当前位置:文档之家› 系统稳定性理论

系统稳定性理论

系统稳定性理论
系统稳定性理论

系统稳定性理论

稳定性可以这样定义:当一个实际的系统处于一个平衡的状态时,如果受到外来作用的影响时,系统经过一个过渡过程仍然能够回到原来的平衡状态,我们称这个系统就是稳定的,否则称系统不稳定。

一个控制系统要想能够实现所要求的控制功能就必须是稳定的。在实际的应用系统中,由于系统中存在储能元件,并且每个元件都存在惯性。这样当给定系统的输入时,输出量一般会在期望的输出量之间摆动。此时系统会从外界吸收能量。对于稳定的系统振荡是减幅的,而对于不稳定的系统,振荡是增幅的振荡。前者会平衡于一个状态,后者却会不断增大直到系统被损坏。

既然稳定性很重要,那么怎么才能知道系统是否稳定呢?控制学家们给我们提出了很多系统稳定与否的判定定理。这些定理都是基于系统的数学模型,根据数学模型的形式,经过一定的计算就能够得出稳定与否的结论,这些定理中比较有名的有:劳斯判据、赫尔维茨判据、李亚谱若夫三个定理。这些稳定性的判别方法分别适合于不同的数学模型,前两者主要是

通过判断系统的特征值是否小于零来判定系统是否稳定,后者主要是通过考察系统能量是否衰减来判定稳定性。

当然系统的稳定性只是对系统的一个基本要求,一个另人满意的控制系统必须还要满足许多别的指标,例如过渡时间、超调量、稳态误差、调节时间等。一个好的系统往往是这些方面的综合考虑的结果。

劳斯判据

劳斯判据,又称为代数稳定判据。劳斯于1877年提出的稳定性判据能够判定一个多项式方程中是否存在位于复平面右半部的正根,而不必求解方程。由此劳斯获得了亚当奖。劳斯判据,这是一种代数判据方法。它是根据系统特征方程式来判断特征根在S 平面的位置,从而决定系统的稳定性.由于不必求解方程,为系统的稳定性的判断带来了极大的便利。

假若劳斯阵列表中第一列系数均为正数,则该系统是稳定的,即特征方程所有的根均位于根平面的左半平面。假若第一列系数有负数,则第一列系数符号的改变次数等于在右半平面上根的个数。

劳斯判据不仅可以判别系统稳定不稳定,即系统的绝对稳定性,而且也可检验系统是否有一定的稳定裕量,即相对稳定性。另外劳斯判据还可用来分析系统参数对稳定性的影响和鉴别延滞系统的稳定性。

赫尔维茨判据

赫尔维茨提出了另一种形式的代数判据。它以特征方程的各系数a i( i =0 , 1 ,…, n) 构造n ×n 维的赫尔维茨行列式D

线性定常系统稳定的充分必要条件为,赫尔维茨行列式的各阶主子式均大于零:

李亚谱若夫稳定判据

Lyapunov 意义下的稳定性定义

定义1 设系统

),(t x f x

= ,0),(≡t x f e 之平衡状态0=e x 的H 邻域为

H x x

e ≤-

其中,0>H ,?为向量的2范数或欧几里德范数,

2/122

22211])()()[(ne n e e e x x x x x x x x -++-+-=- 类似地,也可以相应定义球域S (ε)和S (δ)。

在H 邻域内,若对于任意给定的H <<ε0,均有

(1) 如果对应于每一个)(εS ,存在一个)(δS ,使得当t 趋于无穷时,始于S (δ)的轨迹不脱离S (ε),则式(4.1)系统之平衡状态0=e x 称为在Lyapunov 意义下是稳定的。一般地,实数δ与ε有关,通常也与t 0有关。如果 δ 与t 0无关,则称此时之平衡状态0=e x 为一致稳定的平衡状态。

以上定义意味着:首先选择一个球域S (ε),对应于每一个S (ε),必存在一个球域S (δ),使得当t 趋于无穷时,始于S (δ)的轨迹总不脱离球域S (ε)。

(2) 如果平衡状态0=e x ,在Lyapunov 意义下是

稳定的,并且始于域S (δ)的任一条轨迹,当时间t 趋于无穷时,都不脱离S (ε),且收敛于0=e x ,则称式(4.1)系统之平衡状态0=e x 为渐近稳定的,其中球域S (δ)被称为平衡状态0=e x 的吸引域。

类似地,如果δ 与t 0无关,则称此时之平衡状态0=e x 为一致渐近稳定的。

实际上,渐近稳定性比Lyapunov 意义下的稳定性更重要。考虑到非线性系统的渐近稳定性是一个局部概念,所以简单地确定渐近稳定性并不意味着系统能正常工作。通常有必要确定渐近稳定性的最大范围或吸引域。它是发生渐近稳定轨迹的那部分状态空间。换句话说,发生于吸引域内的每一个轨迹都是渐近稳定的。

(3) 对所有的状态(状态空间中的所有点),如果由这些状态出发的轨迹都保持渐近稳定性,则平衡状态0=e x 称为大范围渐近稳定。或者说,如果式(4.1)系统之平衡状态0=e x 渐近稳定的吸引域为整个状态空间,则称此时系统的平衡状态0=e x 为大范围渐近稳定的。显然,大范围渐近稳定的必要条件是在整个状态空间中只有一个平衡状态。

在控制工程问题中,总希望系统具有大范围渐近稳定的特性。如果平衡状态不是大范围渐近稳定的,

那么问题就转化为确定渐近稳定的最大范围或吸引域,这通常非常困难。然而,对所有的实际问题,如能确定一个足够大的渐近稳定的吸引域,以致扰动不会超过它就可以了。

(4) 如果对于某个实数ε>0和任一个实数δ >0,不管这两个实数多么小,在S (δ)内总存在一个状态0x ,使得始于这一状态的轨迹最终会脱离开S (ε),那么平衡状态0=e x 称为不稳定的。

