当前位置:文档之家› 建筑结构设计统一标准

建筑结构设计统一标准

建筑结构设计统一标准
建筑结构设计统一标准

结构设计

1 基本规定

1.1 结构安全等级

《建筑结构设计统一标准》 GBJ68__84

1.0.5建筑结构设计时,应根据结构破坏可能产生的后果(危及人的生命、造成经济损失、产生社会影响等)的严重性,采用不同的安全等级。建筑结构安全等级的划分应符合表1.0.5的要求。

建筑结构的安全等级表1. 0. 5

注:①对于特殊的建筑物,其安全等级根据具体情况另行确定;

②当按抗震要求设计时,建筑结构的安全等级应符合《建筑抗震设计规范》的规

定。

1.2 结构荷载和组合

《建筑结构荷载规范》GBJ9-87

2.2.1建筑结构设计应根据使用过程中在结构上可能同时出现的荷载,按承载能力极限状态和正常使用极限状态分别进行荷载效应组合,并取各自的最不利组合进行设计。

2.2.2对于承载能力极限状态,应采用荷载效应的基本组合和偶然组合进行设计,并采用下列设计表达式:

γ0S≤R (2.2.2)

式中γ0__结构重要性系数,对安全等级为一级、二级和三级的结构构件,可分别取1.1、

1.0和0.9;结构构件的安全等级,应按有关建筑结构设计规范的规定确定;

S__荷载效应组合的设计值;

R__结构构件抗力的设计值,应按有关建筑结构设计规范的规定

确定。

2.2.5对于正常使用权限状态,应根据不同的设计要求,分别采用荷载的短期效应组合和长期效应组合进行设计。

2.2.6荷载分项系数,应按下列规定采用:

一、永久荷载的分项系数:

当其效应对结构不利时,取1.2;

当其效应对结构有利时,取1.0。

二、可变荷载的分项系数:

一般情况下取1.4;

对楼面结构,当活荷载标准值不小于4kN/m时,取1.3。

注:验算倾覆和滑移时,对抗倾覆和滑移有利的永久荷载,其分项系数可取 0.9;对某些特殊情况,应按有关建筑结构设计规范的规定确定。

2.2.7在一般情况下,当有风荷载参与组合时,荷载组合值系数取0.6;当没有风荷载参与组合时,荷载组合值系数取1.0。

对于一般排架、框架结构,当有两个或两个以上的可变荷载参与组合且其中包括风荷载时,荷载组合系数取0.85;在其他情况下荷载组合系数均取1.0。

3.1.1民用建筑楼面均布活荷载的标准值及其准永久值系数,应按表

3.1.1的规定采用。

民用建筑楼面均布活荷载标准值及其准永久值系数表3.1.1

注:①本表所给各项活荷载适用于一般使用条件,当使用荷载较大时,应按实际情况采用。

②9项活荷载只适用于停放轿车的车库。当单向板板跨小于2m时,将车轮局部荷载换算为等效均布荷载,局部荷载值取4.5kN,间隔1.5mm,分布在0,2m ×0.2m的面积上。

③12项楼梯活荷载,对预制楼梯踏步平板,尚应按1.5kN集中荷载验算。

④13项挑出阳台荷载。当人群有可能密集时,按3.5kN/m采用。

⑤本表各项荷载未包括隔墙自重。

3.3.1房屋的屋面,其水平投影面上的屋面均布活荷载,应按表3.3.l采用。

屋面均布活荷载,不应与雪荷载同时考虑。

屋面均布活荷载表3.3.1

注:①不上人的屋面,当施工荷载较大时,应按实际情况采用。

②上人的屋面,当兼作其他用途时,应按相应楼面活荷载来用。

3.5.1设计屋面板、檀条、钢筋混凝土挑檐、雨篷和预制小梁时,尚应按下列施工或检修集中荷载(人和小工具的自重)出现在最不利位置进行验算:

一、屋面板、檩条、钢筋混凝土挑檐和预制小梁,取0.8kN:

二、钢筋混凝土雨篷,取1.0kN。

注:①对于轻型构件或较宽构件,当施工荷载有可能超过上述荷载时,应按实际情况验算,或采用加垫板、支撑等临时设施承受。

②当计算挑檐、雨篷强度时,沿板宽每隔1.0m考虑一个集中荷载;在验算挑檐、雨篷倾覆时,沿板宽每隔2.5~3.om考虑一个集中荷载。

3.5.2楼梯、看台、阳台和上人屋面等的栏杆顶部水平荷载,应按下列规定采用:

一、住宅、宿舍、办公楼、旅馆、医院、托儿所、幼儿园,取0.5kN/m;

二、学校、食堂、剧场、电影院、车站、礼堂、展览馆或体育场,取1.okN/m。

3.6.1建筑结构设计动力计算,在有充分依据时,可将重物或设备的荷载乘以动力系数后按静力计算进行。

5.1.1屋面水平投影面上的雪荷载标准值,应按下式计算:

Sk=μγS0 (5.1.1)

式中Sk__雪荷载标准值,KN/平方米;

μγ屋面积雪分布系数;

S0__基本雪压,kN/平方米。

5.1.2基本雪压系以当地一般空旷平坦地面上统计所得30年一遇最大积雪的自重确定。

5.2.2设计建筑结构及屋面的承重构件时,按下列规定考虑积雪的分布情况:

一、屋面板和植条按积雪不均匀分布的最不利情况考虑;

二、屋架分别按积雪全跨和半跨均匀分布的情况考虑;

三、框架和柱按积雪全跨均匀分布情况考虑。

6.1.1垂直于建筑物表面上的风荷载标准值,应按下式计算:

WK=βZμSμZW0 (6.1.1)

式中WK__风荷载标准值,KN/平方米;

βZ__Z高度处的风振系数;

μS__风荷载体型系数;

μZ__风压高度变化系数;

W0__基本风压,KN/平方米。

6.1.2基本风压系以当地比较空旷平坦地面上离地10m高统计所得的30年一遇10min平均

2

V

=确定的风压值。

最大风速Vo(m/s)为标准,按W

1600 基本风压不得小于0.25kN/m2平方米。

对于高层建筑,其基本风压按规定的基本风压值乘以系数1.1后采用;对于特别重要和有特殊要求的高层建筑,其基本风压值乘以系数1.2后采用。

2 混凝土结构设计

2.1 钢筋混凝土结构

《混凝土结构设计规范》GBJ10_89

2.1.3混凝土强度标准值应按表2.1.3采用。

混凝土强度标准值(N/mm2)表2.1.3

2.1.4混凝土强度设计值应按表2.1.4采用。

混凝土强度设计值(N/mm2)表2.1.4

注:计算现浇钢筋混凝土轴心受压及偏心受压构件时,如截面的长边或直径小于300mm,则表中混凝土的强度设计值应乘以系数0.8。

2.2.2钢筋的强度标准值应具有不小于 95%的保证率。

钢筋的强度标准值应按表2.2.2-1采用,钢丝、钢绞线的强度标准值应按表2.2.2-2采用。

钢筋强度标准值(N/mm2)表2.2.2-1

钢丝、钢绞线强度标准值(N mm2)表2.2.2-2

注:用作预应力钢筋的甲级冷拔低碳钢丝经机械调直后,强度标准值应降低50N/ mm。

2.2.3钢筋抗拉强度设计值?y或?py及钢筋抗压强度设计值?_y或?_py应按表2.2.3-1采用;钢丝、钢绞线抗拉强度设计值?y或?py及钢丝、钢绞线抗压强度设计值?_y或?_py应按表2.2.3-2采用。

钢筋强度设计值(N/mm2)表2.2.3-1

注:①在钢筋混凝土结构中,轴心受拉和小偏心受拉构件的钢筋抗拉强度设计值大于310N/mm2时,仍应按310N/ mm2取用,其他构件的钢筋抗拉强度设计值大于360N/mm2时,仍应按360N/ mm2取用;对于大于12 mm的I级钢筋,如经冷拉,不得利用冷拉后的强度;

②当钢筋混凝土结构的混凝土强度等级为C10时,光面钢筋的强度设计值应按190N/ mm2取用,变形钢筋的强度设计值应按230N/ mm2取用;

③成盘供应的LL550级冷轧带肋钢筋经机械调直后,抗拉强度设计值应降低

20N/mm2取用,且抗压强度设计值不应大于相应的抗拉强度设计值;

④构件中配有不同种类的钢筋时,每种钢筋根据其受力情况应采用各自的强度设计值。

钢丝、钢绞线抗拉、抗压强度设计值(N/mm2)表2.2.3-1

注:①冷拔低碳钢丝用作预应力钢筋时,应按表2.2.2-2规定的钢丝强度标准值逐盘进行检验,其强度设计值应按甲级采用;乙级冷拔低碳钢丝可按分批检验,并宜用作焊接骨架、焊接网、架立筋、箍筋和构造钢筋;

②用作预应力钢筋的甲级冷拔低碳钢丝经机械调直后,抗拉强度设计值应降低30N/mm2,且抗压强度设计值不应大于相应的抗拉强度设计值;

③当碳素钢丝、刻痕钢丝、钢绞线的强度标准值不符合表2.2.2-2的规定时,其强度设计值应进行换算;

④表中括号内的数值系根据国家标准GB5224-85生产、现尚在延期使用的钢绞线强度标准值和设计值。

3.1.4结构构件的承载力(包括压屈失稳)计算和倾覆、滑移验算,均应采用荷载设计值;疲劳、变形、抗裂及裂缝宽度验算,均应采用相应的荷载代表值;直接承受动力荷载的结构构件,在计算承载力、疲劳、抗裂时,应考虑动力荷载的动力系数。

