当前位置:文档之家› 【二轮复习材料】概率问题中的递推数列

【二轮复习材料】概率问题中的递推数列

【二轮复习材料】概率问题中的递推数列
【二轮复习材料】概率问题中的递推数列

概率问题中的递推数列

一、a n =p ·a n -1+q 型

【例1】

某种电路开关闭合后,会出现红灯或绿灯闪动,已知开

关第一次闭合后,出现红灯和绿灯的概率都是1

2,从开关第二次闭合起,若前次出现红灯,则下次出现红灯的概率是1

3,出现绿灯的概率是23;若前次出现绿灯,则下次出现红灯的概率是3

5,出现绿灯的概率是2

5,记开关第n 次闭合后出现红灯的概率为P n 。

(1)求:P 2;

(2)求证:P n <1

2 (n ≥2) ; (3)求lim n

n P

解析:(1)第二次闭合后出现红灯的概率P 2的大小决定于两个互斥事件:即第一次红灯后第二次又是红灯;第一次绿灯后第二

次才是红灯。于是P 2=P 1·13+(1-P 1)·35=7

15

。 (2)受(1)的启发,研究开关第N 次闭合后出现红灯的概率P n ,要考虑第n -1次闭合后出现绿灯的情况,有

P n =P n -1·13+(1-P n -1)·35=-415P n -1+3

5

, 再利用待定系数法:令P n +x =-415(P n -1+x )整理可得x =-919 ∴{P n -919}为首项为(P 1-919)、公比为(-4

15)的等比数列 P n -919=(P 1-919)(-415)n -1=138(-415)n -1,P n =919+138(-415)n -1

∴当n ≥2时,P n <919+138=1

2 (3)由(2)得lim n

n P

=9

19。

【例2】

A 、

B 两人拿两颗骰子做抛掷游戏,规则如下:若掷出的点

数之和为3的倍数时,则由原掷骰子的人继续掷;若掷出的点数不是3的倍数时,由对方接着掷.第一次由A 开始掷.设第n 次由A

掷的概率为P n ,

(1)求P n ;⑵求前4次抛掷中甲恰好掷3次的概率. 解析:第n 次由A 掷有两种情况:

① 第n -1次由A 掷,第n 次继续由A 掷,此时概率为12

36P n

-1

② 第n -1次由B 掷,第n 次由A 掷,此时概率为(1-12

36)(1

-P n -1)。

∵两种情形是互斥的

∴P n =1236P n -1+(1-1236)(1-P n -1)(n ≥2),即P n =-13P n -1+2

3(n ≥2) ∴P n -12=-13(P n -1-1

2),(n ≥2),又P 1=1

∴{P n -12}是以12为首项,-1

3为公比的等比数列。 ∴P n -12=12(-13)n -1,即P n =12+12(-13)n -1

⑵2881。

二、a n +1=p ·a n +f (n )型

【例3】

(传球问题)A 、B 、C 、D 4人互相传球,由A 开始发球,

并作为第一次传球,经过5次传球后,球仍回到A 手中,则不同的传球方式有多少种?若有n 个人相互传球k 次后又回到发球人A 手中的不同传球方式有多少种?

分析:这类问题人数、次数较少时常用树形图法求解,直观形象,但若人数、次数较多时树形图法则力不从心,而建立递推数列模型则可深入问题本质。

4人传球时,传球k 次共有3k 种传法。设第k 次将球传给A 的方法数共有a k (k ∈N *)种传法,则不传给A 的有3k -a k 种,故a 1=0,且不传给A 的下次均可传给A ,即

a k +1=3k

-a k 。两边同除以3

k +1

得a k +13k +1=-13·a k 3k +1

3

, 令b k =a k

3k ,则b 1=0,b k +1-14=-13(b k -14),则b k -14=-14(-13)k -1

∴a k =3k 4+3

4(-1)k 当k =5时,a 5=60.

当人数为n 时,分别用n -1,n 取代3,4时,可得a k =(n -1)k

n +n -1

n (-1)k 。

【例4】

(环形区域染色问题)将一个圆环分成n (n ∈N *,

n ≥3)个区域,用m (m ≥3)种颜色给这n 个区域染色,要求

相邻区域不使用同一种颜色,但同一颜色可重复使用,则不同的染色方案有多少种?

