当前位置:文档之家› 脉冲核磁共振实验

脉冲核磁共振实验

脉冲核磁共振实验
脉冲核磁共振实验

脉冲核磁共振实验

(06光科冯文赫06300720358)

摘要:简要介绍了核磁共振、自由感应衰减与核磁共振成像的基本原理.使用NMI20台式核磁共振成像仪的硬脉冲FID序列进行1H拉莫尔频率的测量.用反转恢复法和饱和恢复法测量1H的自旋-晶格弛豫时间T1.用硬脉冲CPMG序列测量了1H的自旋-自旋弛豫时间T2.使用自旋回波序列对多种样品进行核磁共振成像.

关键词:核磁共振自由感应衰减核磁共振成像自旋-晶格弛豫自旋-自旋弛豫自旋回波序列

0 引言

核磁共振与核磁共振成像是物理学在化学、生物、医学、材料等学科的有效的研究手段,其发展和相关领域的研究者多次获得诺贝尔奖. 核磁共振( Nuclear Magnetic Resonance , NMR) 现象最早在1946 年被斯坦福大学的F.Bloch组和哈佛大学的E. Purcell 组分别发现.核磁共振成像于1973 年由美国化学家P. C. Lauterbur 和英国物理学家P. Mansfield分别提出,这两位科学家共同获得了2003 年诺贝尔生理学/医学奖. 从1978 年英国研制出第一台核磁共振成像仪以来,到2002 年全世界共进行了超过六千万次的核磁共振成像检测,核磁共振成像技术已在医学和脑科学等领域开拓了新的研究方向.

1 实验原理

1.1核磁共振与自由感应衰减

原子核磁矩在外磁场B0作用下产生分裂获得附加能量E m=?μz B0=?γ?mB0,若m=1/2或-1/2,则在外磁场作用下核能级分裂成两个能级,

ΔE=γ?B0

如果此时在与B0垂直方向加上频率为ν的交变磁场B1,此交变磁场的能量量子为hν,当hν=ΔE就会引起核能态在两个分裂能级间的跃迁,产生共振现象.此时共振频率

ν0=γB0/2π

实验中能观测到大量原子核组成的宏观磁矩,将物体放在外磁场内便会出现空间量子化而表现出宏观磁性.总的宏观磁矩M0与B0方向一致,在x、y方向分量为0.若某因素(如外加射频场B1使M偏离z轴,总磁矩M将绕z轴以拉莫尔频率ω0旋转并逐渐恢复到平衡态,如图1.1.如果射频脉冲B1使M与Z轴成90°或180°,则称该脉冲为90°或180°脉冲.

图1.1 射频脉冲与磁化轨迹图1.2 自由衰减信号在y轴上放置接收线圈,因为90°脉冲使M在y轴上最大,有一个频率与进动频率相同的感应信号产生,其振幅的包络线与总磁矩在x-y平面上的分量有关,是一个指数衰减信号,称为自

由感应衰减信号(Free Inductive Decay,FID),如图1.2.显然180°脉冲不会有FID信号.

核磁弛豫过程(Relaxation Process) 是吸收射频脉冲能量后的自旋核与周围物质相互作用并以相同频率的射频辐射形式退激发的过程.从微观角度看弛豫时间的机理可以分为两种,一种是由于自旋磁矩与周围介质的相互作用使M逐渐恢复到M0,称为自旋-晶格弛豫,以弛豫时间T1来表示;另一种是自旋-自旋弛豫,它导致M的横向分量M xy逐渐趋于0,以弛豫时间T2表示.

1.2核磁共振成像基本原理

物质在持续施加的射频场中产生核磁共振时,可以观察到共振信号的吸收峰,这属于稳态的核磁共振现象.如果用脉冲的方式施加射频场,通过测量脉冲核磁共振中的自旋回波信号,可以得到物质核磁弛豫过程中更为丰富的物理性质.

核磁共振成像就是将核磁共振信号所反映的核密度以及弛豫时间T1和T2的空间分布显示成图像.从独立的核磁共振信号到成像,关键是必须对信号进行空间编码.为了在信号中包含空间位置的信息,必须在均匀外磁场上叠加一个空间线性梯度场B(x,y,z),其方向与均匀静磁场B0的方向一致,大小数值是空间坐标的线性函数,这样就可以实现不同位置共振信号的空间编码.针对不同的需求,核磁共振成像空间编码的方式有很多种,相应的对样品施加的梯度磁场脉冲序列也各有不同.但其最基本的宗旨和原理都是一致的.在本实验系统中,x方向的梯度场用来实现样品成像横断面的选择(称为选片),y方向的梯度场用来实现在y方向上对信号的频率编码,z方向的梯度场用来实现在z方向上对信号的相位编码.经过空间编码后的信号,通过二维傅里叶变换后就得到核磁共振信号的二维分布函数,从而得到了样品的二维核磁共振图像.

2 原理性实验

2.0实验系统

图2.1 NMI20台式核磁共振成像仪

NMI20台式核磁共振成像仪(图2.1)的工作原理:在计算机(脉冲序列)的控制下射频信号在波形调制信号的调制下形成需要的形状,送至射频功放系统进行功率放大后,经过发射线圈发射后激发样品产生核磁共振.

在信号采集期间,射频线圈感应到FID信号,经过数据采集与模数转换送入计算机处理.在二维核磁共振成像序列中,还需要从脉冲序列发生器中发出三路梯度控制信号,分别经梯度功放后经由梯度线圈产生三个维度上的梯度磁场,起到对核磁共振信号进行空间定位的作用,通过计算机处理得到样品的2D图像.

2.1硬脉冲FID 信号的观察与1H 拉莫尔频率的测量

宏观磁化矢量的弛豫可以通过Bloch 方程描述和求解,但其中存在一个固定的进动项使描述和求解都很困难.而进动项对信号幅值没有影响,实验室坐标系中的NMR 信号在旋转坐标系中消除了进动项.当旋转坐标系的旋转频率与质子进动的频率,也就是拉莫尔频率完全相同时,线圈采集到的FID 信号中的拉莫尔频率成份就可以被完全过滤掉,呈现出一条指数规律衰减的曲线.在实验中可以通过不断修改射频脉冲的中心频率,直到FID 基本不出现振荡时,射频中心频率就是拉莫尔频率(图2.3).

首先打开计算机中的控制软件,然后打开系统谱仪机箱的电源和梯度机箱的电源. 系统需要经过一定预热时间达到稳定状态. 实验时将装有食用油样品的试管放入磁体箱中,要保证样品位于磁场均匀区的位置.

选择硬脉冲自由感应衰减信号(FID) 序列(图2.2),在单脉冲射频信号的作用下,样品中的氢核产生FID 信号. 它是最基本的脉冲核磁共振信号,对其进行快速傅里叶变换就得到样品的核磁共振谱,用来确定当时实验室环境下核磁共振主频率的数值,以保证样品自旋核的共振激发以及结果处理的准确性

.

图2.2 硬脉冲自由感应衰减信号(FID) 图2.3 共振与偏共振状态下FID 信号的形状及其频谱 在

正零点.于是,测得的1H 原子核的拉莫尔频率

SF1+O1=(22000+370.243)=22370.243MHz

外磁场0.53T,此时的标准值

42.58×0.53=22567.4MHz

误差约为-0.88%.