预制构件尚应按制作、运输及安装时的荷载设计值进行施工阶段的验算。预制构件本身吊装的验算,应将构件自重乘以动力系数,动力系数可取1.5,但根据构件吊装时受力情况,可适当增减。

对现浇结构,必要时应进行施工阶段的验算。

3.1.5下列结构在进行承载力计算时,其内力应按弹性体系计算,不应考虑塑性内力重分布:

1.直接承受动荷载作用的结构;

2.要求不出现裂缝的结构构件。

3.2.2一切构件的安全等级在各个阶段均不得低于三级。

注:①屋架、托架的安全等级应提高一级;

②承受恒载为主的轴心受压柱、小偏心受压柱,其安全等级应提高一级;

③预制构件在施工阶段的安全等级,可较其使用阶段的安全等级降低一级。

3.3.3结构构件设计时,应根据使用要求选用不同的裂缝控制等级,裂缝控制等级的划分应符合下列规定:

一级严格要求不出现裂缝的构件,按荷载短期效应组合进行计算时,构件受拉边缘混凝土不应产生拉应力;

二级一般要求不出现裂缝的构件,按荷载长期效应组合进行计算时,构件受拉边缘混凝土不应产生拉应力,而按荷载短期效应组全进行计算时,构件受拉边缘混

凝土允许产生拉应力,但拉应力不应超过α

ct γ?

tk

,此处,α

ct

为混凝土拉应力

限制系数,γ为受拉区混凝土塑性影响系数,?

tk

为混凝土抗拉强度标准值;

三级允许出现裂缝的构件,最大裂缝宽度按荷载的短期效应组合并考虑长期效应

组合的影响进行计算,其计算值不应超过允许值。

3.3.4钢筋混凝土和预应力混凝土结构构件的裂缝控制等级、混凝土拉应力限

制系数α

ct

及最大裂缝宽度允许值,根据结构构件的工作条件和钢筋种类按表3.3.4采用。

裂缝控制等级、混凝土拉应力限制系数α

ct

及最大裂缝宽度允许值[W

max

](mm) 表3.3.4

注:①属于露天或室内高湿度环境一栏的结构构件系指:直接受雨淋的构件;无围护结构的房屋中经常受雨淋的构件;经常受蒸汽或凝结水作用的室内构件(如浴室等);与土壤直接接触的构件;

②对处于年平均相对湿度小于60%地区,且可变荷载标准值与恒载标准值之比大于0.5的受弯构件,其最大裂缝宽度允许值可采用弧内的数字;

⑤对配置冷轧带肋钢筋和冷拔低碳钢丝的预应力混凝土一般构件及屋面梁,其裂缝控制要求应符合现行专门规程的有关规定;

⑦表中预应力结构构件的混凝土拉应力限制系数及最大裂缝宽度允许值仅适用于正截面的验算。

6.1.3受力钢筋的混凝土保护层最小厚度(从钢筋的外边缘算起)应符合表6.1.3的规定,且不应小于受力钢筋的直径。

混凝土保护层最小厚度(mm) 表6.1.3

注:①处于室内正常环境由工厂生产的预制构件,当混凝土强度等级不低于C20时,其保护层厚度按表中规定减少5mm,但预制构件中的预应力钢筋(包括冷拔低碳钢丝)的保护层厚度不应小于15mm;处于露天或室内高温度环境的预制构件,当表面另作水泥砂浆抹面层且有质量保证措施时,保护层厚度按表中室内正常环境中构件的数值采用;

②预制钢筋混凝土受弯构件,钢筋端头的保护层厚度为10mm;预制的肋形板,其主肋的保护层厚度按梁考虑;

③处于露天或室内高湿度环境中的结构,其混凝土强度等级不低于C25,当非主要承重构件的混凝土强度等级采用C20时,其保护层厚度按表中C25的规定值取用;

④板、墙、壳中分布钢筋的保护层厚度不应小于10mm;梁、柱中箍筋和构造钢筋的保护层厚度不应小于15mm;

⑤要求使用年限较长的重要建筑物和受沿海环境侵蚀的建筑物的承重结构,当处于露天或室内高湿度环境时,其保护层厚度应适当增加。

6.1.4当计算中充分利用纵向受拉钢筋强度时,其锚固长度不应小于表6.1.4规定的最小锚固长度。

纵向受拉钢筋的最小锚固长度l

(mm) 表6.1.3

a

注:①当月牙肋钢筋直径d<25mm时,其锚固长度应按表中数值增加5d采用;②当混凝土在凝固过程中易受扰动时(如滑模施工),受力钢筋的锚固长度宜适当增加;

③纵向受拉的Ⅰ、Ⅱ、Ⅲ级钢筋的锚固长度不应小于250mm。纵向受拉的冷轧带肋钢筋的锚固长度不应小于200mm。

6.1.7钢筋骨架中的受力光面钢筋,应在钢筋末端做弯钩。

6.1.11绑扎骨架和绑扎网中的非预应力受力钢筋,当接头用搭接而不加焊时:受拉钢筋的搭接长度不应小于1.2la,且不应小于300mm;受压钢筋的搭接长度不应小于0.85la,且不应小于200mm。

焊接骨架在受力方向的接头可采用非焊接的搭接接头,受拉钢筋的搭接长度不应小于la,受压钢筋的搭接长度不应小于0.17la。

6.1.14在绑扎骨架中非焊接的搭接接头长度范围内,当搭接钢筋为受拉时,其箍筋的间距不应大于5d,且不应大于100mm;当搭接钢筋为受压时,其箍筋的间距不应大于10d,且不应大于200mm。d为受力钢筋中的最小直径。

6.1.15混凝土构件中纵向受力钢筋的配筋百分率,不应小于表6.1.15规定的数值。

混凝土构件中纵向受力钢筋的最小配筋百分率(%)表6.1.15

注:①受压钢筋和偏心受压构件的受拉钢筋的最小配筋百分率按构件的全截面面积计算;其余的受拉钢筋的最小配筋百分率按全截面面积扣除位于受压边或受拉

较小边翼缘面积(b

f _-b)h

f

_后的截面面积计算;

②配置碳素钢丝、刻痕钢丝、钢绞线、热处理钢筋和冷拔低碳钢丝的预应力混凝土构件,其正截面承载力设计值不应小于正截面开裂时的内力值。对配置上述钢筋的预应力混凝土受弯构件,其正截面受弯承载力应符合下列要求:

M u ≥M

cr

此处,M

u 为预应力混凝土受弯构件正截面受弯承载力设计值,M

cr

为预应力受弯构

件的正截面开裂弯矩值;

③当温度、收缩等因素对结构产生较大影响时,构件的最小配筋百分率应适当增加。

7.1.3简支板的下部纵向受力钢筋应伸入支座,其锚固长度l

as

不应小于5d。当采用焊接网配筋时,其末端至少应有一根横向钢筋配置在支座边缘内;如不能符合要求时,应在受力钢筋末端制成弯钩或加焊附加的横向锚固钢筋。

注:当V>0.07f

c bh

时,配置在支座边缘内的横向锚固钢筋不应少于二根,其直

径不应小于纵向受力钢筋直径的一半。

7.2.2钢筋混凝土简支梁的下部纵向受力钢筋伸入梁的支座范围内的锚固长度l

as

应符合下列条件:

1.当V≤0.07f

c bh

时:l

as

≥5d

2.当V>0.07f

c bh

时:月牙纹钢筋l

as

≥12d

光面钢筋l

as

≥15d

如纵向受力钢筋伸入梁的支座范围内的锚固长度不符合上述规定时,应采取在钢筋上加焊横向锚固钢筋、锚固钢板,或将钢筋端部焊接在梁端的预埋件上等有效锚固措施。

如焊接骨架中采用光面钢筋作为纵向受力钢筋时,则在锚固长度l

as

内应

加焊横向钢筋:当V≤0.07f

c bh

时,至少一根;当V>0.07f

c

bh

时,至少

二根;横向钢筋直径不应小于纵向受力钢筋直径的一半;同时,加焊在最外边的横向钢筋,应靠近纵向钢筋的末端。

3.注:①当V>0.07f

c bh

时,螺纹钢筋的锚固长度l

as

≥10d;

②混凝土强度等级小于或等于C25的简支梁,在距支座边1.5h范围内作用有集中荷载(包括作用有多种荷载、且其中集中荷载对支座截面所产生的剪力占总剪

力值的75%以上的情况),且V>0.07f

c bh

时,对变形钢筋采用附加锚固措施,

或取锚固长度l

as

≥15d。

7.2.4在采用绑扎骨架的钢筋混凝土梁中,当设置弯起钢筋时,弯起钢筋的弯

终点外应留有锚固长度,其长度在受拉区不应小于20d,在受压区不应小于10d;对光面钢筋在末端尚应设置弯钩。位于梁底层两侧的钢筋不应弯起。

7.2.11位于梁下部或在梁截面高度范围内的集中荷载,应全部由附加横向钢

筋(吊筋、箍筋)承担。附加横向钢筋应布置在长度为s(s=2h

1

+3b)的范围内。附加横向钢筋所需的总截面面积,应按下列公式计算:

F

ASV≥(7.2.11)

?yvsina

或中ASV__承受集中荷载所需的附加横向钢筋总截面面积;

F__作用在梁的下部或梁截面高度范围内的集中荷载设计值;

a__附加横向钢筋与梁轴线间的夹角。

7.3.3柱中箍筋应符合下列规定:

1.在柱中及其他受压构件中应采用封闭式箍筋;

二、箍筋间距不应大于400mm,且不应大于构件截面的短边尺寸;同时,在绑扎骨架中,不应大于15倍纵向钢筋最小直径,在焊接骨架中,不应大于20倍纵向钢筋最小直径;

三、采用热轧钢筋时,其箍筋直径不应小于0.25倍纵向钢筋最大直径,且不应小于6mm;采用LL500级冷轧带肋钢筋或冷拔低碳钢丝时,其箍筋直径不应小于

0.2倍纵向钢筋最大直径,且不应小于5mm;

四、当柱中全部纵向受力钢筋的配筋率超过0.03时,箍筋间距不应大于10倍纵向钢筋的最小直径,且不应大于200mm;

五、当柱子各边纵向钢筋多于三根时,应设置复合箍筋;当柱子短边不大于

400mm,且纵向钢筋不多于四根时,可不设置复合箍筋;

六、柱内纵向钢筋搭接长度范围内的箍筋间距符合6.1.14的规定。

7.8.3受力预埋件的锚筋应采用I级或II级钢筋,不得采用冷加工钢筋。

7.9.8预制构件的吊环应采用I级钢筋制作,严禁使用冷加工钢筋。吊环埋入深度不应小于30d,并应焊接或绑扎在钢筋骨架上。每个吊环可按二个截面计算,在构件的自重标准值作用下,吊环拉应力不应大于50N/mm2(构件自重的动力系数已考虑在内)。当在一个构件上设有四个吊环时,设计时仅考虑三个吊环同时发挥作用。

《钢筋轻骨料混凝土结构设计规程》JGJ12_99

3.1.5轻骨料混凝土强度设计值应按表3.1.5采用。

轻骨料混凝土强度设计值(N/mm2)表3.1.5

注:1、浮石或火山灰渣混凝土的抗拉强度设计值,应按表中数值乘以系数0.8;

2、自燃矸石混凝土的抗拉强度设计值,应按表中数值乘以系数0.85;

3、计算现浇钢筋轻骨料混凝土轴心受压及偏心受压构件时,如截面的长边或直径小

于300mm时,则表中轻骨料混凝土的强度设计值应乘以系数0.8。

7.1.2受力钢筋的轻骨料混凝土保护层最小厚度(从钢筋的外边缘算起)应符合表7.1.2的规定,且不应小于受力钢筋的直径d。

板、墙、壳中分布钢筋的保护层厚度不应小于10mm;梁、柱中箍筋和构造钢筋的保护层厚度不应小于15mm。

轻骨料混凝土保护层最小厚度(mm)表7.1.2

注:1、处于室内正常环境由工厂生产的预制构件,当轻骨料混凝土强度等级不低于CL20

时,其保护层厚度按表中规定减少5mm,但预制构件中的预应力钢筋的保护层厚度不应小于15mm;处于露天或室内高湿度环境的预制构件,当表面另作水泥砂浆抹面层且有保证措施时,保护层厚度按表中室内正常环境中构件的数值采用;

2、预制钢筋轻骨料混凝土受弯构件,钢筋端头的保护层厚度为15mm,预制的肋形板,其主肋的保护层厚度按梁考虑;

3、处于露天或室内高湿度环境中的结构,其轻骨料混凝土强度等级不低于CL25,当非主要承重构件的轻骨料混凝土强度等级采用CL20时,其保护层厚度按表中CL25的规定值采用;

4、要求使用年限较长的重要建筑物和受沿海环境侵蚀的建筑物的承重结构,当处于露天或室内高湿度环境时,其保护层厚度应适当增加。

不应小于表7.1.3 7.1.3当计算中充分利用纵向受拉钢筋强度时,其锚固长度l

a

规定的数值。

(mm) 表7.1.3

纵向受拉钢筋的最小锚固长度l

a

注:1、当月牙纹钢筋直径d>25mm时,其锚固长度应按表中数值增加5d采用;

2、当轻骨料混凝土在凝固过程中易受扰动时(如滑模施工),受力钢筋的锚固长度宜适当增加;

3、纵向受拉的Ⅰ、Ⅱ、Ⅲ级钢筋的锚固长度不应小于250mm;纵向受拉的冷轧带肋钢筋的锚固长度不应小于200mm。

7.1.10轻骨料混凝土构件中纵向受力钢筋的配筋百分率,不应小于表7.1.10规定的数值。

轻骨料混凝土构件中纵向受力钢筋的最小配筋百分率(%)表7.1.10

注:1、受压钢筋和偏心受压构件的受拉钢筋最小配筋百分率按构件的全截面面积计算;

其余的受拉钢筋最小配筋百分率按全截面面积扣除位于受压边或较小受拉边翼

缘面积(b

f -b)h`

f

后的截面面积计算;

2、配置碳素钢丝、刻痕钢丝、钢绞线和热处理钢筋的预应力轻骨料混凝土构件,其正截面承载力设计值不应小于正截面开裂时的内力值。对配置上述钢筋的预应

力轻骨料混凝土受弯构件,其正截面受弯承载力应符合M

u ≥M

cr

的要求;

4、当温度、收缩等因素对结构产生较大影响时,构件的最小配筋百分率应适当增加。

8.1.3简支板下部纵向受力钢筋应伸入支座,其锚固长度l

as

不应小于6d。当采用焊接网配筋时,其末端至少应有一根横向钢筋配置在支座边缘内;如不能符合要求时,应在受力钢筋末端制成弯钩或加焊附加的横向锚固钢筋。

注:当V>f

c bh

时,配置在支座边缘内的横向锚固钢筋不应少于二根,其直径不

应小于纵向受力钢筋的一半。

8.2.2钢筋轻骨料混凝土简支架的下部纵向受力钢筋伸入梁的支座范围内的锚固长度l。应符合下列条件:

(1)当V≤0.06f

c bh

时 l

as

≥10d

(2)当V>0.06f

c bh

变形钢筋 l

as

≥15d

光面钢筋 l

as

≥15d

如纵向受力钢筋伸入梁的支座范围内的锚固长度不符合上述规定时,应采取在钢筋上加焊横向锚固钢筋、锚固钢板,或将钢筋端部焊接在梁瑞的预埋件上等有效锚固措施。

如焊接骨架中采用光面钢筋作为纵向受力钢筋时,则在锚固长度l

a

内应加焊横

向钢筋:当V≤0.06f

c bh

时,至少一根,当V>0.06f

c

bh

时,至少二根;横向

钢筋直径不应小于纵向受力钢筋直径的一半;同时,加焊在最外边的横向钢筋,应靠近纵向钢筋的末端。

注:轻骨料混凝土强度等级小于或等于CL25的简支梁,在距支座边1.5h范围内作用有集中荷载(包括作用有多种荷载、且其中集中荷载对支座截面所产生的

剪力占总剪力值的75%以上的情况),且V>0.06f

c bh

时,对变形钢筋采用附

加锚固措施,或取锚固长度l

as

≥20d。

8.2.4在采用绑扎骨架的钢筋轻骨料混凝土梁中,当设置弯起钢筋时,弯起钢筋的弯终点外应留有锚固长度,其长度在受拉区不应小于25d,在受压区不应小于15d;对光面钢筋在末端尚应设置弯钩。位于梁底层两侧的钢筋不应弯起。《冷技钢丝预应力混凝土构件设计与施工规程》JGJ19-92

1.0.3对于直接承受动荷载作用的构件,在无可靠试验或实践经验时,不采用冷拔钢丝预应力混凝土构件。

处于侵蚀环境或高温下的结构,不得采用冷拔钢丝预应力混凝土构件。.2.2.1冷拔钢丝预应力构件的混凝土强度等级不应低于C30。

13.3.6计算冷拔钢丝预应力构件端部锚固区的正截面和斜截面受弯承载力时,锚固区内的预应力冷拔钢丝抗拉强度设计值可按下列规定取用:

在锚固起点处为零,在锚固终点处为?

py

;在两点之间按直线内插法取用。

单根或两根并丝的预应力冷拔钢丝的锚固长度l

a

按表3.3.6取用。

预应力冷拔钢丝锚固长度l

a

(mm) 表3.3.6

注:当采用骤然放松预应力冷技钢丝的施工工艺时,锚固长度l

a

的起点应从离

构件末端0.25l

tr 处开始,预应力钢丝的传递长度l

tr

应按表3.4.5取用。

3.4.5对冷拔钢丝预应力构件端部区段进行正截面和斜截面抗裂验算时,应考虑预应力钢丝在其预应力传递长度l

tr

范围内实际应力值的变化;预应力钢丝的实际预应力值按线性规律增大,在构件端部取零,在其预应力传递长度的末端取

有效预应力值σ

pe ,单根或两根并丝的预应力钢丝的预应力传递长度l

tr

应按表

3.4.5取用。

预应力冷拔钢丝传递长度l

( mm) 表3.4.5

tr

的起点应从距构件末端注:①当采用骤然放松预应力钢丝的施工工艺时,l

tr

0.25l

处开始计算;

tr

②确定l

时表中混凝土强度等级应取用放松时的混凝土立方体抗压强度。3.7.1 tr

预应力板类构件中冷拔钢丝的混凝土保护层最小厚度(从钢丝的外边缘算起)应遵守表3.7.1的规定:

混凝土保护层最小厚度(mm)表3.7.1

注:①预应力梁、柱构件中冷技钢丝的混凝土保护层最小厚度,按表中相应数值增

加 10mm;