图1 (a )稳定平衡状态及一条典型轨迹;(b )渐近稳定平衡状态及一条典型轨迹;(c )不稳定平衡状态及一条典型轨迹

表1 线性系统稳定性概念与Lyapunov 意义下的稳定性概念

Lyapunov 稳定性判定

Lyapunov 第一法和Lyapunov 第二法。

第一法通过求解微分方程的解来分析运动稳定性,即通过分析非线性系统线性化方程特征值分布来判别原非线性系统的稳定性;

第二法则是一种定性方法,它无需求解困难的非线性微分方程,而转而构造一个Lyapunov函数,研究它的正定性及其对时间的沿系统方程解的全导数的负定或半负定,来得到稳定性的结论。这一方法在学术界广泛应用,影响极其深远。一般我们所说的Lyapunov方法就是指Lyapunov第二法。

Lyapunov渐进稳定物理意义:

即如果系统有一个渐近稳定的平衡状态,则当其运动到平衡状态的吸引域内时,系统存储的能量随着时间的增长而衰减,直到在平稳状态达到极小值为止。

微分方程稳定性理论简介

第五节 微分方程稳定性理论简介 这里简单介绍下面将要用到的有关内容: 一、 一阶方程的平衡点及稳定性 设有微分方程 ()dx f x dt = (1) 右端不显含自变量t ,代数方程 ()0f x = (2) 的实根0x x =称为方程(1)的平衡点(或奇点),它也是方程(1)的解(奇解) 如果从所有可能的初始条件出发,方程(1)的解()x t 都满足 0lim ()t x t x →∞ = (3) 则称平衡点0x 是稳定的(稳定性理论中称渐近稳定);否则,称0x 是不稳定的(不渐近稳定)。 判断平衡点0x 是否稳定通常有两种方法,利用定义即(3)式称间接法,不求方程(1)的解()x t ,因而不利用(3)式的方法称直接法,下面介绍直接法。 将()f x 在0x 做泰勒展开,只取一次项,则方程(1)近似为: 0'()()dx f x x x dt =- (4) (4)称为(1)的近似线性方程。0x 也是(4)的平衡点。关于平衡点0x 的稳定性有如下的结论: 若0'()0f x <,则0x 是方程(1)、(4)的稳定的平衡点。 若0'()0f x >,则0x 不是方程(1)、(4)的稳定的平衡点 0x 对于方程(4)的稳定性很容易由定义(3)证明,因为(4)的一般解是 0'()0()f x t x t ce x =+ (5) 其中C 是由初始条件决定的常数。

二、 二阶(平面)方程的平衡点和稳定性 方程的一般形式可用两个一阶方程表示为 112212 () (,)()(,) dx t f x x dt dx t g x x dt ?=??? ?=?? (6) 右端不显含t ,代数方程组 1212 (,)0 (,)0f x x g x x =?? =? (7) 的实根0012 (,)x x 称为方程(6)的平衡点。记为00 012(,)P x x 如果从所有可能的初始条件出发,方程(6)的解12(),()x t x t 都满足 101lim ()t x t x →∞ = 20 2lim ()t x t x →∞ = (8) 则称平衡点00 012(,)P x x 是稳定的(渐近稳定);否则,称P 0是不稳定的(不渐 近稳定)。 为了用直接法讨论方法方程(6)的平衡点的稳定性,先看线性常系数方程 11112 22122 () ()dx t a x b x dt dx t a x b x dt ?=+??? ?=+?? (9) 系数矩阵记作 1 12 2a b A a b ??=???? 并假定A 的行列式det 0A ≠ 于是原点0(0,0)P 是方程(9)的唯一平衡点,它的稳定性由的特征方程 det()0A I λ-= 的根λ(特征根)决定,上方程可以写成更加明确的形式: 2120()det p q p a b q A λλ?++=? =-+??=? (10) 将特征根记作12,λλ,则

实验一--控制系统的稳定性分析

实验一--控制系统的稳定性分析

实验一控制系统的稳定性分 班级:光伏2班 姓名:王永强 学号:1200309067

实验一控制系统的稳定性分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响;

3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递 函数为 0.2( 2.5) () (0.5)(0.7)(3) s G s s s s s + = +++,用MATLAB编写 程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB命令窗口写入程序代码如下:z=-2.5 p=[0,-0.5,-0.7,-3] k=1 Go=zpk(z,p,k)

Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=ploy2str(dc{1},'s') 运行结果如下: Gctf = s + 2.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 2.05 s + 2.5 Continuous-time transfer function. dens是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,4.2,3.95,1.25,0.5] p=roots(den)

现代控制理论复习题库

一、选择题 1.下面关于建模和模型说法错误的是( C )。 A.无论是何种系统,其模型均可用来提示规律或因果关系。 B.建模实际上是通过数据、图表、数学表达式、程序、逻辑关系或各种方式的组合表示状态变量、输入变量、输出变量、参数之间的关系。 C.为设计控制器为目的建立模型只需要简练就可以了。 D.工程系统模型建模有两种途径,一是机理建模,二是系统辨识。 &&&&的类型是( B ) 。 2.系统()3()10() y t y t u t ++= A.集中参数、线性、动态系统。B.集中参数、非线性、动态系统。 C.非集中参数、线性、动态系统。D.集中参数、非线性、静态系统。 3.下面关于控制与控制系统说法错误的是( B )。 A.反馈闭环控制可以在一定程度上克服不确定性。 B.反馈闭环控制不可能克服系统参数摄动。 C.反馈闭环控制可在一定程度上克服外界扰动的影响。 D.控制系统在达到控制目的的同时,强调稳、快、准、鲁棒、资源少省。 x Pz说法错误的是( D )。 4.下面关于线性非奇异变换= A.非奇异变换阵P是同一个线性空间两组不同基之间的过渡矩阵。 B.对于线性定常系统,线性非奇异变换不改变系统的特征值。 C.对于线性定常系统,线性非奇异变换不改变系统的传递函数。 D.对于线性定常系统,线性非奇异变换不改变系统的状态空间描述。 5.下面关于稳定线性系统的响应说法正确的是( A )。 A.线性系统的响应包含两部分,一部是零状态响应,一部分是零输入响应。 B.线性系统的零状态响应是稳态响应的一部分。 C.线性系统暂态响应是零输入响应的一部分。 D.离零点最近的极点在输出响应中所表征的运动模态权值越大。 6.下面关于连续线性时不变系统的能控性与能观性说法正确的是( A ) 。 A.能控且能观的状态空间描述一定对应着某些传递函数阵的最小实现。 B.能控性是指存在受限控制使系统由任意初态转移到零状态的能力。 C.能观性表征的是状态反映输出的能力。 D.对控制输入的确定性扰动影响线性系统的能控性,不影响能观性。 7.下面关于系统Lyapunov稳定性说法正确的是( C ) 。

