当前位置:文档之家› 62.为解决非线性的 Volterra–Fredholm 不可分的方程的一个有效算

62.为解决非线性的 Volterra–Fredholm 不可分的方程的一个有效算

62.为解决非线性的 Volterra–Fredholm 不可分的方程的一个有效算
62.为解决非线性的 Volterra–Fredholm 不可分的方程的一个有效算

第三章 线性方程组

第三章 线性方程组 §3.1 线性方程组的矩阵消元解法 例3.1 求解线性方程组 ??? ??=+-=+-=-+4 5342622321 321321x x x x x x x x x 解方程组通常采用消元法,比如将第2个方程乘2-加到第1个方程,可消去1x 得到09632=-x x ,将此方程两边除以3,约简可得03232=-x x 。 除了消元和约简,有时还要交换两个方程的位置。这些变形运算实际上仅在变量的系数之间进行,所以只需将所有的系数和常数项列成一个矩阵,做初等行变换即可。显然消元、约简和交换方程位置分别相当于矩阵的消去变换、倍缩变换和换行变换。比如上面对本例的两个具体变形相当于以下矩阵初等行变换: ????? ??---411534216122→????? ??---411534210960→???? ? ??---411534210320 其中第一个变换是第2行乘2-加到第1行,第二个变换是以31乘第1行。矩阵的初等变换可以使解方程组的过程显得紧凑、快捷、简洁。 下面我们运用初等变换的标准程序(参看§2.4)来解例3.1的线性方程组: ????? ??---4115342]1[6122 →? ?? ?? ??----111990342 109]6[0 ?→?* ????? ??---11]5.5[0005 .110310 1→? ???? ? ?210030101001 其中,主元都用“[ ]”号作了标记。消元与换行可同步进行(如带“*”号的第二 步),换行的目的是为了使主元呈左上到右下排列。最后一个矩阵对应方程组 ?? ? ??=++=++=++2 003001 00321x x x 实际上已得到方程组的解是11=x ,32=x ,23=x 。写成列向量 ()T x 2,3,1=,叫做解向量。显然解向量可以从最后一个矩阵右侧的常数列 直接读出,无需写出对应的方程组。 第二章曾经把一般的线性方程组(2.2)写成矩阵形式b Ax =,比如例 3.1 的线性方程组,写成矩阵形式是??? ? ? ??=????? ??---436115421122x 。

人教版七年级数学上册第三章从算式到方程复习题3(含答案) (78)

人教版七年级数学上册第三章从算式到方程复习题3(含答 案) 方程(a ﹣2)x |a |﹣1+3=0是关于x 的一元一次方程,则a =_____. 【答案】-2 【解析】 由一元一次方程的特点得:|a|?1=1,a ?2≠0, 解得:a=?2. 故答案为?2. 72.关于x 的方程(k ﹣1)x |2k ﹣1|+3=0是一元一次方程,那么k=__. 【答案】0 【解析】根据题意得|2k ?1|=1且k ?1≠0, 解得k=0. 故答案是:0. 73.已知方程3x+2y=5,用含x 的式子表示y ,则y=______. 【答案】532 x - 【解析】 325x y += ,253y x ∴=- ,532 x y -∴= . 74.由方程3x -2y -6=0可得到用x 表示y 的式子是_________. 【答案】362 x y -= 【解析】 ∵3x -2y -6=0, ∴3x -6=2y ,

即2y=3x -6, ∵362 x y -= 75.已知方程3(21)12x x -=-与关于x 的方程82(1)k x -=+的解相等,则k =________. 【答案】5 【解析】 解方程3(2x-1)=1-2x 得:x=12 ,由两个方程同解,所以将x=12 代入方程()821k x -=+中得8-k=2×(12 +1), 解得:k=5. 故答案是:5. 76.已知方程23)42m m x m --+=(是关于x 的一元一次方程,则m =__________. 【答案】1 【解析】 ∵方程(m-3)x |m-2|+4=2m 是关于x 的一元一次方程, ∵m-3≠0,|m-2|=1, 解得:m=1, 故答案是:1. 77.如果3(4)80a a x +++=是关于x 的一元一次方程,那么21a a +-= __________. 【答案】1 【解析】