②处于室内高湿度或露天环境的构件,当表面有水泥砂浆抹面层,且质量确有保证时,保护层厚度按表中室内正常环境的数值采用;

③对构件的次要部位(如助形板的板面),受力筋的保护层厚度适当减少,但不应小于12mm;

④要求使用年限较长的重要建筑物,当处于露天或室内高湿度环境时,保护层厚度应适当增加。

3.7.2悬臂梁板支座处的纵向受拉预应力冷拔钢丝,当计算中充分利用其强度时,伸入支座内的锚固长度人应符合本规程第3.3.6条的要求。

高层建筑结构设计分析王方成

高层建筑结构设计分析王方成 发表时间:2016-07-28T15:02:06.787Z 来源:《基层建设》2016年10期作者:王方成 [导读] 本文结合工程实际,对高层建筑结构设计分析。 深圳市建筑设计研究总院有限公司 摘要:随着我国科学技术的不断进步和经济的快速发展,城市中高楼耸立,高层建筑物已成为人们共同的追求。本文结合工程实际,对高层建筑结构设计分析。 关键词:高层建筑;结构设计 1 工程概况 该建筑总长46.10m,总宽35.90m,总高 111.563m,大屋面层高96.90m。地上共23层,地下 2 层。地下室层高 4.7m 与 3.75m。1~22 层层高 4.2m,23 层层高4.5m。上部均为办公室,地下部分为车库和设备用房。总建筑面积53065.79 m2,其中地上37307.59 m2,地下 15758.20 m2,建筑占地面积 10636m2。 2 自然地质情况 本工程场地地震基本烈度 7 度,设计地震分组第三组,设计基本地震加速度 0.1g,属于抗震不利地段,建筑场地类别Ⅱ类,设计特征周期取 0.45s。50 年遇基本风压 0.80kN/m2,场地地基土自上而下可划分为 7 层,从上至下依次为①层填石,层厚 2.7~19m;②层中砂,层厚 0.90~22.9m;②-A 层淤泥,层厚 1.70~1.90m;③层(含砾砂)粉质粘土,层厚 1.3~3.2m;④层残积砂质粘性土,层厚 2.6~8.0m;⑤层全风化花岗岩,层厚1.1~7.3m;⑥层强风化花岗岩:灰白、灰黄、灰褐色,饱和。⑥-1层砂土状强风化花岗岩,层厚 1.1~11.1m;⑥-2 层碎块状强风化花岗岩,层厚 0.8~11.5m;⑦层中风化花岗岩:灰、灰黄、灰白色,岩芯多呈短柱状和长柱状,局部呈块状,中粗粒花岗结构,块状构造,岩芯裂隙较发育,多呈闭合,岩芯采取率 67%~87%,RQD=38~71,岩石饱和单轴抗压试验为 64.60~70.10MPa,标准值为 66.03MPa,岩石坚硬程度为坚硬岩,岩体完整程度为破碎~较完整,岩体基本质量等级为Ⅱ~Ⅳ级。本次勘察所有钻孔均有揭示至该层,均未揭穿,揭露厚度为2.20~10.76m。 3 基础形式 由于办公楼及其周边纯地下室在基坑开挖后存在一定厚度的①层填石(厚度为 3.46~11.54m),采用预应力管桩时难以穿越填石层,另可供预应力管桩选择的桩端持力层④层残积砂质粘性土、⑤层全风化花岗岩和⑥-1 层砂土状强风化花岗岩分布不均匀,考虑到⑥-2层碎块状强风化花岗岩和⑦层中风化花岗岩分布较均匀,根据拟建场地岩土层特性、拟建物结构特点及荷载情况,采用冲(钻)孔灌注桩基础。 4 主体结构设计 4.1 结构选型 本建筑抗震设防类别为标准设防类(丙类)。由于建筑功能布局多为开敞办公区、大会议室等大空间,中间部分以及建筑外形要求美观、大方等方面因素,故本建筑主体部分采用钢筋混凝土框架———核心筒结构形式。框架———核心筒结构的周边框架与核心筒之间形成的可用空间较大,能使房屋空间布局灵活,又能使高层建筑结构满足较大刚度的要求,因此广泛用于写字楼、多功能建筑。具体做法是在建筑中部的电梯井筒及楼梯间四周布置抗震墙框筒,加大外框筒的柱距,减小梁的高度,周边形成稀柱框架。参照规范抗震设防烈度为7 度,确定抗震等级框架为二级,核心筒为二级。 4.2 主要荷载取值 高压配电房、电梯机房、通风机房活荷载为 7.0 kN/ m2,储藏间活荷载为 5.0 kN/m2,备餐间、车库活荷载为 4.0 kN/m2,商场、消防疏散楼梯活荷载为3.5 kN/ m2,办公室、卫生间、走廊、门厅、屋面花园、多功能厅大会议室活荷载为 3.0 kN/ m2,食堂活荷载为 2.5 kN/m2,上人屋面活荷载为 2.0 kN/m2,不上人屋面活荷载为 0.5 kN/m2。大型设备按实际情况考虑。 4.3 主要受力构件尺寸取值 地下室~1 层墙厚度为 400mm,2~23 层墙厚度为300mm。框架柱截面尺寸:地下室为 1200mm×1200mm,1~3层为1100mm×1100mm,4~6 层为 1000mm×1100mm,7~9 层为 1000mm×1000mm,10~12 层为 900mm×1000mm,13~15层为 800mm×900mm,16~18 层为 800mm×800mm,19~21 为700mm×700mm,22~23 层为 600mm×600mm。地下室负一层顶板的厚度为 200mm,地下室顶板除核心筒内板厚 180mm之外,其余部位板厚为 300mm,屋面层的板厚为 120mm,其它各楼层的板厚为 100mm。 4.4 主要结构材料选取 梁板混凝土强度等级为 C30,柱墙混凝土强度等级:-2~4层为C50,5~9层为C45,10~14 层为 C40,15~19 层为C35,20构架层为 C30。此外,圈梁、构造柱、挑檐、雨篷及楼梯均采用 C30 混凝土。主要用于基础梁、板,墙和柱以及楼面梁的纵筋选用 HRB400级钢筋。 4.5 计算软件及计算依据 本工程计算使用程序为中国建筑科学研究院开发的建筑结构三维设计与分析软件 SATWE。计算依据为建筑条件图以及《建筑结构荷载规范》GB50009-2012、《建筑抗震设计规范》GB50011-2010、《建筑地基基础设计规范》GB50007-2011、《高层建筑混凝土结构技术规程》JGJ3-2010等国家相关规范。 4.6 计算结果分析 (1)位移比。基于刚性楼板假定,考虑偶然偏心的条件下,X 方向最大层间位移与平均层间位移的比值:1.19 (第26层第1塔),Y 方向最大层间位移与平均层间位移的比值:1.28(第 26 层第 1 塔),属于平面不规则中的扭转不规则。位移比超过 1.2,需要考虑双向地震作用。 (2)层间位移。计算时不扣除整体弯曲变形,不考虑偶然偏心的影响,X 方向地震力作用下的楼层最大位移:1/1055<1/800;Y 方

CAD绘图技巧与建筑识图___入门级

CAD绘图技巧与建筑识图 入门级

一、CAD基础知识 二、宿舍楼平面图 三、宿舍楼立面图 四、宿舍楼剖面图 五、建筑行业就业形势论文 第一节AutoCAD的基础知识 CAD是Computer Adide Deignde简称(计算机辅助设计) CAD对我们建筑行业的人来说是非常重要的工具好比我们日常生活中吃饭用的筷子,不管以后是从事设计还是施工、监理等等都要用到CAD。事实论事我们以后进入社会的从事设计的人不会很多,大多数都要从施工做起,要想做好一个好的施工人员识图是必备的能力也是最基本的能力,对于我们刚刚接触建筑行业的人员,只有通过不短的画图联系才能掌握好识图的要领,可能一个施工员不是很会画图纸,但一个会画图纸的施工员必定是一个好的施工员,施工员在工地上是知道施工的人员,这就要求施工员掌握图纸上的每一个细节,建筑CAD就是绘制各种建筑图纸的(建筑施工图、结构施工图、水电施工图等等)所以CAD 应该是我们每一个专业人士应该掌握的技能。 一、安装要求: 为了给CAD一个优越的工作环境。用户的计算机,应采用高档的CPU(最低512的如pentiun133以上的处理器如果性能太低CAD将运行缓慢影响绘图速度,其优越性无法体现CAD安装的时候提供了一个很好的安装向导,可以按照安装向导的操作提示逐步进行安装。 提示:1安装完成后一定要重启计算机才能是配置生效 2拷贝资料是一定要安装程序快捷方式没用一默认般在C盘 3CAD2006的安装序列号:191-75444444(有注册机) CAD2007的安装序列号111-11111111

二CAD的界面组成 三、CAD的基本操作 1灵活的使用鼠标对提高绘图速度和绘图质量有着至关重要的作用,当鼠标在垫板上动时,鼠标的光标会在屏幕上不断的移动,光标所在屏幕上的位置不同,起形状也不同,所代表的含义也就不同,下面是各种光标形状所表示的含义: 光标形状含义光标形状含义 选择目标垂直移动 正常选择水平移动 正常绘图形状上右下移动 输入状态上左下移动 等待符号输入文本符号 应用程序启动任意平移

