当前位置:文档之家› 三相异步电动机的电磁转矩_New

三相异步电动机的电磁转矩_New

三相异步电动机的电磁转矩_New
三相异步电动机的电磁转矩_New

三相异步电动机的电磁转矩

————————————————————————————————作者:————————————————————————————————日期:

三相异步电动机的电磁转矩

由三相异步电动机的转动原理可知,驱动电机旋转的电磁转矩是由转子导体中的电流与旋转磁场每极磁通相互作用而产生的,因此电磁转矩。

由于转子电路是一个交流电路,有电阻和感抗的存在,滞后(相位差),则转子电流中的有功分量与旋转磁场相互作用而产生电磁转矩,故

,kr.是与电动机结构有关的常数类比:三相异步电动机的电磁关系与变压器相似。

定子电路和转子电路相当于变压器的原、副绕组,如下图示,其旋转磁场的主磁通将定子和转子交链在一起。

对电动机而言,一般副边是短接的,形成回路电流。

当定子绕组接上三相电源电压(相电压)时,则有三相电流(相电流)通过。定子三相电流产生旋转磁场,其磁通通过定子和转子铁芯闭合。这磁场不仅在转子每相绕组中感应出电动势(由此产生

电流),而且在定子每相绕组中也要感应出电动势(实际上三相异步电动机中的旋转磁场是由定子电流和转子电流共同产生的)。此外,还有漏磁通,在定子绕组和转子绕组中感应出漏磁电动势和。

1、定子电路

定子每相电路的电压方程和变压器原绕组电路的一样,即

相量式如下

和变压器一样,也可得出和

注:如果考虑电动机定子绕组按一定规律沿定子铁芯内圆周分布而引入的绕组系数,则公式可写为,一般。

定子部分产生的旋转磁场转速。

2、转子电路

转子每相电路的电压方程为

此式中转子电路的各个物理量对电动机的性能都有影响,分述如下:

(1)转子频率

因为旋转磁场和转子间的相对转速为(),所以转子频率为

显然,与转差率s有关,也就是与n有关。

当,即时(电动机起动初始瞬间),转子与旋转磁场间

的相对转速最大,转子导条被旋转磁场切割的最快。所以这时最高,。

(2)转子电动势

转子电动势的有效值为:

当,即时,转子电动势为:

这时,转子电动势最大。则有,可见转子电动势

与转差率s有关。

(3)转子感抗

转子感抗与转子频率有关,即

当,即时,转子感抗为

这时,转子感抗最大。则有,可见转子感抗与转差率s有关。

(4)转子电流

转子每相电路的电流

可见转子电流也与转差率s有关。当s↑,即转速n↓时,转子与旋转磁场间的相对旋速增加↑,转子导体切割磁通的速度

提高,于是↑,也↑。

当,即时,;

当s很小时,,即与s近似地成正比;

当s接近1时,。

(5)转子电路的功率因数

由于转子有漏磁通,相应的感抗为,因此比滞后角,因而转子电路的功率因数为

当s↑,↑,于是↑,即↓。

当s很小时,。

当s接近1时,,即两者之间近似地有双曲线的关系,如上图示。

由上述可知,转子电路的各个物理量如电动势、电流、频率、感抗及功率因数等都与转差率有关,亦即与转速有关。因此

当一定时,,那么上式可改写为

系数合成(电磁转矩的最终公式)显然,其中,为加在每相定子绕组上的电压。

正确理解异步电动机电磁转矩的不同表达式

正确理解异步电动机电磁转矩的不同表达式 摘要:电磁转矩是三相异步电动机的最重要的物理量,电磁转矩对三相异步电动机的拖 动性能起着极其重要的作用,直接影响着电动机的起动、调速、制动等性能。正确理解电磁转矩的物理表达式,参数表达式和实用表达式,是正确分析电动机运行特性的关键。正确运用电磁转矩的不同表达式,是正确计算电磁转矩和合理选择电动机的关键。 关键词:理解 电磁转矩 表达式 以交流电动机为原动机的电力拖动系统为交流电力拖动系统。三相异步电动机由于结构简单,价格便宜,且性能良好,运行可靠,故广泛应用于各种拖动系统中。电磁转矩对三相异步电动机的拖动性能起着极其重要的作用,直接影响着电动机的起动、调速、制动等性能,其常用表达式有以下三种形式。 一、电磁转矩的物理表达式 由三相异步电动机的工作原理分析可知,电磁转矩T 是由转子电流I2 与旋转磁场相互作用而产生的,所以电磁转矩的大小与旋转磁通Φ及转子电流的乘积成正比。转子电路既有电阻又有漏电抗,所以转子电流I 2可以分解为有功分C 量I 2OS ?2和无功分量I 2Sin ?2 两部分。因为电磁转矩T 决定了电动机输出的机械功率即有功功率的大小,所以只有电流的有功分量I 2COS ?2才能产生电磁转矩,故电动机的电磁转矩为 T=C T φm I 2COS ?2 (1) 式中,T —电磁转矩(N*m ) φm —每极磁通(Wb ) C T —异步电机的转矩常数 上述电磁转矩表达式很简洁,物理概念清晰,可用于定性分析异步电动机电磁转矩T 与 φm 和I 2 COS ?2之间的关系。 二、电磁转矩的参数表达式 在具体应用时,电流I 2 和COS ?2 都随转差率S 而变化,因而不便于分析异步电动机 的各种运行状态,下面导出电磁转矩的参数表达式。 转子绕组中除了电阻R 2外,也存在着漏感抗X s2,且X s2 =SX 20 ,因此转子每相绕组内的 阻抗为 () 2 202 22 22 22SX R X R Z s +=+= (2) 旋转磁场在转子每相绕组中的感应电动势的有效值为E 2,且E 2=SE 20 , E 20为转子不动时的转子感应电动势,而转子每相绕组的电流 () 220222022 2SE R SE Z E I += = (3)