2.2反转恢复法测T 1

在核磁共振常规脉冲序列中,反转恢复序列是较为常见的一种序列.该序列首先施加一个180°脉冲使M z 反转,此后该磁化强度以T 1进行自由弛豫.经过时间τ1后M z 有所减小,此时沿

参数

设置 说明 P1(μs)

30 90°脉冲宽度,即180°脉冲的一半 D3(μs)

100 死时间,等待噪音自然消除的时间 D0(ms)

1000 脉冲序列重复时间 TD

1024 采样点数 SW(KHz)

100.0 谱宽 DFW(KHz)

30.0 数字滤波器的截止频率 SF1(MHz)

22 1H 通道主值 O1(KHz)

370.243 1H 通道射频偏移,反复调整确定;中心频率=SF1+O1 RG

1 接收机增益 NS

4 累加次数 DS 10 过采样倍数

水平方向施加90°脉冲信号,该序列中180°和90°脉冲之间的间隔时间定义为反转时间D1.经过N次实验描绘出M z的恢复曲线:

M z=M0[1-2exp(-t/T1)]

不断改变D1,得到一系列D1及其对应的峰值.通过软件附带的T1拟合功能拟合得到

T1=149.9ms

2.3饱和恢复法测T1

饱和恢复脉冲序列与反转恢复脉冲序列非常相似,但两个脉冲都是90°脉冲,且都施加

在x轴方向.第一个脉冲之后宏观磁化矢量倒向x-y平面上,纵向和横向弛豫同时开始,而横向弛豫比纵向弛豫快得多,所以饱和恢复序列只适合于测量纵向弛豫时间T1.

设两个脉冲的间隔时间T R,纵向磁化矢量可表示为

M z(T R)=M0[1-exp(-T R/T1)]

通过改变间隔时间TR,获得对应的一系列幅值,拟合得到的

T1=134.4ms

2.4硬脉冲CPMG序列测T2

首先施加90°脉冲,τ时间之后施加180°脉冲,之后每隔2τ施加180°脉冲.在t=2τ、3τ、4τ……时得到幅度逐渐减小的回波信号:

|M y(t)|=M0exp(-2nτ/T2)

这是T2的指数衰减曲线,可以利用此规律测得样品的T2值.试验所用的植物油是调和油,所以应该使用双组分拟合,得到

T2=145.11ms和35.70ms

3 自旋回波序列成像实验

在核磁共振成像中,获取足够用于重建图像的信号按照一定时序和周期施加的射频脉冲与梯度脉冲的组合叫做脉冲序列.最常用的是自旋回波脉冲序列(图3.1):

图3.1 自旋回波脉冲序列

首先用90°脉冲激励样品物质,宏观磁化矢量倒向x-y平面上,之后施加一个梯度脉冲Gs 作用在样品上,以选择并激发某一个特定层面,接下来是一个180°脉冲,改变x-y平面内质子的进动方向,使失相的质子重新相位重聚,吸收180°脉冲射频能量的质子将在后面以自旋回波的形式放出能量,产生自旋回波信号.

选择一个层面后,在相位编码和频率编码的作用下进行数据采集,G p是相位编码梯度,在每次重复时相位编码梯度递增或递减一步;G r是读出梯度,即频率编码梯度,以实现对每个体素的最终定位,从而确定视野的大小.

数据采集完毕后我们得到K空间图像.K空间是数字化后的核磁共振原始数据的存储空

间,并不是样品的图像,不代表成像对象的物理位置.对于每个读出梯度过程,线圈接收到的信号采样后填充到一个傅立叶行;在下一个采集周期中,随着相位编码步的步进,填充下一个傅立叶行.K空间数据与实际的质子密度互为傅立叶变换对,因此对K空间数据进行傅立叶变换,就得到所需的图像数据.

实验中得到了几种样品的核磁共振图像:

图3.2 K空间图像图3.3 芝麻纵断面成像图3.4 芝麻横断面成像

图3.5 水中的大豆成像图3.6 植物油纵断面成像图3.7 植物油横断面成像

4 结语

核磁共振成像技术是现代医学中最重要的影像诊断手段之一,但其理论比较晦涩难懂,硬件结构复杂.NMI20台式核磁共振实验仪是专门针对上述情况开发的一款小型核磁共振成像仪,基本结构和数据处理与医用核磁共振仪基本相同,价格比后者低廉许多,软硬件功能十分强大.

通过这个选做实验,本人也确实感到有收获,特别是经过参数的反复调整,成像清晰,切实感受到了核磁共振成像的优点.

参考文献

1.汪红志,张学龙,武杰.核磁共振成像技术实验教程[M].北京:科学出版社,2008

2.蒋莹莹,张洁天,吕斯骅.核磁共振成像系列实验教学探讨[J].物理实验,Jan. ,2007, Vol. 27 No. 1

3.梁昕.共振频率漂移对脉冲核磁共振测量自旋-自旋弛豫时间的影响

4.臧充之,彭培芝,张洁天,吕斯骅.核磁共振成像教学实验[J].物理实验,Aug. ,2004, Vol. 24 No. 8

核磁共振实验报告

核磁共振实验报告 一、实验目的: 1.掌握核磁共振的原理与基本结构; 2.学会核磁共振仪器的操作方法与谱图分析; 3.了解核磁共振在实验中的具体应用; 二、实验原理 核磁共振的研究对象为具有磁矩的原子核。原子核是带正电荷的粒子,其自旋运动将产生磁矩,但并非所有同位素的原子核都有自旋运动,只有存在自选运动的原子核才具有磁矩。原子核的自选运动与自旋量子数I有关。I=0的原子核没有自旋运动。I≠0的原子核有自旋运动。 原子核可按I的数值分为以下三类: 1)中子数、质子数均为偶数,则I=0,如12C、16O、32S等。 2)中子数、质子数其一为偶数,另一为基数,则I为半整数,如: I=1/2;1H、13C、15N、19F、31P等; I=3/2;7Li、9Be、23Na、33S等; I=5/2;17O、25Mg、27Al等; I=7/2,9/2等。 3)中子数、质子数均为奇数,则I为整数,如2H、6Li、14N等。 以自旋量子数I=1/2的原子核(氢核)为例,原子核可当作电荷均匀分布的球体,绕自旋轴转动时,产生磁场,类似一个小磁铁。当置于外加磁场H0中时,相对于外磁场,可以有(2I+1)种取向: 氢核(I=1/2),两种取向(两个能级): a.与外磁场平行,能量低,磁量子数m=+1/2; b.与外磁场相反,能量高,磁量子数m=-1/2;

正向排列的核能量较低,逆向排列的核能量较高。两种进动取向不同的氢核之间的能级差:△E= μH0(μ磁矩,H0外磁场强度)。一个核要从低能态跃迁到高能态,必须吸收△E的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振,简称NMR。三、实验仪器 400MHz超导傅里叶变换核磁共振波谱仪 (仪器型号:AVANCE III 400) 四、仪器构造、组成 1)操作控制台:计算机主机、显示器、键盘和BSMS键盘。 计算机主机运行Topspin程序,负责所有的数据分析和存储。BSMS键盘可以让用户控制锁场和匀场系统及一些基本操作。 2)机柜:AQS(采样控制系统)、BSMS(灵巧磁体系统),VTU(控温单元)、 各种功放。 AQS各个单元分别负责发射激发样品的射频脉冲,并接收,放大,数字化样品放射出的NMR信号。AQS完全控制谱仪的操作,这样可以保证操作不间断从而保证采样的真实完整。BSMS:这个系统可以通过BSMS键盘或者软件进行控制,负责操作锁场和匀场系统以及样品的升降、旋转。3)磁体系统:自动进样器、匀场系统、前置放大器(HPPR)、探头。 本仪器所配置的自动进样器可放置60个样品。磁体产生NMR跃迁所需的