实验四 控制系统的稳定性分析

西京学院实验教学教案实验课程:现代控制理论基础 课序: 4 教室:工程舫0B-14实验日期:2013-6-3、4、6 教师:万少松 一、实验名称:系统的稳定性及极点配置二、实验目的 1.巩固控制系统稳定性等基础知识;2.掌握利用系统特征根判断系统稳定性的方法;3.掌握利用李雅普诺夫第二法判断系统的稳定性的方法;4. 掌握利用状态反馈完成系统的极点配置;5.通过Matlab 编程,上机调试,掌握和验证所学控制系统的基本理论。三、实验所需设备及应用软件序号 型 号备 注1 计算机2Matlab 软件四、实验内容1. 利用特征根判断稳定性;2. 利用李雅普诺夫第二法判断系统的稳定性;3.状态反馈的极点配置;五、实验方法及步骤1.打开计算机,运行MATLAB 软件。2.将实验内容写入程序编辑窗口并运行。3.分析结果,写出实验报告。 语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器

一、利用特征根判断稳定性 用matlab 求取一个系统的特征根,可以有许多方法,如,,,()eig ()pzmap 2ss zp ,等。下面举例说明。 2tf zp roots 【例题1】已知一个系统传递函数为,试不同的方法分析闭环系统的稳定性。()G s 2(3)()(5)(6)(22)s G s s s s s += ++++解:num=[1,3]den=conv([1,2,2],conv([1,6],[1,5]))sys=tf(num,den)(1)() eig p=eig(sys)显示如下:p = -6.0000 -5.0000 -1.0000 + 1.0000i -1.0000 - 1.0000i 所有的根都具有负的实部,所以系统稳定。(2) ()pzmap pzmap(sys) 从绘出的零极点图可看见,系统的零极点都位于左半平面,系统稳定。(3)2()tf zp [z,p,k]=tf2zp(num,den) (4)()roots roots(den)【例题2】已知线性定常连续系统的状态方程为122122x x x x x ==- 试用特征值判据判断系统的稳定性。 解: A=[0,1;2,-1] eig(A)

实验二 控制系统的阶跃响应及稳定性分析

实验二 控制系统的阶跃响应及稳定性分析 一、实验目的及要求: 1.掌握控制系统数学模型的基本描述方法; 2.了解控制系统的稳定性分析方法; 3.掌握控制时域分析基本方法。 二、实验内容: 1.系统数学模型的几种表示方法 (1)传递函数模型 G(s)=tf() (2)零极点模型 G(s)=zpk(z,p,k) 其中,G(s)= 将零点、极点及K值输入即可建立零极点模型。 z=[-z1,-z …,-z m] p=[-p1,-p …,-p] k=k (3)多项式求根的函数:roots ( ) 调用格式: z=roots(a) 其中:z — 各个根所构成的向量 a — 多项式系数向量 (4)两种模型之间的转换函数: [z ,p ,k]=tf2zp(num , den) %传递函数模型向零极点传递函数的转换 [num , den ]=zp2tf(z ,p ,k) %零极点传递函数向传递函数模型的转换 (5)feedback()函数:系统反馈连接

调用格式:sys=feedback(s1,s2,sign) 其中,s1为前向通道传递函数,s2为反馈通道传递函数,sign=-1时,表示系统为单位负反馈;sign=1时,表示系统为单位正反馈。 2.控制系统的稳定性分析方法 (1)求闭环特征方程的根(用roots函数); 判断以为系统前向通道传递函数而构成的单位负反馈系统的稳定性,指出系统的闭环特征根的值: 可编程如下: numg=1; deng=[1 1 2 23]; numf=1; denf=1; [num,den]= feedback(numg,deng,numf,denf,-1); roots(den) (2)化为零极点模型,看极点是否在s右半平面(用pzmap); 3.控制系统根轨迹绘制 rlocus() 函数:功能为求系统根轨迹 rlocfind():计算给定根的根轨迹增益 sgrid()函数:绘制连续时间系统根轨迹和零极点图中的阻尼系数和自然频率栅格线 4.线性系统时间响应分析 step( )函数---求系统阶跃响应 impulse( )函数:求取系统的脉冲响应 lsim( )函数:求系统的任意输入下的仿真 三、实验报告要求:

Lyapunov稳定性理论概述

Lyapunov Lyapunov稳定性理论概述稳定性理论概述稳定性理论概述 稳定性理论是19 世纪80 年代由俄国数学家Lyapunov创建的,它在自动控制、航空技术、生态生物、生化反应等自然科学和工程技术等方面有着广泛的应用,其概念和理念也发展得十分迅速。通过本学期“力学中的数学方法”课程的学习,我对此理论的概况有了一些认识和体会,总结于本文中。 一, 稳定性的概念稳定性的概念 初始值的微分变化对不同系统的影响不同,例如初始值问题 ax dt dx = , x(0)=x 0 , t≥0,x 0≥0 (1) 的解为e x at t x 0 )(= ,而x=0 是(1)式的一个解。当a f 0时,无论|x 0|多小,只要 |x 0| ≠ 0 ,在t→+∞时,总有x(t)→ ∞,即初始值的微小变化会导致解的误差任意大,而当a ?0时,e x at t x 0 )(= 。与零解的误差不会超过初始误差x 0,且随 着t 值的增加很快就会消失,所以,当|x 0|很小时,x(t)与零解的误差也很小。 这个例子表明a f 0时的零解是“稳定”的。下面,我们就给出微分方程零解稳定的严格定义。 设微分方程 ),(x t f dt dx =, x(t 0)=x 0 , x ∈R n (2) 满足解存在唯一定理的条件,其解x(t)=x(t,t 0,x 0)的存在区间是),(+∞?∞,f(t,x)还满足条件: f (t ,0)=0 (3) (3)式保证了x(t) = 0 是(2)式的解,我们称它为零解。 这里给出定义1:若对任意给定的ε > 0,都能找到δ=δ(ε,t 0),使得当||x 0||<δ时的解满足x ( t,x 0 , x 0 ) || x ( t, t 0 , x 0 ) || <ε, t ≥ t 0 , 则称(2)式的零解是稳定的,否则称(2)式的零解是不稳定的。

现代控制理论1-8三习题库

信息工程学院现代控制理论课程习题清单

3.有电路如图1-28所示。以电压U(t)为输入量,求以电感中的电流和电 容上的电压作为状态变量的状态方程,和以电阻 R 2上的电压作为输出 量的输出方程。 4.建立图P12所示系统的状态空间表达式。 M 2 1 f(t) 5.两输入u i ,U 2,两输出y i ,y 的系统,其模拟结构图如图 1-30所示, 练习题 ,输出为,试自选状态变量并列写出其状 2. 有电路如图所示,设输入为 态空间表达式。 C ri _ l- ------- s R 2 U i U ci L u A ------ — 2 R i

试求其状态空间表达式和传递函数阵。 6.系统的结构如图所示。以图中所标记的 x 1、x 2、x 3作为状态变量,推 导其状态空间表达式。 其中,u 、y 分别为系统的输入、 输出,1、 2 试求图中所示的电网络中,以电感 L i 、L 2上的支电流x i 、X 2作为状态 变量的状态空间表达式。这里 u 是恒流源的电流值,输出 y 是R 3上的 支路电压。 8. 已知系统的微分方程 y y 4y 5y 3u ,试列写出状态空间表达式。 9. 已知系统的微分方程 2y 3y u u , 试列写出状态空间表达式。 10. 已知系统的微分方程 y 2y 3y 5y 5u 7u ,试列写出状态空间 表达式。 7. 3均为标量。

11. 系统的动态特性由下列微分方程描述 y 5 y 7 y 3y u 3u 2u 列写其相应的状态空间表达式,并画出相应的模拟结构图。 12. 已知系统传递函数 W(s) 坐 卫 2 ,试求出系统的约旦标准型 s(s 2)(s 3) 的实现,并画出相应的模拟结构图 13. 给定下列状态空间表达式 X 1 0 1 0 X 1 0 X 2 2 3 0 X 2 1 u X 3 1 1 3 X 3 2 X 1 y 0 0 1 x 2 X 3 (1)画出其模拟结构图;(2)求系统的传递函数 14. 已知下列传递函数,试用直接分解法建立其状态空间表达式,并画出状 态变量图。 15. 列写图所示系统的状态空间表达式。 16. 求下列矩阵的特征矢量 0 1 0 A 3 0 2 12 7 6 17. 将下列状态空间表达式化成约旦标准型(并联分解) (1)g(s ) s 3 s 1 3 2 s 6s 11s 6 ⑵ g(s ) s 2 2s 3 3 c 2 s 2s 3s 1

控制系统的稳定性分析

精品 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10 2.绘制EWB图和Simulink仿真图。

精品 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。 系统响应曲线 实验曲线Matlab (或EWB)仿真 R3=100K = C=1UF 临界 稳定 (理论值 R3= 200K) C=1UF

精品 临界 稳定 (实测值 R3= 220K) C=1UF R3 =100K C= 0.1UF

精品 临界 稳定 (理论 值R3= 1100 K) C=0.1UF 临界稳定 (实测值 R3= 1110K ) C= 0.1UF

精品 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较(1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

