当前位置:文档之家› 电厂发电机常见故障原因分析及预防措施

电厂发电机常见故障原因分析及预防措施

电厂发电机常见故障原因分析及预防措施
电厂发电机常见故障原因分析及预防措施

电厂发电机常见故障原因分析及预防措施

发表时间:2019-01-11T14:26:56.300Z 来源:《科技新时代》2018年11期作者:王相军

[导读] 电厂发电机是电厂的三大主机之一,其长时间处于高速和高负荷运转的状况下容易导致出现线圈、电气以及液压系统故障等,会对电厂的生产效率以及质量和安全造成不利影响。

华电能源股份有限公司富拉尔基热电厂黑龙江省齐齐哈尔市 161041

摘要:电厂发电机是电厂的三大主机之一,其长时间处于高速和高负荷运转的状况下容易导致出现线圈、电气以及液压系统故障等,会对电厂的生产效率以及质量和安全造成不利影响。因此就需要针对电厂发电机运行中的常见故障及其表现,对其原因进行深入分析,并针对这些故障和原因来采取相应的预防和控制措施。

关键词:电厂发电机;常见故障;原因;预防措施

1引言

近年来随着我国经济的快速发展和社会用电负荷的增加,给电力企业带来较大的电能生产压力,使得电厂发电机组装机容量以及机组参数也在不断增加。发电机是电厂中的三大主机之一,是将机械能转换为电能的重要设备,也是决定电厂生产效率的关键。但是发电机日常运行中也不可避免出现一些线圈故障以及电气故障等常见故障,为了确保发电机组的发电质量和安全,就需要对发电机的常见故障表现以及原因进行分析,并针对这些常见故障采取相应的预防措施,确保电厂生产的安全和稳定运行。

2电厂发电机常见故障及原因分析

2.1线圈故障及其原因

发电机中的线圈主要有转子线圈、定子线圈以及其他类型的线圈,其在发电机的正常运行中会随着电机的运行而发生磨损,这就必然会导致发电机线圈在长时间的运行过程中出现故障。这主要表现在以下几个方面并分别对其原因进行分析:第一个故障就是线圈绝缘失效的故障,主要表现在绝缘层老化而无法对电压进行阻挡,严重时会导致电压击穿的故障表现。这主要是由于线圈的长时间使用过程中,线圈绝缘层的质量会由于磨损和老化原因而不断下降,而且在对线圈绝缘层的材料进行选择时没有针对其应用环境以及实际需求进行正确选择,也会导致其使用寿命的降低以及性能的下降。第二个故障就是线圈磨损所带来的故障。这主要是由于发电机中的转子在日常运行中会随着发电机超负荷运行而持续进行高速运转,但是长时间如此就会增加转子线圈在高速旋转中的摩擦问题,导致线圈的绝缘层被磨损和破坏,甚至会导致电流无法正常在发电机内部同行的问题。第三个故障就是定子线圈磨损所带来的故障。定子在发电机中是固定不动,但是与转子进行相对运动的,这就会导致在转子高速旋转中会对定子线圈起到摩擦作用,同样会导致绝缘老化以及绝缘层被破坏等问题。此外,在发电机正常运行中线圈绝缘层和保护对象之间需要处于密闭的保护空间中才能起到良好的保护作用,保护其对象不会被电压击穿,但是如果日常运行中没有加强对绝缘层的清洁,也会导致在灰尘等杂质的覆盖和腐蚀作用下而降低其绝缘性能,从而导致线圈故障的发生。

2.2电气故障及其原因

电厂发电机运行中的电气故障主要表现在以下几个方面:首先就是表现为线套管温度过高的现象,这主要是由于电流在随着发电机底部的漏磁而产生时,其漏磁和无功负荷之间会呈现出正比例关系,也就是说在后者不断增加时,也会导致漏磁不断增加,这就会使得电流产生的几率也随之增加。而且在磁场的涡流热量向线套管中进行传递时,也会导致其温度的不断升高。其次就是表现为大轴磁化以及退磁等故障。这主要是由于大轴磁化会导致轴瓦在电流作用下失去原来的性能,而且在大轴磁场的摩擦过程中会产生金属磁化,金属磁化又会导致大轴磁场的产生,所以说其根本原因就是由于大轴所使用的镍镉金属材质的原因。再次就是转子连接故障。这主要是由于转子和发电机直接的连接是通过接触片的方式进行连接的,如果在二者共同运转的过程中出现连接之间的距离不断增大的问题就会导致连接部位无法良好契合,并导致摩擦问题的加剧,如果接触片发生变形就会对发电机的运转起到阻碍作用。最后一个故障就是励磁回路短路故障。这主要是由于电刷在发电机运行中比较容易出现稳定性失效等现象,这也与变阻器以及晶闸管等有关系。

2.3液压系统故障及其原因

电厂发电机中的液压系统故障主要表现为以下几个方面:首先就是零部件故障。这主要是由于发电机液压系统中的零部件规模比较小但是数量比较多,容易由于在安装过程中的疏忽或错误而导致内部结构中的安装位置和质量出现问题,表现为接头张弛以及过于紧密或过于松动等问题。其次就是控制系统故障。这主要是由于发电机运行中其液压系统中的油压会随着系统运行不断产生能量而发生变化,这就需要通过蓄能器来吸收和处理多余的能量,但是如果实际运行中出现蓄能器故障或失效就会导致油压发生变化并导致控制系统失控。最后就是高压控制油泄漏故障。这主要是由于高压控制油与外界接触的橡胶密封件在长时间的高温以及外界杂质腐蚀作用下而导致密封效果下降或失效,从而导致泄漏问题的发生。

3电厂发电机常见故障预防措施

3.1线圈故障的预防

在对线圈故障的原因进行分析之后,无论是针对定子线圈还是转子或其他线圈,首先就需要在对其绝缘层材料进行选择时要确保其能够经受长时间的摩擦,而且在长时间的高速运行和摩擦作用下要保持较高的绝缘性能。其次就是在发电机日常运行中要加强对线圈绝缘层性能的定期检查,对出现电压击穿故障以及出现磨损比较严重的线圈进行及时更换。而且还要做好线圈的日常清洁工作,避免杂质等对线圈绝缘层造成腐蚀和破坏。其次就是在满足发电厂供电需求的情况下要尽量减少工作时间和运行速度,如果有需要可以适当增加发电机的数量来对运行任务进行分担,避免由于发电机运行时间的延长以及运行速度的增加而加速线圈绝缘老化以及磨损问题。而且可以通过发电机轮流运转的方式来对其运行时间进行控制。最后就是加强对发电机运行中线圈温度的监测和控制,避免绝缘层由于高温而被烧坏。