分析:设a n 表示n 个区域染色的方案数,则1区有m 种染法,2区有m -1种染法,3,……,n -1,n 区各有m -1种染色方法,依乘法原理共有m (m -1)

n -1

种染法,但是,这些染中包含了n 区

可能和1区染上相同的颜色。而n 区与1区相同时,就是n -1个区域涂上m 种颜色合乎条件的方法。

∴a n =m (m -1)

n -1

-a n -1,且a 3=m (m -1)(m -2)

1

2 3

n

n -1

……

a n -(m -1)n =-[a n -1-(m -1)

n -1

]

a n -(m -1)n

=[a 3-(m -1)3

](-1)

n -3

∴a n =(m -1)n +(m -1)(-1)n (n ≥3)

用这个结论解:2003年高考江苏卷:某城市在中

心广场建一个花圃,花圃分为6个部分如图,现要栽种4种不同颜色的花且相邻部分不能同色,由不同的栽种方法有 种。

只需将图变形为圆环形,1区有4种栽法。不同的栽法数为 N =4a 5=120。 三、a n +1=a n ·f (n )型

【例5】

(结草成环问题)现有n (n ∈N *)根草,共有2n 个草头,现

将2n 个草头平均分成n 组,每两个草头打结,求打结后所有草能构成一个圆环的打结方法数。

分析:将2n 个草头平均分成n 组,每两个草头打结,

要使其恰好构成圆环,不同的连接方法总数m 2=a n 。

1 2

3

4

5

6

1 2 3

4

5

6

4 ……

6 2n -1

2n

将草头编号为1,2,3,……,2n -1,2n 。

草头1可以和新草头3,4,5,……,2n -1,2n 共2n -2个新草头相连,如右图所示。

假设1和3相连,则与余下共n -1条相连能成圆环的方法数为a n -1。

∴a n =(2n -2)a n -1,(n ≥2,n ∈N *),a 1=1,得a n a n -1=2n -2

a n =a n a n -1·a n -1a n -2·……·a 2a 1·a 1=(2n -2)(2n -4)……2×1=2n -1

(n -1)! 变式游戏:某人手中握有2n (n ∈N *)根草,只露出两端的各自2n 个草头,现将两端的2n 个草头各自随机平均分成n 组,并将每组的两个草头连接起来,最后松手,求这时所有的草恰好构成一个圆环的概率。

分析:两端的2n 个草头随机两个相连不同的方法数为N =( C 22n C 22n -2……C 22 n !

)2

能够构成圆环的连接方法分两步:

第一步,先将一端的2n 个草头平均分成n 组,每两根连接起来,得到n 组草,认为得到n 根“新草”,连接方法数m 1= C 22n C 22n -2……C 22 n !

。 第二步,将另一端的2n 个草头平均分成n 组连接起来,要使其恰好构成圆环,不同的连接方法总数m 2=2

n -1

(n -1)!。

∴所求的概率P n =m 1m 2N =(n -1)!n!2

2n -1

(2n )!

变式:(06 江苏) 右图中有一个信号源和五个

接收器。接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号。若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是(D )

(A )445 (B )136 (C )415 (D )815 四、a n +1=p ·a n +q ·a n -1型

【例6】某人玩硬币走跳棋的游戏。已知硬币出现正反面的概率

都是1

2,棋盘上标有第0站、第1站、第2站、……、第100站.

一枚棋子开始在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,棋子向前跳一站(从k到k+1);若掷出反面,棋子向前跳两站(从k到k+2),直到棋子跳到第99站(胜利大本营)或跳到第100站(失败集中营)时,该游戏结束.设棋子跳到第n站的概率为P n.

(1)求P0、P1、P2的值;

(2)求证:P n-P n-1=-1

2(P n-1-P n-2),其中n∈N,2≤n≤99;

(3)求玩该游戏获胜的概率及失败的概率。(1)解:棋子开始在第0站为必然事件,P0=1.

第一次掷硬币出现正面,棋子跳到第1站,其概率为1

2,P1=

1

2.

棋子跳到第2站应从如下两方面考虑:

①前两次掷硬币都出现正面,其概率为1

4;②第一次掷硬币出

现反面,其概率为1

2.

