当前位置:文档之家› 初中人教版数学勾股定理经典题型分析

初中人教版数学勾股定理经典题型分析

初中人教版数学勾股定理经典题型分析
初中人教版数学勾股定理经典题型分析

勾股定理经典题型分析

类型一:勾股定理的直接用法

1、在Rt△ABC中,∠C=90°

(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.

思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=

(2) 在△ABC中,∠C=90°,a=40,b=9,c=

(3) 在△ABC中,∠C=90°,c=25,b=15,a=

举一反三

【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?

【答案】∵∠ACD=90°

AD=13, CD=12 ∴AC2 =AD2-CD2=132-122=25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得

AB2=AC2-BC2

=52-32

=16

∴AB= 4

∴AB的长是4.

类型二:勾股定理的构造应用

2、如图,已知:在中,,,. 求:BC的长.

思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有

,,再由勾股定理计算出AD、DC的长,进而求出BC的长.

解析:作于D,则因,

∴(的两个锐角互余)

∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半). 根据勾股定理,在中,

根据勾股定理,在中,

∴.

举一反三【变式1】如图,已知:,,于P. 求证:.

解析:连结BM,根据勾股定理,在中,

.

而在中,则根据勾股定理有

.

又∵(已知),

∴.

在中,根据勾股定理有

∴.

【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。

解析:延长AD、BC交于E。

∵∠A=∠60°,∠B=90°,∴∠E=30°。

∴AE=2AB=8,CE=2CD=4,

∴BE2=AE2-AB2=82-42=48,BE==。

∵DE2= CE2-CD2=42-22=12,∴DE==。

∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=

类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所

示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°

方向走了到达B点,然后再沿北偏西30°方向走了500m到达

目的地C点。

(1)求A、C两点之间的距离。

(2)确定目的地C在营地A的什么方向。

解析:(1)过B点作BE//AD

∴∠DAB=∠ABE=60°

∵30°+∠CBA+∠ABE=180°

∴∠CBA=90°

即△ABC为直角三角形

由已知可得:BC=500m,AB=

由勾股定理可得:

所以

(2)在Rt△ABC中,

∵BC=500m,AC=1000m

∴∠CAB=30°

∵∠DAB=60°

∴∠DAC=30°

即点C在点A的北偏东30°的方向

举一反三

【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?

【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图所示,点D在离厂门中线0.8米处,且CD⊥AB,与地面交于H.解:OC=1米(大门宽度一半),OD=0.8米(卡车宽度一半)在Rt△OCD中,由勾

股定理得:

CD=

==0.6米,CH=0.6+2.3=2.9(米)>2.5(米).

因此高度上有0.4米的余量,所以卡车能通过厂门.

(二)用勾股定理求最短问题

4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、

B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.

思路点拨:解答本题的思路是:最省电线就是线路长最短,通过利用勾股定理计算线路长,然后进行比较,得出结论.

解析:设正方形的边长为1,则图(1)、图(2)中的总线路长分别为

AB+BC+CD=3,AB+BC+CD=3

图(3)中,在Rt△ABC中

同理

∴图(3)中的路线长为

图(4)中,延长EF交BC于H,则FH⊥BC,BH=CH

由∠FBH=及勾股定理得:

EA=ED=FB=FC=

∴EF=1-2FH=1-

∴此图中总线路的长为4EA+EF=

3>2.828>2.732 ∴图

(4)的连接线路最短,即图(4)的架设方案最省电线.举一反三【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.

解:

如图,在Rt△ABC中,BC=底面周长的一半=10cm,根据勾股定理得

(提问:勾股定理)

∴AC===≈10.77(cm)(勾股定理).

答:最短路程约为10.77cm.

类型四:利用勾股定理作长为的线段

5、作长为、、的线段。

思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边

长就是,类似地可作。

作法:如图所示

(1)作直角边为1(单位长)的等腰直角△ACB,使AB为斜边;(2)以

AB为一条直角边,作另一直角边为1的直角。斜边为;(3)顺次这样做下去,最后做到直角三角形,这样斜边、、、的长度就是

、、、。

举一反三【变式】在数轴上表示的点。

解析:可以把看作是直角三角形的斜边,,

为了有利于画图让其他两边的长为整数,

而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

作法:如图所示在数轴上找到A点,使OA=3,作AC⊥OA且截取AC=1,以OC为半径,

以O为圆心做弧,弧与数轴的交点B即为。

类型五:逆命题与勾股定理逆定理

6、写出下列原命题的逆命题并判断是否正确

1.原命题:猫有四只脚.(正确)

2.原命题:对顶角相等(正确)

3.原命题:线段垂直平分线上的点,到这条线段两端距离相等.(正确)

4.原命题:角平分线上的点,到这个角的两边距离相等.(正确)