3.2电气故障的预防

针对电厂发电机运行中的常见电气故障,首先就需要对漏磁和涡流进行控制,通过导电屏蔽的方式来对漏磁进行减小和阻挡,并且需要将屏蔽装置安装在机组铁芯的端板位置。针对涡流问题,则需要增加电阻来降低电流的大小,并且会避免出现线套管温度异常升高的问题。其次就是进行大轴新材料的研究,对其金属特性进行改变,而且要加强对轴瓦进行实时监测来降低其故障概率。最后就是要及时对变形的接触片进行更换,并做好转子的清洁工作,并加强对变阻器等部件的控制,来确保发电机电刷运行的稳定性。

发电厂电气设备运行中常见故障及应对措施研究 张志杰

发电厂电气设备运行中常见故障及应对措施研究张志杰 发表时间:2019-07-09T09:58:51.167Z 来源:《电力设备》2019年第6期作者:张志杰[导读] 摘要:发电设备的性能要求越来越高,电气设备的高强度运行,这对发电厂来说是一个发展机遇,这是一个前所未有的挑战。 (河南博奥建设有限公司河南巩义 451200) 摘要:发电设备的性能要求越来越高,电气设备的高强度运行,这对发电厂来说是一个发展机遇,这是一个前所未有的挑战。如何保证电力的正常运行是当前大型电厂的重点。并且在发生故障时能够防止电源的维护是非常重要的,因此正确判断电厂设备的运行故障是非常重要的。注意从多方面考虑和解决具体问题,以改善电厂电气设备安全运行管理的现状,并找到相应的对策。 关键词:发电厂;电气设备;故障;措施 一、发电厂电气设备常见故障分析 1、发电机温度过高 对于发电机温度过高的情况,原因是发电机的连续工作循环通常很长。处于高强度的持续运转中。一旦设备因为持续工作而内部产生高温,就会直接对内部的零件造成影响。是内部零件(铁、铜)耗损,随之产生大量的热能,使得电气相关设备的温度骤升。长期如此,加速了设备表面绝缘层的老化,甚至直接脱落,设备使用年限大大缩短。 2、备用电源自动切换故障 电气设备故障突发情况较多,应对各种不确定性,发电厂通常会备有备用电源供突发情况时使用,当发生突发状况时,启用备用电源保证发电厂正常运转。但由于备用电源是自动切换,又存在着更多的不确定性,通常也是由于备用电源的供电不足及切换启动的时间过长而导致设备无法正常运作,导致续航能力降低。 3、电气设备电压超载 在一定标准范围内,发电设备才能正常的工作。但是某些时段,电气设备的电压会发生超载情况,设备运行失败,电气设备压力过大也会导致短路和电路熔断。更严重的是,还会由于温度过高大致火灾的发生。发电厂的损失和对工人生命的威胁。对于发电机设备的整个系统,当电压高于额定值时,励磁会增加(由于设备容量的变化),转子电流增加,温升效应增强,加速了设备的老化,增加了铁/铜的损耗。当电压低于额定值时,诸如卷绕芯的发电机部件的稳定性恶化,设备不能正常稳定地操作,并且发生单元的异常振动。 4、电气设备接地故障 如果接地系统发生短路故障,将带来很大的安全隐患。设备在接地的情况下才能正常运行。一旦发生了接地故障,大部分原因是由于相关工作人员对接地工作的轻视,未按严格要求操作,当点击超负荷工作后设备短路,处理不好直接危及工作人员的生命。直流接地故障不会出现短路情况。保险丝没有烧断,导致维修人员误认为一切正常,导致故障扩大;交流接地故障,例如由电机绕组中的湿气引起的接地故障。 二、发电厂电气设备故障成因分析 1、升压站出线设备保护不当 恶劣的自然环境是设备产生过电压的主要原因之一,实际工作中,由于雷电的影响,会阻碍发电厂、电网路线的正常运行,通过雷电和出线线路的直接接触,造成较高的外部过电压,可能迫使发电、输电过程中断,机组跳闸,影响生产。 2、不重视电力外输线路保护 大部分发电厂,使用远距离高压专用输电线路,向外部输电,此方法主要特点为输电路程远、能量损耗小,但传输过程可能会产生不可预测的问题,因此输电线路的过电压保护问题已经成为目前研究的主要对象。发电厂应与电网积极沟通,加强输电线路的维护管理,消除长距离输电过程中产生的过电压。 3、变压器保护不当 变压器在开断空载的情况下,会出现过电压。此时断流器切断空载电流,磁场能量转化为电能后,绕组上的电容电压出现最大值,通过绕组变比,就会产生很高的电压,变压器绕组及与变压器线路相连的设备就会承受过电压。 4、发电机中心点保护问题 发电厂将发电机的中性点和接地变压器连接,然后接地。变压器在此过程中,采用较高变比的变压器,就可以减少过电压的问题,降低发电机中性点绝缘材料的压力。但是有的发电厂会利用设施降低中性点接地变压器的电压值,来减少过电压的产生,但是此方法会使接地变压器处于绝缘过热状态,降低接地变压器的使用寿命。 三、电气设备故障诊断与检测技术 1、诊断技术 1.1状态分析法。状态分析方法是指基于电气设备的故障状态进行分析和诊断的方法。电气设备运行过程主要分为这几个阶段,也叫做运行状态,比如电动机。该操作可分为几个过程,例如启动,运行,正向旋转,反向旋转,制动和停止。在一些电气设备运行的状态下,故障频率非常高,设备在一定状态下的运行状态是电气设备故障分析的主要依据。 1.2图形分析法。每一套电气设备都由相应的设计图纸设计完成。这些设计可在电气设备故障排除中发挥重要作用。电气设备有原理图、施工图、系统图和位置图等,诸如此类许多类型的图纸,例如。在电气设备的故障诊断中,有必要对图纸进行综合分析,以掌握图纸的关系。 1.3单元分析法。多个单元的运转组合而成一套完整电气设备,每个单元运行特定的功能。电气设备一旦发生了故障,则表示其中一个单元功能已丢失。在对电气设备进行故障排除时,设备的功能应分为几个特定的单元,以便在较短的时间内准确确定故障的位置。 2、检测技术 2.1局部放电在线监测技术。发电厂电气设备大都结构复杂,绝缘水平也不尽相同,因为不均匀的电场分布导致较高的局部电场。制造工艺的粗糙,恶劣的运行条件都会导致局部放电现象,继而逐渐发展成为严重的故障。以变压器为例的局部放电监测方法如下:超声波检测,测光,化学检测,脉冲电流法,射频检测法等。例如超声检测法的应用:超声波传感器位于变压器油枕壁上,变压器内部局部放电产生的超声波可由传感器接收。可以非常精确地监测局部放电的大小和位置。