∴P 2=14+12=34.

(2)证明:棋子跳到第n (2≤n ≤99)站的情况是下列两种,而且也只有两种:

①棋子先到第n -2站,又掷出反面,其概率为1

2P n -2; ②棋子先到第n -1站,又掷出正面,其概率为1

2P n -1. ∴P n =12P n -2+1

2P n -1.

∴P n -P n -1=-1

2(P n -1-P n -2).

(3)解:由(2)知当1≤n ≤99时,数列{P n -P n -1}是首项为P 1-P 0=-12,公比为-1

2的等比数列。

∴P 1-1=-12,P 2-P 1=(-12)2,P 3-P 2=(-12)3

,…,P n -P n -1=(-12

)n .

以上各式相加,得P n -1=(-12)+(-12)2+…+(-12)n

∴P n =1+(-12)+(-12)2+…+(-12)n =23[1-(-12)n +1

](n =0,1,2,…,99).

∴获胜的概率为P 99=23[1-(12)100

],

失败的概率P 100=12P 98=12·23[1-(-12)99]=13[1+(12

)99

] 【例7】

(上楼梯问题)从教学楼一楼到二楼共有15级楼梯,学生

A 一步能上1级或2级,那么A 从一楼上到二楼的不同方法数共有多少种?

设上到第n 级楼梯的方法数为a n (n ∈N ),则a 1=1,a 2=2,a n =a n

-1

+a n -2(n ≥3),

由此可得,\{a n }斐波那契数列:1,2,3,5,8,……得a 13=377,

a 14=610,a 15=987。

【例8】 从原点出发的某质点M ,按向量a =(0,1)移动的概率为23,

按向量b =(0,2)移动的概率为1

3,设M 可到达点(0,n )的概率为P n

(1)求P 1和P 2的值;(2)求证:P n +2-P n +1=-1

3(P n +1-P n );(3)求P n 的表达式。

解析:(1)P 1=23,P 2=(23)2+13=7

9

(2)证明:M 到达点(0,n +2)有两种情况:

①从点(0,n +1)按向量a =(0,1)移动,即(0,n +1)→(0,n +2) ②从点(0,n )按向量b =(0,2)移动,即(0,n )→(0,n +2)。 ∴P n +2=23P n +1+1

3P n

∴P n +2-P n +1=-1

3(P n +1-P n )

(3)数列{P n +1-P n }是以P 2-P 1为首项,-1

3为公比的等比数列。 P n +1-P n =(P 2-P 1)(-13)n -1=19(-13)n -1=(-13)n +1

, ∴P n -P n -1=(-13)n

又∵P n-P1=(P n-P n-1)+(P n-1-P n-

2)+…+(P2-P1)=(-1

3)

n+(-

1

3)

n-1+…+(-

1

3)

2=(

1

12)[1-(-

1

3)

n-1]

∴P n=P1+(1

12)[1-(-

1

3)

n-1]=

3

4+

1

4×(-

1

3)

n。

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

(完整版)已知数列递推公式求通项公式的几种方法

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。

高考数列递推公式题型归纳解析完整答案版

最新高考数列递推公式题型归纳解析完整答案版 类型1 ) (1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 变式1.1:(2004,全国I ,个理22.本小题满分14分) 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5; (II )求{ a n }的通项公式. 解:Θk k k a a )1(122-+=-,k k k a a 3212+=+ ∴k k k k k k a a a 3)1(312212+-+=+=-+,即k k k k a a )1(31212-+=--+ ∴)1(313-+=-a a ,2235)1(3-+=-a a …… ……k k k k a a )1(31212-+=--+ 将以上k 个式子相加,得 ]1)1[(2 1 )13(23])1()1()1[()333(22112--+-=-+???+-+-++???++=-+k k k k k a a 将11=a 代入,得1)1(21321112--+?=++k k k a , 1)1(2 1 321)1(122--+?=-+=-k k k k k a a 。 经检验11=a 也适合,∴???????--?+?--?+?=-+)(1)1(2132 1)(1)1(21321222 1 21为偶数为奇数n n a n n n n n 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例3:已知31=a ,n n a n n a 2 31 31+-= + )1(≥n ,求n a 。 解:12 31 32231232)2(31)2(32)1(31)1(3a n n n n a n +-?+?-??????+---?+---= 3437526331348531n n n n n --= ????=---L 。 变式2.1:(2004,全国I,理15)已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2), 则{a n }的通项1 ___ n a ?=? ? 12n n =≥ 解:由已知,得n n n na a n a a a a +-+???+++=-+13211)1(32,用此式减去已知式,得

利用逆推法解决递推数列策略..

