先进的高精度高分辨率的存储式示踪成像测井技术(SpectraScan?)。(5)思维影像:(华北石油某服务公司给我们监测过)在地表观测微破裂地震波,由于地层高频滤波和信号衰减作用及强背景噪音等原因,监测信号无法识别微破裂产生的纵横波的准确到时和微破裂高频有效信号。运用微破裂矢量叠加网格扫描技术,在时空上即可辨别出破裂产生的方位及形态。

相关主题
文本预览
相关文档 最新文档