论大型发电机定子铁心常见故障及处理措施

论大型发电机定子铁心常见故障及处理措施 发表时间:2016-05-23T11:59:01.650Z 来源:《电力设备》2016年第2期作者:巩宇 [导读] (哈尔滨电机厂有限责任公司黑龙江哈尔滨 150040)定子铁心是组成发电机基本和主要的部件之一,起着构成电机工作磁路和固定定子绕组的重要作用。 (哈尔滨电机厂有限责任公司黑龙江哈尔滨 150040) 摘要:定子铁心是组成发电机基本和主要的部件之一,起着构成电机工作磁路和固定定子绕组的重要作用。发动机在运行多年后,由于种种原因,定子铁心的压紧力会逐渐减小,甚至发生松动。它的产生给发电机的安全运行带来隐患,有的甚至造成了机组被迫停运。而这种情况一旦出现,不但会造成严重的经济损失,还会影响发动机的寿命。因此,有必要对此问题进行探讨和重视。现代大型汽轮发电机更注重选用有方向或无方向性的优质冷轧硅钢片,以降低铁心损耗,提高发电机效率。本文主要探讨大型发电机定子铁心常见故障及处理措施。 关键词:发电机;定子铁心;故障 发电机在人们生活中占到很大的比重,维护发电机的正常运转,对于维护正常的经济生活非常重要。而定子铁心的相关问题在发动机故障中经常出现,影响到发电机定子铁心的因素很复杂,定子铁心常见故障一般分为定子铁心与机座的振动异常、定子铁心压装变松等多种。对于这些故障,在机组进行修整期间,应该使用探测仪对定子铁心进行以下检查,密切关注相关部位振动值和噪声、齿部和轭部、铁损试验。为了获得要求的磁、电特性和机械强度,减少磁滞和涡流损耗,定子铁心选择了磁导率高、损耗小,能达到一定工艺要求。 1 大型发电机定子铁心常见的故障 1.1 定子铁心与机座的振动异常 发电机运行后,轴系、定子铁心及机座的振动是不可避免的。采用端盖式轴承的发电机,定子铁心及机座的振源来自两方面:一是来自转子传来的机械振动;二是电机电磁场产生的电磁振动。由于转子的平衡精度不可能达到理想程度,转子旋转后,由于质量不平衡引起的振动通过轴承和端盖传到定子机座,产生工频(50Hz)振动;而由于转子磁极(大齿)与小齿呈现的相互垂直的刚度的差异,则对定子产生二倍工频(100Hz)的振动[1]。由电机电磁场产生的电磁振动力为:(1)因定子铁心有交变磁通通过所产生的交变电动力导致的工频振动。在铁心未压紧或铁心局部过热时即产生强烈的振动和噪声。(2)旋转的转子加励磁后,相当于旋转的电磁铁,对定子铁心产生使其变形的磁拉力,由此产生二倍频振动力,即椭圆振动--这也是定子铁心振动的主要振源。发电机带负载后将使铁心的倍频振动力加强,且由于定子端部漏磁场的轴向分量影响产生轴向的倍频振动力。当发电机发生三相短路时,将使定子铁心的椭圆振动与形加剧。两相短路时,定子铁心还会发生扭转振动。为将这些危害发电机安全运行的振动减至最小,除在设计和制造工艺方面提高定子铁心的刚度和弹性模量,使其固有频率避开工频和二倍频外,对大型汽轮发电机的定子铁心还采用弹性固定的办法即弹性定位筋或弹簧板隔振结构固定在定子机座上,以减小铁心振动直接传至机座上。 1.2 定子铁心压装变松 国产及进口200MW及以上容量的大型汽轮发电机曾多次发生过定子铁心硅钢片压装变松故障,轻微者仅对松弛部位加塞涂绝缘漆的硅钢片等塞紧,或扭紧定位筋及穿心螺母进行局部处理;严重者则需将定子绕组全部抬出,相关的紧固件全部拆除,以更换已损坏的整段铁心,对铁心进行整体压装,造成极大损失。从历次对铁心松弛故障原因分析的结果来看,老旧机组大多因为运行年久,在交变电磁振动力及铁心自身重力的影响下,破坏了铁心叠片间绝缘漆膜形成的阻滞力,导致铁心叠片变松,片间绝缘被破坏,形成片间短路和局部过热。新投入的发电机定子铁心叠片变松的原因则是多方面的。 2 大型发电机定子铁心常见故障及处理措施 排除接地故障时,应认真观察绕组的损坏情况,除了由于绝缘老化、机械强度降低造成绕组接地故障,需要更换绕组外,若绕组绝缘尚好,仅个别绕组接地,只需局部修复。(1)槽口部位接地。如果查明接地点在槽口或槽底线圈出口处,且只有一根导线绝缘损坏,可把绕组加热至130℃左右使绝缘软化后,用划线板或竹板撬开接地点处的槽绝缘。把接地处烧焦的绝缘清理干净,插入适当大小的新绝缘纸板,再用绝缘电阻表测量绝缘电阻。绕组绝缘恢复后,趁热在修补处涂上白干绝缘清漆即可。若接地点有两根以上导线绝缘损伤,应将槽绝缘和导线绝缘同时修补好,避免引起匝间短路。(2)双层绕组上层边槽内部接地。先把绕组加热到130℃左右使绝缘软化,取出接地线圈上的槽楔,再把接地线圈的上层边起出槽口清理损伤的槽绝缘,并用新绝缘纸板把损坏的槽绝缘处垫好。同时检查接地点有无匝间绝缘损伤,然后把上层边再嵌入槽内,折合槽绝缘,打入槽楔并做好绝缘处理。在打入槽楔前,应用绝缘电阻表测量故障绕组的绝缘电阻,使绝缘电阻恢复正常。对于双层绕组下层边槽内部对地击穿,可采用局部换线法和穿线修复法进行修复。(3)若接地点在端部槽口附近,损伤不严重,在导线与铁心之间垫好绝缘后,涂刷绝缘清漆即可。(4)若接地点在槽的里边,可轻轻抽出槽楔,用划线板和线匝一根一根地取出,直到取出故障导线为止,用绝缘带将绝缘损坏处包好,再把导线仔细嵌回线槽。(5)绕组受潮引起接地的应先进行烘干,当冷却到60~70℃左右时,浇上绝缘漆后再烘干。(6)若由于铁心凸出,划破绝缘,应将凸出的硅钢片敲下,在绝缘破损处重新包好绝缘。 定子铁心故障探测仪的应用。发电机定子铁心故障检查试验的目的是查找运行时的过热点隐患,防止扩大为发电机事故。上节提到的铁心试验方法是传统的试验方法,是通过临时安装的励磁绕组,在定子铁心上产生周向环绕磁通,试验时要抽出转子,大型发电机通常要用承载约300A电流的电缆,穿过定子内膛至定子机壳外部绕若干匝。对于500MW的发电机,要在铁心中产生的磁通密度达到发电机额定工作磁密的80%,大约需要3MVA的试验电源。试验时用红外热像仪测量定子内膛铁心表面的温度分布查找铁心故障点,以确定铁心表面的局部缺陷。这一电压是由穿过ABCD回路的磁通感应产生的,随着该回路尺寸的不同,电压数值可能达到几十甚至几百伏,后者是指轴向通风的发电机,在这些发电机中温度计导线沿着槽由定子端部引出。显然,这个电阻温度计对汽轮发电机机壳的任意第二点短路,都会形成电流回路。假如,定子机壳的E点是第二个短路点,在ABC-DE回路中就有电流,电流数值与回路电阻及短路点之间的感应电压数值有关。通常,电阻温度计的引线沿槽布设,从临近的铁心段间的径向通风沟引出。如运行经验指出,由于AB-CDE的面积小,故回路的感应电势和感应电流也小,未曾发现铁心损坏。具有轴向通风系统的汽轮发电机,当电阻温度计本身或它的引线绝缘损坏时,可能损坏有效铁