高层建筑结构设计原则及意义分析

高层建筑结构设计原则及意义分析 发表时间:2018-11-29T18:12:15.133Z 来源:《防护工程》2018年第22期作者:周德泓 [导读] 随着社会的不断进步和科技的不断发展,高层建筑越来越广泛的出现在城市建设中。 中国联合工程有限公司 310000 摘要:随着社会的不断进步和科技的不断发展,高层建筑越来越广泛的出现在城市建设中。在高层建筑结构设计方面出现了新的发展和变化。高层建筑的结构设计已经成为了高层建筑设计的重点内容,因此,研究高层建筑结构设计的问题是非常重要和有意义的。介绍了高层建筑结构特征,分析了高层建筑结构设计的原则,阐述了高层建筑结构体系的选型问题,并重点分析了高层建筑结构设计问题及对策。 关键词:高层建筑结构;设计;对策 0 引言 随着科技和社会的不断发展和进步,自从19 世纪以来出现了现代高层建筑,高层建筑越来越广泛的出现在人们的生活中。作为一个庞大复杂的系统,高层建筑的结构设计,一方面要满足包括抗震,抗风等在内的安全性能的要求,另一方面,也要满足高层建筑结构的科学性和合理性。 1 高层建筑结构的特征 高层建筑结构不但承受着由于外界的风产生的水平方向的荷载,同时也承受着在垂直方向的荷载,并且对于地震的抵抗能力也有要求。一般情况下,建筑结构受到低层建筑结构水平方向上的影响比较弱,然而在高层建筑中,外界地震的影响和外界风产生的水平方向的荷载的影响是主要的影响因素。随着建筑物高度的增加,高层建筑的位移增加较快,但是高层建筑过大的侧移不但影响人的舒适度,同时使得建筑物的使用受到影响,并且容易损坏结构构件以及非结构构件。基于此,在设计高层建筑结构时,首先控制侧移在规定的范围之内,所以,高层建筑结构设计的核心是抗侧力结构的设计。 2 高层建筑结构设计的原则 2.1 选择合理的高层建筑结构计算简图在计算简图基础上进行高层建筑结构设计的计算,如果选择不合理的计算简图,那么就比较容易造成由于结构安发生的事故,基于此,高层建筑结构设计安全保证的前提是合理的计算简图的选择。同时,计算简图应该采用相应的构造方法保证安全。在实际的结构中,其结构节点不单是钢节点或者饺节点,保证和计算简图的误差在规范规定的范围内。 2.2 选择合理的高层建筑结构基础设计按照高层建筑地质条件进行基础设计的选择。综合分析高层建筑上部的结构类型与荷载分布情况,考虑施工条件,相邻的建筑物的影响等各个因素,在此基础上选择科学合理的基础方案。基础方案的选择应该使得地基的潜力得到最大程度的发挥,必要的时候要求进行地基变形的检验。高层建筑设计要有详细的地质勘查报告,如果缺失,那么应该进行现场勘查并参考相邻建筑物的有关资料。一般情况下,相同结构单元应该采用相同的类型。 2.3 选择合理的高层建筑结构方案合理的结构设计方案必须满足经济性的要求,并且要满足结构形式和结构体系的要求。结构体系的要求是受力明确,传力简单。在相同的结构单元当中,应该选择相同结构体系,如果高层建筑处于地震区,那么应力需要平面和竖向的规则。在进行了地理条件,工程设计需求,施工条件,材料等的综合分析的基础上,并和建筑包括水,暖,电等各个专业的相协调的情况下,选择合理的结构,从而确定结构的方案。 2.4 对计算结果进行准确的分析随着科技的不断进步,计算机技术被广泛的应用在建筑结构的设计中。当前市场上存在着形形色色的计算软件,采用不同的软件得到的结果可能不同,所以,建筑结构设计人员在全面了解的软件使用的范围和条件的前提下,选择合适的软件进行计算。由于建筑结构的实际情况和计算机程序并不一定完全相符,所以进行计算机辅助设计的时候,出现人工输入误差或者因为软件本身存在着缺陷使得计算结果不准确的问题,基于此,结构设计工程师在得到了通过计算机软件得到的结果以后,应该进行校核,进行合理判断,得出准确结果。 2.5 高层建筑的结构设计要采用相应构造措施高层建筑结构设计的原则是强剪切力弱弯变,强压力弱拉力,强柱弱梁。高层建筑结构设计过程中把握上述原则,加强薄弱部位,对钢筋的执行段锚固长度给予重视,并且要重点考虑构件延性的性能和温度应力对构件的影响。 3 高层建筑结构体系的选型 建筑的结构在抵抗来自于水平方向和竖直方向的荷载时构件的组成形式和传力的路径就是高层建筑的结构体系。通过包括墙,柱等的竖向构件和楼盖等水平构件将竖向荷载传递到基础,利用抗侧力体系将水平荷载传递到基础。 根据高层建筑结构的材料将高层建筑的结构体系分为钢筋混凝土结构体系,钢结构体系,钢-混凝土混合结构体系以及钢-混凝土组合结构体系。钢筋混凝土结构体系被广泛的应用在各类的工程结构中,具有混凝土和钢筋两种材料的协同受力性能特征,造价低廉,耐久耐火,成本低,整体性能优良,但存在着自重大,延性差,施工慢等缺点;钢结构体系的强度高,抗震性能比较好,施工方便,跨度大,用途多,但是存在着费用高,防火性能差,施工复杂等不足;钢-混凝土混合结构结合了钢筋混凝土构件和钢构件的长处,不但增加了钢构件的材料强度,同时具有较高的抗震性能,成本低廉,然而这两种材料构件的连接技术还存在着不足;钢-混凝土组合结构具有承载能力高,抗震性能强,比钢结构具有更优良的耐火性,施工速度快,但是存在着节点的构造比较复杂的缺点,一般被用于小屁偏心受压构件。 根据结构形式可以将高层建筑结构分为框架结构体系,剪力墙结构体系,框架-剪力墙结构体系。利用柱,梁等结构体系作为高层建筑竖向承重的结构,并且承受水平荷载,这种结构侧向位移大,框架结构内力大,适于50m 高度以下的建筑;通过高层建筑的墙体当做抵抗侧力和竖向承重的结构体系,就是剪力墙结构体系。这种剪力墙结构的刚度大,整体性能好,不易受水平力作用发生变形,适应于高层建筑,但是由于剪力墙的间距小,使得平面的布置不灵活,因此,在公共建筑中不宜使用;利用框架和剪力墙组合的而构成的结构形式就是框架-剪力墙结构体系,这种结构形式不但具有实用性强,布局灵活的优点,同时承受水平负载的能力更高,在高层建筑中被广泛使用。在框架-剪力墙结构体系中,需要注意考虑剪力墙的位置,设计合理的剪力墙的数量,以及满足框架的设计要求。