差分方程的解法

第三节 差分方程常用解法与性质分析 1、常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ ( 8) 其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (9) 为方程(8)对应的齐次方程。 如果(9)有形如 n n x λ=的解,带入方程中可得: 0 ...1110=++++--k k k k a a a a λλλ (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1) 若(10)有k 个不同的实根,则(9)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(10)有m 重根λ,则通解中有构成项: n m m n c n c c λ)...(121----+++

(3)若(10)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ?βαρarctan ,22=+=,则(9)的通解中有构成项: n c n c n n ?ρ?ρsin cos 21--+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(9)的通项中有成 项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121---++---+++++++ 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(8)的一个特解:*n x ,则(8)必有通解: =n x -n x +* n x (11) (1) 的特解可通过待定系数法来确定。 例如:如果)(),()(n p n p b n b m m n =为n 的多项式,则当b 不是特征 根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为m 次多项式;如 果b 是r 重根时,可设特解:r n n b )(n q m ,将其代入(8)中确定出系 数即可。

差分方程模型的理论和方法

差分方程模型的理论和方法 第一节 差分 一、 基本概念 1、差分算子 设数列{}n x ,定义差分算子n n n x x x -=??+1:为n x 在n 处的向 前差分。 而1--=?n n n x x x 为n x 在n 处的向后差分。 以后我们都是指向前差分。 可见n x ?是n 的函数。从而可以进一步定义n x ?的差分: n n x x 2)(?=?? 称之为在n 处的二阶差分,它反映的是的增量的增量。 类似可定义在n 处的k 阶差分为: ))((1n k n k x x -??=? 2、差分算子 、不变算子、平移算子 记n n n n x Ix x Ex ==+,1,称E 为平移算子,I 为不变算子 。 则有:n n n n x I E Ix Ex x )(-=-=? I E -=?∴ 由上述关系可得: i n k i i k i k n i k i i k i k n k n k x C x E C x I E x +=-=-∑∑-=-=-=?00)1()1()( (1) 这表明n x 在n 处的k 阶差分由n x 在k n n n ++....1,,处的取值所线性决定。 反之, 由 n n n x x x -=?+1 得 n n n x x x ?+=+1: n n n n x x x x +-=?++1222,得:n n n n x x x x 2122?++-=++, 这个关系表明:第n+2项可以用前两项以及相邻三项增量的增量来表现和计算。即一个数列的任意一项都可以用其前面的k 项和包括这项在内的k+1 项增量的增量的增量……..第k 层增量所构成。 …….. ,)1(1 0k n i n k i i k i k n k x x C x ++-=-+-=?∑得: n k i n k i i k i k k n x x C x ?+--=+-=-+∑1 0)1( (2)

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

差分方程的解法

1、常系数线性差分方程的解 方程 a 0x n k a 1x n k 1 ... a k x n b(n) 其中 a 0 , a 1,..., a k 为常数,称方程( 8)为常系数线性方程。 又称方程 a 0x n k a 1x n k 1 ... a k x n 为方程( 8)对应的齐次方程。 第三节 差分方程常用解法与性质分析 9) n 如果( 9)有形如 x n 的解, 带入方程中可得: k k 1 a 0 a 1 ... a k 1 a k 0 10) 称方程( 10)为方程( 8)、 9)的特征方程。

n n n c 1 1 c 2 2 ... c k k , 若(10) 有 m 重根 ,则通解中有构成项: (c 1 m 1 n c 2 n ... c m n ) 显然, 如果能求出( 10)的根,则可以得到( 9)的解。 基本结果如下: 1) 若(10) 有 k 个不同的实根,则( 9)有通解:

(3)若(10)有一对单复根 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:X n 如果能得到方程(8)的一个特解:X n ,则(8)必有通解: * X n X n + 焉 (11) (1)的特解可通过待定系数法来确定。 例如:如果b (n )bk m (n ), pMn )为门的多项式,则当b 不是特征 根 时,可设成形如 bq m (n ) 形式的特解,其中 q m (n ) 为m 次多项式;如 果b 是 r 重根时,可设特解:b n n r q m (n ) ,将其代入(8)中确定出系 数即可。 arcta n — ,则(9) 的通解中有构成项: C l n . cos n C 2 sin (4)若有 m 重复根: i e ,则 (9)的通项中有成 项: cos n (C m 1 C m 2 n m 1 、 n ? c 2m n ) sin n

新教材高中数学第三章函数3.2函数与方程、不等式之间的关系第1课时函数的零点及其与对应方程、不等式解集之

新教材高中数学第三章函数3.2函数与方程、不等式之间的关系第1课时函数的零点及其与对应方程、不等式解集之间的关系课 后课时精练新人教B 版必修第一册 A 级:“四基”巩固训练 一、选择题 1.下列说法中正确的有( ) ①f (x )=x +1,x ∈[-2,0]的零点为(-1,0); ②f (x )=x +1,x ∈[-2,0]的零点为-1; ③y =f (x )的零点,即y =f (x )的图像与x 轴的交点; ④y =f (x )的零点,即y =f (x )的图像与x 轴交点的横坐标. A .①③ B .②④ C .①④ D .②③ 答案 B 解析 根据函数零点的定义,f (x )=x +1,x ∈[-2,0]的零点为-1,函数y =f (x )的零点,即y =f (x )的图像与x 轴交点的横坐标.因此,说法②④正确.故选B. 2.函数f (x )=x 2 -x -1的零点有( ) A .0个 B .1个 C .2个 D .无数个 答案 C 解析 Δ=(-1)2 -4×1×(-1)=5>0,所以方程x 2 -x -1=0有两个不相等的实根,故函数f (x )=x 2 -x -1有2个零点. 3.函数f (x )=2x 2 -3x +1的零点是( ) A .-1 2,-1 B.12,1 C.1 2,-1 D .-12 ,1 答案 B 解析 方程2x 2-3x +1=0的两根分别为x 1=1,x 2=12,所以函数f (x )=2x 2 -3x +1的 零点是1 2 ,1. 4.函数y =x 2 -bx +1有一个零点,则b 的值为( )

A .2 B .-2 C .±2 D .3 答案 C 解析 因为函数有一个零点,所以Δ=b 2 -4=0,所以b =±2. 5.设a <-1,则关于x 的不等式a (x -a )? ?? ??x -1a <0的解集为( ) A .(-∞,a )∪? ?? ??1a ,+∞ B .(a ,+∞) C.? ????-∞,1a ∪(a ,+∞) D.? ?? ??-∞,1a 答案 A 解析 ∵a <-1,∴a (x -a )? ????x -1a <0?(x -a )? ?? ??x -1a >0.又a <-1,∴1a >a ,由函数f (x ) =(x -a )·? ?? ??x -1a 的图像可得所求不等式的解集为(-∞,a )∪? ?? ??1a ,+∞. 二、填空题 6.函数f (x )=? ???? 2x -4,x ∈[0,+∞, 2x 2 -3x -2,x ∈-∞,0的零点为________. 答案 2,-1 2 解析 当x ≥0时,由2x -4=0,得x =2;当x <0时,由2x 2 -3x -2=0,得x =-12或 2(舍去).故函数f (x )的零点是2,-1 2 . 7.已知函数f (x )=ax 2 -5x +2a +3的一个零点为0,则f (x )的单调递增区间为________. 答案 ? ????-∞,-53 解析 由已知,得f (0)=2a +3=0,∴a =-32,∴f (x )=-32x 2 -5x ,∴f (x )的单调递 增区间为? ????-∞,-53. 8.已知a 为常数,则函数f (x )=|x 2 -9|-a -2的零点个数最多为________. 答案 4 解析 令g (x )=|x 2 -9|,h (x )=a +2,在同一平面直角坐标系内画出两个函数的图像,如图所示.