自动控制理论知识点总结

1.自控系统的基本要求:稳定性、快速性、准确性(P13) 稳定性是由系统结构和参数决定的,与外界因素无关,这是因为控制系统一般含有储能元件或者惯性元件,其储能元件的能量不能突变。因此系统收到扰动或者输入量时,控制过程不会立即完成,有一定的延缓,这就使被控量恢复期望值或有输入量有一个时间过程,称为过渡过程。 快速性对过渡过程的形式和快慢提出要求,一般称为动态性能。 准确性过渡过程结束后,被控量达到的稳态值(即平衡状态)应与期望值一致。但由于系统结构,外作用形式及摩擦,间隙等非线性因素的影响,被控量的稳态值与期望值之间会有误差的存在,称为稳态误差。+ 2.选作典型外作用的函数应具备的条件:1)这种函数在现场或试验室中容易得到 2)控制系统在这种函数作用下的性能应代表在实际工作条件下的性能。3)这种函数的数学表达式简单,便于理论计算。 常用典型函数:阶跃函数,幅值为1的阶跃称为单位阶跃函数 斜坡函数 脉冲函数,其强度通常用其面积表示,面积为1的称为单位脉冲函数或δ函数 正弦函数,f(t)=Asin(ωt-φ),A角频率,ω角频率,φ初相角 3.控制系统的数学模型是描述系统内部物理量(或变量)之间关系的数学表达式。(P21) 静态数学模型:在静态条件下(即变量各阶导数为零),描述变量之间关系的代数方程 动态数学模型:描述变量各阶导数之间关系的微分方程 建立数学模型的方法:分析法根据系统运动机理、物理规律列写运动方程 实验法人为给系统施加某种测试信号,记录其输出响应,并用合适的数学模型去逼近,也称为系统辨识。 时域中的数学模型有:微分方程、差分方程、状态方程 复域中的数学模型有:传递函数、结构图 频域中的数学模型有:频率特性 4.非线性微分方程的线性化:切线法或称为小偏差法(P27) 小偏差法其实质是在一个很小的范围内,将非线性特性用一段直线来代替。 连续变化的非线性函数y=f(x),取平衡状态A为工作点,在A点处用泰勒级数展开,当增量很小时略去高次幂可得函数y=f(x)在A点附近的增量线性化方程y=Kx,其中K是函数f(x)在A 点的切线斜率。 5.模态:也叫振型。线性微分方程的解由特解和齐次微分方程的通解组成。 通解由微分方程的特征根决定,它代表自由运动。如果n阶微分方程的特征根是λ1,λ2……λn且无重根,则把函数e t1λ,e t2λ……e ntλ称为该微分方程所描述运动的模态。每一种模态代表一种类型的运动形态,齐次微分方程的通解则是它们的线性组合。 6.传递函数:线性定常系统的传递函数定义为零初始条件下,系统输出量的拉氏变换与输入量的拉氏变换之比。(P30) 零初始条件是指输入量加于系统之前,系统处于稳定的工作状态,此时输出量及各阶导数为零;输入量是在t大于等于0时才作用于系统,因此在t=0-时,输入量及其各阶导数均为零。 1)传递函数是复变量s的有理真分式函数,且所有系数均为实数; 2)传递函数是一种用系统参数表示输出量与输入量之间关系的表达式,它只取决于系统或元件 的结构和参数,而与输入量的形式无关,也不反映系统内部的任何信息。 3)传递函数与微分方程有相通性。 4)传递函数的拉式反变换是脉冲响应

控制系统的稳定性

3.8 控制系统的稳定性 3.8 控制系统的稳定性 稳定性是控制系统最重要的特性之一。它表示了控制系统承受各种扰动,保持其预定工作状态的能力。不稳定的系统是无用的系统,只有稳定的系统才有可能获得实际应用。我们前几节讨论的控制系统动态特性,稳态特性分析计算方法,都是以系统稳定为前提的。 3.8.1 稳定性的定义 图3.26(a)是一个单摆的例子。在静止状态下,小球处于A位置。若用外力使小球偏离A而到达A’,就产生了位置偏差。考察外力去除后小球的运动,我们会发现,小球从初始偏差位置A',经过若干次摆动后,最终回到A点,恢复到静止状态。图3.26(b)是处于山顶的一个足球。足球在静止状态下处于B位置。如果我们用外力使足球偏离B位置,根据常识我们都知道,足球不可能再自动回到B位置。对于单摆,我们说A位置是小球的稳定位置,而对于足球来说,B则是不稳定的位置。 图 3.26 稳定位置和不稳定位置 (a)稳定位置;(b)不稳定位置 处于某平衡工作点的控制系统在扰动作用下会偏离其平衡状态,产生初始偏差。稳定性是指扰动消失后,控制系统由初始偏差回复到原平衡状态的性能。若能恢复到原平衡状态,我们说系统是稳定的。若偏离平衡状态的偏差越来越大,系统就是不稳定的。 在控制理论中,普遍采用了李雅普诺夫(Liapunov)提出的稳定性定义,内容如下: 设描述系统的状态方程为 (3.131)

式中x(t)为n维状态向量,f(x(t),t)是n维向量,它是各状态变量和时间t的函数。如果系统的某一状态,对所有时间t,都满足 (3.132) 则称为系统的平衡状态。是n维向量。当扰动使系统的平衡状态受到破坏时,系统就会偏离平衡状态,在时,产生初始状态=x。在时,如果对于任一实数,都存在另一实数,使得下列不等式成立 (3.133) (3.134) 则称系统的平衡状态为稳定的。 式中称为欧几里德范数,定义为: (3.135) 矢量的范数是n维空间长度概念的一般表示方法。 这个定义说明,在系统状态偏离平衡状态,产生初始状态以后,即以后,系统的状态将会随时间变化。对于给定的无论多么小的的球域S(),总存在另一个的球域,只要初始状态不超出球域,则系统的状态 的运动轨迹在后始终在球域S()内,系统称为稳定系统。 当t无限增长,如果满足: (3.136) 即系统状态最终回到了原来的平衡状态,我们称这样的系统是渐近稳定的。对于任意给定的正数,如果不存在另一个正数,即在球域内的初始状态,在后,的轨迹最终超越了球域S(),我们称这种系统是不稳定的。 图3.27是二阶系统关于李雅普诺夫稳定性定义的几何说明。