实验三_顺磁共振

实验三微波顺磁共振 电子自旋的概念是Pauli在1924年首先提出的。1925年,S.A.Goudsmit和 G.Uhlenbeck用它来解释某种元素的光谱精细结构获得成功。Stern和Ger1aok也以实验直接证明了电子自旋磁矩的存在。 电子自旋共振(Electron Spin Resonance)缩写为ESR,又称顺磁共振(Paramagnetic Resonance)。它是指处于恒定磁场中的电子自旋磁矩在射频电磁场作用下发生的一种磁能级间的共振跃迁现象。这种共振跃迁现象只能发生在原子的固有磁矩不为零的顺磁材料中,称为电子顺磁共振。1944年由前苏联的柴伏依斯基首先发现。它与核磁共振(NMR)现象十分相似,所以1945年Purcell、Paund、Bloch和Hanson等人提出的NMR实验技术后来也被用来观测ESR现象。 ESR己成功地被应用于顺磁物质的研究,目前它在化学、物理、生物和医学等各方面都获得了极其广泛的应用。例如发现过渡族元素的离子、研究半导体中的杂质和缺陷、离子晶体的结构、金属和半导体中电子交换的速度以及导电电子的性质等。所以:ESR也是一种重要的近代物理实验技术。 ESR的研究对象是具有不成对电子的物质,如(1)具有奇数个电子的原子,象氢原子; (2)内电子壳层未被充满的离子,如过渡族元素的离子;(3)具有奇数个电子的分子,如NO; (4)某些虽不含奇数个电子,但总角动量不为零的分子,如O2;(5)在反应过程中或物质因受辐射作用产生的自由基;(6)金属半导体中的未成对电子等等,通过对电子自旋共振波谱的研究,即可得到有关分子、原子或离子中未偶电子的状态及其周围环境方面的信息,从而得到有关的物理结构和化学键方面的知识。 “电子自旋共振”与“核磁共振”的不同点在于电子磁矩较核磁矩大三个数量级,因此在实验中,若二者的共振频率大致相同,则电子自旋共振所需的外加静磁场要小得多,由螺线管产生就够了。 用电子自旋共振方法研究未成对的电子,可以获得其它方法不能得到或不能准确得到的数据。如电子所在的位置,游离基所占的百分数等等。 一、实验目的: 1.了解顺磁共振的基本原理。

最新核磁共振实验报告

一、实验目的与实验仪器 1.实验目的 (1)了解核磁共振的基本原理; (2)学习利用核磁共振校准磁场和测量因子g 的方法: (3)掌握利用扫场法创造核磁共振条件的方法,学会利用示波器观察共振吸收信号; (4)测量19F 的g N 因子。 2.实验仪器 NM-Ⅱ型核磁共振实验装置,水 样品和聚四氟乙烯样品。 探测装置的工作原理:图一中绕 在样品上的线圈是边限震荡器电路 的一部分,在非磁共振状态下它处在 边限震荡状态(即似振非振的状态), 并把电磁能加在样品上,方向与外磁 场垂直。当磁共振发生时,样品中的 粒子吸收了震荡电路提供的能量使振荡电路的Q 值发生变化,振荡电路产生显著的振荡,在示波器上产生共振信号。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 原子核自旋角动量不能连续变化,只能取分立值即: P = 其中I 称为自旋量子数,I=0,1/2,1,3/2,2,5/2,…本实验涉及的质子和氟核 F 19 的自旋量子数I 都等于1/2。类似地原子核的自旋角动量在空间某一方向,例如z 方向的分量不能连续变化,只能取分立的数值 自旋角动量不为零的原子核具有与之相联系的核自旋磁矩, 其大小为: P 2M e g =μ 核磁共振 实验报告

其中e 为质子的电荷,M 为质子的质量,g 是一个由原子核结构决定的因子,对不同种类的原子核g 的数值不同,g 成为原子核的g 因子。由于核自旋角动量在任意给定的z 方向的投影只可能取(2I+1)个分立的数值,因此核磁矩在z 方向上的投影也只能取(2I+1)个分立的数值: 2M e g p 2M e g m z z ==μ 原子核的磁矩的单位为: 2M e N =μ 当不存在外磁场时,原子核的能量不会因处于不同的自旋状态而不同。通常把B 的方向规定为z 方向,由于外磁场B 与磁矩的相互作用能为: B B P B B E z z m γγμμ-=-=-=?-= 核磁矩在加入外场B 后,具有了一个正比于外场的频率。量子数m 取值不同,则核磁矩的能量也就不同。原来简并的同一能级分裂为(2I+1)个子能级。不同子能级的能量虽然不同,但相邻能级之间的能量间隔 却是一样的,即: B E γ=? 而且,对于质子而言,I=1/2,因此,m 只能取m=1/2和m= -1/2两个数值。简并能级在磁场中分开。其中的低能级状态,对应E 1=-mB ,与场方向一致的自旋,而高的状态对应于E 2=mB ,与场方向相反的自旋。当核自旋能级在外磁场B 作用下产生分裂以后,原子核在不同能级上的分布服从玻尔兹曼分布。 若在与B 垂直的方向上再施加一个高频电磁场(射频场),且射频场的频率满足一定条件时,会引起原子核在上下能级之间跃迁。这种现象称为共振跃迁(简称共振)。 发生共振时射频场需要满足的条件称为共振条件: B π γν2= 如果用圆频率ω=2πν 表示,共振条件可写成:B γω=

脉冲-核磁共振实验-13页

脉冲核磁共振实验 核磁共振技术来源于1939年美国物理学家拉比(I.I.Rabi )所创立的分子束共振法,他使用这种方法首先实现了核磁共振这一物理思想,精确德测定了一些原子核的磁矩,从而获得了1944年度的诺贝尔物理奖.此后,磁共振技术迅速发展,经历了半个多世纪的而长盛不衰,孕育了多个诺贝尔奖获得者,它还渗透到化学、生物、医学、地学和计量等学科领域,以及众多的生产技术部门,成为分析测试中不可缺少的实验手段. 所谓核磁共振,是指磁矩不为零的原子核处于恒定磁场中,由射频或者微波电磁场引起塞曼能级之间的共振跃迁现象.核磁共振现象具有其特点,因此,我们先介绍一些核磁共振的基础知识. 一、核磁共振基础知识 1. Bloch 方程: 1946年Bloch 采用正交线圈感应法观察水的核磁共振信号后就根据经典理论力学推导出Bloch 方程建立核磁共振的唯象理论。长久以来大量的实验表明Bloch 方程在液体中完全精确,同时还发现Bloch 方程在其他能级跃迁理论也高度吻合,比如激光的瞬态理论中Bloch 方程同样适用。所以Bloch 方程已经超越了半经典的陀螺模型,现在已经推广到磁共振以外的能级跃迁系统。在激光物理中采用密度矩阵和Maxwell 方程组推导出Bloch 方程又称为Maxwell-Bloch 方程(有的书称为FHV 表象理论)。所以Bloch 方程促进了量子力学的发展是非常重要的公式。由于Maxwell-Bloch 方程推导涉及高等量子力学和量子电动力学等复杂的理论和繁琐的数学基础所以本文采用Bloch 半经典的唯象理论。 (1)半经典理论: 将原子核等效为角动量为 L 的陀螺和具有磁矩为L γμ=磁针。其中γ称为旋磁比。 原子核在外磁场作用下受到力矩 B T ?=μ (1) 并且产生附加能量 B E ?=μ (2) 根据陀螺原理 T dt L d =和L γμ=得 B dt d ?=μγμ (3) 其分量式 )()() (y x x y z x z z x y z y y Z x B B dt d B B dt d B B dt d μμγμμμγμμμγμ-=-=-= (4) (2)驰豫过程: 驰豫过程是原子核的核磁矩与物质相互作用产生的。驰豫过程分为纵向驰豫过程和横向驰豫过程。 纵向驰豫: 自旋与晶格热运动相互作用使得自旋无辐射的情况下按)T t exp(1 - 由高能级跃迁至低