浅析高层建筑结构设计的中震设计概念

浅析高层建筑结构设计的中震设计概念 发表时间:2016-06-27T14:51:54.553Z 来源:《基层建设》2016年5期作者:隆凡梅 [导读] 本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 摘要:对于普通建筑物的结构抗震设计,目前我国是以小震为设计基础,中震和大震则是通过地震力的调整系数和各种抗震构造措施来保证的。但是对于较重要的、超高的、超限的建筑物则需要进行中震和大震的抗震计算。本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 关键词:中震设计概念;地震影响系数;荷载 《建筑抗震设计规范》(GB50011-2001 2008年版)(下简称《抗规》)中对中震设计仅在总则中提到“小震不坏、中震可修、大震不倒”的抗震设防目标,但没有给出中震设计的设计要求和判断标准。 首先我们了解一下现行《抗规》存在几个问题: 1规范未对结构存在的薄弱构件进行分析并作出专门的设计规定,仅对框架类剪切型结构适用的薄弱层作了一些规定; 2在中震作用下,规范仅提出“中震可修”的概念设计要求,没有具体的抗震设计方法; 3“中震可修”的技术经济问题:可修的标准决定工程????造价、破坏损失、震后修复费用。 随着时代的进步,现在的建筑物体型复杂,结构新颖,超高超限越来越多,因此要求对结构进行中震的设计也越来越多。 2 中震设计 2.1 为何要进行中震设计呢? 《抗规》条文说明1.0.1条指出,对大多数结构,可只进行第一阶段设计(即小震下的弹性计算),而通过概念设计和抗震构造措施来实现“中震可修和大震不倒”的设计要求,但前提是建筑物的体型常规、合理,经验上一般能满足大中震的抗震要求。反之对于一些体型很不好的甚至超限的建筑物,在大震下的结构反应和小震完全不同,不进行相应的中震和大震计算是没法保证结构安全的。 为达到各阶段抗震要求,须对于上述体型异常、刚度变化大、超高超限等类型建筑物进行中震抗震设计,其余类型建筑物建议可按中震抗震进行验算。 2.2 中震设计的基本概念 抗震设计要达到的目标是在不同频数和强度的地震时,要求建筑物具有不同的抵抗能力。中震设计就是为了使建筑物满足该地区的基本设防烈度,即能够抵抗50年限期内可能遭遇超越概率为10%的地震烈度。 中震设计和大震设计都可称为性能设计。基于性能的抗震设计是建筑结构抗震设计的一个新的重要发展,它的特点是使抗震设计从宏观性、规范指定的目标向具体量化的多重目标过渡,业主(设计者)可选择所需的性能目标,而不仅仅是按现行规范通过分项系数、内力调整系数、抗震构造措施等粗略、定性的手段来满足中震和大震的设防要求。针对本工程的结构特点,设定本结构的抗震性能目标。对超限结构而言,利用这些指标能更合理地判断整体结构在中震、大震作用下的性能表现,给超限设计提供可靠的判断依据。 2.3 中震设计的分类 中震设计就是结构在地震影响系数按小震的2.875倍(αmax=0.23)取值下进行验算。目前工程界对于结构的中震设计有两种方法,第一种按照中震弹性设计,第二种是按照中震不屈服设计。 首先明确一点,中震弹性和中震不屈服是两个完全不同的概念,两者所采用的设计方法与设防目的均不相同。中震弹性设计,设计中取消《抗规》要求的各项地震组合内力调整系数,保留材料、荷载等分项系数,对应地保留了结构的安全度和可靠度,结构仍属于弹性阶段,属正常设计。中震不屈服设计,设计中除了地震内力不作调整,同时也取消了材料、荷载等分项系数,对应地不考虑结构的安全度和可靠度,结构已经处于弹塑性阶段,属承载力极限状态设计,是一种基于性能的设计方法。由此可见,中震弹性设计接近于平常的小震弹性设计,而中震不屈服设计则与大震设计同属于基于性能的设计。 3 基本方法及应用 根据中震设计的分类,以下分别阐述中震弹性及中震不屈服的具体设计方法,介绍如何在satwe、etabs、midas等软件中实现中震设计。 3.1 中震不屈服设计 3.3.1 不同抗震烈度下的各级屈服控制 若场地安评报告提供实际的地震影响系数,则应取用所提供的多遇地震、设防烈度地震下相应的地震影响系数,屈服判别地震作用1、2 的地震影响系数可相应插值求得。 3.3.2 SAWTE计算:地震信息中抗震等级均为四级;αmax按表3取值;总信息中风荷载不参加计算;勾选地震信息中的按中震(或大震)不屈服做结构设计选项;其它设计参数的定义均同小震设计。 3.3.3 MIDAS/Gen计算:主菜单→设计→钢筋混凝土构件设计参数→定义抗震等级:四级;主菜单→荷载→反应谱分析数据→反应谱函数:定义中震反应谱,在相应的小震反应谱基础上输入放大系数β即可,β值按表3计算所得;总信息中风荷载不参加计算;主菜单→结果→荷载组合:将各项荷载组合中的地震作用分项系数取为1.0;主菜单→设计→钢筋混凝土构件设计参数→材料分项系数:将材料分项系数取为1.0;其它同小震。 3.3.4 ETABS计算:选项→首选项→混凝土框架设计→定义抗震设计等级:四级;定义→反应谱函数→Add Chinese 2002 Spectrum→定义中震反应谱,地震影响系数最大值αmax取值,其余参数按《抗规》;静荷载工况中不定义风荷载作用;定义→荷载组合→各项荷载比例系数均取为荷载分项系数1.0x荷载组合系数φ;定义→材料属性→填写各材料的强度标准值其它同小震。 4 工程算例 4.1 示范算例 4.1.1 基本参数:二十二层框支剪力墙结构,三层楼面转换,无地下室,首、二层4.5米,标准层3.5米,总高79m。结构平面布置如图一所示。结构高宽比3.76,长宽比1.22;抗震参数,7 度,第一组,0.10g;场地II类;风荷载100年一遇为0.9kN/㎡。

高层建筑结构设计(教案)

高层建筑结构设计 教案 山东大学 土建与水利学院 薛云冱

目录 第一章:高层建筑结构体系及布置 (2) §1-1 概述 (2) §1-2 高层建筑的结构体系 (7) §1-3 结构总体布置原则 (9) 第二章:荷载及设计要求 (12) §2-1 风荷载 (12) §2-2 地震作用 (13) §2-3 荷载效应组合及设计要求 (14) 第三章:框架结构的内力和位移计算 (15) §3-1 框架结构在竖向荷载作用下的近似计算—分层法 (15) §3-2 框架结构在水平荷载作用下的近似计算(一)—反弯点法 (16) §3-3 框架结构在水平荷载作用下的近似计算(二)—改进反弯 点(D值)法 (17) §3-4 框架在水平荷载作用下侧移的近似计算 (18) 第四章:剪力墙结构的内力和位移计算 (20) §4-1 剪力墙结构的计算方法 (20) §4-2 整体墙的计算 (22) §4-3 双肢墙的计算 (23) §4-4 关于墙肢剪切变形和轴向变形的影响以及各类剪力墙划 分判别式的讨论 (24) §4-5 小开口整体墙的计算 (29) §4-6 多肢墙和壁式框架的近似计算 (30) 第五章:框架—剪力墙结构的内力和位移计算 (30) §5-1 框架—剪力墙的协同工作 (30) §5-2 总框架的剪切刚度 (31) §5-3 框—剪结构铰结体系在水平荷载下的计算 (32) §5-4 框—剪结构刚结体系在水平荷载下的计算 (33) §5-5 框架—剪力墙的受力特征及计算方法应用条件的说明 (36) §5-6 结构扭转的近似计算 (36) 第六章:框架截面设计及构造 (36) §6-1 框架延性设计的概念 (36) §6-2 框架截面的设计内力 (37) §6-3 框架梁设计 (39) §6-4 框架柱设计 (42) §6-5 框架节点区抗震设计 (47) 第七章:剪力墙截面设计及构造 (49) §7-1 墙肢截面承载力计算 (49) §7-2 连梁的设计 (53)

高层建筑结构设计分析论文

高层建筑结构设计分析论文 1结构分析及设计分析 1.1分析三种重要的体系 1.1.1剪力墙体系 剪力墙结构是利用建筑的内、外墙做成剪力墙以承受垂直和水平荷载的结构体系。剪力墙的变形状态和受力特性同剪力墙的开洞情况联系密切,其中依据轧受力特性的不同,单片剪力墙可以分为特殊开洞墙和单肢墙。类型不同的剪力墙,对应的也会有不同的截面应力分布,所以,在对位移和内力进行计算时,也应该对不同的计算和设计方法进行使用,将平面有限元法应用到剪力墙的结构计算中。此种方法能够比较准确地完成计算,能够应用到各类剪力墙之间,然而,也有一定的弊端存在于这种方法中,其有着较多的自由度。所以,在具体的应用时,较为普遍地应用了开洞墙这一类型。 1.1.2筒体结构 筒体结构分为框架—核心筒、筒中筒等结构体系,其中框架—核心筒受力特点为框架主要承受竖向荷载,筒体主要承受水平荷载,变性特点类似于框架剪力墙,但抗侧刚度较大。依据不同的计算机模型处理手段,有三种类型的分析方法:主要为离散化方法、三维空间分析和连续化方法,其中三维空间方法的精确性会更高。 1.1.3框架—剪力墙体系 框架—剪力墙结构,是由若干个框架和剪力墙共同作为竖向承重结构的建筑结构体系。此种结构位移和内力等计算方法尽管种类较

多,然而,连梁连续化假定方法会经常被使用,在对位移协调条件进行计算时,应该按照框架水平位移和剪力墙转角进行设计,将外荷载和位移的关系用微分方程建立起来。然而,应该考虑需求和因素量会存在的差异,所以,也会有着不同形式的解答方式。 1.2具体的设计与分析 1.2.1合理地确定水平荷载 每一个建筑结构都应该一同承受风产生的水平荷载和垂直荷载,对于抵抗地震的能力也应该具备。高层建筑中,尽管结构设计会较大程度上受到竖向荷载的影响,然而,水平荷载却占据着重大的比重。随着不断增多的高层建筑层数,在高层建筑的结构设计中,水平荷载成为了其中一个重要的影响因素。首先,由于楼面使用荷载和楼房自重在竖构件中发挥的功能,对应水平荷载会将一定的倾覆作用施加到结构中,并且竖构件中就会出现高层建筑结构的作用力;其次,就高层建筑结构而言,地震作用和竖向荷载,也会跟着建筑结构的动力情况而出现较大的改变。 1.2.2合理地确定侧控 同低层建筑不同,在高层建筑结构设计中,结构侧移已经成为 了其中一个非常重要的影响因素。随着不断增加的楼层数量,结构侧移在水平荷载侧向变形下会逐渐增大。在高层建筑结构进行设计中,不但规定结构要有一定的强度,对于荷载作用带来的内力能够有效的予以承受,同时,还应该确保具备一定的抗侧刚度,确保在某一限度内控制结构在水平荷载作用出现的侧移情况。

读书笔记之建筑结构设计快速入门

P24 1.1.3如何初估各种结构构件的截面尺寸 主动记忆一些常识性的工程数据,比如梁板的跨高比,剪力墙墙厚,平时注意积累分析,多问多算,大工程做细,小工程做精。 1.1.3熟记民用建筑设计荷载 (1)多高层住宅楼(商品房),二次装修改造的荷载,落棉荷载一般取值2.0kN/m2。 (2)3个2.0kN/m2 楼面做法自重(2.0kN/m2)轻质隔墙自重(2.0kN/m2)活荷载取值(2.0kN/m2) 2.0 2.0 2.0 左右,与实际不会有太大出入;对于屋面活荷载,不上人时0.5 kN/m2,上人时为2.0 kN/m2。 1.2.3 “次要让位于主要”的原则—明确哪些钢筋的位置对结构设计来说更重要 1.3.1 钢筋的三种连接方式—焊接、搭接、机械连接“孰优孰劣” 对于结构重要的部位,《高层建筑混凝土结构技术规程》(JGJ3-2002)规定钢筋的连接宜采用机械连接,而之前规范规定为焊接,改的原因是焊接会使被焊钢筋变脆,在抗震的重要部位,反而变成了“最坏”的做法。 机械连接分为邓强连接和不等强连接,I级为等强连接,II、III级则为不等强连接,主要是针对“钢筋接头处的强度是否大于钢筋母材强度”而言的。 设计可依据《钢筋机械连接通用技术规程》(JGJ 107-2003)中相关的规定,选择与受力情况相匹配的接头。 I级接头:套筒挤压、镦粗接头、剥肋滚螺纹。 剪力墙之水平与竖向分布筋,因钢筋较细,不是抗震的关键部位,适合采用搭接的方式,