6发电机常见故障及处理方法

6.发电机常见故障及处理方法 6.1 发电机不发电或电压<100V 故障原因诊断分析: 1. 发电机运转至正常转速后电压为0,一般发生于长时间停用的发电机组,大多是发电机缺少剩磁造成的。在静止状态下用6V~12V蓄电池接在励磁绕组接线端子F1、F2上,F1接电源的正极,F2接电源的负极,短时间接通一下电源即可。 2. 若充磁后电压不能恢复,说明电机绕组存在短路故障,具体测量可用直流电阻电桥测量电机绕组的直流电阻。 3. 充磁后,如果试验空载电压恢复正常,但是,带载后电压下降厉害,应重点检查静止整流模块、旋转整流模块、电流互感器、整流变压器。 4. 如果U≠0 ,在30V~50V左右,进行它励试验,若电压不能恢复正常,应检查旋转整流模块是否损坏,励磁机绕组、主机绕组是否存在短路、断路。 5. 若进行它励试验时正常,一般故障出现在励磁系统,重点检查静止整流模块 V4、电流互感器T1、T2、T3,电抗器L1、整流变压器T6,检查绕组有无断路,插套有无松动,静止整流模块是否损坏。

6.2 发电机有电压,但电压在300多伏 故障原因诊断分析: 1. 发电机的电压调整范围一般为360V~440V,电压整定电位器调整至最大时,发电机电压应440V左右。若调整无效,电压保持在360V左右,可能是电压整定电位器阻值为零或电压整定电位器至AVR板上X2插头的1、3端子的两根线出现短路。应检查电压整定电位器是否完好,可用万用表测量电位器的直流电阻,阻值应在0~4.7kΩ内均匀变化。或者检查电位器是否接入AVR板。 2. 如检查电压整定电位器完好,检测弯板上的可控硅是否损坏,可控硅损坏严重(完全导通)可能导致分流电阻完全分流且分出电流大小不可调,从而使励磁电流较小,发电机电压始终处于低压状态。 3. 如果发电机电压在350以下,最大可能性是三块旋转整流模块中有一块出现故障,导致励磁机转子三相电流只有两相通过整流供给主机转子。 4.电抗器气隙太小,可适当加大电抗器气隙。

康明斯系列柴油发电机的常见故障俭修原因分析

一、 康明斯柴油机的常见故障原因 (一)柴油机冒黑烟 1)涡轮增压器工作失郊; 2)气门组件密封不良; 3)喷油器或高压油泵精密偶件工作失郊; 4)凸轮轴组件磨损过度; 5)中冷器过脏、入气量不足; 6)喷油器胶圈密封不良; 7)气缸组件拉缸; 8)柴油质量不良。 (二)柴油机冒白烟 1)喷油器或高压油泵精密偶件失郊; 2)柴油机烧机油(即增压器烧机油); 3)气门导管及气门磨损过度,机油漏入气缸; 4)柴油中有水; 5)喷油气缸套漏水入气缸; 6)活塞环磨损过度或油环装反,气缸烧机油。 (三)在高负载时,排烟管及增压器发红 1)喷油器或高压油泵精密偶件工作失郊; 2)凸轮轴、随动臂组件、摇臂组件磨损过度; 3)中冷器过脏、入气量不足; 4)增压器工作失郊; 5)气门组件密封不良。 (四)柴油机工作时功率亏损较大 1)气缸组件磨损过大; 2)喷油器或高压油泵精密偶件工作失郊; 3)PT油泵工作失郊; 4)正时机构工作不良; 5)增压器工作失郊; 6)中冷器过脏; 7)气门组件密封不良; 8)柴油格、空气格过脏。 (五)柴油机机油压力过低 1)轴瓦和曲轴的配合间隙过大,即轴瓦和曲轴磨损过大; 2)各种衬套和轴系磨损过大; 3)冷却喷咀或机油管漏油; 4)机油泵工作失郊; 5)油压传感器失郊; 6)机油冷却器过脏导致油温过高; 7)机油品质不良。 (六)柴油机水温过高 1)水泵损坏; 2)节温器损坏;

3)风扇皮带,水泵皮带过松; 4)水箱过脏。(内部或外部) (七)柴油机出现烧瓦现象 1)机油泵工作失郊; 2)轴瓦间隙过大,引起油压过低; 3)柴油机缺水而出现高温; 4)机油格堵塞; 5)机油品质不良。 (八)柴油机下浊气大现象或有白烟从下浊气管排出 1)气缸组件磨损过大; 2)油底壳有水;(缸盖破裂,喷油器铜套水,缸套烂穿,缸套胶圈漏水,缸体漏水) 3)有拉缸现象。 (九)柴油机转速不稳 1)柴油机有功率亏损过大的故障; 2)PT泵的电子执行器磨损过度以及PT泵内部机件故障; 3)EFC电子调速板工作失郊; 4)测速磁头损坏; 5)柴油格过脏; 6)柴油管道漏气。 (十)油底壳有水 1)缸套破裂或缸套胶圈破损; 2)缸体破裂; 3)缸盖破裂; 4)喷油器铜套漏水。 (十一)油底壳有柴油 1)喷油器O形形圈损坏; 2)喷油器雾化不良,滴油; 3)喷油器安装不当; 4)喷油器得新安装时没有换新的O形圈。 (十二)柴油机异响 1)气门和活塞碰撞; 2)连杆螺钉松动,活塞和缸盖碰撞; 3)EFC板故障; 4)PT油泵故障而引起供油不稳; 5)喷油器滴油爆缸; 6)柴油机轴瓦间隙过大; 7)柴油管道漏气。 (十三)柴油机震动过大 1)柴油机轴瓦间隙过大或轴向间隙超标; 2)喷油器雾化不良而敲缸; 3)柴油机和电球的连接变形; 4)飞轮组件安装不当; 5)曲轴,连杆各种紧固螺钉松动; 6)增压器工作失郊。