核磁共振实验报告

应物0903班 核磁共 振实验报告 王文广U8 苏海瑞 U8

核磁共振实验报告 一、实验目的 1.了解核样共振的基本原理 2.学习利用核磁共振测量磁场强度和原子核的g 因子的方法 二、实验内容 1.在加不同大小扫场情况下仔细观察水样品的核磁共振现象,记录每种情况下的共振峰形和对应的频率 2.仔细观察和判断扫场变化对共振峰形的影响,从中确定真正能应永久磁铁磁场0B 的共振频率,并以此频率和质子的公认旋磁比值 ()267.52MHz /T γ=计算样品所在位置的磁场0B 3.根据记录的数据计算扫场的幅度 4.研究射频磁场的强弱对共振信号强度的影响 5.观察聚四氟乙烯样品的核磁共振现象,并计算氟核的g 因子 三、实验原理 1.核磁共振现象与共振条件 原子的总磁矩j μ和总角动量j P 存在如下关系 22B j j j j e e B e g P g P P m h e e m πμμγμγ=-==为朗德因子,、是电子电荷和质量,称为玻尔磁子,为原子的旋磁比

对于自旋不为零的原子核,核磁矩j μ和自旋角动量j P 也存在如下关系 22N I N I N I I p e g P g P P m h πμμγ=-== 按照量子理论,存在核自旋和核磁矩的量子力学体系,在外磁场 0B 中能级将发生赛曼分裂,相邻能级间具有能量差E ?,当有外界条 件提供与E ?相同的磁能时,将引起相邻赛曼能级之间的磁偶极跃迁,比如赛曼能级的能量差为02B h E γπ ?= 的氢核发射能量为h ν的光子,当0= 2B h h γνπ 时,氢核将吸收这个光子由低塞曼能级跃迁到高塞曼能级,这种共振吸收跃迁现象称为“核磁共振” 由上可知,核磁共振发生和条件是电磁波的圆频率为 00B ωγ= 2.用扫场法产生核磁共振 在实验中要使0= 2B h h γνπ 得到满足不是容易的,因为磁场不是容易控制,因此我们在一个永磁铁0B 上叠加一个低频交谈磁场 sin m B B t ω=,使氢质子能级能量差 ()0sin 2m h B B t γωπ +有一个变化的区域,调节射频场的频率ν,使射频场的能量h ν能进入这个区域,这样在某一瞬间等式 ()0sin 2m h B B t γωπ +总能成立。如图,

核磁共振成像实验报告

中国石油大学 近代物理实验 实验报告 成 绩: 班级: 姓名 同组者: 教师: 核磁共振实验 【实验目的】 1、理解核磁共振的基本原理; 2、理解磁体的中心频率和拉莫尔频率的关系,并掌握拉莫尔频率的测量方法; 3、掌握梯度回波序列成像原理及其成像过程; 4、掌握弛豫时间的计算方法,并反演 T1和T2谱。 【实验原理】 一.核磁共振现象 原子核具有磁矩,氢原子核在绕着自身轴旋转的同时,又沿主磁场方向B 0作圆周运动,将质子磁矩的这种运动称之为进动,如图1所示。 图1 质子磁矩的进动 在主磁场中,宏观磁矩像单个质子磁矩那样作旋进运动,磁矩进动的频率符合拉莫尔(Larmor )方程:. 0/2f B γπ= 二、施加射频脉冲后(氢)质子状态 当生物组织被置于一个大的静磁场中后,其生物组织内的氢质子顺主磁场方向的处于低能态而逆主磁场方向者为高能态。在低能态与高能态之间根据静磁场场强大小与当时的温度,势必要达到动态平衡,称为“热平衡”状态。这种热平衡状态中的氢质子,被施以频率与质子群的旋进频率一致的射频脉冲时,将破坏原来的热平衡状态。施加的射频脉冲越强,

持续时间越长,在射频脉冲停止时,M离开其平衡状态B0越远。 如用以B0为Z轴方向的直角座标系表示M,则宏观磁化矢量M平行于XY平面,而纵向磁化矢量Mz=0,横向磁化矢量Mxy最大,如图2所示。这时质子群几乎以同样的相位旋进。施加180°脉冲后,M与B0平行,但方向相反,横向磁化矢量Mxy为零,如图3所示。 图2 90°脉冲后横向磁化矢量达到最大 图3 180°脉冲后的横向磁化分量为0 三、射频脉冲停止后(氢)质子状态 脉冲停止后,宏观磁化矢量又自发地回复到平衡状态,这个过程称之为“核磁弛豫”。当90°脉冲停止后,M仍围绕B0轴旋转,M末端螺旋上升逐渐靠向B0,如图4所示。 图4 90度脉冲停止后宏观磁化矢量的变化 1. 纵向弛豫时间(T1) 90°脉冲停止后,纵向磁化矢量要逐渐恢复到平衡状态,测量时间距射频脉冲终止的时

三维脉冲核磁共振

实验 三维脉冲核磁共振成像 1934年拉比等人采用分子束磁共振方法,首次观察到核磁共振现象,成为诺贝尔奖得主。1946年Bloch 和Purcell 分别采用交叉线圈感应法和吸收法,在石蜡和水样品中观察到质子的核磁共振感应信号。这两个团队近乎同时独立完成在凝聚态物质中发现核磁共振,精确测定核磁矩和磁场强度的研究。从而共同荣获1952度诺贝尔物理奖。 核磁共振(Nuclear Magnetic Resonance ,NMR 、),是指具有磁矩的原子核在恒定磁场中由电磁波引起的共振跃迁现象。核磁共振成像(Nuclear Magnetic Resonance Imaging ,NMRI ),是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。 在物理学方面,利用NMR 可以研究原子核的结构和性质,凝聚体相变,弛豫过程和临界现象等。在精细化工方面,NMR 技术可以研究高分子材料的结构和多种化学反应的过程。在生物医学领域,利用NMR 可以研究生物组织的组成和生化过程。医学诊断可利用NMR 成像法研究血管和器官损伤,肿瘤结构病变等。在地质学领域,NMR 可以用来探测地下水和地下的油层,燃气和矿物岩层结构。 核磁共振的物理基础是原子核的自旋。原子核不仅是一个带电的力学体系,而且也是核自旋与外电子轨道运动相互作用的结果。而原子核的自旋是质子和中子自旋之和,只有质子数和中子数两者或者其中之一为奇数时,原子核具有自旋角动量和磁矩。这类原子核称为磁性核,只有磁性核才能产生核磁共振。磁性核是核磁共振技术的研究对象。 一、实验目的 1.了解核磁共振的实验原理。 2.通过实验掌握三维脉冲NMR 波谱仪操作和仪器工作原理。 3.采用了解一维成像的原理,理解梯度场在成像中的作用。 4.了解二维成像的原理。 5.了解三维成像的原理。 二、实验原理 1. 具有自旋的原子核,其自旋角动量P 为 )1(+=I I P (1) (1)式中,I 为自旋量子数,其值为半整数或整数,由核性质所决定。π2h = ,h 为普朗克常数。自旋的核具有磁矩μ,μ和自旋角动量P 的关系为 P γμ= (2) (2)式中,γ为旋磁比。 在外加磁场00=B 时,核自旋为I 的核处于)12+I (度简并态。外磁场00≠B 时,角动量P 和磁矩μ 绕0B (设为z 方向)进动,进动角频率为: 00B γω= (3) (3)式称为拉摩尔进动公式。拉摩尔进动公式可知,核磁矩在恒定磁场中将绕磁场方向作进动,进动的角频率0ω取决于核的旋磁比γ和磁场磁感应强度0B 的大小。