思路点拨:掌握原命题与逆命题的关系。

解析:1. 逆命题:有四只脚的是猫(不正确)

2. 逆命题:相等的角是对顶角(不正确)

3. 逆命题:到线段两端距离相等的点,在这条线段的垂直平分线上.?(正确)

4. 逆命题:到角两边距离相等的点,在这个角的平分线上.(正确)

总结升华:本题是为了学习勾股定理的逆命题做准备。

7、如果ΔABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。

思路点拨:要判断ΔABC的形状,需要找到a、b、c的关系,而题目中只有条件a2+b2+c2+50=6a+8b+10c,故只有从该条件入手,解决问题。

解析:由a2+b2+c2+50=6a+8b+10c,得:

a2-6a+9+b2-8b+16+c2-10c+25=0,

∴(a-3)2+(b-4)2+(c-5)2=0。

∵(a-3)2≥0, (b-4)2≥0, (c-5)2≥0。

∴a=3,b=4,c=5。

∵32+42=52,

∴a2+b2=c2。

由勾股定理的逆定理,得ΔABC是直角三角形。

总结升华:勾股定理的逆定理是通过数量关系来研究图形的位置关系的,在证明中也常要用到。

举一反三【变式1】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。【答案】:连结AC

∵∠B=90°,AB=3,BC=4

∴AC2=AB2+BC2=25(勾股定理)

∴AC=5

∵AC2+CD2=169,AD2=169

∴AC2+CD2=AD2

∴∠ACD=90°(勾股定理逆定理)

【变式2】已知:△ABC的三边分别为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),判断△ABC是否为直角三角形.

分析:本题是利用勾股定理的的逆定理,只要证明:a2+b2=c2即可

证明:

所以△ABC是直角三角形.

【变式3】如图正方形ABCD,E为BC中点,F为AB上一点,且BF=AB。请问FE与DE是否垂直?请说明。【答案】答:DE⊥EF。证明:设BF=a,则BE=EC=2a, AF=3a,AB=4a,

∴EF2=BF2+BE2=a2+4a2=5a2;DE2=CE2+CD2=4a2+16a2=20a2。

连接DF(如图)DF2=AF2+AD2=9a2+16a2=25a2。

∴DF2=EF2+DE2, ∴FE⊥DE。

经典例题精析类型一:勾股定理及其逆定理的基本用法1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。

思路点拨:在直角三角形中知道两边的比值和第三边的长度,求面积,可以先通过比值设未知数,再根据勾股定理列出方程,求出未知数的值进而求面积。

解析:设此直角三角形两直角边分别是3x,4x,根据题意得:

(3x)2+(4x)2=202

化简得x2=16;

∴直角三角形的面积=×3x×4x=6x2=96

总结升华:直角三角形边的有关计算中,常常要设未知数,然后用勾股定理列方程(组)求解。

举一反三【变式1】等边三角形的边长为2,求它的面积。

【答案】如图,等边△ABC,作AD⊥BC于D

则:BD=BC(等腰三角形底边上的高与底边上的中线互相重合)∵AB=AC=BC=2(等边三角形各边都相等)∴BD=1 在直角三角形ABD中,AB2=AD2+BD2,即:AD2=AB2-BD2=4-1=3 ∴AD=S

=BC·AD=

△ABC

注:等边三角形面积公式:若等边三角形边长为a,则其面积为a。

【变式2】直角三角形周长为12cm,斜边长为5cm,求直角三角形的面积。

【答案】设此直角三角形两直角边长分别是x,y,根据题意得:

由(1)得:x+y=7,

(x+y)2=49,x2+2xy+y2=49 (3)

(3)-(2),得:xy=12

∴直角三角形的面积是xy=×12=6(cm2)

【变式3】若直角三角形的三边长分别是n+1,n+2,n+3,求n。

思路点拨:首先要确定斜边(最长的边)长n+3,然后利用勾股定理列方程求解。

解:此直角三角形的斜边长为n+3,由勾股定理可得:

(n+1)2+(n+2)2=(n+3)2

化简得:n2=4

∴n=±2,但当n=-2时,n+1=-1<0,∴n=2

总结升华:注意直角三角形中两“直角边”的平方和等于“斜边”的平方,在题目没有给出哪条是直角边哪条是斜边的情况下,首先要先确定斜边,直角边。

【变式4】以下列各组数为边长,能组成直角三角形的是()

A、8,15,17

B、4,5,6

C、5,8,10

D、8,39,40

解析:此题可直接用勾股定理的逆定理来进行判断,

对数据较大的可以用c2=a2+b2的变形:b2=c2-a2=(c-a)(c+a)来判断。

例如:对于选择D,

∵82≠(40+39)×(40-39),

∴以8,39,40为边长不能组成直角三角形。

同理可以判断其它选项。【答案】:A

【变式5】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。解:连结AC ∵∠B=90°,AB=3,BC=4 ∴

AC2=AB2+BC2=25(勾股定理)∴AC=5 ∵AC2+CD2=169,AD2=169 ∴

AC2+CD2=AD2∴∠ACD=90°(勾股定理逆定理)∴S四边形

=S△ABC+S△ACD=AB·BC+AC·CD=36

ABCD

类型二:勾股定理的应用

2、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?