发电厂电气设备常见故障及应对策略

发电厂电气设备常见故障及应对策略 作者:贾玉峰 来源:《科学与财富》2020年第19期 摘要:电能资源是当今世界范围内公认的主要的清洁能源之一,广泛应用在生活、生产等各种领域中。缺少了电能各行各业的生活生产都会受到严重影响,因此发电厂的稳定运行是整个社会发展的重要保障。本文对发电厂电气设备的一些常见故障进行列举讨论及研究,提出了发生故障的原因,并对电气设备事故案例进行了学习、分析,同时对发电厂常见电气设备故障的排除做出了应对策略。通过一系列的研究、学习,可以对发电厂常见的电气设备故障排除有一个明确的方向,对于提高设备消缺及时率,保障设备安全稳定运行有一定的帮助。 关键词:电能;电气设备;常见故障;应对策略 1发电厂电气设备常见故障现象及原因分析 1.1;;;; 一般设备接地 电气设备需要进行必要的接地处理,以保证设备正常运行的同时起到保护人员安全的作用。当设备接地不良时会出现接地报警或设备跳闸。其主要原因有:设备使用及安装、维修人员对设备接地不给予重视,接地线缺失或损坏;接地线老化及腐蚀。 1.2;;;; 电机运行异常 电机通电后,按下启动按钮虽能转动但转速达不到正常速度,或电动机只发出嗡嗡声,转子却不转动,其原因可能是:1、电源电压过低。2、电机转子或负载的机械卡死。3、定子回路某一相断线造成缺相。4、转子接触不良。5、电机定子回路出现接线方式错误。 1.3;;;; 变频器故障 变频器是发电厂使用频率很高的节能设备,但同时也是故障率较高的设备之一。其常见故障有:变频器就地所带设备控制的参数波动较大;变频器跳闸并出现相应報警;就地变频器有烧焦、异味等现象。其主要原因是:1、线路松动,接触不良;2、所带设备负载过重或卡死;3、温度过高,散热不良;4、交流接触器积灰太多,吸合困难 2电气设备故障事故案例及分析 事故经过:2018年06月18日,2#电除尘A1高压控制柜断路器跳停,电气检修人员立即办票处理,检查发现A1高压控制柜内两个IGBT模块烧毁,电气检修人员与厂家沟通并在其远程指导下更换了两个IGBT模块,由于模块烧毁原因未查明,汇报生技部,待厂家到厂进行

风力发电机常见故障及其分析概要

茂名职业技术学院 毕业设计 题目:风力发电组轴承的常见失效形式及故障分析系别:机电信息系专业:机械制造与自动化班别:13机械一班姓名:何进生指导老师:张浩川日期:2015年7月1日至2016年5月1日

内容摘要 随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力,能源问题和环境污染日益突出。风能作为一种蕴藏量丰富的自然资源,因其使用便捷、可再生、成本低、无污染等特点,在世界范围内得到了较为广泛的使用和迅速发展。风力发电己成为世界各国更加重视和重点开发的能源之一。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故,造成巨大的经济损失。 本论文先探讨了课题的实际意义以及风力发电机常见的故障模式,在这个基础上对齿轮箱故障这种常见故障做了详尽的阐述,包括引起故障的原因、如何识别和如何改进设计。通过对常见故障的分析,给风力发电厂技术维护提供故障诊断帮助,同时也给风电设备制造和安装部门提供理论研究依据。 关键词 风力发电机;故障模式;齿轮箱;故障诊断

Common Faults And Their Analysis Of The Wind Turbine Abstract With the global economic development and population growth, humanity is facing with the pressure from two sides of the energy use and environmental protection, the energy problem and environmental pollution has become an increasingly prominent issue. Wind power as a abundant reserves of natural resources, because of its convenient use, renewable, low cost, no pollution, has been more widely used and rapid development in the world. Wind power has been taken as one of the priority development energy sources in the world.The increase of wind power capacity and complicated system structure will not only cause power outage,but also raise serious accidents when the set is at fault. In the beginning, the dissertation introduces the practical significance of project and the common failure mode of wind turbines, then researches and describes the failure of gearbox in detail, including the cause of failure, how to identify and how to improve the design. Based on the analysis of common failures, not only provide assistance for fault diagnosis to the technical

发电厂电气系统常见运行故障及解决措施初论

发电厂电气系统常见运行故障及解决措施初论 【摘要】随着经济的快速发展和和谐社会的建设,各行业对电力的需求越来越大,发电厂的建设规模也越来越大,当前发电厂主要依靠大型的机械设备进行发电,设备在长期运行中电气系统会出现大小不一的故障,如果不及时的处理这些故障,对发电厂的正常运行会有严重的影响,限制了发电厂的生产和建设,因此,对发电厂电气系统常见故障进行分析,采取有效的措施及时处理故障,对发电厂的发展有极其重要的意义。 【关键词】发电厂;电气系统;运行故障;措施 随着社会的不断发展,各行业对电力的需求量越来越高,发电厂承担着为社会的发展提供电力保障的艰巨任务,发电厂的正常运行对社会的良好发展有十分重要的作用。由于发电厂在发电过程中需要用到许多大型的机械设备,这些设备在长期运行中电气系统会发生许多故障,如果不采取有效的措施进行故障处理,将会影响发电厂的正常运行,因此,对发电厂电气系统常见的故障进行分析,并采取有效的解决措施进行故障处理,发电厂安全高效发电具有重要意义。 1、发电厂电气系统常见的故障及原因 发电厂的电气系统主要由发电机、主变压器、厂用电主接线、配电设备、开关设备、保安电源、通信设备、照明设备等组成,是发电厂的重要组成部分,由于发电厂的电气系统在长期运行中,需要承受机械负荷和电力负荷的双重压力,这些压力会对电气设备的的安全运行、使用寿命等造成严重的影响,因此,分析发电厂电气系统常见的故障原因,对发电厂的正常运行有极其重要的意义。 1.1发电厂电气设备接地 发电厂电气系统的电气接地可以分为交流接地、直流接地两种情况,是电气系统保障设备人员安全的主要手段之一,近年来,随着发电厂建设规模的扩大,发电厂的用电负荷、供电电压、短路电流等有了很大的提高,如果出现异常将对电气设备和工作人员造成严重的危害。交流接地是指电动机的接地系统受潮、设备老化及腐蚀等因素的影响,发生交流接地情况时将对发电厂工作人员的生命安全带来很大的威胁;当电气系统发生直流接地时,则可能使信号装置,继电保护装置,控制装置发误动和拒动。 1.2发电机升温高、升温迅速 发电厂在发电过程中,发电机需要进行长时间的高速运行,导致发电机迅速的升高温度,发电机在运行过程中,金属部件处于高速运作的状态,在运行时机械能会转换为热能,电气系统的绝缘部件长期处于高温条件下,部件会逐渐老化,绝缘性能会逐渐降低,从而对电气系统的正常运行造成严重的影响。导致发电机过快升温的原因有发电机运作时间长、降温系统不能及时散热、降温等。