现代控制理论

1、什么是对偶系统,从传递函数矩阵,特征多项式和能控、能观性说明互为对偶的两个系统之间的关系。 答:定义:如果两个系统满足A2=A1T,B2=C1T,C2=B1T,则称这两个系统互为对偶函数。互为对偶系统传递函数矩阵互为转置特征多项式相同,一个函数的能控性等价于另一个函数的能观性。 2、什么是状态观测器?简述构造状态观测器的原则。 答:系统的状态不易检测,以原系统的输入和输出为输入量构造,一动态系统,使其输出渐近于原系统状态,此动态系统为原系统的状态观测器。原则:(1)观测器应以原系统的输入和输出为输入量;(2)原系统完全能观或不能观于系统是渐近稳定的;(3)观测器的输出状态应以足够快速度超近于原系统状态;(4)有尽可能低的维数,以便于物理实现。 3、说明应用李氏第二法判断非线性系统稳定性基本思想和方法步骤和局限性。 答:基本思想:从能量观点分析平衡状态的稳定性。(1)如果系统受扰后,其运动总是伴随能量的减少,当达到平衡状态时,能量达到最小值,则此平衡状态渐近稳定:(2)如果系统不断从外界吸收能量,储能越来越大,那么这个平衡状态就是不稳定的:(3)如果系统的储能既不增加也不消耗,那么这个平衡状态时李亚普诺夫意义下的稳定。方法步骤:定义一个正定的标量函数V(x)作为虚构的广义能量函数,然后根据V(x)=dV(x)/dt的符号特征来判别系统的稳定性。局限性:李雅普诺夫函数V(x)的选取需要一定的经验和技巧。 4、举例说明系统状态稳定和输出稳定的关系。 答:关系:(1)状态稳定一定输出稳定,但输出稳定不一定状态稳定;(2)系统状态完全能观且能控=状态稳定与输出稳定等价。 举例: A的特征值 =-1 =1 所以状态不是渐进稳点的,W(s)的极点S=-1,所以输出稳点。 5、什么是实现问题?什么是最小实现?说明实现存在的条件。 答:(1)由系统的运动方程或传递函数建立SS表达式的问题叫做实现问题;(2)维数最小的实现方式时最小实现;(3)存在条件是m小于等于n。 6、从反馈属性、功能和工程实现说明状态反馈和输出反馈的优缺点。 答:(1)状态反馈为全属性反馈,输出反馈为部分信息反馈;(2)状态反馈在功能上优于输出反馈;(3)从工程上讲输出反馈优于状态反馈。 7、说明李氏第一法判断稳定性的基本思想和局限性。 答:(1)基本思想:将状态方程在平衡状态附近进行小偏差线性化,由系统矩阵的特征值判断系统稳定性。(2)局限性:对非线性系统,只能得出局部稳定性;系统虚轴上有特征值时不能判断稳定性。 8、简述线性时不变系统能控性定义,并说出两种判断能控性的方法。 答:(1)定义:如果存在一个分段连续的输入U(t),能在有限时间区间{t0,tf}内,使系统由某一初始化状态x(t0),转移到指定的任一终端状态x(tf),则此状态是能控的。若系统所有状态都是能控的,则完全能控,否则不完全能控。(2)方法:约旦标准型判据,秩判据。 9、说明系统传递函数零、极点对消与系统能控能观性关系。

自动控制实验报告一控制系统稳定性分析

实验一控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.自动控制系统实验箱一台 2.计算机一台 三、实验内容 系统模拟电路图如图 系统模拟电路图 其开环传递函数为: G(s)=10K/s(0.1s+1)(Ts+1) 式中 K1=R3/R2,R2=100KΩ,R3=0~500K;T=RC,R=100KΩ,C=1μf或C=0.1μf两种情况。 四、实验步骤 1.连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1输出,电路的 输出U2接A/D、D/A卡的AD1输入,将纯积分电容两端连在模拟开关上。检查无误后接通电源。 2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 3.在实验项目的下拉列表中选择实验三[控制系统的稳定性分析] 5.取R3的值为50KΩ,100KΩ,200KΩ,此时相应的K=10,K1=5,10,20。观察不同R3 值时显示区内的输出波形(既U2的波形),找到系统输出产生增幅振荡时相应的R3及K值。再把电阻R3由大至小变化,即R3=200kΩ,100kΩ,50kΩ,观察不同R3值

时显示区内的输出波形, 找出系统输出产生等幅振荡变化的R3及K值,并观察U2的输出波形。 五、实验数据 1模拟电路图 2.画出系统增幅或减幅振荡的波形图。 C=1uf时: R3=50K K=5:

R3=100K K=10 R3=200K K=20:

等幅振荡:R3=220k: 增幅振荡:R3=220k:

R3=260k: C=0.1uf时:

(整理)MATLAB实现控制系统稳定性分析.

MATLAB 实现控制系统稳定性分析 稳定是控制系统的重要性能,也是系统能够工作的首要条件,因此,如何分析系统的稳定性并找出保证系统稳定的措施,便成为自动控制理论的一个基本任务.线性系统的稳定性取决于系统本身的结构和参数,而与输入无关.线性系统稳定的条件是其特征根均具有负实部. 在实际工程系统中,为避开对特征方程的直接求解,就只好讨论特征根的分布,即看其是否全部具有负实部,并以此来判别系统的稳定性,由此形成了一系列稳定性判据,其中最重要的一个判据就是Routh 判据.Routh 判据给出线性系统稳定的充要条件是:系统特征方程式不缺项,且所有系数均为正,劳斯阵列中第一列所有元素均为正号,构造Routh 表比用求根判断稳定性的方法简单许多,而且这些方法都已经过了数学上的证明,是完全有理论根据的,是实用性非常好的方法. 但是,随着计算机功能的进一步完善和Matlab 语言的出现,一般在工程实际当中已经不再采用这些方法了.本文就采用Matlab 对控制系统进行稳定性分析作一探讨. 1 系统稳定性分析的Matlab 实现 1.1 直接判定法 根据稳定的充分必要条件判别线性系统的稳定性,最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有,系统则不稳定.然而实际的控制系统大部分都是高阶系统,这样就面临求解高次方程,求根工作量很大,但在Matlab 中只需分别调用函数roots(den)或eig(A)即可,这样就可以由得出的极点位置直接判定系统的稳定性. 已知控制系统的传递函数为 ()24 5035102424723423+++++++=s s s s s s s s G (1) 若判定该系统的稳定性,输入如下程序: G=tf([1,7,24,24],[1,10,35,50,24]); roots(G.den{1}) 运行结果: ans = -4.0000 -3.0000 -2.0000 -1.0000 由此可以判定该系统是稳定系统. 1.2 用根轨迹法判断系统的稳定性 根轨迹法是一种求解闭环特征方程根的简便图解法,它是根据系统的开环传递函数极点、零点的分布和一些简单的规则,研究开环系统某一参数从零到无穷大时闭环系统极点在s 平面的轨迹.控制工具箱中提供了rlocus 函数,来绘制系统的根轨迹,利用rlocfind 函数,在图形窗口显示十字光标,可以求得特殊点对应的K 值. 已知一控制系统,H(s)=1,其开环传递函数为: ()()() 21++=s s s K s G (2) 绘制系统的轨迹图. 程序为: G=tf(1,[1 3 2 0]);rlocus(G); [k,p]=rlocfind(G) 根轨迹图如图1所示,光标选定虚轴临界点,程序 结果为:

《现代控制理论》复习提纲2017

现代控制理论复习提纲 第一章: 绪论 (1)现代控制理论的基本内容 包括:系统辨识、线性系统理论、最优控制、自适应控制、最优滤波 (2)现代控制理论与经典控制理论的区别 第二章:控制系统的状态空间描述 1.状态空间的基本概念; 系统、系统变量的组成、外部描述和内部描述、状态变量、状态向量、状态空间、状态方程、状态空间表达式、输出方程 2.状态变量图 概念、绘制步骤; 3.由系统微分方程建立状态空间表达式的建立; 1.2.1 第三章:线性控制系统的动态分析 1.状态转移矩阵的性质及其计算方法 (1)状态转移矩阵的基本定义; (2)几个特殊的矩阵指数; (3)状态转移矩阵的基本性质(以课本上的5个为主); (4)状态转移矩阵的计算方法 掌握: 2.2.2 方法一:定义法 方法二:拉普拉斯变换法例题2-2 第四章:线性系统的能控性和能观测性 (1)状态能控性的概念 状态能控、系统能控、系统不完全能控、状态能达 (2)线性定常连续系统的状态能控性判别 包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据 掌握秩判据、PBH判据的计算

(3)状态能观测性的概念 状态能观测、系统能观测、系统不能观测 (4)线性定常连续系统的状态能观测性判别 包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据 掌握秩判据、PBH判据的计算 (5)能控标准型和能观测标准型 只有状态完全能控的系统才能变换成能控标准型,掌握能控标准I型和II型的只有状态完全能观测的系统才能变换成能控标准型,掌握能观测标准I型和II型的计算方法 第五章:控制系统的稳定性分析 (1)平衡状态 (2)李雅普诺夫稳定性定义: 李雅普诺夫意义下的稳定概念、渐进稳定概念、大范围稳定概念、不稳定性概念(3)线性定常连续系统的稳定性分析 例4-6 第六章线性系统的综合 (1)状态反馈与输出反馈 (2)反馈控制对能控性与观测性的影响

定性和稳定性理论简介

第5章定性和稳定性理论简介 在十九世纪中叶,通过Liouville等人的工作,人们已经知道绝大多数微分方程不能用初等积分法求解.这个结果对微分方程理论的发展产生了极大的影响,使微分方程的研究发生了一个转折.既然初等积分法有着不可克服的局限性,那么是否可以不求微分方程的解,而从微分方程本身来推断其性质呢?定性理论和稳定性理论正是在这种背景下发展起来的.前者由法国数学家Poincare(1854-1912)在19世纪80年代所创立,后者由俄国数学家Liapunov(1857-1918)在同年代所创立.它们共同的特点就是在不求出方程解的情况下,直接根据微分方程本身的结构与特点,来研究其解的性质.由于这种方法的有效性,近一百多年以来它们已经成为常微分方程发展的主流.本章对定性理论和稳定性理论的一些基本概念和基本方法作一简单介绍. 第一讲§5.1 稳定性(Stability)概念(5课时) 一、教学目的:理解稳定、渐近稳定和不稳定的概念;掌握零解的稳 定、渐近稳定的概念;学会判定一些简单微分方程零 解的稳定和渐近稳定性。 二、教学要求:理解稳定、渐近稳定和不稳定的概念;掌握简单微分 方程零解的稳定和渐近稳定性的判定。 三、教学重点:简单微分方程零解的稳定和渐近稳定性的判定。 四、教学难点:如何把一般解的稳定性转化为零解的稳定性。 五、教学方法:讲练结合教学法、提问式与启发式相结合教学法。 六、教学手段:传统板书与多媒体课件辅助教学相结合。 七、教学过程:

1.稳定性的定义 考虑微分方程组 (,)dx f t x dt = (5.1) 其中函数(,)f t x 对n x D R ∈?和(,)t ∈-∞+∞连续,对x 满足局部Lipschitz 条件。 设方程(5.1)对初值01(,)t x 存在唯一解01(,,)x t t x ?=,而其它解记作00(,,)x x t t x =。现在的问题是:当01x x -很小是,差0001(,,)(,,) x t t x t t x ?-的变化是否也很小?本章向量12(,,,)T n x x x x =L 的范数取12 21 n i i x x =??= ??? ∑。 如果所考虑的解的存在区间是有限区间,那么这是解对初值的连续依赖性,在第二章的定理2.7已有结论。现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性,这就产生了Liapunov 意义下的稳定性概念。 定义 5.1 如果对于任意给定的0ε>和00t ≥都存在0(,)0t δδε=>,使得只要01x x δ-<,就有0001(,,)(,,)x t t x t t x ?ε-< 对一切0t t ≥成立,则称(5.1)的解01(,,)x t t x ?=是稳定的。否则是不稳定的。 定义5.2 假定01(,,)x t t x ?=是稳定的,而且存在11(0)δδδ<≤,使得只要011x x δ-< ,就有 0001lim((,,)(,,))0t x t t x t t x ?→∞-= ,则称(5.1)的解01(,,)x t t x ?=是渐近稳定的。 为了简化讨论,通常把解01(,,)x t t x ?=的稳定性化成零解的稳定性问题.下面记00()(,,)x t x t t x =01()(,,)t t t x ??=作如下变量代换. 作如下变量代换.