第四章三相异步电动机试题和答案解析

第四章 三相异步电动机 一、 填空(每空1分) 1. 如果感应电机运行时转差率为s ,则电磁功率,机械功率和转子铜耗之间的比例是 2:P :e Cu P p Ω= 。 答 s :s)(1:1- 2. ★当三相感应电动机定子绕组接于Hz 50的电源上作电动机运行时,定子电流的频率为 ,定子绕组感应电势的频率为 ,如转差率为s ,此时转子绕组感应电势的频率 ,转子电流的频率为 。 答 50Hz ,50Hz ,50sHz ,50sHz 3. 三相感应电动机,如使起动转矩到达最大,此时m s = ,转子总电阻值约为 。 答 1, σσ21X X '+ 4. 。 5. ★感应电动机起动时,转差率=s ,此时转子电流2I 的值 , 2cos ? ,主磁通比,正常运行时要 ,因此起动转 矩 。 答 1,很大,很小,小一些,不大 6. ★一台三相八极感应电动机的电网频率Hz 50,空载运行时转速为735转/分,此时转差率为 ,转子电势的频率为 。当转差率为时,转子的转速为 ,转子的电势频率为 。 答 ,1Hz , 720r/min ,2Hz 7. 三相感应电动机空载时运行时,电机内损耗包括 , , ,和 ,电动机空载输入功率0P 与这些损耗相平衡。 答 定子铜耗,定子铁耗,机械损耗,附加损耗 8. 三相感应电机转速为n ,定子旋转磁场的转速为1n ,当1n n <时为 运行状态;当1n n >时为 运行状态;当n 与1n 反向时为 运行状态。 答 电动机, 发电机,电磁制动 9. 增加绕线式异步电动机起动转矩方法有 , 。 答 转子串适当的电阻, 转子串频敏变阻器 10. — 11. ★从异步电机和同步电机的理论分析可知,同步电机的空隙应比异步电机的空气隙要 ,其原因是 。 答 大,同步电机为双边励磁

三相异步电动机基本控制线路的安装与调试

三相异步电动机基本控制线路的安装与调试 任务1-1 三相异步电动机的单向运行控制 学习内容: 1、常用低压电器的基本结构、工作原理、图形符号和文字符号、主要技术参数及其应用; 2、三相异步电动机的启/停、点动/长动控制。 学习目标: 1、知道:常用低压电器的工作原理、图形符号和文字符号;常用低压电器的用途。 2、能根据控制要求正确选择低压电器。 3、了解:常用低压电器的基本结构;主要技术参数。 4、掌握三相异步电动机的启/停、点动/长动控制电路的原理。 学习重点:工作原理、图形符号、文字符号、选择使用。 学习难点:工作原理、选择使用 §1-1 机床电气控制中常用的低压电器 目标任务: 1、了解低压电器的基本知识,熟悉常用的低压电器种类; 2、熟悉常用的各种低压电器的结构及原理、符号、选用; 3、熟练掌握常用低压电器的使用。 相关知识: 1-1. 低压电器基本知识

凡是对电能的生产、输送、分配和应用能起到切换、控制、调节、检测以及保护等作用的电工器械,均称为电器。低压电器通常是指在交流1200V及以下、直流1500V及以下的电路中使用的电器。机床电气控制线路中使用的电器多数属于低压电器。 一、低压电器的分类 低压电器是指工作在交流电压1200V 、直流电压1500V 以下的各种电器。生产机械上大多用低压电器。低压电器种类繁多,按其结构、用途及所控制对象的不同,可以有不同的分类方式。 1 .按用途和控制对象不同,可将低压电器分为配电电器和控制电器。 用于电能的输送和分配的电器称为低压配电电器,这类电器包括刀开关、转换开关、空气断路器和熔断器等。用于各种控制电路和控制系统的电器称为控制电器,这类电器包括接触器、起动器和各种控制继电器等。 2 .按操作方式不同,可将低压电器分为自动电器和手动电器。 通过电器本身参数变化或外来信号(如电、磁、光、热等)自动完成接通、分断、起动、反向和停止等动作的电器称为自动电器。常用的自动电器有接触器、继电器等。 通过人力直接操作来完成接通、分断、起动、反向和停止等动作的电器称为手动电器。常用的手动电器有刀开关、转换开关和主令电器等。 3 .按工作原理可分为电磁式电器和非电量控制电器 电磁式电器是依据电磁感应原理来工作的电器,如接触器、各类电磁式继电器等。非电量控制电器的工作是靠外力或某种非电量的变化而动作的电器,如行程开关、速度继电器等。 二、低压电器的作用 控制作用、保护作用、测量作用、调节作用、指示作用、转换作用 三、低压电器的基本结构 电磁式低压电器大都有两个主要组成部分,即:感测部分──电磁机构和执行部分──触头系统。 1 .电磁机构 电磁机构的主要作用是将电磁能量转换成机械能量,带动触头动作,从而完成接通或分断电路的功能。 电磁机构由吸引线圈、铁心和衔铁 3 个基本部分组成。常用的电磁机构如图所示,可分为 3 种形式。 2. 直流电磁铁和交流电磁铁