思路点拨:(1)要判断拖拉机的噪音是否影响学校A,实质上是看A到公路的距离是否小于100m, 小于100m则受影响,大于100m则不受影响,故作垂线段AB并计算其长度。(2)要求出学校受影响的时间,实质是要求拖拉机对学校A的影响所行驶的路程。因此必须找到拖拉机行至哪一点开始影响学校,行至哪一点后结束影响学校。

解析:作AB⊥MN,垂足为B。

在Rt

ΔABP中,∵∠ABP=90°,∠APB=30°,AP=160,

∴AB=AP=80。(在直角三角形中,30°所对的直角边等于斜边的一半)

∵点A到直线MN的距离小于100m,

∴这所中学会受到噪声的影响。

如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响,那么AC=100(m),

由勾股定理得:BC2=1002-802=3600,∴BC=60。

同理,拖拉机行驶到点D处学校开始脱离影响,那么,AD=100(m),BD=60(m),

∴CD=120(m)。

拖拉机行驶的速度为: 18km/h=5m/s

t=120m÷5m/s=24s。

答:拖拉机在公路MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒。

总结升华:勾股定理是求线段的长度的很重要的方法,若图形缺少直角条件,则可以通过作辅助垂线的方法,构造直角三角形以便利用勾股定理。

举一反三【变式1】如图学校有一块长方形花园,有极少数人为了避开拐角而走“捷径”,在花园内走出了一条“路”。他们仅仅少走了__________步路(假设2步为1m),却踩伤了花草。

解析:他们原来走的路为3+4=7(m)

设走“捷径”的路长为xm,则

故少走的路长为7-5=2(m)

又因为2步为1m,所以他们仅仅少走了4步路。【答案】4

【变式2】如图中的虚线网格我们称之为正三角形网格,它的每一个小三角形都是边长为1的正三角形,这样的三角形称为单位正三角形。

(1)直接写出单位正三角形的高与面积。

(2)图中的平行四边形ABCD含有多少个单位正三角形?平行四边形ABCD的面积是多少?

(3)求出图中线段AC的长(可作辅助线)。

【答案】(1)单位正三角形的高为,面积是。

(2)如图可直接得出平行四边形ABCD含有24个单位正三角形,因此其面积。

(3)过A作AK

⊥BC于点K(如图所示),则在Rt△ACK中,,

,故

类型三:数学思想方法(一)转化的思想方法我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决.3、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE ⊥DF,若BE=12,CF=5.求线段EF的长。

思路点拨:现已知BE、CF,要求EF,但这三条线段不在同一三角形中,所以关键是线段的转化,根据直角三角形的特征,三角形的中线有特殊的性质,不妨先连接AD.解:连接AD.因为∠BAC=90°,AB=AC.又因为AD为△ABC的中线,所以AD=DC=DB.AD⊥BC.且∠BAD=∠C=45°.因为∠EDA+∠ADF=90°.又因为∠CDF+∠ADF=90°.所以∠EDA=∠CDF.所以△AED≌△CFD(ASA).

所以AE=FC=5.

同理:AF=BE=12.

在Rt△AEF中,根据勾股定理得:

,所以EF=13。

总结升华:此题考查了等腰直角三角形的性质及勾股定理等知识。通过此题,我们可以了解:当已知的线段和所求的线段不在同一三角形中时,应通过适当的转化把它们放在同一直角三角形中求解。

(二)方程的思想方法

4、如图所示,已知△ABC中,∠C=90°,∠A=60°,,求、、的值。

思路点拨:由,再找出、的关系即可求出和的值。

解:在Rt△ABC中,∠A=60°,∠B=90°-∠A=30°,

则,由勾股定理,得。

因为,所以,

,,。

总结升华:在直角三角形中,30°的锐角的所对的直角边是斜边的一半。

举一反三:【变式】如图所示,折叠矩形的一边AD,使点D落在BC边的点F处,

已知AB=8cm,BC=10cm,求EF的长。解:因为△

ADE与△AFE关于AE对称,所以AD=AF,DE=EF。

因为四边形ABCD是矩形,所以∠B=∠C=90°,

在Rt

勾股定理知识点、经典例题及练习题带答案

【趣味链接】我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若S 1,S 2,S 3=10,则S 2的值是多少呢? 【知识梳理】 1、勾股定理定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2 +b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方 A B C a b c 弦股勾 勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形。 2、勾股数:满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数, 那么ka ,kb ,kc 同样也是勾股数组。) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13 3、判断直角三角形:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是 直角三角形。