差分方程的解法

差分方程常用解法 1、 常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ (1) 其中k a a a ,...,,10为常数,称方程(1)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (2) 为方程(1)对应的齐次方程。 如果(2)有形如n n x λ=的解,代入方程中可得: 0...1110=++++--k k k k a a a a λλλ (3) 称方程(3)为方程(1)、(2)的特征方程。 显然,如果能求出方程(3)的根,则可以得到方程(2)的解。 基本结果如下: (1) 若(3)有k 个不同的实根,则(2)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(3)有m 重根λ(即m 个根均为λ),则通解中有构成项: n m m n c n c c λ)...(121----+++

(3)若(3)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ ?βαρarctan ,22=+=,则(2)的通解中有构成项: n c n c n n ?ρ?ρsin cos 21- -+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(2)的通项中有构 成项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121---++---+++++++ 综上所述,由于方程(3)恰有k 个根,从而构成方程(2)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(1)的一个特解:*n x ,则(1)必有通解: =n x -n x +* n x (4) 方程(4) 的特解可通过待定系数法来确定。 例如:如果)(),()(n p n p b n b m m n =为n 的m 次多项式,则当b 不是特征根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为n 的m 次多 项式;如果b 是r 重特征根时,可设特解:r n n b )(n q m ,将其代入(1) 中确定出系数即可。

人教版高中数学必修一第三章函数的应用3.1函数与方程(教师版)【个性化辅导含答案】

函数与方程 __________________________________________________________________________________ __________________________________________________________________________________ 1、 掌握函数的零点和二分法的定义. 2、 会用二分法求函数零点的近似值||。 一、函数的零点: 定义:一般地||,如果函数()y f x =在实数a 处的值等于零即()0f a =||,则a 叫做这个函数的零点||。对于任意函数||,只要它的图像是连续不间断的||,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号||。 特别提醒: 函数零点个数的确定方法: 1、判断二次函数的零点个数一般由判别式的情况完成; 2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点||,则要结合二次函数的图像进行; 3、对于一般函数零点的个数的判断问题不仅要在闭区间[],a b 上是连续不间断的||,且f(a)?f (b )<0||,还必须结合函数的图像和性质才能确定||。函数有多少个零点就是其对应的方程有多少个实数解||。 二、二分法: 定义:对于区间[],a b 上连续的||,且()()0f a f b -<的函数()y f x =||,通过不断地把函数 ()f x 的零点所在的区间一分为二||,使区间的两个端点逐步逼近零点||,从而等到零点近似值的 方法||,叫做二分法||。 特别提醒: 用二分法求函数零点的近似值 第一步:确定区间[],a b ||,验证:f(a)?f (b )<0||,给定精确度; 第二步:求区间[],a b 得中点1x ; 第三步:计算()1f x ;若()1f x =0||,则1x 就是函数零点;若f(a)?f (x 1)<0||,则令1b x =; 若f(x 1)?f (b )<0||,则令1a x = 第四步:判断是否达到精确度ε||,即若a b ε-<||,则得到零点近似值a ()b 或||,否则重复第二、 三、四步||。 类型一求函数的零点 例1:求函数y =x -1的零点: 解析:令y =x -1=0||,得x =1||, ∴函数y =x -1的零点是1. 答案:1 练习1:求函数y =x 3-x 2-4x +4的零点. 答案:-2||,1||,2.