利用逆推法解决递推数列策略 数列蕴含着丰富的数学思想,尤其是递推数列问题具有很强的逻辑性,是考查逻辑推理和化归能力的很好素材。近年来,递推数列问题成为高考命题的热点题型,这是因为递推数列问题能考查考生分析问题和解决问题的能力。 一、待定系数法 例1、已知数列}{n a 满足11=a ,且231+=+n n a a ,求.n a 解:设)(31t a t a n n +=++,则t a a n n 231+=+,所以t =1,)1(311+=++n n a a , 所以}1{1++n a 为等比数列,首项为2,所以1321-?=+n n a ,.1321-?=-n n a 点评:求递推式形如q pa a n n +=+1(p 、q 为常数且1≠p )的数列通项,可用迭代法或待定系数法得到一个新的等比数列}1 {-+p q a n 满足p p q a n =-++11)1(-+p q a n ,由等比数列的通项公式求得原数列的通项公式,也可用“归纳-猜想-证明”的方法来求,这也是近年高考考得较多的一种题型。 二、利用叠加或叠乘进行转化 例2、已知数列}{n a 满足211= a ,n n a a n n ++=+211,求.n a 解:由条件,知111)1(1121+-=+=+= -+n n n n n n a a n n , 所以21112-=-a a ,312123-=-a a ,413134-=-a a ,…,n n a a n n 1111--=--, 将这(n -1)个式子相加,得.111n a a n -=- 因为211=a ,所以.123n a n -= 例3、设}{n a 是首项为1的正项数列,且满足)(0)1(1221*++∈=?+-+N n a a na a n n n n n , 求通项公式.n a 解:因为)(0)1(1221*++∈=?+-+N n a a na a n n n n n , 所以0)]()1[(11=+-+++n n n n a a na a n ,因为0,01>>+n n a a ,所以01>++n n a a , 所以0)1(1=-++n n na a n ,即1 1+=+n n a a n n ,于是得n -1个等式: 2112=a a ,3223=a a ,4334=a a ,……,n n a a n n 11-=-,将这n -1个式子相乘, 并将11=a 代入,得.1n a n =

几种常见的递推数列通项的求法之教学反思

《几种常见的递推数列通项的求法》之教学反思 数学是一门研究数量关系和空间形式的科学。数列恰好是研究数量关系的一个章节。 数列通项公式直接表述了数列的本质,是给出数列的一种重要方法。数列通项公式具备两大功能,第一,可以通过数列通项公式求出数列中任意一项;第二,可以通过数列通项公式判断一个数是否为数列的项以及是第几项等问题;因此,求数列通项公式是高中数学中最为常见的题型之一,它既考察等价转换与化归的数学思想,又能反映学生对数列的理解深度,具有一定的技巧性,是衡量考生数学素质的要素之一,因而经常渗透在高考和数学竞赛中。 我在这几年的高中教学中,从每年各省的高考真题和模拟题中,发现“数列通项公式”求法在高中解题中占有很大的比重。求数列(特别是以递推关系式给出的数列)通项公式的确具有很强的技巧性,与我们所学的基本知识与技能、基本思想与方法有很大关系,因而在平日教与学的过程中,既要加强基本知识、、基本方法、基本技能和基本思想的学习,又要注意培养和提高数学素质与能力和创新精神。这就要求无论教师还是学生都必须提高课堂的教与学的效率,注意多加总结和反思,注意联想和对比分析,做到触类旁通,将一些看起来毫不起眼的基础性命题进行横向的拓宽与纵向的深入,通过弱化或强化条件与结论,揭示出它与某类问题的联系与区别并变更为出新的命题。这样无论从内容的发散,还是解题思维的深入,都能收到固本拓新之用,收到“秀枝一株,嫁接成林”之效,从而有利于形成和发展创新的思维。 高考改革的的变化趋势是强调基础,提高能力。相对于旧版教材,当前的新课标教材以意大利著名数学家斐波那契在兔子繁殖问题中提出的“斐波那契数列12(3)n n n a a a n --=+≥”,专门定义了数列的递推公式的概念,并由此产生出了怎样应用递推关系求解数列通项公式. 正是基于数列通项求法的重要性,我决定在赛课选题中把这个知识点作为切入点。 一、要有明确的教学目标 教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。高三备课时要依据考纲,但又不拘泥于考纲,灵活运用变通。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。本节课的重点在数形结合,所以我选择的每一道例题和练习题都以数形结合为中心。 二、要能突出重点、化解难点 每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,我应该加强学生在课堂上对习题过程的展示,对数形结合思想的领悟,以图解题,让学生在黑板上亲自演练,或用投影仪展示其做题的思路和过程。 三、要善于应用现代化教学手段 在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:一是能有效地增大每一堂课的课容量,从而把原来40