(经典直角三角形:勾三、股四、弦五) 其他方法:(1)有一个角为90°的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。 用它判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c); (2)若c2=a2+b2,则△ABC是以∠C为直角的三角形; 若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边); 若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边) 4、注意:(1)直角三角形斜边上的中线等于斜边的一半 (2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 (3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。 5、勾股定理的作用: (1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。 (3)用于证明线段平方关系的问题。 (4)利用勾股定理,作出长为n的线段 【经典例题】【例1】(2016山东烟台)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角

勾股定理经典例题(含答案)

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。 ∴S四边形ABCD=S△ABE-S△CDE=AB2BE-CD2DE= 类型三:勾股定理的实际应用(一) 用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)

中考数学勾股定理知识点-+典型题及解析

中考数学勾股定理知识点-+典型题及解析 一、选择题 1.图中不能证明勾股定理的是( ) A . B . C . D . 2.勾股定理是几何中的一个重要定理,在我国算书《网醉算经》中就有“若勾三,股四,则弦五”的记载.如图1,是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,BC=5,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( ) A .121 B .110 C .100 D .90 3.如图,在ABC 中,90A ∠=?,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )

A .2 B .2 C .3 D .4 4.已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的面积是( ) A .2n ﹣2 B .2n ﹣1 C .2n D .2n+1 5.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( ) A .0个 B .1个 C .2个 D .3个 6.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2 a b +值为( ) A .25 B .9 C .13 D .169 7.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=?正方形ADOF 的边长是2,4BD =,则CF 的长为( ) A .6 B .2 C .8 D .10 8.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是( )

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已 知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如图 2. 由题意可知△AC D中,∠ACD=90°,在Rt △ACD 中,只知道CD =1.5,这是典型的利用勾股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=A D2 设水深AC= x 米,那么AD =A B=AC+CB =x +0.5 x2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

勾股定理_经典题型(偏难)复习过程

勾股定理_经典题型 (偏难)

勾股定理_经典题复习 1.定理:直角三角形两条直角边a、b的平方和等于斜边c的平方:即 2.逆定理:如果三角形的三边长a、b、c有下面关 系:,那么这个三角形是直角三角形. 3.勾股数:能构成为直角三角形三条边长的三个,称为勾股数.二)直角三角形 1.定义:有一个角是直角的三角形叫直角三角形. 2.性质:(1)直角三角形的两个锐角 (2)直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的. (3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于 (4)直角三角形斜边上的中线等于斜边的. 一、选择题(每小题3分) 1.下列各组线段中,能够组成直角三角形的是(). A.6,7,8 B.5,6,7 C.4,5,6 D.3,4,5 2.下列各命题的逆命题成立的是() A.全等三角形的对应角相等 B .如果两个数相等,那么它们的绝对值相等 C.两直线平行,同位角相等 D.如果两个角都是 45°,那么这两个角相 等 3.下面四组数中是勾股数的有( ). (1)1.5,2.5,2 (2),,2 (3)12,16,20(4)0.5,1.2,1.3 A.1组 B.2组 C.3组 D.4组 4.直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为(). A.182 B.183 C.184 D.185 5.如图,长方形ABCD中,AB=4,BC=3,将其沿直线MN折叠,使点C与点A重合, ?则CN的长为(). A.B.C.D. (第5题) (第6题) 6、如图,分别以直角的三边为直径向外作半圆.设直线 左边阴影部分的面积为,右边阴影部分的面积和为,则() 收集于网络,如有侵权请联系管理员删除

17.1勾股定理练习题(经典题型)