核磁共振实验报告及数据

核磁共振实验报告及数据核磁共振实验报告及数据 2011年04月20日核磁共振1了解核磁共振的基本原理教学目的2学习利用核磁共振校准磁场和测量g因子的方法3理解驰豫过程并计算出驰豫时间。重难点1核磁共振的基本原理2磁场强度和驰豫时间的计算。教学方法讲授、讨论、实验演示相结合。学时3个学时一、前言核磁共振是重要的物理现象。核磁共振技术在物理、化学、生物、医学和临床诊断、计量科学、石油分析与勘探等许多领域得到重要应用。自旋角动量P不为零的原子核具有相应的磁距μ而且其中称为原子核的旋磁比是表征原子核的重要物理量之一。当存在外磁场B时核磁矩和外磁场的相互作用使磁能级发生塞曼分裂相邻能级的能量差为其中hh/2πh为普朗克常数。如果在与B垂直的平面内加一个频率为ν的射频场当时就发生共振现象。通常称y/2π为原子核的回旋频率一些核素的回旋频率数值见附录。核磁共振实验是理科高等学校近代物理实验课程中的必做实验之一如今许多理科 院校的非物理类专业和许多工科、医学院校的基础物理实验课程也安排了核磁共振实验或演示实验。利用本装置和用户自备的通用示波器可以用扫场的方式观察核磁共振现象 并测量共振频率适合于高等学校近代物理实验基础实验教 学使用。二、实验仪器永久磁铁含扫场线圈、可调变阻器、探头两个样品分别为、和、数字频率计、示波器。三、实

验原理一核磁共振的稳态吸收核磁共振是重要的物理现象核磁共振实验技术在物理、化学、生物、临床诊断、计量科学和石油分析勘探等许多领域得到重要应用。1945年发现核磁共振现象的美国科学家Purcell和Bloch1952年获诺贝尔物理学奖。在改进核磁共振技术方面作出重要贡献的瑞士科学家Ernst1991年获得诺贝尔化学奖。大家知道氢原子中电子的能量不能连续变化只能取分立的数值在微观世界中物理量只能取分立数值的现象很普通本实验涉及到的原子核自旋角动量也不能连续变化只能取分立值其中I称为自旋量子数只能取0123?6?7等整数值或1/23/25/2?6?7等半整数值公式中的h/2π而h为普朗克常数对不同的核素I分别有不同的确定数值本实验涉及质子和氟核F19的自旋量子数I 都等于1/2类似地原子核的自旋角动量在空间某一方向例如z方向的分量也不能连续变化只能取分立的数值Pzm 。其中量子数m只能取II-1?6?7-II-I等2I1个数值。自旋角动量不为零的原子核具有与之相联系的核自旋磁矩其大小为 1 其中e为质子的电荷M为质子的质量g是一个由原子核结构决定的因子对不同种类的原子核g的数值不同g称为原子核的g因子值得注意的是g可能是正数也可能是负数因此核磁矩的方向可能与核自旋动量方向相同也可能相反。由于核自旋角动量在任意给定z方向只能取2I1个分立的数值因此核磁矩在z方向也只能取2I1个分立的数值。2 原子核的磁

脉冲核磁共振实验

近代物理实验-核磁共振 实验目的: (1)了解核磁共振原理 (2)学习使用核磁共振测量软件 实验原理: 核具有自旋角动量p ,根据量子力学p 的取值为: p=?)1( I I (1) 式中?=h/2π,h 为普朗克常数,I 为自旋量子数,其取值为整数或半整数即0,1,2,…或 1/2,3/2,…。若原子质量数A 为奇数,则自旋量子数I 为半整数,如1H(1/2), 15N(1/2), 17O(5/2), 19F(1/2)等;如A 为偶数,原子序数Z 为奇数,I 取值为整数,如21H(1), 147N(1), 105B(3) 等;当A 、Z 均为偶数时I 则为零,如126C, 168O 等。 核自旋角动量p 在空间任意方向的分量(如z 方向)的取值为: p z = m ? (2) m 的取值范围为-I…I,即-I ,-(I-1),…,(I-1),I 。 原子核的自旋运动必然产生一微观磁场,因此称原子核具有自旋磁矩μ,它与自旋角动量p 的关系为: μ = γ p (3) γ称为旋磁比,γ与原子核本身性能有关,它的数值可正可负。 与自旋角动量一样,自旋磁矩在外加磁场方向的分量值也是量子化的 μz = γ ? m (4) 与p 一样的取值范围一样,m 的取值范围也是 -I…I。对质子1H ,I=1/2, m 的取值为-1/2 和1/2。 核磁矩在外磁场B 0中将获得附加能量 E m =-μz B 0=-γ ? mB 0 (5) 以质子为例,其m 的值为1/2与-1/2,从而在外磁场作用下核能级分裂成两个能级,其能级差ΔE 为 ΔE=γ ? B 0 (6) 如果此时在与B 0垂直方向再加上一个频率为ν的交变磁场B 1,此交变磁场的能量量子为h ν,则当h ν=ΔE 时就会引起核能态在两个分裂能级间的跃迁,即产生共振现象。此时

核磁共振成像实验报告

核磁共振成像实验 【目的要求】 1.学习和了解核磁共振原理和核磁共振成像原理; 2.掌握MRIjx 核磁共振成像仪的结构、原理、调试和操作过程; 【仪器用具】 MRIjx 核磁共振成像仪、计算机、样品(油) 【原 理】 磁共振成像(MRI )是利用射频电磁波(脉冲序列)对置于静磁场B 0中的含有自旋不为零的原子核(1H )的物质进行激发,发生核磁共振,用感应线圈检测技术获得物质的组织驰豫信息和氢质子密度信息(采集共振信号),用梯度磁场进行空间定位、通过图像重建,形成磁共振图像的方法和技术。 具体的讲,核磁共振是利用核磁共振现象获取分子结构、样品内部结构信息的技术。当具有自旋的原子核的磁矩处于静止外磁场中时会产生进动和能级分裂。在交变磁场作用下,自旋的原子核会吸收特定频率的无线电射频电磁波,从较低的能级跃迁到较高能级。在停止射频脉冲后,原子核按特定频率发出射电信号,并将吸收的能量释放出来,被物体外的接受器收录,经电子计算机处理获得图像,这就是做核磁共振成像过程。 MRI 的特点: ● 具有较高的物质组织对比度和组织分辨力,对软组织分辨率极佳,能清晰地显示软组织、软骨结构,解剖结构和医学上的病变形态,显示清楚、逼真。 ● 多方位成像,能对被检查部位进行横断面、冠状面、矢状面以及任何斜面成像。 ● 多参数成像,获取T 1加权成像(T 1W1):T 2加权成像(T 2W2)、质子密度加权成像(PDW1),在影像上取得物质的组织之间、组织与变化之间T 1、T 2和PD 的信号对比,在医学上对显示解剖结构和病变敏感。 ● 能进行形态学、功能、组织化学和生物化学方面的研究。 ● 以射频脉冲作为成像的能量源,不使用电离辐射,对人体安全、无创。 一、核磁共振原理 产生核磁共振信号必须满足三个基本条件:(1)能够产生共振跃迁的原子核;(2)恒定的静磁场(外磁场、主磁场)B 0;(3)产生一定频率电磁波的交变磁场,射频磁场(RF );即:“核”:共振跃迁的原子核;“磁”:主磁场B 0和射频磁场RF ;“共振”:当射频磁场的频率与原子核进动的频率一致时原子核吸收能量,发生能级间的共振跃迁。 1. 原子核的自旋和磁矩 原子核由质子和中子组成,原子核有自旋运动,可以粗略的理解为原子核绕自身的轴向高速旋转的运动,对应有确定的自旋角动量,反映了原子核的内禀特性。自旋的大小与原子核中的核子数及其分布有关,质子数和中子数均为偶数的原子核,自旋量子数I=0,质量数为奇数的原子核,自旋量子数为半整数,质量数为偶数,质子数为奇数的原子核,自旋量子数为整数。原子核自旋角动量的具体数值由原子核的自旋量子数I 决定, )(1+=I I l I 。 原子核具有电荷分布,自旋时形成循环电流,产生磁场,形成磁矩,磁矩的方向与自旋角动量方向一致,大小I P γγμ==,P 是角动量,γ是磁旋比,等于