电厂发电机常见故障原因分析及预防分析 郝天通

电厂发电机常见故障原因分析及预防分析郝天通 发表时间:2018-05-30T09:00:26.640Z 来源:《电力设备》2018年第2期作者:郝天通[导读] 摘要:国家电力工程事业的不断进步与发展,极大地促进了电厂发电机应用技术的飞跃。 (身份证号码:13020319850621xxxx 河北省唐山市开平区大唐国际发电股份有限公司陡河发电厂河北唐山 063000)摘要:国家电力工程事业的不断进步与发展,极大地促进了电厂发电机应用技术的飞跃。研究电厂发电机常见故障原因及预防问题,对于提升故障应对效率,优化发电机应用效果有着重要意义。文章介绍了电厂发电机的常见故障,分析了其故障产生的多方面原因,并立足实际提出了发电机故障的预防措施,望对相关工作的开展有所裨益。 关键词:电厂;发电机;故障;预防 1前言 随着电厂发电机应用条件的不断变化,对其故障原因的分析及预防提出了新的要求,因此有必要对其相关课题展开深入研究与探讨,以期用以指导相关工作的开展与实践,并取得理想效果。基于此,本文从概述相关内容着手本课题的研究。 2电厂发电机的常见故障通常情况下,火电厂的发电机故障可以分为线圈故障、电气故障、液压系统故障等三大部分。 2.1线圈故障 线圈是发电机内部的重要部件,同时也是使用最频繁的部件,因此线圈故障是电厂发电机最常见的故障之一。常见的线圈故障主要包括线圈的老化、转子线圈的磨损、定子线圈的高温等。 2.2电气故障 随着时代科技的进步,电气设备结构越来越复杂,并且越来越现代化、智能化,这给电气设备的故障检测与维修带来了很大困难。一般情况下,发电机经常出现的电气故障主要有线套管温度过高、发电机大轴磁化、转子连接故障以及励磁回路故障等。 2.3液压系统故障 随着火力发电的快速发展,大型汽轮机组得到了广泛的应用,而液压系统作为大型汽轮机组的主要组成系统之一,一旦其发生故障就会严重的影响到机组的正常工作。目前常见的液压系统故障主要有汽轮机控制零件故障、液压控制系统故障、汽轮机高压控制油泄露故障等。 总之,电厂发电机组的故障多种多样,并且造成故障的原因也各不相同,因此在分析发电机故障原因时,要针对不同故障分别展开分析。 3电厂发电机故障产生的原因 3.1线圈故障原因分析 线圈故障有多种,因此本文针对不同种类的线圈故障,分析了故障产生的原因。 3.1.1线圈绝缘老化。这类故障是指线圈的绝缘层出现老化,使得绝缘层的耐压能力低于最低标准,从而很容易出现电压击穿故障。造成线圈绝缘老化的原因主要有以下几个:其一,线圈长时间的使用,导致线圈绝缘层出现自然老化。由于长时间使用而造成的绝缘层老化占到线圈绝缘层老化故障的大多数,是一种比较常见的线圈事故;其二,线圈质量不合格,浸胶不良,使用过程中出现绝缘侧脱落现象。质量差的线圈导线在使用过程中,经常会出现绝缘层松动,绝缘效果变差的问题。 3.1.2转子线圈磨损。在正常的发电生产中,发电机一般保持高速运转,甚至在某些时候要高负荷运转,因此发电机转子的转动速度很快,从而使得转子线圈的磨损十分严重,进而加速了绝缘层的老化,出现短路故障,造成发电机的严重损毁,甚至产生很大的生产事故。 3.1.3定子线圈磨损。定子与转子之间会产生摩擦,因此转子速度越快,定子受到的摩擦越严重,定子线圈的磨损就越严重,从而加速了定子线圈绝缘层的破坏,产生电压击穿事故。另外,外界灰尘、水、油等物质会浸入绝缘层中,影响绝缘效果,造成电压击穿事故。 3.2发电机的电气故障原因分析 由于发电机电气设备结构十分复杂,元部件众多,因此造成电气故障的原因有很多,从而给电气故障的诊断和预防带来很大困难。本文针对几种典型的电气故障,分析了造成电气故障的具体原因。 3.2.1线套管温度过高的原因。当发电机的无功负荷过高时,发电机底部的漏磁就会增多,从而产生电流,造成线套管温度升高。另外,发电机组中存在磁场,其产生的涡流会产生过多的热量,从而造成线套管温度升高。 3.2.2大轴磁化与退磁原因。发电机的大轴一般由含有铬镍等金属的钢材制成,因此大轴在长期工作中会被磁化,当发电机停机后,大轴内的磁场会因摩擦或者接触而产生电流,从而烧毁轴瓦,影响发电机的正常工作。 3.2.3转子连接部位故障原因。发电机在长时间使用后,发电机与转子连接部位的接触片会发生松动,从而增大了连接部位的摩擦,造成接触片的变形,严重的会导致发电机的停机。 3.2.4由于变阻器、晶闸管、云母片等部件引起的电刷抖动,会导致接触不良,从而造成励磁回路短路。 3.3发电机的液压系统故障原因分析 3.3.1发电机零部件故障原因。造成发电机零部件故障的原因主要有施工安装质量不合格以及零部件本身质量不合格。这些会造成控制电缆的老化以及接头松动等问题,从而影响机组的正常运行。 3.3.2控制系统故障原因。当系统的油压存在较大波动时,就会影响液压控制系统,而造成油压波动的原因主要是稳定控制油压的蓄能器出现损坏,无法起到蓄能作用,从而造成油压波动,影响控制系统,进而产生故障。 3.3.3高压控制油泄露原因。造成高压控制油泄露的原因主要是因为系统的密闭功能失效。一般液压系统的密闭件都要求耐腐蚀、耐高温,然而因橡胶密闭件质量不合格而造成的密闭功能失效的现象还时有发生,这就成为高压控制油泄露的主要原因。 4电厂发电机故障的预防措施发电机故障的诊断与预防是发电机维护工作的重要内容,因此采取合适的发电机故障预防措施至关重要。本文对预防线圈故障、电气故障、液压故障应该采取的措施分别进行了分析。 4.1线圈故障预防措施

发电厂电气一次设备常见故障及对策

发电厂电气一次设备常见故障及对策 随着我国社会经济的不断进步,人们对于能源的需求量在不断上涨,尤其是对电能的需求越来越高。所以,发电厂电力系统的稳定运行十分重要,电气一次设备的故障率在一定程度上决定着供电质量。本文阐述了发电厂电气设备稳定运行的重要性及电气一次设备的故障原因,并提出了相应的解决对策。 标签:发电厂;电气设备;故障;对策 电能需求的增加,导致发电厂电力负荷在不断增大,给发电设备带来了一定的压力。基于发电厂设备的长期连续运行模式,现阶段发电厂对应用设备的质量性能要求也在不断提升。对于发电厂的常见电气设备故障,工作人员以及相关部门应该给予足够的重视,加强对电气系统运行故障的研究和实践分析,从而保证发电厂的稳定供电。 一、发电厂电气设备正常运转的重要性 发电厂对于地区经济发展具有重要的推动作用,随着人们对于电力能源需求的增加,很多发电厂开始更加注重电气设备的运行保护工作。在原有电气设备的优化维护基础上,引进了一些新的现代化电气设备。发电厂应用设备的类型越来越复杂,各设备之间的联系也更加密切,任何一个小部件的安装或调整都可能会对发电系统的稳定运行造成一定的影响。毋庸置疑,发电厂带来的地区性或是全国性经济快速增长显而易见,也为人们的日常生活提供了更多便捷和保障,而这背后无不依赖于电气设备的稳定运行。所以,深化对电气设备的检修维护工作意义重大。 二、发电厂常见设备故障的原因分析 (一)日常管理检测不到位 对于任何企业来讲,日常管理工作都十分重要,尤其是发电公司,任何一个环节的疏忽,都可能导致多个相关问题的出现。电气系统故障问题与工作人员的日常管理维护息息相关,很多电气故障的发生都是因为相关的管理工作不到位,缺乏对电气系统的必要检测。和人体器官一样,电气系统的连续运行会产生一些问题,但是在问题初期往往具有很高的隐藏性,如果工作人员不去进行专业检测,很难从表面发现问题,这就造成了严重的设备故障隐患。所以,对电气设备的检测维护是进行设备保养的有效手段,如果在电气系统的运行中检测不到位,则难以及时发现和解决故障。 (二)设备温度控制没做好 在发电厂的日常经营中,主变压器全部是24小时连续运行,铜耗、铁耗等会产生大量热量。如果冷却系统效率下降或故障,会造成主变压器的温度过高,