17.1勾股定理练习题 一、选择题 1、直角三角形的斜边比一直角边长2cm ,另一直角边长为6cm ,则它的斜边长( ) A 、4 cm B 、8 cm C 、10 cm D 、12 cm 2、如图①小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) A 、 25 B 、 12.5 C 、 9 D 、 8.5 3、△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). A 、50a 元 B 、600a 元 C 、1200a 元 D 、1500a 元 4、如图②是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、 5、2、3,则最大正方形E 、94 5、已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 6、等腰三角形的腰长为10,底长为12,则其底边上的高为( ) A 、13 B 、8 C 、25 D 、64 7、已知x 、y 为正数,且│x 2-4│+(y 2-3)2 =0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、15 8、△ABC 中,若AB=15,AC=13,高AD=12,则△ABC 的周长是( ) A.42 B.32 C.42或32 D.37或33 9、如图③,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,上只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( ) A 、、25 C 、、35 10、如图④,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ). A 、12 B 、7 C 、5 D 、13 二、填空题 1、在Rt ?ABC 中,∠C=900 ,∠A,∠B,∠C 所对应的边分别是a,b,c. (1)若a=3cm,b=4cm,则c= ;(2)若a=8cm,c=17cm,则b= ; (3)若b=24cm,c=25cm,则a= ;(4)若a:b=3:4,c=10cm,则a= ,b= . 2、在Rt ?ABC 中,∠A=900 ,a=13cm,b=5cm,则第三边c= . 3、已知直角三角形的两边长为5,12,则第三边的长为 . 4、在RtABC 中,斜边AB=2,则AB 2+AC 2+BC 2 =______. 5、直角三角形的三边长为连续偶数,则其周长为 . 6、直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为 cm. 7、如果梯子的底端离建筑物9m ,那么15m 长的梯子可以到达建筑的高度是 m. 8、在Rt △ABC 中,∠C=90°,BC ∶AC=3∶4,AB=10,则AC=_______,BC=________. 9、在Rt ?ABC 中,∠C=90°,周长为60,斜边与一条直角边的比为13:5,则这个三角形的斜边长是 . 10、已知?ABC 中,AB=AC=10,BD 是AC 边上的高,DC=2,则BD= . 11、在?ABC 中,AB=17,AC=10,BC 边上的高AD=8,则边BC 的长为 . C C 图① 图② 图③

初二上勾股定理(经典题型)

初二上勾股定理(经典 题型) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

- 2 - 第十九章 几何证明 ——勾股定理及两点之间的距离公式 【知识回顾】 1、勾股定理:对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+(直角三角形两直角边的平方和等于斜边的平方。) 3、勾股定理的逆定理:如果三角形的三边长a,b,c 有关系,222c b a =+,那么这个三角形是直角三角形。 4、常见的勾股数:(3n,4n,5n ),(5n,12n,13n),(8n,15n,17n),(7n,24n,25n),(9n,40n,41n)….. 5、勾股定理的证明图 6、两点之间的距离公式:2 122 12)()(y y x x AB -+-= 【例题讲解】 例题1、细心观察下图,认真分析各式,然后解答问题 (1)请用含n (n 是整数数)的等式表示上述变化规律;

(2)求出的值。 例题3、已知等腰三角形的周长是16cm,底边上的高是4cm,根据这些条件是否能求出这个等腰三角形的腰长和腰上高的长?若能,请把它们求出来,若不能,要说明理由。 例题2、如图所示,已知△ABC的三边 15= = =AC BC AB求△ABC , 20 25 , , 最长边上的高? 例题4、已知如图△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且 ∠EAF=45°,求证:EF2=BE2+FC2. - 3 -

- 4 - 例题5、如图,已知0090,60=∠=∠=∠D B A ,AB=2,CD=1,求BC 、AD 的长。 例题6、一只2.5m 长的梯子斜靠在一竖直的墙上,这时梯脚距离墙角0.7m ,如果梯子的顶端沿墙下滑0.4m ,那么梯脚移动的距离是多少?

(完整版)《勾股定理》典型练习题

《勾股定理》典型例题分析 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。公式的变形:a2 = c2- b2, b2= c2-a2 。 2、勾股定理的逆定理 如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ①已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足a2 + b2= c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有: (3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15) 4、最短距离问题:主要 5、运用的依据是两点之间线段最短。 二、考点剖析 考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.

2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系. 3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 5、(难)在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是 1、2、3,正放置的四个正方形的面积依次是 、 =_____________。 考点二:在直角三角形中,已知两边求第三边 1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 . S 3 S 2 S 1

勾股定理经典例题(含答案)

勾股定理经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32

=16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于 , 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

勾股定理经典题型

勾股定理 已知两边求第三边 例1. 在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长 勾股定理及其证明 1.勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方.若用a 、b 为表示两条直角边,c 表示斜边,则 222 a b c +=,如图1-1-1,其中 222222,,b c a a c b b a c -=-=+= 2.勾股定理的证明:勾股定理是通过面积拼图法来证明,其方法较多. 勾股定理的逆定理 1.在三角形中,若两边的平方和等于第三边的平方,则这个三角形为直角三角形,即⊿ABC 中,若 222a b c +=,则∠ABC 为直角三角形,∠C=90o 这是判 定一个三角形是直角三角形的方法.