现代控制理论习题

《现代控制理论》练习题 判断题 1. 由一个状态空间模型可以确定惟一一个传递函数。 3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。 4. 对系统Ax x = ,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。 5. 对一个系统,只能选取一组状态变量; 6. 由状态转移矩阵可以决定系统状态方程的系统矩阵,进而决定系统的动态特性; 7. 状态反馈不改变系统的能控性。 8. 若传递函数B A sI C s G 1)()(--=存在零极相消,则对应状态空间模型描述的系统是不能控的; 9. 若线性系统是李雅普诺夫意义下稳定的,则它是大范围渐近稳定的; 10. 相比于经典控制理论,现代控制理论的一个显著优点是可以用时域法直接进行系统的分析和设计。 11. 传递函数的状态空间实现不唯一的一个主要原因是状态变量选取不唯一。 12. 状态变量是用于完全描述系统动态行为的一组变量,因此都是具有物理意义。 13. 等价的状态空间模型具有相同的传递函数。 14. 互为对偶的状态空间模型具有相同的能控性。 15. 一个系统的平衡状态可能有多个,因此系统的李雅普诺夫稳定性与系统受扰前所处的平衡位置无关。 16. 若一线性定常系统的平衡状态是渐近稳定的,则从系统的任意一个状态出发的状态轨迹随着时间的推移都将收敛到该平衡状态。 17. 反馈控制可改变系统的稳定性、动态性能,但不改变系统的能控性和能观性。 18. 如果一个系统的李雅普诺夫函数确实不存在,那么我们就可以断定该系统是不稳定的。 填空题 l .系统状态完全能控是指 。 2.系统状态的能观性是指 。 3.系统的对偶原理: 。 4.对于一个不能控和不能观的系统,按系统结构标准分解 为 、 、 、 、的四个子系统。

现代控制理论试题

现代控制理论试题 一、 名词解释(15分) 1、 能控性 2、能观性 3、系统的最小实现 4、渐近稳定性 二、 简答题(15分) 1、连续时间线性时不变系统(线性定常连续系统)做线性变换时不改变系统的那些性质? 2、如何判断线性定常系统的能控性?如何判断线性定常系统的能观性? 3、传递函数矩阵 的最小实现A 、B 、C 和D 的充要条件是什么? 4、对于线性定常系统能够任意配置极点的充要条件是什么? 5、线性定常连续系统状态观测器的存在条件是什么? 三、 计算题(70分) 1、RC 无源网络如图1所示,试列写出其状态方程和输出方程。其中,为系统的输入,选两端的电压为状态变量 , 两端的电压为状态变量 ,电压 为为系统的输出 y 。 2、计算下列状态空间描述的传递函数 g(s) 3、 求出下列连续时间线性是不变系统的时间离散化状态方程: 其中,采样周期为T=2. 4、 求取下列各连续时间线性时不变系统的状态变量解 和 图1:RC 无源网络

5、确定是下列连续时间线性时不变系统联合完全能控和完全能观测得待定参数a的 取值范围: 6、对下列连续时间非线性时不变系统,判断原点平衡状态即是否为大范围渐近 稳定: 7、给定一个单输入单输出连续时间线性时不变系统的传递函数为 试确定一个状态反馈矩阵K,使闭环极点配置为,和。 现代控制理论试题答案 一、概念题 1、何为系统的能控性和能观性? 答:(1)对于线性定常连续系统,若存在一分段连续控制向量u(t),能在有限时间区间[t0,t1]内将系统从初始状态x(t0)转移到任意终端状态x(t1),那么就称此状态是能控的。 (2)对于线性定常系统,在任意给定的输入u(t)下,能够根据输出量y(t)在有限时间区间[t0,t1]内的测量值,唯一地确定系统在t0时刻的初始状态x(t0 ),就称系统在t0时刻是能观测的。若在任意初始时刻系统都能观测,则称系统是状态完全能观测的,简称能观测的。 2、何为系统的最小实现? 答:由传递函数矩阵或相应的脉冲响应来建立系统的状态空间表达式的工作,称为实现问题。在所有可能的实现中,维数最小的实现称为最小实现。 3、何为系统的渐近稳定性?

现代控制理论4 稳定性

4 稳定性分析 4.1李氏稳定性分析 (1) 平衡状态 设系统 [],x f x t = x —n 维状态向量。 f —n 维函数向量。 若存在状态向量e x ,对所有的t ,使得 []0e f x t ≡ 成立,则称e x 为系统的平衡状态。 例如 系统 1132122x x x x x x =-??=+-? 解:有3个平衡点 100e x ??=?? ?? ,2 01e x ??=??-?? ,3 01e x ??=???? (2) 稳定性分析 1) 李亚普诺夫意义下的稳定 对于任选0ε>,都对应存在0 (,)0t δε>的实数,当 00 (,)e x x t δε-≤时 其解满足 00(,,)x t t εΦ≤ 0 t t ≤<∞ 则称平衡状态e x 为李亚普诺夫意义下的稳定,如果δ与t 无关,则称e x 是一致稳定

2) 渐近稳定 由非0初始状态引起的自由运动是衰减的,当t →∞时, 0 (,,)0e t x t x Φ-= 则e x 平衡点是渐近稳定的。 3) 大范围稳定 如果e x 稳定,而且对于所有的0 x ,00(,,)0e t x t x Φ-→,则称平衡状态是大范围渐近稳定的。 4) 不稳定 由初始状态引起的运动无论0e x x δ-≤,δ多么小,至少有一个状态超出任意指定的空间范围,则称平衡点e x 是不稳定的。 4.2李氏第一方法 (1) 线性定常系统的稳定判据: x Ax Bu =+ y Cx = 系统稳定的充要条件是0SI A -=的特征根全位于S 左半面,输出稳定的充要条件是 B A SI C S W 1 )()(--=的极点全位于S 左半面, 当存在零、极点对消情况时两者是不一致的。

相关主题
文本预览
相关文档 最新文档