高压中大型三相异步电机基本知识

三相异步电动机基本知识 1电机概述 电机的型式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,电机构造的一般原则是:用适当的有效材料(导磁和导电材料)构成能互相进行电磁感应的磁路和电路,以产生电磁功率和电磁转矩,达到转换能量形态的目的。 为了减少激磁电流和旋转磁场在铁心中产生的涡流和磁滞损耗,铁心有0.5mm厚的 硅钢片叠压而成。硅钢片绝缘层的作用?笼型转子结构简单、制造方便。对要求启动电流小、启动转矩大的电机,可以采用绕线式电机。 按电机功能来分,可分为: ①发电机——把机械能转换成电能; ②电动机——把电能转换成机械能; ③变压器、变频机、变流机、移相器——分别用于改变电压、频率、电流相位。 ④控制电机——作为控制系统中的元件。 又可按以下方法分类: 下面主要讲述高压中大型三相异步电机 S=ns-n/ns 2电机型号、结构及分类 2.1分类

a)按中心高分类 可分为微型电机、小型电机、中型电机、大型电机。一般来说,H80以下的称为 微型电机(也叫分马力电机,功率在1kW以下),H80?H315的称为小型电机,H355?H630的称为中型电机,H710?H1000的称为大型电机。 b)按防护等级分类 基本上可分为开启式、防护式和封闭式电机。开启式电机的常用结构是IP11,防护式电机的常用结构是和IP22、IP23,封闭式电机的常用结构是IP44和IP54。 IP是International Protection的意思,紧跟其后的第一个数字表示电机防护固体的能力(0-无防护;1-防护大于50mm的固体;2-防护大于12mm的固体;3-防护大于2.5mm 的固体;4-防护大于1mm的固体;5-防尘。),第二个数字表示电机防水的能力(0-无防护电机;1-防滴电机;2-15°防滴电机;3-防淋水电机;4-防溅水电机;5-防喷水电机;6-防海浪电机;7-防浸水电机;8-潜水电机)。 请参考标准GB4942.1-85《电机外壳防护分级》。 c)按安装方式分类 总体上可分为卧式电机和立式电机。 卧式电机的典型结构是IMB3,其余派生结构有IMB35、IMB5等。立式电机的典型结构是IMV1(把IMB5立起来装即可,轴伸朝下),其余派生结构有IMV15(把IMB35 立起来装即可,轴伸朝下)等。 IM 即International Mounting。 请参考标准GB997-2008《电机结构及安装型式代号》。(IEC60034-7:2001) 旋转电机的结构形式、安装形式及接线盒位置---IM代码。 结构形式:有关固定用构件、轴承装置和轴伸等电机部件的构成形式。 1根据负载类型选择不同的冷却方式

三相异步电动机的七种调速方法及特点

三相异步电动机分类特点以及调速方法 三相异步电动机分类: 1、从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。不改变同步转速的调速方法有1)绕线式电动机的转子串电阻调速、2)斩波调速、3)串级调速以及应用电磁转差离合器、4)液力偶合器、5)油膜离合器等调速。不改变同步转速的调速方法在生产机械中广泛使用。 2、改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 3、从调速时的能耗观点来看,有1)高效调速方法与2)低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。 我们清楚三相异步电动机转速公式为: n=60f/p(1-s) 从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的,下面松文机电具体介绍其七种调速方法。 一、变极对数调速方法:这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的。本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 特点如下:1、具有较硬的机械特性,稳定性良好; 2、无转差损耗,效率高;3、接线简单、控制方便、价格低;4、有级调速,级差较大,不能获得平滑调速;5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 二、变频调速方法:变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。本方法适用于要求精度高、调速性能较好场合。其特点:1、效率高,调速过程中没有附加损耗;2、应用范围广,可用于笼型异步电动机;3、 调速范围大,特性硬,精度高;4、 技术复杂,造价高,维护检修困难。 三、串级调速方法 :串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为

电机输出扭矩计算公式

电动机输出转矩 转矩(英文为torque ) 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系,转矩的测量对传动轴载荷的确定与控制、传动系统工作零件的强度设计以及原动机容量的选择等都具有重要的意义。此外,转矩与功率的关系T=9549P/n 电机的额定转矩表示额定条件下电机轴端输出转矩。转矩等于力与力臂或力偶臂的乘积,在国际单位制(SI)中,转矩的计量单位为牛顿?米(N?m),工程技术中也曾用过公斤力?米等作为转矩的计量单位。电机轴端输出转矩等于转子输出的机械功率除以转子的机械角速度。直流电动机堵转转矩计算公式TK=9.55KeIK 。 三相异步电动机的转矩公式为: S R2 M=C U12 公式[2 ] R22+(S X20)2 C:为常数同电机本身的特性有关;U1 :输入电压; R2 :转子电阻;X20 :转子漏感抗;S:转差率 可以知道M∝U12 转矩与电源电压的平方成正比,设正常输入电压时负载转矩为M2 ,电压下降使电磁转矩M下降很多;由于M2不变,所以M小于M2平衡关系受到破坏,导致电动机转速的下降,转差率S上升;它又引起转子电压平衡方程式的变化,使转子电流I2上升。也就是定子电流I1随之增加(由变压器关系可以知道);同时I2增加也是电动机轴上送出的转矩M又回升,直到与M2相等为止。这时电动机转速又趋于新的稳定值。 转矩的类型 转矩可分为静态转矩和动态转矩。 静态转矩是值不随时间变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、缓变转矩和微脉动转矩。 静止转矩的值为常数,传动轴不旋转; 恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩; 缓变转矩的值随时间缓慢变化,但在短时间内可认为转矩值是不变的; 微脉动转矩的瞬时值有幅度不大的脉动变化。 动态转矩是值随时间变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。振动转矩的值是周期性波动的;过渡转矩是机械从一种工况转换到另一种工况时的转矩变化过程;随机转矩是一种不确定的、变化无规律的转矩。 根据转矩的不同情况,可以采取不同的转矩测量方法。 转矩=9550*功率/转速 同样 功率=转速*转矩/9550 平衡方程式中:功率的单位(kW);转速的单位(r/min);转矩的单位(N.m);9550是计算系数。