为_____________. 例2.已知直角三角形的两边长为3、2,则另一条边长是________________. 例3.在一个直角三角形中,若斜边长为5cm,直角边的长为3cm,则另一条直角边的长为 . 例4.一种盛饮料的圆柱形杯,测得内部底面半径为㎝, 高为12㎝,吸管放进杯里,杯口外面至少要露出㎝,问吸 管要做多长 利用列方程求线段的长 例5.把一根长为10㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2,那么还 要准备一根长为____的铁丝才能把三角 形做好. F E D C B A

例6.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C点与A点重合,则EB的长是. 例7.如图,铁路上A,B两点相距25km,C,D为两村 庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km, CB=10km,现在要在铁路AB上建一个土特产品收 购站E,使得C,D两村到E站的距离相等,则E 站应建在离A站多少km处 例8.如图,某学校(A点)与公路(直线L)的距 离为300米, 又与公路车站(D点)的距离为500米,现要在公路上 建一个小商店(C点),使之与该校A及车站D的距离 相等,求商店与车站之间的距离.

勾股定理经典例题详解

勾股定理经典例题详解 Last revised by LE LE in 2021

勾股定理经典例题详解 知识点一:勾股定理 如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方. 要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。 (2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。 (3)理解勾股定理的一些变式: c2=a2+b2, a2=c2-b2, b2=c2-a2,c2=(a+b)2-2ab 知识点二:用面积证明勾股定理 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。 图(1)中,所以。 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。 图(2)中,所以。 方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。 在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积), 在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积), 所以,甲的面积=乙和丙的面积和,即:. 方法四:如图(4)所示,将两个直角三角形拼成直角梯形。

,所以。 知识点三:勾股定理的作用 1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系; 3.用于证明平方关系的问题; 4.利用勾股定理,作出长为的线段。 2. 在理解的基础上熟悉下列勾股数 满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。 熟悉下列勾股数,对解题是会有帮助的: ①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。 经典例题透析类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6, c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 总结升华:有一些题目的图形较复杂,但中心思想还是化为直角三角形来解决。如:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差或和。 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长.

八年级下册勾股定理典型例题

D 人教版数学第十七章《勾股定理》必刷题 如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. (1)这个梯子底端离墙有多少米? (2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗? 如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D 的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号) 细心观察图形,认真分析各式,然后解答问题. OA 22= 2 1+1=2,1S 1 ; OA 32=12+(2 2=3,2S 2 ; OA 42=12+(2 3=4,3S 3… (1)请用含有n (n 是正整数)的等式表示上述变规律:OA n 2= ;S n = . (2)求出OA 10的长. (35,计算说明他是第几个三角形? (4)求出S 12+S 22+S 32+…+S 102的值.

如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了 1003km到达B点,然 后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离. 如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度. 60° 30° D B A C

小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A 、B 两点,测量数据如图,其中矩形CDEF 表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A 、C 、D 、B 四点在同一直线上)问: (1)楼高多少米? (2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由. 1.73 ≈1.41 ≈2.24) B A C 如图,某城市接到台风警报,在该市正南方向260km 的B 处有一台风中心,沿BC 方向以15km/h 的速度移动,已知城市A 到BC 的距离AD=100km . (1)台风中心经过多长时间从B 移动到D 点? (2)已知在距台风中心30km 的圆形区域内都会受到不同程度的影响,若在点D 的工作人员早上6: 00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作? B A

勾股定理经典分类练习题

勾股定理常考习题 勾股定理的直接应用: 1、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20 D :21 2、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ) A :3 B :4 C :5 D :7 3.在平面直角坐标系中,已知点P 的坐标是(3,4),点Q 的坐标是(7,8),则线段PQ 的长为_____. 4、 若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积是_________. > 5、直角三角形周长为12cm ,斜边长为5cm ,求直角三角形的面积是___________. 6、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。 7.在△ABC 中,若∠A +∠B =90°,AC =5,BC =3,则AB =______,AB 边上的高CE =______. 8.在△ABC 中,若AC =BC ,∠ACB =90°,AB =10,则AC =______,AB 边上的高CD =______. 9.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______. 10、若等腰三角形的腰长为10,底边长为12,则底边上的高为( ) A 、6 B 、7 C 、8 D 、9 11.若等腰三角形两边长分别为4和6,则底边上的高等于( ). > (A)7 (B)7或41 (C)24 (D)24或7 12.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______. 13. 等边三角形的边长为2,它的面积是___________ 14、若直角三角形的三边长分别是n+1,n+2,n+3,则n____________。 15.在数轴上画出表示10 及13的点. 16、如图∠B =∠ACD =90°, AD =13,CD =12, BC =3,则AB 的长是多少 ~ 17.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于( ). (A)4 (B)6 (C)8 (D)102 18.如图18-2-5,以Rt△ABC 的三边为边向外作正方形,其面积分别 为S 1、S 2、 S 3,且 S 1=4,S 2=8,则AB 的长为_________. { 18题图 19题图 20题图 19.如图,Rt △ABC 中,∠C =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积和为( ). | (A)150cm 2 (B)200cm 2 (C)225cm 2 (D)无法计算 20.如图,直线l 经过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1、2,则正方形的 边长是______. 21.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3, 水平放置的4个正方形的面积是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=______. 方程思想的应用: 1、 如图所示,已知△ABC 中,∠C=90°,∠A=60°, , 求、、的值。