汽油发电机常见故障汇总及解决方法

汽油机点火不着的原因具体有哪些方面? 汽油机要实现正常启动,必须具备三个条件:一、配气系统正常;二、供油系统正常;三、点火系统正常;这三个条件缺一不可。分析发动机不能启动故障,就从这三个方面进行逐一排查,定能事半功倍。当然在判断正常与非正常时,需要有一定经验积淀。工作过程中,发动机自行熄火后,不能启动。检查步骤是:1、握住起动手柄,慢慢拉转轴,感受压缩行程时的阻碍力,若阻力大则汽缸压缩力正常,初定配气系统正常,2、拆下火花塞后,重新装入火花塞冒中,并使火花塞搭铁,打开,迅速拉动起动手柄,观察火花塞跳火(俗称跳火试验)情况,若火花正常,则初定点火系统正常。问题可能出现在燃油供给系统,燃油供给系统故障有二种情况:其一:油流不畅或无油。主要原因有:①、油箱中无油;②、油箱盖小孔堵塞;③、油箱底部滤网堵塞;④、化油器开关油道堵塞;⑤、浮子室卡滞;⑥、主量孔堵塞。其二:油流通畅。主要原因有:①、燃油中有水;②、气缸内燃油过多;③、混合汽通道漏气。需要特别提醒的是,搁置较长时间的起动时,除作上述检查外,还要注意检查开关位置和风门的开度,以及燃油质量问题。安装有机油传感器的发动机首先检查箱内机油是否足够,传感器是否搭铁或损坏。若燃油供给系正常,气缸压缩正常,则故障在点火系。故障原因有:①、电极度脏污、积炭;②、火花塞绝缘体损坏;③、火花塞间隙不对;④、高压线漏电;⑤、火花塞损坏;⑥、点火线圈损坏;⑦、不够。点火系故障判断方法是:做火花塞跳火试验,观察有无火花或火花强弱,若无火花,拆下火花塞冒,用高压线直接跳火试验,若火花正常,故障在火花塞及火花塞冒。再将火花塞放置机体上,用高压线接触火花塞尾部进行跳火试验,若跳火正常,则火花塞冒损坏;若跳火微弱,或不跳火,则火花塞可能:①、火花塞积炭;②、火花塞电极间隙过大或过小;③、火花塞绝缘损坏;若高压线无电火花,断开点火器与点火开关的联接线,再作跳火试验,若跳火正常,则点火开关搭铁,清除搭铁点即可正常启动。若仍不跳火,可拆点火器上的熄火搭铁线,再跳火试验,若跳火正常,则熄火搭铁线有搭铁现象;若跳火微弱或不跳火则点火器损坏或磁场变弱。若燃油供给正常,点火系正常。则故障在配气系统。配气系统故障有两种现象:其一,气缸无压缩拉动曲轴无转动阻力。压缩过程漏气,可能产生的原因有:①、汽门密封不严漏气;②、气门发卡;③、汽缸垫损坏;④、气缸头螺丝松动;⑤、花塞松动;⑥、活塞环焦结;⑦、活塞环磨损;⑧、磨损;⑨、活塞磨损;⑩、过小或无间隙。其二,压缩正常。可能产生的原因有:①、启动负荷大,启动转速不够;②、进气或排气门推杆脱出;③进排气道堵塞;④、气门间隙过大。还应注意别人拆装过曲轴箱盖的发动机,应检查配气正时,确保万无一失。自行熄火的发动机,当检查确认配气正时、压缩良好、无进排气堵塞。然油供给正常,化油器雾化可靠。火共塞跳火也正常,但仍不能启动时,这时唯一应检查的部位是--飞轮键,若飞轮键被剪切就会使飞轮与曲轴正常装配位置发生改变,使飞轮上的相对曲轴的定位发生改变,最终造成点火不正时,故发动机不能启动,这一故障须拆卸飞轮才能检查。本人在工作中遇到二例。发动机工作中自行熄火,手拉起动盘不能

柴油发电机常见问题及解决措施

柴油发电机常见问题及解决措施 人类的生活越来越离不开电力支持,随着科技进步,出现了越来越多的供电方式。按其能量来源大致分为核能发电、水力势能发电、火力发电、风力发电和太阳能发电。在大型发电站的支持下,城市才能正常运作。但是城市对电的供应需求也越来越大,尤其是在夏季,用电高峰期经常会出现供电不足的现象。而医院、政府机关等单位一旦断电将产生极大的负面后果。除此之外,断电对大型企业会造成非常大的经济损失。所以现在越来越多的单位都拥有自己的备用电源。作为最常用的备用电力设备,柴油发电机组的维护和运行问题逐渐得到人们的重视。本文就多年使用柴油发电机设备的经验,对其进行维护、故障诊断及管理进行阐述。 柴油发电机组共有六大系统,分别是机油润滑系统、燃油系统、控制保护系统、冷却散热系统、排气系统和起动系统。其中问题主要集中在启动系统、冷却系统和燃油系统。 一、启动系统问题 由于柴油发电机是一般情况下是备用电源,因此柴油发电机常处于待机状态,运行状态较短暂。但正是由于是应急电源,其应急启动能力尤为关键,这就要求启动系统不能有问题。而启动的关键在于蓄电池,蓄电池是发动机启动时的唯一电源,对蓄电池要进行悉心的维护。要让蓄电池达到额定电压,就要求在平时对蓄电池的电压进行监控,对蓄电池进行充电时,到达额定电压后停止充电,若电压低于额定电压则自动进行充电。这需要带蓄电池电压监控功能的自动充电设备。 维护保养蓄电池要关注蓄电池内部成分比例,如果内部水、酸损失没有得到及时补充,或电解液量达不到规定液面高度,就会使蓄电池的性能大幅降低。若补充电解液时过量,则多于的电解液易腐蚀接线柱,处理的方法是打磨掉腐蚀,重新加固螺丝,以降低电阻。