脉冲核磁共振实验

近代物理实验-核磁共振 实验目的: (1) 了解核磁共振原理 (2) 学习使用核磁共振测量软件 实验原理: 核具有自旋角动量 p,根据量子力学p的取值为: P= ?..丨(1 1) (1) 式中?=h/2 n , h为普朗克常数,I为自旋量子数,其取值为整数或半整数即0,1,2,…或 1/2,3/2,…。若原子质量数A为奇数,则自旋量子数I为半整数,如1H(1/2), 15N(1/2), 17O(5/2), 19F(1/2)等;如A为偶数,原子序数Z为奇数,I取值为整数,如务(1), 1:N(1), 105B(3) 等;当A、Z均为偶数时I则为零,如126C, 168O等。 核自旋角动量p在空间任意方向的分量(如 z方向)的取值为: p z = m ? (2) m的取值范围为-I…I,即-I,- (I-1 ),…,(I-1 ), I。 原子核的自旋运动必然产生一微观磁场,因此称原子核具有自旋磁矩□,它与自旋角 动量p的关系为: 卩=Y p (3) 丫称为旋磁比,丫与原子核本身性能有关,它的数值可正可负。 与自旋角动量一样,自旋磁矩在外加磁场方向的分量值也是量子化的 z = Y? m (4) 与p 一样的取值范围一样,m的取值范围也是-I…I。对质子1H, 1=1/2, m 的取值为-1/2 和 1/2。 核磁矩在外磁场B o中将获得附加能量 E m=- i z B 0=- Y ? mB°(5) 以质子为例,其m的值为1/2与-1/2 ,从而在外磁场作用下核能级分裂成两个能级,其能级 m/21/2 r n J (a) (b) ? 图】(a)空间童干代(b)能皱分址(c)桩直进 差△ E为 △ E=Y? B 0 (6) 如果此时在与B0垂直方向再加上一个频率为v的交变磁场B1,此交变磁场的能量量子 为h v ,则当h v =△E时就会引起核能态在两个分裂能级间的跃迁,即产生共振现象。此时共振频率V 0为

[核磁共振波谱学讲义]第三章—NMR实验技术基础(4脉冲技术)

第三章 NMR 实验技术基础 4 脉冲技术 a 频偏效应(off-resonance effects) 由于射频场为单色波,而样品中的化学位移有一定的范围,因此不同的核感受到的有效场也不同。 (1) 脉冲作用对象为Z 磁化向量 在off-resonance 状态,相位y 的脉冲作用于平衡态的z 磁化向量后: M M M M M M x y z ==-=+000221sin sin ; (cos )sin cos ;(cos cos sin ) αθαθθθαθ 当频偏大时有明显的相位及强度的畸变: tan (cos )cos sin (cos )sin sin βαθ α αθαγ= = -=-? -M M B y x 111Ω

这个式子适合于分析相位与频偏的关系。 当频偏不大于射频场频率时,90度脉冲后的水平分量的相位与频偏基本上是线性关系, βγτγττπ = -=-= -ΩΩΩ B B 190190902 因此不太大的频偏下,实际的90度脉冲可以当成理想的90度脉冲,后跟一 段演化期,时间长度为ττπ =290 相比之下,有频偏时180度脉冲的效果要差的多,通常需要其他技术来弥补。 90度脉冲的激发曲线的第一个零点位于Ω=±151γB 180度脉冲的激发曲线的第一个零点位 于Ω=±31γB 如蛋白质中C α的化学位移平均在 56ppm 左右,而CO 的化学位移在174ppm 左右,若要激发其中之一同时对另一个影响最小,180度方波的功率应选择为 118125673 8562?=. Hz ,对应的脉冲宽度大约58.4μs. (2) 脉冲作用对象为水平磁化向量(nonresonant effects) 频偏较大时射频场的有效磁场接近Z 向,因此横向磁化向量在脉冲期间绕Z 轴有额外的进动,产生相移:φωτNR p t =<>122()Ω 此处<>对脉冲串作平均,在多维谱中当τp 随间接维时间变化时(如去偶序列),这个相 移在对应的间接维中表现为一个频移ωωNR t = <>122()Ω

电子顺磁共振 实验报告

电子顺磁共振实验报告 一、实验目的 1. 学习电子顺磁共振的基本原理和实验方法;; 2. 了解、掌握电子顺磁共振谱仪的调节与使用; 3.测定DMPO-OH的EPR 信号。 二、实验原理 1.电子顺磁共振(电子自旋共振) 电子自旋共振(Electron Spin Resonance, ESR)或电子顺磁共振(Electron Paramagnanetic Resonance,EPR),是指在稳恒磁场作用下,含有未成对电子的原子、离子或分子的顺磁性物质,对微波发生的共振吸收。1944年,苏联物理学家扎沃伊斯基(Zavoisky)首次从CuCl2、MnCl2等顺磁性盐类发现。电子自旋共振(顺磁共振)研究主要对象是化学自由基、过渡金属离子和稀土离子及其化合物、固体中的杂质缺陷等,通过对这类顺磁物质电子自旋共振波谱的观测(测量因子、线宽、弛豫时间、超精细结构参数等),可了解这些物质中未成对电子状态及所处环境的信息,因而它是探索物质微观结构和运动状态的重要工具。由于这种方法不改变或破坏被研究对象本身的性质,因而对寿命短、化学活性高又很不稳定的自由基或三重态分子显得特别有用。近年来,一种新的高时间分辨ESR技术,被用来研究激光光解所产生的瞬态顺磁物质(光解自由基)的电子自旋极化机制,以获得分子激发态和自由基反应动力学信息,成为光物理与光化学研究中了解光与分子相互作的一种重要手段。电子自旋共振技术的这种独特作用,已经在物理学、化学、生物学、医学、考古等领域得到了广泛的应用。 2.EPR基本原理 EPR 是把电子的自旋磁矩作为探针,从电子自旋磁矩与物质中其它部分的相互作用导致EPR 谱的变化来研究物质结构的,所以只有具有电子自旋未完全配对,电子壳层只被部分填充(即分子轨道中有单个排列的电子或几个平行排列的电子)的物质,才适合作EPR 的研究。不成对电子有自旋运动,自旋运动产生自旋磁矩, 外加磁场后,自旋磁矩将平行或反平行磁场方向排列。经典电磁学可知,将磁矩为μ的小磁体放在外磁场H 中,它们的相互作用能为: E=-μ· H = -μH cosθ 这里θ为μ与H之间的夹角,当θ= 0 时,E = -μH, 能量最低,体系最稳定。θ=π时,E=μH,能量最高。如果体系从低能量状态改变到高能量状态,需要外界提供能量;反之,如果体系由高能量状态改变为低能量状态,体系则向外释放能量。

核磁共振实验报告

核磁共振实验报告 一、实验目的与实验仪器 1.实验目的 (1)了解核磁共振的基本原理; (2)学习利用核磁共振校准磁场和测量因子g的方法: (3)掌握利用扫场法创造核磁共振条件的方法,学会利用示波器观察共振吸收信号; (4)测量19F的g N因子。 2.实验仪器 NM-Ⅱ型核磁共振实验 装置,水样品和聚四氟乙烯 样品。 探测装置的工作原理: 图一中绕在样品上的线圈是边限震荡器电路的一部分,在非磁共振状态下它处在边限震荡状态(即似振非振的状态),并把电磁能加在样品上,方向与外磁场垂直。当磁共振发生时,样品中的粒子吸收了震荡电路提供的能量使振荡电路的Q值发生变化,振荡电路产生显著的振荡,在示波器上产生共振信号。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式)