初中数学勾股定理练习题

1.已知直角三角形中30°角所对的直角边长是32cm ,则另一条直角边的长是( ) A . 4cm B . 34cm C . 6cm D . 36cm 2.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 3.一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动( ) A . 9分米 B . 15分米 C . 5分米 D . 8分米 1、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A 、2,3,4 B 、3,4,5 C 、6,8,10 D 、53,5 4,1 2、如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( ) A 、1倍 B 、2倍 C 、3倍 D 、4倍 3、下列说法中正确的是( ) A 、已知c b a ,,是三角形的三边,则222c b a =+ B 、在直角三角形中两边和的平方等于第三边的平方 C 、在ABC Rt ?中,?=∠90C ,所以222c b a =+ D 、在ABC Rt ?中,?=∠90B ,所以222c b a =+ 4、下列四组数:①5,12,13;②7,24,25;③3a ,4a ,5a (a>0);④32,42,52。其中可以 构成直角三 角形的边长有( ) A 、1组 B 、2组 C 、3组 D 、4组 5、在ABC Rt ?中,?=∠90ACB ,AC =5cm ,BC =12 cm ,其中斜边上的高为( ) A 、6 cm B 、8.5 cm C 、1360 cm D 、13 30cm 8. 等腰△ABC 的腰长AB =10cm ,底BC 为16cm ,则底边上的高为 ,面积为 . 9. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 . 10.一天,小明买了一张底面是边长为260cm 的正方形,厚30cm 的床垫回家.到了家门口,才发现门口只有242cm 高,宽100cm .你认为小明能拿进屋吗? . 12.如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上铺地毯,已知地毯每 平方米18 元,请你帮助计算一下,铺完这个楼道至少需要多少元钱? 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC 等于 ______________. 5m 13m

勾股定理经典例题(含答案)

勾股定理经典例题 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 类型二:勾股定理的构造应用 2 、如图,已知:在中,, ,. 求:BC的长. 1、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要() A、450a元 B、225a 元 C、150a元 D、300a元 举一反三【变式1】如图,已知: ,,于P. 求证:. 150° 20m 30m

【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B 点,然后再沿北偏西30°方向走了500m到达目的地C点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门? (二)用勾股定理求最短问题 4、如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,

勾股定理经典例题(含答案)A

勾股定理经典例题(含答案)A

经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 举一反三【变式1】如图,已知:,,于P. 求证:. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从 营地A点出发,沿北偏东60°方向走了到 达B点,然后再沿北偏西30°方向走了500m到达目的地C 点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?

(二)用勾股定理求最短问题 4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线. 举一反三 【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.

类型四:利用勾股定理作长为的线段 5、作长为、、的线段。 举一反三【变式】在数轴上表示的点。 类型五:逆命题与勾股定理逆定理 6、写出下列原命题的逆命题并判断是否正确 1.原命题:猫有四只脚. 2.原命题:对顶角相等 3.原命题:线段垂直平分线上的点,到这条线段两端距离相等. 4.原命题:角平分线上的点,到这个角的两边距离相等.7、如果ΔABC的三边分别为a、b、c,且满足

勾股定理应用题专项练习(经典)

勾股定理应用题 1.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架 2.5米长的 梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( ) A.0.6米 B.0.7米 C.0.8米 D.0.9米 2.如图1所示,有一块三角形土地,其中∠C =90°,AB =39米,BC =36米,则其面积 是( ) A.270米2 B.280米2 C.290米2 D.300米 2 3.有一个长为40cm ,宽为30cm 的长方形洞口,环卫工人想用一个圆盖盖住此洞口,那么 圆盖的直径至少是( ) A.35cm B.40cm C.50cm D.55cm 4.下列条件不能判断三角形是直角三角形的是 ( ) A.三个内角的比为3:4:5 B.三个内角的比为1:2:3 C.三边的比为3:4:5 D.三边的比为7:24:25 5.若三角形三边的平方比是下列各组数,则不是直角三角形的是( ) A. 1:1:2 B. 1:3:4 C. 9:16:25 D. 16:25:40 6.若三角形三边的长分别为6,8,10,则最短边上的高是( ) A.6 B.7 C.8 D.10 7.如图2所示,在某建筑物的A 处有一个标志物,A 离地面9米,在离建筑物12米处有一 个探照灯B ,该灯发出的光正好照射到标志物上,则灯离标志物____米 8.小芳的叔叔家承包了一个长方形鱼塘,已知其面积是48平方米, 其对角线长为10米.若要建围栏,则要求鱼塘的周长,它的周长 是____米. 9.公园内有两棵树,其中一棵高13米,另一棵高8米,两树相距 12米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,则小鸟至少 要飞_____米. 10.若把一个直角三角形的两条直角边同时扩大到原来的3倍,则斜边扩大到原来的____倍. 11.若△ABC 的三边长分别是2,2,2===c b a ,则∠A =____,∠B =____,∠C =____. 12.某三角形三条边的长分别为9、12、15,则用两个这样的三角形所拼成的长方形的周长 是______,面积是_____. 13.如图4所示,AB 是一棵大树,在树上距地面10米的D 处有两只猴子,它们同时发现C 处有一筐桃子,一只猴子从D 往上爬到树顶A ,又沿滑绳AC 滑到C 处,另一只猴子从D 处下滑到B ,又沿B 跑到C ,已知两只猴子所通过的路程均为15米,求树高AB . C B 图1 B A C 图3