弱磁运行下异步电动机调速系统的转矩及功率特性

ISSN 1000-0054CN 11-2223/N 清华大学学报(自然科学版)J T sing hua Un iv (Sci &Tech),2011年第51卷第7期 2011,V o l.51,N o.71/26873-878 弱磁运行下异步电动机调速系统的转矩及功率特性 杨 耕1, 郑 伟1, 陆 城2, 陈伯时3 (1.清华大学自动化系,北京100084;2.台达能源技术(上海)有限公司,上海201209; 3.上海大学机电学院,上海200072) 收稿日期:2010-06-04 基金项目:国家自然科学基金项目(60674096)作者简介:杨耕(1957)),男(汉),四川,教授。 E -mail:yan ggeng@mail.tsin https://www.doczj.com/doc/9212122670.html, 摘 要:在弱磁调速下,异步电动机变频系统电磁转矩控制的非线性特性、以及系统最大输出电压和电流的限制,使得转矩和功率控制比较复杂。该文分析了弱磁调速区间内最大电磁转矩与电动机参数、系统电压电流约束之间的关系,给出了改善控制性能所需的系统最大电磁转矩和最大功率随定子同步频率以及最大电流约束变化的定量关系。实物实验验证了这些特性。 关键词:感应电动机;弱磁控制;转矩特性;弱磁区域中图分类号:T M 301;T M 346文献标志码:A 文章编号:1000-0054(2011)07-0873-06 Torque and power characteristics of induction motor drive in flux weakening region YANG G en g 1,ZHE NG Wei 1,LU Chen g 2,CH EN Boshi 3(1.Department of Automation,T singhua University, Beijin g 100084,China; 2.Delta Electronics (Shanghai)Co.,Ltd. Shanghai 201209,China;3.S chool of Mechatronics Engineering and Automation, S hanghai University,Shanghai 200072,China)Abstract:In the flux -weakening operation regi on of an inverter -induction m otor drive,th e control of electromagnetic torque (EM T)and pow er becomes complicated,due to the nonlinear characteris tic of th e EM T and output voltage/current con strain ts of the drive.For th e con trol performance im provement,this paper describ es th e fun ction of th e max imum EM T about the m otor param eters an d th e voltage/current cons traints,and pres ents th e algorithms of th e m aximum E M T and th e electromotive pow er along w ith the variation of stator frequ ency as w ell as the current limitations.T est res ults verify the algorithm s.Key words:induction m otor; flux w eak ening control; tor qu e characteristic;flux w eakening region 一般认为,异步电动机在额定频率以上的弱磁运行具有恒功率调速的特性[1-3] ,但在交流变频器驱动电机运行时,由于变频器最大输出电压和最大输出电流的限制(以下简称为电压电流限制),此时的 调速特性远比一般所述的/恒功率特性0复杂。然而,从系统实现的角度出发,如果采用具有转矩控制内环的结构,由于弱磁运行时电磁转矩控制环和磁 链控制环之间不再解耦,系统需要实时求取电压电流限制下随速度变化的电磁转矩指令以及励磁电流指令。此时的系统控制框图可用图1表示,励磁电流指令的求取如图中阴影部分所示,需要求解一个由多个变量构成的超越方程。由于算法十分复杂, 基于现有的实时控制器难以实现。 图1 具有转矩闭环的典型弱磁控制方法示意 迄今,韩国学者Kim 和Sul 提出的转矩最大化的弱磁调速方法[4-5]最具影响力。该方法的基本结构仍然同图1,其基本思想是:假定调速过程中弱磁变化缓慢,从而可以基于转子磁场定向条件下的电机模型分析问题;首先基于系统电压、电流限制给出弱磁调速范围内对应同步频率所能产生最大电磁转矩的励磁电流曲线;然后在实时系统中依此曲线给出励磁电流指令,同时根据最大电流限制和励磁电流对转矩电流指令进行限幅。该方法避免了超越方程的实时求解,也保证了在缓慢弱磁过程中系统对最大电流和最大母线电压最大程度地利用,因

三相异步电动机的使用、维护和检修教案

教案(首页) 授课班级机电高职1002 授课日期 课题序号 3.5 授课形式讲授授课时数 2 课题名称三相异步电动机的使用、维护和检修 教学目标1.了解三相异步电动机启动前的准备工作和启动时的注意事项。2.熟悉三相异步电动机运行中的监视项目。 3.熟悉三相异步电动机的定期检修内容。 4.了解三相异步电动机的常见故障以及处理方法。 教学重点1.了解三相异步电动机启动前的准备工作和启动时的注意事项。2.熟悉三相异步电动机运行中的监视项目。 教学难点1.了解三相异步电动机启动前的准备工作和启动时的注意事项。2.熟悉三相异步电动机运行中的监视项目。 教材内容更 新、补 充及删减 无 课外作业补充 教学后记无 送审记录 课堂时间安排和板书设计

复习5 导 入 5 新 授 60 练 习 15 小 结 5 一、电机选择原则 1、电源的原则 2、防护形式的选择 3、功率的选择 4、起动情况选择 5、转速的选择 二、电机的安装原则 三、电机的接地装置 四、电机的定期检查和保养 五、三相异步电机的常见故障及处理方法 课堂教学安排