原子核自旋角动量不能连续变化,只能取分立值即: P = 其中I 称为自旋量子数,I=0,1/2,1,3/2,2,5/2,…本实验涉及的质子和氟核 F 19 的自旋量子数I 都等于1/2。类似地原子核的自旋角动量在空间某一方向,例如z 方向的分量不能连续变化,只能取分立的数值 自旋角动量不为零的原子核具有与之相联系的核自旋磁矩, 其大小为: P 2M e g =μ 其中e 为质子的电荷,M 为质子的质量,g 是一个由原子核结构决定的因子,对不同种类的原子核g 的数值不同,g 成为原子核的g 因子。由于核自旋角动量在任意给定的z 方向的投影只可能取(2I+1)个分立的数值,因此核磁矩在z 方向上的投影也只能取(2I+1)个分立的数值: 2M e g p 2M e g m z z ==μ 原子核的磁矩的单位为: 2M e N = μ 当不存在外磁场时,原子核的能量不会因处于不同的自旋状态而不同。通常把B 的方向规定为z 方向,由于外磁场B 与磁矩的相互作用能为: B B P B B E z z m γγμμ-=-=-=?-= 核磁矩在加入外场B 后,具有了一个正比于外场的频率。量子数

核磁共振nmr实验报告

核磁共振实验报告 1.实验目的 了解核磁共振的基本原理;学习使用核磁共振波谱仪,分析样品的结构和组分。 2.实验原理 原子核除具有电荷和质量外,约有半数以上的元素的原子核还能自旋。由于原子核是带正电荷的粒子,它自旋就会产生一个小磁场。具有自旋的原子核处于一个均匀的固定磁场中,它们就会发生相互作用,结果会使原子核的自旋轴沿磁场中的环形轨道运动,这种运动称为进动。 自旋核的进动频率ω0与外加磁场强度H0成正比,即ω0=γH0,式中γ为旋磁比,是一个以不同原子核为特征的常数,即不同的原子核各有其固有的旋磁比γ,这就是利用核磁共振波谱仪进行定性分析的依据。从上式可以看出,如果自旋核处于一个磁场强度H0的固定磁场中,设法测出其进动频率ω0,就可以求出旋磁比γ,从而达到定性分析的目的。同时,还可以保持ω0不变,测量H0,求出γ,实现定性分析。 图1 核磁共振波谱仪原理图 核磁共振波谱仪就是在这一基础上,利用核磁共振的原理进行测量的核磁共振广泛用于化合物的结构测定,定量分析和动物学研究等方面。它与紫外、红外、质谱和元素分析等技术配合,是研究测定有机和无机化合物的重要工具。

如果有一束频率为ω的电磁辐射照射自旋核,当ω=ω0时,则自旋核将吸收其辐射能而产生共振,即所谓核磁共振。吸收能量的大小取决于核的多少。这一事实,除为测量γ提供途径外,也为定量分析提供了根据。具体的实现方法是:在固定磁场H0上附加一个可变的磁场。两者叠加的结果使有效磁场在一定范围内变化,即H0在一定范围内可变。另置一能量和频率稳定的射频源,它的电磁辐射照射在处于磁场中的样品上,并用射频接收器测量经样品吸收后的射频辐射能。在样品无吸收时,则接收的能量为一定值;如果有吸收,就会给出一个能量吸收信号。但吸收的条件必须是射频的频率ω=ω0。射频的频率是固定的,要使具有不同γ值的不同原子核都能吸收辐射能,就只有改变H0,使不同的自旋核在相应的某一特定的H0时具有相同的并与射频频率相等的进动频率,即ω=ω0。这样,不同的自旋核都可以在某一特征的磁场强度下吸收射频辐射能而产生核磁共振。因此,用改变磁场强度的方法进行扫描,接收器就可以给出一系列的以磁场强度(实际上是以旋磁比)为特征的吸收信号。以磁场强度为横坐标,以吸收能量为纵坐标绘出的曲线就是核磁共振波谱图。其中横坐标就是定性分析所依据的参数,纵坐标对应于不同H0的出峰面积就是定量分析参数。 3.实验仪器 本次实验使用的是Bruker公司A V ANCE系列400MHz超导傅里叶变化核磁共振波谱仪。 4.仪器构造、组成 下图是A V ANCE 400MHz核磁共振波谱仪结构及组成。整个系统由机体、主机柜和控制台组成。控制台发出的电磁信号经主机柜转化为模拟信号,从而控制机体完成实验的过程;机体检测器采集的模拟信号经主机柜转为电信号,范围到控制台,保存为核磁波谱图。 机体由超导磁体、进样器、检测器等组成,超导磁体是核磁波谱仪的核心部件,用来产生仪器工作所需的磁场,为保持稳定,超导磁体的周围有36组线圈,用以补偿不均匀的的磁场。超导磁体的周围有液氮和液氦的冷却池,用来保持超导磁体所需的低温环境(液氮约每星期补充一次,液氦约半年补充一次)。该仪器配有60位自动进样器,可以安排序列实验。检测器由发射线圈和接收线圈组成,用以检测样品的核磁信号。

参数对脉冲核磁共振信号图像的影响分析

参数对脉冲核磁共振信号图像的影响分析 Analyzing the effects of parameters on NMR images 金磊 0830******* 指导老师:俞熹 复旦大学物理系 摘要 本文主要讨论了脉冲核磁共振信号图像中各种参数的物理意义,从实验原理出发,根据NMI20核磁共振仪实验软件,研究改变各参数对输出图像的影响,并总结出一些有效提高图像质量的参数选择方法。 关键词核磁共振脉冲序列成像参数选择 引言 核磁共振( Nuclear Magnetic Resonance, NMR)是指处在外界恒定磁场为的具有磁矩的原子核,产生能级分裂,若在垂直以方向加一射频(Radio Frequency,RF)场,当射频场的频率等于相邻能级间的跃迁频率时(即满足)核磁矩产生磁偶极跃迁的现象。目前,核磁共振成像(NMRI) 技术是医学中最重要的影像诊断手段之一。 本文主要讨论了脉冲核磁共振信号图像中各种参数的物理意义,结合实验原理,使用NMI20核磁共振仪实验软件,研究改变各参数对输出图像的影响,并总结出有效提高图像质量的参数选择方法。 实验原理 1.核磁共振基本原理 置于磁场中的自旋核系统,具有宏观磁化矢量Mz。沿垂直于外场的方向施加一个频率与拉莫尔频率1相同的射频电场,则宏观磁化矢量也将受到射频磁场作用,发生章动。在实验中可探测到射频脉冲使得磁化适量偏离Z方向一个角度θ。2。在垂直于外磁场的方向施加与质子拉莫尔频率相等的90度射频电磁波,即可使得宏观磁化矢量发生偏转,产生核磁共振成像,在垂直与原磁场方向放置探测横向(XY平面内)磁感应强度的线圈,即可对核磁共振信号进行观察。所得信号即为本实验的主要研究对象。 图1 2.硬脉冲和软脉冲 NMRI中的射频磁场系统发射出中心频率为拉莫尔频率的射频电磁波,激发样品质子群从而 1单个自旋核在磁场中的运动除了不断绕自身轴做转动之外,还以磁场为轴作进动,进动的频率满足公式ω=γ*B,其中的ω即是拉莫尔频率,射频磁场越接近总的拉莫尔频率,共振效果就越明显。 2可知偏转角度取决于射频场的大小和射频脉宽τ。选择合适的射频场大小和射频脉宽,可找到使偏转角为90度和180度的射频脉冲,即实验中用到的90度脉冲和180度脉冲。 γ为旋磁比,是质子的一个参数。