新人教版八年级数学下册勾股定理典型例题归类总结

勾股定理典型例题归类总结 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 跟踪练习: 1.在ABC ?中,90C ∠=?. (1)若a=5,b=12,则c= ; (2)若a:b=3:4,c =15,则a = ,b = . (3)若∠A=30°,BC=2,则A B= ,AC= . 2. 在Rt △A BC中,∠C =90°,∠A,∠B,∠C 分别对的边为a ,b ,c,则下列结论正确的是( ) A、 B 、 C 、 D 、 3.一个直角三角形的三边为三个连续偶数,则它的三边长分别为( ) A 、2、4、6 B 、4、6、8 C 、6、8、10 D 、3、4、5 4.等腰直角三角形的直角边为2,则斜边的长为( ) A 、 B 、 C 、1 D 、2 5.已知等边三角形的边长为2cm ,则等边三角形的面积为( ) A 、 B 、 C 、1 D 、 6.已知直角三角形的两边为2和3,则第三边的长为___________. 7.如图,∠AC B=∠ABD=90°,AC=2,BC=1,,则BD=___________.? 8.已知△ABC 中,AB=AC=10,BD 是A C边上的高线,CD=2,那么BD 等于( ) A 、4 B、6 C、8 D、 9.已知R t△ABC 的周长为,其中斜边,求这个三角形的面积。 10. 如果把勾股定理的边的平方理解为正方形的面积,那么从面积的角度来说,勾股定理可以推广. (1)如图,以Rt △ABC 的三边长为边作三个等边三角形,则这三个等边三角形的面积1S 、2S 、3S 之间有何关系?并说明理由。 (2)如图,以Rt△A BC 的三边长为直径作三个半圆,则这三个半圆的面积1S 、2S 、3S 之间有何关系? (3)如果将上图中的斜边上的半圆沿斜边翻折180°,请探讨两个阴影部分的面积之和与直角三角形的面积之间的关系,并说明理由。(此阴影部分在数学史上称为“希波克拉底月牙”)

勾股定理经典提高题

勾股定理经典提高题 1.勾股定理有着悠久的历史,它曾引起很多人的兴趣,如图所示,AB为Rt△ABC的斜边,四边形ABGM,APQC,BCDE均为正方形,四边形RFHN是长方形,若BC=3,AC=4,则图中空白部分的面积是________. 勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成(图1:△ABC中,∠BAC=90°). 请解答: (1)如图2,若以直角三角形的三边为边向外作等边三角形,则它们的面积S1、S2、S3之间的数量关系是______. (2)如图3,若以直角三角形的三边为直径向外作半圆,则它们的面积S1、S2、S3之间的数量关系是______,请说明理由.

3学过《勾股定理》后,八年级某班数学兴趣小组来到操场上测量旗杆AB的高度.小华测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1m(如图1),小明拉着绳子的下端往后退,当他将绳子拉直时,小凡测得此时小明拉绳子的手到地面的距离CD为1m,到旗杆的距离CE为8m,(如图2).于是,他们很快算出了旗杆的高度,请你也来试一 试. 4.探究学习:探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和(或差)的有关问题,这种方法称为面积法.请你运用面积法求解下列问题:在等腰三角形ABC中,AB=AC,BD为腰AC上的高(如图1). 5.(1)若等腰△ABC的面积为24 cm2,腰的长为8 cm,则腰AC上的高BD的长为______cm; 6.(2)若BD=h,M是直线BC上的任意一点,M到AB、AC的距离分别为h1、h2. 7.①若M在线段BC上,请你结合图2证明:h1+h2=h; 8.②当点M在BC延长线上时,h1、h2、h之间的关系为______.(直接写出结论,不必证明) 9. 5.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的验证方法.如 图,火柴盒的一个侧面ABCD倒下到AB′C′D′的位置,连接CC′,设AB=a,BC=b,AC=c,请利用四边形BCC′D′的面积验证勾股定理:a2+b2=c2.

相关主题
文本预览
相关文档 最新文档