课题序号课题名称第页共页教学过程主要教学内容及步骤 导入新授三相异步电动机在生产设备中长期不间断地工作,是目前工矿企业的主要动力装置,电动机的使用寿命是有限的,因为电动机轴承的逐渐磨损、绝缘材料的逐渐老化等等,这些现象是不可避免的。但一般来说,只要选用正确、安装良好、维修保养完善,电动机的使用寿命还是比较长的。在使用中如何尽量避免对电动机的损害,及时发现电动机运行中的故障隐患,对电动机的安全运行意义重大。因此,电动机在运行中的监视和维护,定期的检查维修,是消灭故障隐患,延长电动机使用寿命,减小不必要损失的重要手段。 一、电动机的选择原则 合理选择电动机是正确使用电动机的前提。电动机品种繁多,性能各异,选择时要全面考虑电源、负载、使用环境等诸多因素。对于与电动机使用相配套的控制电器和保护电器的选择也是同样重要的。 1.电源的选择 在三相异步电动机中,中小功率电动机大多采用三相380V电压,但也有使用三相22OV电压的。在电源频率方面,我国自行生产的电动机采用50Hz的频率,而世界上有些国家采用60Hz的交流电源。虽然频率不同不至于烧毁电动机,但其工作性能将大不一样。因此,在选择电动机时应根据电源的情况和电动机的铭牌正确选用。 2.防护型式的选择 由于工作环境不尽相同,有的生产场所温度较高、有的生产场所有大量的粉尘、有的场所空气中含有爆炸性气体或腐蚀性气体等等。这些环境都会使电动机的绝缘状况恶化,从而缩短电动机的使用寿命,甚至危及生命和财产的安全。因此,使用时有必要选择各种不同结构形式的电动机,以保证在各种不同的工作环境中能安全可靠地运行。电动机的外壳一般有如下型式: (1)开启型外壳有通风孔,借助和转轴连成一体的通风风扇使周围的空气与电动机内部的空气流通。此型电动机冷却效果好,适用于干燥无尘的场所。 (2)防护型机壳内部的转动部分及带电部分有必要的机械保护,以防止意外的接触。若电动机通风口用带网孔的遮盖物盖起来,叫网罩式;通风口可防止垂直下落的液体或固体直接进入电动机内部的叫防漏式;通风口可防止与垂直成100o范围内任何方向的液体或固体进入电动机内部的叫防溅式。(3)封闭式机壳严密密封,靠自身或外部风扇冷却,外壳带有散热片。适用于潮湿、多尘或含酸性气体的场合。 (4)防水式外壳结构能阻止一定压力的水进入电动机内部。 (5)水密式当电动机浸没在水中时,外壳结构能防止水进入电动机内部。 (6)潜水式电动机能长期在规定的水压下运行。 (7)防爆式电动机外壳能阻止电动机内部的气体爆炸传递到电动机外部,从而引起外部燃烧气体的爆炸。 3.功率的选择 课堂教学安排 课题序号课题名称第页共页

三相异步电机的转矩特性与机械特性(精)

三相异步电机的转矩特性与机械特性 1.电磁转矩(简称转矩) 异步电动机的转矩T 是由旋转磁场的每极磁通Φ与转子电流I 2相互作用而产生的。电磁转矩的大小与转子绕组中的电流I 及旋转磁场的强弱有关。 经理论证明,它们的关系是: 22cos T T K I ?=Φ (5-4) 其中 T 为电磁转矩 K T 为与电机结构有关的常数 Φ为旋转磁场每个极的磁通量 I 2为转子绕组电流的有效值 ?2为转子电流滞后于转子电势的相位角 若考虑电源电压及电机的一些参数与电磁转矩的关系,(5-4)修正为: 22122220()T sR U T K R sX '=+ (5-5) 其中 T K '为常数 U 1为定子绕组的相电压 S 为转差率 R 2为转子每相绕组的电阻 X 20为转子静止时每相绕组的感抗 由上式可知,转矩T 还与定子每相电压U 1的平方成比例,所以当电源电压有所变动时,对转矩的影响很大。此外,转矩T 还受转子电阻R 2的影响。图4-15为异步电动机的转矩特性曲线。 2.机械特性曲线 图 5-5 三相异步电动机的机械特性曲线 在一定的电源电压U 1和转子电阻R 2下,电动机的转矩T 与转差率n 之间的n n m (a) T =f (s )曲线

关系曲线T=f(s)或转速与转矩的关系曲线n=f(T),称为电动机的机械特性曲线,它可根据式(5-4)得出,如图5-5所示。 在机械特性曲线上我们要讨论三个转矩: 1).额定转矩T N 额定转矩T N 是异步电动机带额定负载时,转轴上的输出转矩。 29550N P T n = (5-6) 式中P 2是电动机轴上输出的机械功率,其单位是瓦特,n 的单位是转/分,T N 的单位是牛·米。 当忽略电动机本身机械摩擦转矩T 0时,阻转矩近似为负载转矩T L ,电动机作等速旋转时,电磁转矩T 必与阻转矩T L 相等,即T = T L 。额定负载时,则有T N = T L 。 2).最大转矩T m T m 又称为临界转矩,是电动机可能产生的最大电磁转矩。它反映了电动机的过载能力。 最大转矩的转差率为S m ,此时的S m 叫做临界转差率,见图5-5(a ) 最大转矩Tm 与额定转矩T N 之比称为电动机的过载系数λ,即 λ= Tm / T N 一般三相异步的过载系数在1.8~2.2之间。 在选用电动机时,必须考虑可能出现的最大负载转矩,而后根据所选电动机的过载系数算出电动机的最大转矩,它必须大于最大负载转矩。否则,就是重选电动机。 3).起动转矩T st , T st 为电动机起动初始瞬间的转矩,即n=0,s =1时的转矩。 为确保电动机能够带额定负载起动,必须满足:T st >T N ,一般的三相异步电动机有T st /T N =1~2.2。 3.电动机的负载能力自适应分析 电动机在工作时,它所产生的电磁转矩T 的大小能够在一定的范围内自动调整以适应负载的变化,这种特性称为自适应负载能力。 2 L T n S I T ↑?↓?↑?↑?↑直至新的平衡。此过程中,2I ↑时,1 I ↑? 电源提供的功率自动增加。