必修5--数列知识点总结及题型归纳

数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫 这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211,,,,… (3)数列的函数特征与图象表示: 4 5 6 7 8 9 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关 系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n n n S n a S S n -=?=?-?≥ 例:已知数列}{n a 的前n 项和322+=n s n ,求数列}{n a 的通项公式 二、等差数列 题型一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。 例:等差数列12-=n a n ,=--1n n a a 题型二、等差数列的通项公式:1(1)n a a n d =+-; 等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,124971 16a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64 2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670 题型三、等差中项的概念: 定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。其中2 a b A +=

递推数列常十种方法

求递推数列通项公式的十种策略例析 递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决,亦可采用不完全归纳法的方法,由特殊情形推导出一般情形,进而用数学归纳法加以证明,因而求递推数列的通项公式问题成为了高考命题中颇受青睐的考查内容。笔者试给出求递推数列通项公式的十种方法策略,它们是:公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法。仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键。 一、利用公式法求通项公式 例1 已知数列}a {n 满足n n 1n 23a 2a ?+=+,2a 1=,求数列}a {n 的通项公式。 解:n n 1n 23a 2a ?+=+两边除以1n 2+,得 23 2a 2a n n 1 n 1n + = ++,则232 a 2a n n 1n 1n =-++, 故数列}2a { n n 是以1222 a 1 1==为首,以23 为公差的等差数列,由等差数列的通项公式,得23) 1n (12a n n -+=,所以数列}a {n 的通项公式为n n 2)2 1 n 23(a -=。 评注:本题解题的关键是把递推关系式n n 1n 23a 2a ?+=+转化为 2 3 2a 2a n n 1 n 1n = -++,说明数列}2a {n n 是等差数列,再直接利用等差数列的通项公式求出23)1n (12 a n n -+=,进而求出数列}a {n 的通项公式。 二、利用累加法求通项公式 例2 已知数列}a {n 满足1a 1 n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。 解:由1n 2a a n 1n ++=+ 得1n 2a a n 1n +=-+ 则112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---Λ

(完整版)数列的递推公式教案

数列的递推公式教案 普兰店市第六中学陈娜 一、教学目标 1、知识与技能:了解数列递推公式定义,能根据数列递推公式求项,通过数列递推公式求数列的通项公式。 2、过程与方法:通过实例“观察、分析、类比、试验、归纳”得出递推公式概念,体会数列递推公式与通项公式的不同,探索研究过程中培养学生的观察归纳、猜想等能力。 3、情感态度与价值观:培养学生积极参与,大胆探索精神,体验探究乐趣,感受成功快乐,增强学习数学的兴趣,培养学生一切从实际出发,认识并感受数学的应用价值。 二、教学重点、难点和关键点 重点:数列的递推定义以及应用数列的递推公式求出通项公式。 难点:数列的递推公式求通项公式。 关键:同本节难点。 三、教学方法 通过创设问题的情境,在熟悉与未知的认知冲突中激发学生的探索欲望;引导学生通过自主探究和合作交流相结合的方式进行研究;引导学生积极思考,运用观察、试验、联想、类比、归纳、猜想等方法不断地提出问题、解决问题,再提出问题,解决问题……经历知识的发生和发展过程,并注意总结规律和知识的巩固与深化。 四、教学过程 环节1:新课引入 一老汉为感激梁山好汉除暴安良,带了些千里马要送给梁山好汉,见过宋江以后,宋江吧老汉带来的马匹的一半和另外一匹马作为回礼送给了他,老汉又去见卢俊义,把