发电机常见故障与解决方案报告书汇总

双馈发电机简介及常见故障 一:双馈电机简介及工作原理 (1)简介: 双馈异步风力发电机(DFIG,Double-Fed Induction Generator)是一种绕线式感应发电机,是变速恒频风力发电机组的核心部件,也是风力发电机组国产化的关键部件之一。该发电机主要由电机本体和冷却系统两大部分组成。电机本体由定子、转子和轴承系统组成,冷却系统分为水冷、空空冷和空水冷三种结构. 双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变流器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。由于采用了交流励磁,发电机和电力系统构成了"柔性连接",即可以根据电网电压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使其能满足要求。 (2)工作原理: 双馈感应发电机由定子绕组直连定频三相电网的绕线型感应发 电机和安装在转子绕组上的双向背靠背IGBT电压源变流器组成。 “双馈”的含义是定子电压由电网提供,转子电压由变流器提供。该系统允许在限定的大范围内变速运行。通过注入变流器的转子电流,变流器对机械频率和电频率之差进行补偿。在正常运行和故障期间,发电机的运转状态由变流器及其控制器管理。

变流器由两部分组成:转子侧变流器和电网侧变流器,它们是彼此独立控制的。电力电子变流器的主要原理是转子侧变流器通过控制转子电流分量控制有功功率和无功功率,而电网侧变流器控制直流母线电压并确保变流器运行在统一功率因数(即零无功功率)。 功率是馈入转子还是从转子提取取决于传动链的运行条件:在超同步状态,功率从转子通过变流器馈入电网;而在欠同步状态,功率反方向传送。在两种情况(超同步和欠同步)下,定子都向电网馈电。(3)优点: 首先,它能控制无功功率,并通过独立控制转子励磁电流解耦有功功率和无功功率控制。其次,双馈感应发电机无需从电网励磁,而从转子电路中励磁。最后,它还能产生无功功率,并可以通过电网侧变流器传送给定子。但是,电网侧变流器正常工作在单位功率因数,并不包含风力机与电网的无功功率交换。 二:电机常见故障及解决办法 1:电机轴电流电流? 电机的轴--轴承座--底座回路中的电流称为轴电流 轴电流产生的原因: (1)磁场不对称; (2)供电电流中有谐波; (3)制造、安装不好,由于转子偏心造成气隙不匀; (4)可拆式定子铁心两个半圆间有缝隙; (5)有扇形叠成的定子铁心的拼片数目选择不合适。

发电机常见故障原因及对策分析

发电机常见故障原因及对策分析 [摘要]近年来,随着我国社会经济的快速发展,科技技术、自动化技术等都有了进一步的发展。目前,发电机广泛应用于各行各业,若发电机出现故障,将严重影响着企业的正常运营,甚至给企业带来巨大的经济损失与社会损失。文中就常见的发电机故障展开分析,重点探讨其故障原因,针对其原因所在,有针对性的提出了相应的解决对策,避免发电机事故的发生。 [关键词]发电机常见故障故障原因对策 作为大型动力设备的发电机,不仅具备体积小的优点,而且具有功率大、转速高、运行平稳、安全性高的优势。但其运行过程中难免会出现一些故障,如何才能更好的防治、解决发电机运行中的常见故障,这对真正提高发电机的运行效率及运行安全性能具有重要的意义,下面将就此展开分析、论述。 1发电机常见故障及其原因分析 1.1绝缘电阻低于标准或产品技术条件规定的数值 出现绝缘电阻低于标准或产品技术条件规定的数值故障的原因:(1)原动机转速过低;或是由于二极管被击穿。(2)励磁回路中的电阻高于正常规定值;或是励磁电刷偏离中性线。(3)运输、存放、长时间停机或有水滴入电机内使线圈受潮或变形。(4)电机刷压力过小,接触面积过小,使其发生接触不良的现象。 1.2发电机电压过低 出现发电机电压过低的故障原因:(1)原动机转速太低,励磁回路电阻过大。(2)定子绕组或励磁绕组中有短路或接地故障。 1.3发电机电压过高 出现发电机电压过高的故障原因:(1)转速过高,分流电抗器铁心气隙过大。(2)磁场变阻器短路,发电机事故飞车。 1.4发电机线圈损坏故障 (1)一般使用年限较久的发电机极为容易出现线圈损坏的故障,即发电机的线圈绝缘出现局部损坏的现象,或是由于其线圈绝缘被击穿而出现故障。(2)若定子线圈处的绝缘层与绝缘线圈常年受外部环境中的土尘、水泥等颗粒性物质及水和油污等物质浸湿,而且在槽口拐弯部位浸漆的不完全,都容易损坏定子线圈的绝缘层,进而引发电压击穿或接地烧毁等故障,严重影响发电机的对正常及安全运行。(3)此外,在使用发电机的过程中,由于发电机在其运转工作的过程中其轴承会产生一定的磨损,若未定期对其进行必要的检测、维修与保养,当其

发电厂电气常见故障

发电厂电气常见故障 一:厂用电系统常见故障 1、一期锅炉PC段单相接地 故障现象: 四台机组厂用汽机变、锅炉变、公用变均为中性点经电阻接地系统(三相三线制),当系统发生单相接地时通过小电流接地选线装置报警并显示故障出线。小电流接地选线装置动作电流为0.2A,取自PC段每回馈线开关下口零序CT二次电流。动作电压为15V,取自PC段母线PT开口角电压。 当发生单相接地时,接地相对地电压为5V左右,其它相对地电压为380V 左右,线电压不变,危及单相负荷。一期锅炉PC段负荷为锅炉MCC、锅炉保安MCC、主控楼MCC、空压机MCC、煤仓间MCC等,发生单相接地故障较常见,但每次小电流接地选线装置均未动作。 处理方法: 发生此类故障时,暂不考虑变压器、PC段母线及馈线开关发生单相接地的可能,优先检查负荷。先由小电流接地选线装置的进线零序CT电流值判断,测量时需选用精度较高的万用表(如FLUCK189),用交流电流档测量二次电流值,正常时非故障负荷零序CT二次电流值基本在1mA以下,故障负荷电流值明显增大,在3mA以上。由于负荷相接地状态的不同,造成实际值远远小于装置动作值。选出故障负荷后到就地MCC,用电流卡表测量进线电缆零序电流予以确认,然后依次测量每一运行中的负荷电缆零序电流,断开明显较大的开关,测量故障相电压是否恢复。如果仍未确认,则考虑MCC负荷开关内部是否有接地,优先检查断路器在合位,但出线没有电压的负荷开关,检查断路器下口控制回路变压器是否有烧毁、接地现象。 如果此种方法未能排除故障,则需要依次断开负荷开关,直至故障相对地电压恢复为止。注意断开负荷开关依照由低到高、由次要负荷到重要负荷的顺序依次进行。 2、110V直流系统接地 故障现象:

相关主题
文本预览
相关文档 最新文档