电机学概念以及公式总结

一、直流电机 A. 主要概念 1. 换向器、电刷、电枢接触压降2U b 2. 极数和极对数 3. 主磁极、励磁绕组 4. 电枢、电枢铁心、电枢绕组 5. 额定值 6. 元件 7. 单叠、单波绕组 8. 第1节距、第2节距、合成节距、换向器节距 9. 并联支路对数a 10. 绕组展开图 11. 励磁与励磁方式 12. 空载磁场、主磁通、漏磁通、磁化曲线、每级磁通 13. 电枢磁场 14. (交轴、直轴)电枢反应及其性质、几何中性线、物理中性线、移刷 15. 反电势常数C E、转矩常数C T 16. 电磁功率P em 电枢铜耗p Cua 励磁铜耗p Cuf 电机铁耗p Fe 机械损耗p mec 附加损耗p ad 输出机械功率P2 可变损耗、不变损耗、空载损耗

17. 直流电动机(DM )的工作特性 18. 串励电动机的“飞速”或“飞车” 19. 电动机的机械特性、自然机械特性、人工机械特性、硬特性、软特性 20. 稳定性 21. DM 的启动方法:直接启动、电枢回路串电阻启动、降压启动 22. DM 的调速方法:电枢回路串电阻、调励磁、调端电压 23. DM 的制动方法:能耗制动、反接制动、回馈制动 B. 主要公式: 发电机:P N =U N I N (输出电功率) 电动机:P N =U N I N ηN (输出机械功率) 反电势: 60E a E E C n pN C a Φ== 电磁转矩: em a 2T a T T C I pN C a Φπ== 直流电动机(DM )电势平衡方程:a a E a a U E I R C Φn I R =+=+ DM 的输入电功率P 1 : 12 ()()a f a f a a a f a a a f em Cua Cuf P UI U I I UI UI E I R I UI EI I R UI P p p ==+=+=++=++=++ 12em Cua Cuf em Fe mec ad P P p p P P p p p =++=+++ DM 的转矩方程:20d d em T T T J t Ω --= DM 的效率:21112 100%100%(1)100%P P p p P P P p η-∑∑= ?=?=-?+∑

第二节 三相异步电动机的电磁转矩和机械特性

第二节三相异步电动机的电磁转矩和机械特性 三相异步电动机转轴上产生的电磁转矩是决定电动机输出的机械功率大小的一个重要因素,也是电动机的一个重要的性能指标。 一、三相异步电动机的转矩特性 1、电磁转矩的物理表达式 三相异步电动机的工作原理告诉我们,电磁转矩是旋转磁场与转子绕组中感应电流相互作用产生的,设旋转磁场每极的磁通量用Φ表示,它等于气隙中磁感应强度平均值与每极面积的乘积。Φ表示了旋转磁场的强度。设转子电流用I2表示。根据电磁力定律,电磁转矩T em应与Φ成正比、与I2也成正比,即T em∝Φ·I2。此外转子绕组是一个感性电路,转子电流I2滞后于感应电动势E2,它们之间的相位差角是。考虑到电动机的电磁转矩对外做机械功,与有功功率相对应。因此电磁转矩T em还与转子电路的功率因数cos有关,即与转子电流的有功分量I2cos(与E2同相位的电流分量)成正比。 总结以上分析,可列出异步电动机的电磁转矩方程 式中KT是一个与电动机本身结构有关的系数。该公式是分析异步电动机转矩特性的重要依据。 2、转矩特性 电磁转矩与转差率之间的关系T em=(S)称为电动机的转矩特性。可以推得 式中KT’、转子电阻R2、转子不动时的感抗X20都是常数,且X20远大于R2。由于上式用电机定、转子绕组中的电阻、电抗等参数反映电磁转矩T em和转差率S之间的关系,所以上式又称之为电磁转矩的参数表达式。 由转矩的表达式(4-5)可知,转差率一定时,电磁转矩与外加电压的平方成正比,即T em∝U12。因此,电源电压有效值的微小变动,将会引起转矩的很大变化。 当电源电压U1为定值时,电磁转矩T em是转差率S的单值函数。图4-13画出了异步电动机的转矩特性曲线。

低压电器的分类及三相异步电动机的控制电路

低压电器 第一节低压电器的分类 第二节低压配电电器 一、熔断器(FU) 1)型号及含义 2)熔断器的选用 二、刀开关与转换开关 1、刀开关 1)开启式负荷开关(磁底胶盖闸刀开关) 开启式负荷开关安装时注意: ①、手柄要朝上,不能倒装或平装,防止震动而造成下落现象; ②、接线时,电源接上端,负载解下端; ③、拉闸时操作要迅速,一次到位,保证与电源的良好接触; ④、带负载运行时不能进行合分闸。