现有的马匹全送给了他,卢俊义也把老汉送来的马匹的一半和另外一匹马作为回礼送给了老汉……… 一直送到108名好汉的最后一名段景住都是这样的,老汉下山回家时还剩下两匹马,问老汉上山时一共带了多少匹千里马? 通过这个小故事让学生感受到数学来源于生活同时又为生活所服务。同时也能引起学生的兴趣和好奇心。 环节2:引例探究 (1)1 2 4 8 16……… (2) 1 ()1cos ()1cos cos ()]1cos cos[cos ……. (3)0 1 4 7 10 13 ……. 通过设置问题的情境,让学生分析找出这些数列从第二项(或后几项)后一项与前一项的关系,从而引出数列的递推公式的定义,便于学生对于数列递推公式的理解、记忆和应用。 递推公式定义: 如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任意一项a n 与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。递推公式是数列一种的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可. 环节3:应用举例及练习 例1:已知数列{a n }的第1项是1,以后的各项由公式 (n ≥2)给出,写出这个给出,写出这个数列的前5项. 解:据题意可知:a 1=1, 1 11n n a a -=+2111112,1a a =+=+=3211311,22a a =+=+=4312511,33a a =+=+=5413811.55a a =+ =+=

递推数列通项公式求法(教案)讲解学习

递推数列通项公式求 法(教案)

由递推数列求通项公式 马鞍中学 --- 李群花 一、课题:由递推数列求通项公式 二、教学目标 1、知识与技能: 会根据递推公式求出数列中的项,并能运用累加、累乘、待定系数等方法求数列的通项公式。 2、过程与方法: ①复习回顾所学过的通项公式的求法,对比递推公式与通项公式区别认识到由递推公式求通项公式的重要性,引出课题。 ②对比等差数列的推导总结出叠加法的试用题型。 ③学生分组讨论完成叠乘法及待定系数法的相关题型。 3、情感态度与价值观: ①通过对数列的递推公式的分析和探究,培养学生主动探索、勇于发现的求知精神; ②通过对数列递推公式问题的分析和探究,使学生养成细心观察、 认真分析、善于总结的良好思维习惯; ③通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课型,课时:复习课 1课时 六、教学手段:多媒体课件,黑板,粉笔 七、教学方法:激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾:

1、通项公式的定义及其重要作用 2、学过的通项公式的几种求法 3、区别递推公式与通项公式,从而引入课题 (二)新知探究: 问题1: 在数列{a n }中 a 1=1,a n -a n-1=2n-1(n ≥ 2),求数列{a n } 的通项公式。 活动:通过分析发现形式类似等差数列,故想到用叠加法去求解。教师引导学生细致讲解整个解题过程。 总结:类型1:)(1n f a a n n =-+,利用叠加法(逐差相加法)求解。 问题2:例2在数列{a n }中 a 1=1, (n ≥ 2),求数列{a n } 的通项公式。 方法归纳:利用叠乘法求数列通项 活动:类比类型1推导过程,让学生分组讨论研究相关解题方案。 练习2设{a n }是首项为1的正项数列,且(n+1)a n 2+1 –na n 2 +a n+1a n =0, n n n a a 21 =-

数列题型及解题方法归纳总结99067

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a = (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