核磁共振实验报告

核 磁 共 振 实验仪器 FD-CNMR-I 型核磁共振实验仪,包括永久磁铁、射频边限振荡器、探头、样品、频率计、示波器 实验原理 FD-CNMR-I 型核磁共振实验仪采用永磁铁,0B 是定值,所以对不同的样品,通过扫频法调节射频场的频率使之达到共振频率0ν,满足共振条件,核即从低能态跃迁至高能态,同时吸收射频场的能量,使得线圈的Q 值降低产生共振信号。 由于示波器只能观察交变信号,所以必须使核磁共振信号交替出现,FD-CNMR-I 型核磁共振实验仪采用扫场法满足这一要求。在稳恒磁场0B 上叠加一个低频调制磁场 )sin(t B m ?'ω,这个调制磁场实际是由一对亥姆霍兹线圈产生,此时样品所在区域的实际 磁场为)sin(0t B B m ?'+ω。 图1 扫场法检测共振吸收信号 (a) 由于调制场的幅值m B 很小,总磁场的方向保持不变,只是磁场的幅值按调制频率发生周期性变化,拉摩尔进动频率ω也相应地发生周期性变化,即 ))sin((0t B B m ?'+?=ωγω (1) 这时只要射频场的角频率调在ω变化范围之内,同时调制磁场扫过共振区域,即 m m B B B B B +≤≤-000,则共振条件在调制场的一个周期内被满足两次,所以在示波器 上观察到如图(b )所示的共振吸收信号。此时若调节射频场的频率,则吸收曲线上的吸收

峰将左右移动。当这些吸收峰间距相等时,如图(a )所示,则说明在这个频率下的共振磁场为0B 。 如果扫场速度很快,也就是通过共振点的时间比弛豫时间小得多,这时共振吸收信号的形状会发生很大的变化。在通过共振点后,会出现衰减振荡,这个衰减的振荡称为“尾波”,尾波越大,说明磁场越均匀。 实验步骤 (一) 熟悉各仪器的性能并用相关线连接 实验中,FD-CNMR-I 型核磁共振仪主要应用五部分:磁铁、磁场扫描电源、边限振荡器(其上装有探头,探头内装样品)、频率计和示波器。仪器连线 (1) 首先将探头旋进边限振荡器后面板指定位置,并将测量样品插入探头内; (2) 将磁场扫描电源上“扫描输出”的两个输出端接磁铁面板中的一组接线柱(磁铁面板上共有四组,是等同的,实验中可以任选一组),并将磁场扫描电源机箱后面板上的接头与边限振荡器后面板上的接头用相关线连接; (3) 将边限振荡器的“共振信号输出”用Q9线接示波器“CH1通道”或者“CH2通道”,“频率输出”用Q9线接频率计的A 通道(频率计的通道选择:A 通道,即MHz Hz 1001--;FUNCTION 选择:FA ;GATE TIME 选择:1S ); (4) 移动边限振荡器将探头连同样品放入磁场中,并调节边限振荡器机箱底部四个调节螺丝,使探头放置的位置保证使内部线圈产生的射频磁场方向与稳恒磁场方向垂直; (5) 打开磁场扫描电源、边线振荡器、频率计和示波器的电源,准备后面的仪器调试。 (二) 核磁共振信号的调节 FD-CNMR-I 型核磁共振仪配备了六种样品:1——硫酸铜、2——三氯化铁、3——氟碳、4——丙三醇、5——纯水、6——硫酸锰。 (1)将磁场扫描电源的“扫描输出”旋钮顺时针调节至接近最大(旋至最大后,再往回旋半圈,因为最大时电位器电阻为零,输出短路,因而对仪器有一定的损伤),这样可以加大捕捉信号的范围;

核磁共振实验报告

浙 江 师 范 大 学 实 验 报 告 实验名称核磁共振 班 级 物理071 姓名 骆宇哲 学号 07180132 同 组 人 沈宇能 实验日期 09/12/3 室温 气温 核磁共振 摘 要:本实验中 ,学生将会了解核磁共振的基本原理;学习到利用核磁共振校准磁场和 测量g 因子的方法 关键词:塞曼能级分裂 扫场系统 扫频系统 引 言:核磁共振,是指具有磁矩的原子核在恒定磁场中由电磁波引起的共振跃迁现象。1945年12月,美国哈佛大学帕塞尔等人,报道了他们在石蜡样品中观察到质子的核磁共振吸收信号;1946年1月,美国斯坦福大学布洛赫等人,也报道了他们在水样品中观察到质子的核感应信号。两个研究小组用了稍微不同的方法,几乎同时在凝聚物质中发现了核磁共振。因此,1945年发现核磁共振现象的美国科学家珀塞耳(Purcell )和布珞赫(Bloch )1952年获得诺贝尔化学奖。以后,许多物理学家进入了这个领域,取得了丰硕的成果。目前,核磁共振已经广泛地应用到许多学科领域,是物理、化学、生物、临床诊断、计量科学和石油分析与勘探等研究中的一项重要实验技术。它是测定原子的核磁矩和研究核结构的直接而又准确的方法,也是精确测量磁场和稳定磁场的重要方法之一。 正文: 一、 实验原理 大家知道,氢原子中电子的能量不能连续变化,只能取离散的数值。在微观世界中物理量只能取离散数值的现象很普遍。本实验涉及到的原子核自旋角动量也不能连续变化,只能取离散值 ,其中I 称为自旋量子数,只能取0,1,2,3,…整数值或1/2,3/2,5/2,…半整数值。公式中的 ,而h 为普朗克常数。对不同的核素,I 分别有不同的确定数值。本实验涉及的质子和氟核19F 的自旋量子数I 都等于1/2。类似地,原子核的自旋动量在空间某一方向,例如z 方向的分量也不能连续变化,只能取离散的数值 ,其中量子数m 只能取I ,I -1,…,-I +1,-I 共(2I+1)个数值。 自旋角动量不为零的原子核具有与之相联系的核自旋磁矩,其大小为 p M 2e g =μ (1) 其中e 为质子的电荷,M 为质子的质量,g 是一个由原子核结构决定的因子,对不同种类的原子核g 的数值不同,g 称为原子核的g 因子,值得注意的是g 可能是正数,也可能是负数,因此,核磁矩的方向可能与核自旋角动量方向相同,也可能相反。 当不存在磁场时,每一个原子核的能量相同,所有原子处在同一能级,但是,当施加一个外磁场B 后,情况发生变化,为了方便起见,通常把B 的方向规定为z 方向,由于外磁场B 与磁矩的相互作用能为 E=-μ·B=-μz B=-γp z B=-γm ηB (2) 因此量子m 取值不同的核磁矩的能量也就不同,从而原来简并的同一能级分裂为(2I+1)个子能级,由于在外磁场中各个子能级的能量与量子数间隔△E=γηB 全是一样的。 当施加外磁场B 以后,原子核在不同能级上的分布服从玻尔兹曼分布,显然处在下能级的粒子数要比上能级的多, 其数量由△E 大小、系统的温度和系统总粒子数决定。若再在与B 垂直的方向上再施加上一个高频电磁场(通常为射频场),当射频场的频率满足h ν=△E 时会引起原子核在上下能级之间跃迁, 但由于一开始处在下能级的核比在上能级的核要多,因此净效果是上跃迁的比下跃迁的多,从而使系统的总能量增加,这相当于系统从射频场中吸收了能量。 我们把hv=△E 时引起的上述跃迁称为共振跃迁,简称为共振。显然共振要求hv=△E,

相关主题
文本预览
相关文档 最新文档