2)自动空气断路器(自动开关) 可实现电路的短路、过载或失电压与欠电压保护,能自动分段故障电路。 3)封闭式负荷开关(铁壳开关) 优势:①采用储能机构进行合分闸操作,当扳动操作手柄时,通过弹簧储蓄能量,扳到一定位时,弹簧储存能量瞬时爆发出来,推动触点合分闸。 ②具有连锁机构,当铁盖打开时,不能进行合分闸,对于操作者而言,避免了人身安全。 使用铁壳开关应注意外壳要可靠接地,以防止意外漏电造成触电事故。 2)转换开关(组合开关) 转换开关用于照明电路中,额定电流应大于被控制电路中各负载电流的总和;用于设备电源引入开关时也应大于负载电流的总和;用于电动机中,额定电流是电动机额定电流的2~3倍;也可用于5KW以下小容量电动机的启停和正反转控制,以及机床照明电路中的开关控制。 三、按钮 安装:①按钮安装在面板上时,应布置整齐,排列合理, 如根据电动机启动的先后顺序,从上到下或从左到 右排列; ②同一机床运动部位有几种不同的工作状态时(如 上、下、前、后、松、紧等),应使每一对相反状态的按钮安装在

一起; ③按钮的安装应牢固,安装按钮的金属板或金属按钮盒必须可靠接地。 按钮常见故障及处理方法故障现象故障原因处理方法 触点接触不良触点烧损 触点表面有尘垢 触点弹簧失效 修理触点或更换产品 清理触点表面 重绕弹簧或更换产品 触点间短路塑料受热变形,导致接线螺钉相碰 短路 杂物或油污在触点间形成通路 更换产品,并查明发热原因,如白炽灯发热所 致,可降低电压 清洁按钮内部 低压控制电器 四、接触器 交流接触器直流接触器作用通断交流电路通断直流电路 结构铁芯用硅钢片叠加而成,减少涡流和磁滞损 耗, 铁芯用整块钢板制造 端面装有短路环不装短路环 线路短而粗,呈圆筒状,铁心发热为主线圈薄而长,呈圆筒状,以线圈发热为主 灭弧栅片灭弧磁吹式灭弧 操作频率启动电流大,操作频率不能太高,600次/ 小时 无启动电流,操作频率较高,1200次/小时 Ⅰ、当交流接触器的额定值与直流接触器相同时,能否互换使用? 答:不能,交流接触器线圈匝数少,直流接触器线圈匝数多,直流电阻较大,若将交流接触器用于直流,其线圈电流将大大超过正常值,导致线圈过热损坏,若将直流接触器用于交流,因电阻过大,线圈电流远小于额定值,衔铁难于吸合,无法正常工作。 Ⅱ、如果交流接触器在工作时噪声过大的原因有哪些? 答:①电源电压过低;②触头弹簧压力过大;③铁芯或衔铁歪斜,造成机械卡住;④铁芯或衔铁端面有油污、灰尘或其他异物;⑤短路环断裂。 Ⅲ、接触器在运行过程中不能切断短路电流,所以必须与熔断器配合使用。 Ⅳ、交流接触器通电后,若衔铁因故卡住,不能吸合,

第四章三相异步电动机试题和答案解析

第四章 三相异步电动机 一、 填空(每空1分) 1. 如果感应电机运行时转差率为s ,则电磁功率,机械功率和转子铜耗之间的比例是 2:P :e Cu P p Ω= 。 答 s :s)(1:1- 2. ★当三相感应电动机定子绕组接于Hz 50的电源上作电动机运行时,定子电流的频率为 ,定子绕组感应电势的频率为 ,如转差率为s ,此时转子绕组感应电势的频率 ,转子电流的频率为 。 答 50Hz ,50Hz ,50sHz ,50sHz 3. 三相感应电动机,如使起动转矩到达最大,此时m s = ,转子总电阻值约为 。 答 1, σσ21X X '+ 4. ★感应电动机起动时,转差率=s ,此时转子电流2I 的值 , 2cos ? ,主磁通比,正常运行时要 ,因此起动转矩 。 答 1,很大,很小,小一些,不大 5. ★一台三相八极感应电动机的电网频率Hz 50,空载运行时转速为735转/分,此时转差率为 ,转子电势的频率为 。当转差率为时,转子的转速为 ,转子的电势频率为 。 答 ,1Hz , 720r/min ,2Hz 6. 三相感应电动机空载时运行时,电机内损耗包括 , , ,和 ,电动机空载输入功率0P 与这些损耗相平衡。 答 定子铜耗,定子铁耗,机械损耗,附加损耗 7. 三相感应电机转速为n ,定子旋转磁场的转速为1n ,当1n n <时为 运行状态;当1n n >时为 运行状态;当n 与1n 反向时为 运行状态。

答 电动机, 发电机,电磁制动 8. 增加绕线式异步电动机起动转矩方法有 , 。 答 转子串适当的电阻, 转子串频敏变阻器 9. ★从异步电机和同步电机的理论分析可知,同步电机的空隙应比异步电机的空气隙要 ,其原因是 。 答 大,同步电机为双边励磁 10. ★一台频率为 160Hz f =的三相感应电动机,用在频率为Hz 50的电源上(电压不变),电动机的最大转矩为原来的 ,起动转矩变为原来的 。 答 265??? ??,2 65?? ? ?? 二、 选择(每题1分) 1. 绕线式三相感应电动机,转子串电阻起动时( )。 A 起动转矩增大,起动电流增大; B 起动转矩增大,起动电流减小; C 起动转矩增大,起动电流不变; D 起动转矩减小,起动电流增大。 答 B 2. 一台50Hz 三相感应电动机的转速为min /720r n =,该电机的级数和同步转速为 ( )。 A 4极,min /1500r ; B 6极,min /1000r ; C 8极,min /750r ; D 10极,min /600r 。 答 C 3. ★笼型三相感应电动机的额定状态转速下降%10,该电机转子电流产生的旋转磁动势 相对于定子的转速( )。 A 上升 %10; B 下降%10; C 上升 %)101/(1+; D 不变。 答 D 4. 国产额定转速为min /1450r 的三相感应电动机为( )极电机。