不宜采用机械接头。 搭接接头应满足: (1)选择正确的搭接部位; (2)有足够的搭接长度; (3)搭接部位的箍筋间距加密至满足要求。 (4)有足够的混凝土强度与足够的保护层厚度。 如能满足这4款要求,搭接是一种比较好接头方式,而且往往是最省工的方法。但其缺点: (1)在抗震构件的内力较大部位,当构件承受反复荷载时,有滑动的可能; (2)在构件钢筋较密集时,采用搭接方法将使浇捣混凝土较为困难。 当受拉钢筋直径大于28mm,受压钢筋直径大于32mm时,不宜采用搭接。

高层建筑结构设计资料

名词解释: 高层建筑:10层及10层以上或房屋高度大于28m的建筑物。 2. 房屋高度:自室外地面至房屋主要屋面的高度。 3. 框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构。 4. 剪力墙结构:由剪力墙组成的承受竖向和水平作用的结构。 5. 框架—剪力墙结构:由框架和剪力墙共同承受竖向和水平作用的结构。 6. 转换结构构件:完成上部楼层到下部楼层的结构型式转变或上部楼层到下部楼层结构布置改变而设置的结构构件,包括转换梁、转换桁架、转换板等。 7. 结构转换层:不同功能的楼层需要不同的空间划分,因而上下层之间就需要结构形式和结构布置轴线的改变,这就需要在上下层之间设置一种结构楼层,以完成结构布置密集、墙柱较多的上层向结构布置较稀疏、墙术较少的下层转换,这种结构层就称为结构转换层。(或说转换结构构件所在的楼层) 8. 剪重比:楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。 9. 刚重比:结构的刚度和重力荷载之比。是影响重力 P效应的主要参数。 10. 抗推刚度(D):是使柱子产生单位水平位移所施加的水平力。 11. 结构刚度中心:各抗侧力结构刚度的中心。 12. 主轴:抗侧力结构在平面内为斜向布置时,设层间剪力通过刚度中心作用于某个方向,若结构产生的层间位移与层间剪力作用的方向一致,则这个方向称为主轴方向。 13. 剪切变形:下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。框架结构的变形特征是呈剪切型的。 14. 剪力滞后:在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受轴力抵抗倾复力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。 15. 延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹塑性状态。在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。具有上述性能的结构,称为延性结构。 16. 弯矩二次分配法:就是将各节点的不平衡弯矩,同时作分配和传递,第一次按梁柱线刚度分配固端弯矩,将分配弯矩传递一次(传递系数C=1/2),再作一次分配即结束。填空:1、我国《高层建筑混凝土结构技术规程》(JGJ3—2002) 规定:把10层及10层以上或房屋高度大于28m的建筑物 称为高层建筑,此处房屋高度是指室外地面到房屋主要屋 面的高度。2.高层建筑设计时应该遵循的原则是安全适用, 技术先进,经济合理,方便施工。 3.复杂高层结构包括带转换层的高层结构,带加强层的高 层结构,错层结构,多塔楼结构。 4.8度、9度抗震烈度 设计时,高层建筑中的大跨和长悬臂结构应考虑竖向地震 作用。 5.高层建筑结构的竖向承重体系有框架结构体系,剪力墙 结构体系,框架—剪力墙结构体系,筒体结构体系,板柱 —剪力墙结构体系;水平向承重体系有现浇楼盖体系,叠 合楼盖体系,预制板楼盖体系,组合楼盖体系。 6.高层结构平面布置时,应使其平面的质量中心和刚度中 心尽可能靠近,以减少扭转效应。 7.《高层建筑混凝土结 构技术规程》JGJ3-2002适用于10层及10层以上或房屋高 度超过28m的非抗震设计和抗震设防烈度为6至9度抗震 设计的高层民用建筑结构。 9 三种常用的钢筋混凝土高层结构体系是指框架结构、剪 力墙结构、框架—剪力墙结构。 1.地基是指支承基础的土体,天然地基是指基础直接建造 在未经处理的天然土层上的地基。 2.当埋置深度小于基础底面宽度或小于5m,且可用普通开 挖基坑排水方法建造的基础,一般称为浅基础。 3,为了增强基础的整体性,常在垂直于条形基础的另一个 方向每隔一定距离设置拉梁,将条形基础联系起来。 4.基础的埋置深度一般不宜小于0.5m,且基础顶面应低于 设计地面100mm以上,以免基础外露。 5.在抗震设防区,除岩石地基外,天然地基上的箱形和筏 形基础,其埋置深度不宜小于建筑物高度的1/15;桩箱或 桩筏基础的埋置深度(不计桩长)不宜小于建筑物高度的 1/18—1/20。 6.当高层建筑与相连的裙房之间设置沉降缝时,高层建筑 的基础埋深应大于裙房基础的埋深至少2m。 7.当高层建筑与相连的裙房之间不设置沉降缝时,宜在裙 房一侧设置后浇带,其位置宜设在距主楼边柱的第二跨内。 8.当高层建筑与相连的裙房之间不设置沉降缝和后浇带 时,应进行地基变形验算。 9.基床系数即地基在任一点发生单位沉降时,在该处单位 面积上所需施加压力值。 10.偏心受压基础的基底压应力应满足maxpaf2.1 、af 和2 min maxppp 的要求,同时还应防止基础转动过 大。 11.在比较均匀的地基上,上部结构刚度较好,荷载分布 较均匀,且条形基础梁的高度不小于1/6柱距时,地基反 力可按直线分布,条形基础梁的内力可按连续梁计算。当 不满足上述要求时,宜按弹性地基梁计算。 12.十字交叉条形基础在设计时,忽略地基梁扭转变形和 相邻节点集中荷载的影响,根据静力平衡条件和变形协调 条件,进行各类节点竖向荷载的分配计算。 13.在高层建筑中利用较深的基础做地下室,可充分利用 地下空间,也有基础补偿概念。如果每㎡基础面积上墙体 长度≮400mm,且墙体水平截面总面积不小于基础面积的 1/10,且基础高度不小于3m,就可形成箱形基础。 1.高层建筑结构主要承受竖向荷载,风荷载和地震作用等。 2.目前,我国钢筋混凝土高层建筑框架、框架—剪力墙结 构体系单位面积的重量(恒载与活荷载)大约为12~14kN /m2 ;剪力墙、筒体结构体系为14~16kN/m2 。 3.在框架设计中,一般将竖向活荷载按满载考虑,不再一 一考虑活荷载的不利布置。如果活荷载较大,可按满载布 置荷载所得的框架梁跨中弯矩乘以1.1~1.2的系数加以放 大,以考虑活荷载不利分布所产生的影响。 4.抗震设计时高层建筑按其使用功能的重要性可分为甲类 建筑、乙类建筑、丙类建筑等三类。 5.高层建筑应按不同情况分别采用相应的地震作用计算方 法:①高度不超过40m,以剪切变形为主,刚度与质量沿高 度分布比较均匀的建筑物,可采用底部剪力法;②高度超 过40m的高层建筑物一般采用振型分解反应谱方法;③刚 度与质量分布特别不均匀的建筑物、甲类建筑物等,宜采 用时程分析法进行补充计算。, 6.在计算地震作用时,建筑物重力荷载代表值为永久荷载 和有关可变荷载的组合值之和。 7.在地震区进行高层建筑结构设计时,要实现延性设计, 这一要求是通过抗震构造措施来实现的;对框架结构而言, 就是要实现强柱弱梁、强剪弱弯、强节点和强锚固。 8.A级高度钢筋混凝土高层建筑结构平面布置时,平面宜 简单、规则、对称、减少偏心。 9.高层建筑结构通常要考虑承载力、侧移变形、稳定、倾 复等方面的验算 问答: 1.我国对高层建筑结构是如何定义的? 答:我国《高层建筑混凝土结构技术规程》 (JGJ3—2002)规定:10层及10层以上或房屋高度大 于28m的建筑物称为高层建筑,此处房屋高度是指室 外地面到房屋主要屋面的高度。 2.高层建筑结构有何受力特点? 答:高层建筑受到较大的侧向力(水平风力或水平地 震力),在建筑结构底部竖向力也很大。在高层建筑 中,可以认为柱的轴向力与层数为线性关系,水平力 近似为倒三角形分布,在水平力作用卞,结构底部弯 矩与高度平方成正比,顶点侧移与高度四次方成正 比。上述弯矩和侧移值,往往成为控制因素。另外, 高层建筑各构件受力复杂,对截面承载力和配筋要求 较高。