几类常见递推数列的解题方法

叠加、 叠乘、迭代递推、代数转化 ——几类常见递推数列的教学随笔 已知数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜想出a n 的表达式,然后用数学归纳法证明;另一类是将已知递推关系,用代数法、迭代法、换元法,或是转化为基本数列(等差或等比)的方法求通项.第一类方法要求学生有一定的观察能力以及足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法. 一、叠加相消. 类型一:形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n )或可裂项成差的分式形式.——可移项后叠加相消. 例1:已知数列{a n },a 1=0,n ∈N +,a 1+n =a n +(2n -1),求通项公式a n . 解:∵a 1+n =a n +(2n -1) ∴a 1+n =a n +(2n -1) ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a 1-n )=0+1+3+5+…+(2n -3) = 2 1 [1+(2n -3)]( n -1)=( n -1)2 n ∈N + 练习1:⑴.已知数列{a n },a 1=1, n ∈N +,a 1+n =a n +3 n , 求通项公式a n . ⑵.已知数列{a n }满足a 1=3,)1(2 1 +=-+n n a a n n ,n ∈N +,求a n . 二、叠乘相约. 类型二:形如)(1n f a a n n =+.其中f (n ) =p p c mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或 n n a a 1+=kn (k ≠0)或n n a a 1+= km n ( k ≠ 0, 0<m 且m ≠ 1). 例2:已知数列{a n }, a 1=1,a n >0,( n +1) a 1+n 2 -n a n 2+a 1+n a n =0,求a n . 解:∵( n +1) a 1+n 2 -n a n 2+a 1+n a n =0 ∴ [(n +1) a 1+n -na n ](a 1+n +a n )= 0 ∵ a n >0 ∴ a 1+n +a n >0 ∴ (n +1) a 1+n -na n =0 ∴1 1+=+n n a a n n ∴n n n n n n n a a a a a a a a a a n n n n n n n 112 12 31 2111 23 22 11 =???--?--?-=?????=----- 练习2:⑴已知数列{a n }满足S n = 2 n a n ( n ∈N * ), S n 是{ a n }的前n 项和,a 2=1,求a n .

已知数列递推公式求通项公式的几种方法

已知数列递推公式求通项公式的几种方法 Revised on November 25, 2020

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则11 3 222 n n n n a a ++-=,故数列{}2n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为 121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+, 即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解:由1231n n n a a +=+?+得1231n n n a a +-=?+则 所以3 1.n n a n =+-

数列的递推公式练习

数列的递推公式练习 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

课时作业5数列的递推公式(选学) 时间:45分钟满分:100分 课堂训练 1.在数列{a n}中,a1=,a n=(-1)n·2a n-1(n≥2),则a5=() A.- C.- 【答案】 B 【解析】由a n=(-1)n·2a n-1知a2=,a3=-2a2=-,a4=2a3=-,a5=-2a4=. 2.某数列第一项为1,并且对所有n≥2,n∈N,数列的前n项之积为 n2,则这个数列的通项公式是() A.a n=2n-1 B.a n=n2 C.a n=D.a n= 【答案】 C 【解析】∵a1·a2·a3·…·a n=n2,a1·a2·a3·…·a n-1=(n-1)2,∴两式相除,得a n=. 3.已知数列{a n}满足:a4n-3=1,a4n-1=0,a2n=a n,n∈N+,则a2009= ________,a2014=________. 【答案】10 【解析】考查数列的通项公式. ∵2009=4×503-3,∴a2009=1, ∵2014=2×1007,∴a2014=a1007,

又1007=4×252-1,∴a1007=a4×252-1=0. 4.已知数列{a n},a1=0,a n+1=,写出数列的前4项,并归纳出该数列的通项公式. 【解析】a1=0,a2==,a3===,a4===. 直接观察可以发现,把a3=写成a3=, 这样可知a n=(n≥2,n∈N+). 当n=1时,=0=a1, 所以a n=(n∈N+). 课后作业 一、选择题(每小题5分,共40分) 1.已知数列{a n}满足:a1=-,a n=1-(n≥2),则a4=() C.- 【答案】 C 【解析】∵a1=-,a n=1-(n≥2), ∴a2=1-=1-=5, a3=1-=1-=, a4=1-=1-=1-=-. 2.数列{a n}满足a1=,a n=-(n≥2,n∈N+),则a2013=() B.- C.3 D.-3 【答案】 A

数列题型与解题方法归纳总结

.下载可编辑. 知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ????????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可 能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+… +(a n -a n-1)