电动机的额定转矩的计算

筑龙网 W W W .Z H U L O N G .C O M 电动机的额定转矩的计算 在额定电压、额定负载下,电动机转轴上产生的电磁转矩称为异步电动机的额定转矩,用T。表示。其数值的多少电动机的铭牌上不标注,一般电动机技术数据资料中也没有。要想知道其大小,可用下述两公式近似计算: 式中 P e ——电动机的额定功率,kW; n e ——电动机的额定转速,r/min。 从上述两式都可看出,额定功率相同的电动机,转速低,转矩就大;又由于转速与磁极数成反比,所以,极数多,转速就低,转矩也 就大。 公式(3—22)和式(3—23)中的电动机的额定功率P e 和额定转速n e ,在电动机的铭牌上均有标注。计算时,需用系数9550或975去除以4或3位数的转速值竹。,既麻烦又费时,并且计算结果也是近似值。电工在实际工作中所要求知的电动机额定转矩,也是近似值。为此,我们看公式(3—23):T e ≈975P e /n e 中的系数975,它很近似地等于6极电动机的额定转速,旧型号J81—6型、28kW;JO 2—82—6型、40kW 电动机及Y200L 一6型、30kW 电动机的额定转速就是975(r/rain)。且糸数975和1000的差是25,25与1000的比是2.5%,恰是电动机转速与旋转磁场转速的转差率l%~6%中间值略偏小些。故将系数

筑龙网 W W W .Z H U L O N G .C O M 975变换为1000,即60f/(p/2),这时n e 近似等于60f/(p/2),则公式(3—23)T e ≈975P e /n e ≈pP e /6。即: 式中 p——电动机的磁极数。 公式(3—24)电动机的额定转矩的单位是千克力米(kgf·m),1kgf·m=9.80665N·m≈10N·m,公式(3—22)和式(3—23)两系数9550与975的关系是9550÷975=9.79≈9.8≈10。这样得出近似公式: 公式(3—25)就是已知电动机容量和磁极数,求算其额定转矩的计算式,其口诀为: 电动机额定转矩,十倍容量磁极数。 三数之积除以六,单位采用牛顿米。 从上述公式(3—24)和式(3—25)可看出,6极电动机的额定转矩极易计算,单位用千克力·米表示时,其数值就是电动机的额定功率千瓦数;若用法定单位牛顿·米,则是10倍额定功率千瓦数。由此可看出公式(3—23)的计算系数975与表3—3所示部分6极异步电动机 的额定转速数值近似相等。故得简算口诀: 电动机额定转矩,六极电机较特殊。 用千克力米表示,电机容量千瓦数。 法定单位牛顿米,千瓦数值添个零。

Y系列三相异步电动机的技术参数54876

Y系列三相异步电动机的技术参数 1、Y系列(IP44)三相异步电动机: Y系列三相异步电动机是全国统一设计的新系列产品,将取代JO系列电动机,Y系列三相异步电动机具有高效、节能、噪音低、震动小等特点。 2、Y系列(IP23)三相异步电动机: Y系列(IP23)三相异步电动机,机座号为160 - 315,其防护结构形式不同于IP44的封闭式,但比防滴式优越,其体积比Y系列(IP44)分别减少20%和15%。 Y系列(IP44)的技术参数见下表: 型号功率 ( KW) 电流 (A) 转速 r/min 铁芯 长度 定子 外径 定子 内径 输出 轴径 Y801 - 2 0.75 1.8 2830 65 120 67 Y8012- 2 1.1 2.5 2830 80 120 67 Y801- 4 0.55 1.5 1390 65 120 75 Y802- 4 0.75 2.0 1390 80 125 75 Y90S- 2 1.5 3.4 2840 80 130 72 Ф24 Y90S- 4 1.1 2.8 1400 90 130 80 Y90L- 4 1.5 3.7 1400 120 130 80 Y90S- 6 0.75 2.3 910 100 130 86 Y90L-6 1.1 3.2 910 125 130 86 Y100L-2 3.0 6.4 2870 100 155 94 Y100L1-4 2.2 5.0 1430 105 155 98

Y100L2-4 3.0 6.8 1430 135 155 98 Ф28 型号功率 ( KW) 电流 (A) 转速 r/min 铁芯 长度 定子 外径 定子 内径 输出 轴径 Y100L-6 1.5 4.0 940 100 155 160 Y112M-2 4.0 8.2 2890 105 175 98 Y112M-4 4.0 8.8 1440 135 175 110 Y112M-6 2.2 5.6 940 110 175 120 Y132S1-2 5.5 11 2900 105 210 116 Y132S2-2 7.5 15 2900 125 210 116 Y132S-4 5.5 12 1440 115 210 136 Ф38 Y132M-4 7.5 15 1440 160 210 136 Ф38 Y132S-6 3.0 7.2 960 110 210 148 Y132M1-6 4.0 9.4 960 140 210 148 Y132M2-6 5.5 13 960 180 210 148 Y132S-8 2.2 5.8 710 110 210 148 Y132M-8 3.0 7.7 710 180 210 148 Y160M1-2 11 22 710 125 260 150 Ф42 Y160M2-2 15 29 2930 155 260 150 Ф42 Y160L-2 18.5 36 2930 155 260 150 Ф42 Y160M-4 11 23 1460 195 260 170 Ф42 Y160L-4 15 30 1460 195 260 170 Ф42 Y160M-6 7.5 17 970 145 260 180 Ф42

相关主题
文本预览
相关文档 最新文档