建筑结构优化设计分析

建筑结构优化设计分析 摘要:建筑结构设计的优化主要体现在通过结构设计优化达到性能及经济的完 美协调。不管对建设方或者居住者,都有着直接的影响。本文根据结构优化设计 实例进行分析。 关键词:建筑结构;结构设计;优化方法 前言 结构设计优化技术所指的是建筑结构的设计过程中,设计人员会面临着各种各样的问题,比较成本、性能和建筑材料等问题。如何通过结构优化,从而达到利用最少的资金建设出合 理科学的建筑结构。其优化的意义所在就是节省工程造价,提高建筑的质量。当前建筑结构 的成本占比较重,合理科学的建筑结构可以产生巨大的经济效益,并还能够提高工程的质量。 1、建筑结构设计优化的步骤 1.1建立合理模型 可以通过3步来实现对房屋结构设计的优化,具体步骤是:第一步,需合理选择设计的 变量。一般情况下,在选择合理的设计变量的时侯,应当将对建筑结构具有较大影响的因素 做为主要设计变量的参数。例如,结构的造价C1与损失的期望C2等有关参数使目标控制产 生较大的影响,以及诸如结构的可靠度PS等有关参数使约束控制产生较大的影响,这就需要对这些影响设计变量的参数进行合理选择。相反,对那些影响不大的因素,在进行优化的时 侯可以采取预定参数的方式来表示,使让优化过程中的计算量、设计量和编制程序的工作量 有所降低。第二步,需确立目标的函数。在采用建筑结构设计优化技术对房屋结构设计进行 优化过程中,应当尽可能的寻找几组可以满足有关预定条件的截面相应的几何尺寸、钢筋的 截面积以及相应的失效的概率的函数,让工程的造价费用有所减少。第三步,确定约束的条件。在采用建筑结构设计优化技术对房屋结构设计进行优化过程中,应当对结构的可靠性以 及用来优化设计的有关约束条件做进一步确定。其中,设计优化的约束条件包含有结构体系 约束、应力约束、构件单元约束、尺寸约束、结构强度约束、裂缝宽度约束等。在对房屋结 构设计进行优化的时侯,必需充分将实际性约束条件和目标性约束条件作对比,然而保证每 一个约束条件均可以满足需求,以便达到最佳的设计。 1.2设定计算方案 依照可靠性对房屋结构设计进行的优化也会出现非线性的优化问题以及多约束性的优化 问题,并且还会使多变量复杂化。所以,为了减少这些问题需要在进行分析计算的时侯,将 有约束的优化问题转化为没有约束的优化问题进行求解。常常采取的优化设计的计算方法是Powell法、复合形法和拉氏乘子法等3种方法。 1.3设计相关程序 依照可靠性对房屋结构设计优化的基本模型和选择的计算方法可以编写一个具有运算速 度快以及功能齐全的综合应用程序,通过程序的优化提高设计的时效。 1.4作好结果分析 在对房屋结构设计进行优化设计的过程中,应当对最终得到的有关计算结果作一定的对 比分析,以便为最终的优化设计方案提供科学、合理、有效的依据。而在这个过程当中就要 求设计人员必需全面周密的考虑问题,只有这样才能够科学、合理、有效地选择设计的方案,才可以保证建筑结构的实用、经济、合理、安全以及美观,才能够尽可能少的资金投入获得 最大的收益。尤其需要注意的是,在进行建筑结构优化设计的过程中,并不能够只一味的强 调经济上的节约而降低了技术上标准;或者仅考虑技术上的要求却忽视了经济上的节约,这 些都是不正确的。只有在众多因素中寻找最佳结合点,探索优化设计的平衡点,才能够达到 有关设计要求。因此,必须做好结构的分析与运用。 2、某工程空心楼板优化设计的实例分析 2.1原方案 原设计方案板厚300mm,拟用空心管直径200mm。相邻空心管之间设一道肋,梁宽度 60mm。肋梁区域受力钢筋上、下铁都为2Ф14(Ⅲ级钢),空心管区域受力钢筋上、下铁都

高层建筑结构设计分析论文

关于高层建筑结构设计分析 摘要:随着社会经济的迅速发展,人民物质生活水平的不断提高,居住条件的不断改善,高层住宅如雨后春笋一座座拔地而起。一个优秀的建筑结构设计往往是适用、安全、经济、美观便于施工的最佳结合。 关键词:建筑结构结构设计 abstract: with the rapid development of social economy, the people’s material life level unceasing enhancement, the constant improvement of the living conditions, high-rise residential have mushroomed place have sprung up. a good structure design is often apply, safety, economy, beautiful is advantageous for the construction of the best combination. keywords: building structure design 中图分类号: tu3文献标识码:a 文章编号: 一、高层建筑各专业设计的协调 高层建筑设计是个多专业、多程序的复杂系统工程,涉及“建筑、结构、设备”三个基本环节,参与高层建筑设计的工程师都深深体会到,对于每个专业单独而言是最完美的设计,但结合在一起却不是优秀的设计。各专业之间的矛盾如不妥善处理!高层建筑就无法施工,建成后也无法使用。“建筑、结构、设备”是互相制约的三个有机组成部分,高层建筑设计既是各个专业自我完善的过

高层建筑结构设计(上)试卷

一.单选题 1.地震荷载:结构物由于地震而受到的惯性力、土压力和水压力的总称。由于()震动对建筑物的影响最大,因而一般只考虑水平震动力。 (分数:10分) 标准答案:A 学员答案:A A.水平 B.内力 C.垂直 D.分布荷载 2.筒中筒结构体系是由内筒和外筒两个筒体组成的结构体系。内筒通常是由()围成的实筒,而外筒一般采用框筒或桁架梁。 (分数:10分) 标准答案:C 学员答案:C A.框架 B.筒中筒 C.剪力墙 D.框架--剪力墙 3.空气流动形成的风遇到建筑物时,就在建筑物表面产生压力或吸力,这种风力作用称为()。 (分数:10分) 标准答案:C 学员答案:C A.分布荷载 B.集中荷载 C.风荷载 D.应力荷载 4.()是高层建筑广泛采用的一种基础类型。它具有刚度大,整体性好的特点,适用于结构荷载大、基础土质较软弱的情况。 (分数:10分) 标准答案:A 学员答案:A A.箱形基础 B.独立基础 C.筏板基础 D.条形基础 5.()复杂,不规则,不对称的结构,不仅结构设计难度大,而且在地震作用的影响下,结构要出现明显的扭转和应力集中,这对抗震非常不利。 (分数:10分) 标准答案:C

学员答案:C A.大门形状 B.立面形状 C.平面形状 D.屋顶形状 6.两个以上的筒体排列在一起成束状,成为成束筒。成束筒的抗侧移刚度比()结构还要高,适宜的建造高度也更高。 (分数:10分) 标准答案:B 学员答案:B A.框架 B.筒中筒 C.剪力墙 D.框架--剪力墙 7.板式结构是指建筑物宽度较小,长度较大的平面形状。因平面短边方向抗侧移刚度较弱。一般情况下()不宜超过4。当抗震设防等于或大于8时,限制应更加严格。 (分数:10分) 标准答案:A 学员答案:B A.高宽比 B.长宽比 C.长高比 D.窗墙比 8.精确计算表明,各层荷载除了在本层梁以外以及与本层梁相连的柱子中产生内力外,对其它层的梁、柱内力影响不大,为此,可将整个框架分成一个个()来计算,这就是分层法。 (分数:10分) 标准答案:B 学员答案:B A.单独框架 B.单层框架 C.独立柱、梁 D.空间结构 9.当框架的高度较大、层数较多时,柱子的截面尺寸一般较大,这时梁、柱的线刚度之比往往要(),反弯点法不再适用。 (分数:10分) 标准答案:B 学员答案:B A.大于3 B.小于3 C.大小于2 D.小于2

高层建筑结构设计考试试题(含答案)

高层建筑结构设计考试试题一、填空题( 2× 15=30) 1、2、钢筋混凝土剪力墙结构的水平荷载一般由剪力墙承担,竖向荷载由剪力墙承担。其整体位移曲线特点为弯曲型,即结构的层间侧移随楼层的 而增大而增大。与框架结构相比,有结构整体性好,刚度大,结构高度可 以更大。等优点。 框架——剪力墙结构体系是把框架和剪力墙结构两种结构共同结合在一起形成的结构体系。结构的竖向荷载由框架和剪力墙承担,而水平作用主要由 剪力墙承担。其整体位移曲线特点为弯剪型,即结构的层间位移在结构底部层间位移随层数的增加而增大,到中间某一位置,层间位移随 层数的增加而增大。 3、框架结构水平荷载作用近似手算方法包括反弯点法、D值 4、 法。当结构的质量 中心下会发生扭转。 中心和刚度中心中心不重合时,结构在水平力作用 二、多项选择题(4×5= 20) 1、抗震设防结构布置原则(ABC) A 、合理设置沉降缝C、 足够的变形能力B D 、合理选择结构体系 、增大自重 E、增加基础埋深 2、框架梁最不利内力组合有(AC) A、端区 -M max, +M max, V max C、跨中 +M max D B、端区 M max及对应 N, V 、跨中 M max及对应 N, V E、端区N max及对应M, V 3、整体小开口剪力墙计算宜选用( A )分析方法。 A、材料力学分析法 B、连续化方法 C、壁式框架分析法 D、有限元法 4、高层建筑剪力墙可以分为(ABCD )等几类。 A、整体剪力墙 B、壁式框架 C、联肢剪力墙 D、整体小开口墙 5、高层建筑基础埋置深度主要考虑(ACD)。 A、稳定性 B、施工便利性 C、抗震性 D、沉降量 E、增加自重 三、简答题(7×5= 35) 1、试述剪力墙结构连续连杆法的基本假定。 1、剪力墙结构连续连杆法的基本假定:忽略连梁的轴向变形,假定两墙肢的水平位移完全相同;各墙肢截面 的转角和曲率都相等,因此连梁两端转角相等,反弯点在中点;各墙肢截面,各连梁截面及层高等几何尺寸 沿全高相同。

相关主题
文本预览
相关文档 最新文档