几类常见递推数列的解法

几类递推数列通项公式的常见类型及解法 省乐安县第二中学 芳林 邮编 344300 已知数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜想出a n 的表达式,然后用数学归纳法证明;另一类是将已知递推关系,用代数法、迭代法、换元法,或是转化为基本数列(等差或等比)的方法求通项.第一类方法要求学生有一定的观察能力以及足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法. 一、a a d n n +=+1型 形如d a a n n +=+1(d 为常数)的递推数列求通项公式,将此类数列变形得 a a d n n +-=1,再由等差数列的通项公式()a a n d n =+-11可求得a n . 例1: 已知数列{}a n 中()a a a n N n n 1123==+∈+,,求n a 的通项公式. 解: ∵a a n n +=+13 ∴a a n n +-=13 ∴ {}a n 是以a 12=为首项,3为公差的等差数列. ∴()a n n n =+-=-21331为所求的通项公式. 二、)(1n f a a n n +=+型 形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n )或可裂项成差的分式形式.——可移项后叠加相消. 例2:已知数列{a n },a 1=0,n ∈N +,a 1+n =a n +(2n -1),求通项公式a n . 解:∵a 1+n =a n +(2n -1) ∴a 1+n =a n +(2n -1) ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a 1-n )=0+1+3+5+…+(2n -3) = 2 1[1+(2n -3)]( n -1)=( n -1)2 n ∈N + 三、n n a q a ?=+1型 形如n n a q a ?=+1(q 为常数)的递推数列求通项公式,将此类数列变形得 q a a n n =+1 ,再由等比数列的通项公式11-?=n n q a a 可求得a n . 例3 : 已知数列{}a n 中满足a 1=1,n n a a 21=+,求n a 的通项公式. 解:∵n n a a 21=+ ∴ 21 =+n n a a

数列递推公式的九种方法

求递推数列的通项公式的九种方法 利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一. 一、作差求和法 例1 在数列{}中,31 =a , ) 1(11++ =+n n a a n n ,求通项公式. 解:原递推式可化为:1 111 +- + =+n n a a n n 则, 2 11112 -+=a a 3 12123-+ =a a 4 13134-+ =a a ,……,n n a a n n 1111--+ =-逐项相加得:n a a n 111- +=. 故n a n 14- =. 二、作商求和法 例 2 设数列{}是首项为1的正项数列,且 0)1(12 2 1 =+-+++n n n n a a na a n (n=1,2,3…) ,则它的通项公式是=▁▁▁(2000年高考15题) 解:原递推式可化为: ) ]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0, 1 1+=+n n a a n n 则 ,4 3,32,21342312===a a a a a a ……,n n a a n n 11 -= - 逐项相乘得: n a a n 1 1=,即=n 1. 三、换元法 例3 已知数列{},其中9 13,3421 == a a ,且当n ≥3时, ) (3 1 211----=-n n n n a a a a ,求通项公式(1986年高考文科第八

题改编). 解:设1 1 ---=n n n a a b ,原递推式可化为: } {,3 1 21n n n b b b --=是一个等比数列,9 1 3491312 1 =-= -=a a b ,公比为3 1.故n n n n b b )3 1 ()31(91)31(2211 ==?=---.故n n n a a )3 1 (1=--.由逐差法可得: n n a )3 1(2123-= . 例4已知数列{},其中2,12 1 ==a a ,且当n ≥3时,122 1 =+---n n n a a a ,求通项公式。解 由122 1 =+---n n n a a a 得:1)()(2 1 1 =------n n n n a a a a ,令1 1 ---=n n n a a b ,则上式为12 1 =---n n b b ,因此是一个等差数列,1121=-=a a b ,公差为1.故n b n =.。 由于112312121-=-++-+-=+++--n n n n a a a a a a a b b b ΛΛ 又2 )1(12 1 -= +++-n n b b b n Λ 所以)1(2 1 1-= -n n a n ,即)2(2 12 +-= n n a n 四、积差相消法 例5设正数列,,…,,…满足2 -n n a a 2 1---n n a a = ) 2(≥n 且11 ==a a ,求的通项公式. 解 将递推式两边同除以2 1--n n a a 整理得:122 1 1=----n n n n a a a a 设= 1 -n n a a ,则0 11 a a b = =1,1 21=--n n b b ,故有 1 212=-b b ⑴122 3 =-b b ⑵ … … … …

相关主题
文本预览
相关文档 最新文档