差分方程的解法(终审稿)

差分方程的解法 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

第三节 差分方程常用解法与性质分析 1、常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ ( 8) 其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (9) 为方程(8)对应的齐次方程。 如果(9)有形如 n n x λ=的解,带入方程中可得: 0 ...1110=++++--k k k k a a a a λλλ(10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1) 若(10)有k 个不同的实根,则(9)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(10)有m 重根λ,则通解中有构成项:

(3)若(10)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ ?βαρarctan ,22=+=,则(9)的通解中有构成项: (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(9)的通项中有成项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121-- -++---+++++++ 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(8)的一个特解:*n x ,则(8)必有通解: =n x -n x +* n x (11) (1) 的特解可通过待定系数法来确定。 例如:如果 )(),()(n p n p b n b m m n =为n 的多项式,则当b 不是特征根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为m 次多项式;如果b 是r 重根时, 可设特解:r n n b )(n q m ,将其代入(8)中确定出系数即可。 2、差分方程的z 变换解法

非线性薛定谔方程数值解的MATLAB仿真

[键入作者姓名] [键入文档标题] ——利用分步快速傅里叶变换对光纤中光信号的传输方程进行数值求解

1、非线性薛定谔方程 非线性薛定谔方程(nonlinear Schrodinger equation ,NLSE)是奥地利物理学家薛定谔于1926 年提出的,应用在量子力学系统中。由于量子力学主要研究粒子的动力学运动状态,所以不能运用牛顿力学公式来表示。通常在量子力学中,研究系统的状态一般通过波函数(x ,t)来表示。而对波函数的研究主要是求解非线性薛定谔方程。本文主要研究光脉冲在光纤中传输状态下的演变。 一般情况下,光脉冲信号在光纤中传输时,同时受到光纤的色散和非线性效应的影响。通过Maxwell 方程,考虑到光纤的色散和非线性效应,可以推导出光信号在光纤中的传输方程,即非线性薛定谔方程。NLSE 是非线性偏微分方程,一般很难直接求出解析解,于是通过数值方法进行求解。具体分为两大类:(1)分布有限差分法(split-step finite differencemethod ,SSFD);(2)分步傅里叶变换法(split-step Fourier transform method ,SSFT)。一般情况,在达到相同精度,由于分步傅里叶变换法采用运算速度快的快速傅里叶变换,所以相比较有限差分法运算速度快一到两个数量级。于是本文介绍分步傅里叶变换法来对光纤中光信号的传输方程,即非线性薛定谔方程进行数值求解。并通过MATLAB 软件对结果数值仿真。 非线性薛定谔方程的基本形式为: 22||t xx iu u u u =+ 其中u 是未知的复值函数. 目前,采用分步傅立叶算法(Split step Fourier Method)求解非线性薛定谔方程的数值解应用比较多。分步傅立叶方法最早是在1937年开始应用的,这种方法己经被证明是相同精度下数值求解非线性薛定愕方程最快的方法,部分原因是它采用了快速傅立叶变换算法(Fast Fourier Transform Algorithm)。基于MATLAB 科学计算软件以及MATLAB 强大的符号计算功能,完全可以实现分步傅立叶数值算法来对脉冲形状和频谱进行仿真。 一般情况下,光脉冲沿光纤传播时受到色散和非线性效应的共同作用,假设当传输距离 很小的时候,两者相互独立作用,那么,根据这种思想可建立如下分步傅立叶数值算法的数 学模型: 把待求解的非线性薛定谔方程写成以下形式: ??()U D N U z ?=+? (I ) (II )

2019-2020年高中数学 第三章 函数的应用 第1节 函数与方程(3)教案 新人教A版必修1

2019-2020年高中数学第三章函数的应用第1节函数与方程(3)教案 新人教A版必修1 教学内容分析 本节选自《普通高中课程标准实验教科书·数学1》人教A版第三单元第一节第二课,主要是分析函数与方程的关系.教材分三步来进行:第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应函数的零点的联系.然后推广为一般方程与相应函数的情形;第二步,在用二分法求方程近似解的过程中,通过函数图象和性质来研究方程的解,体现方程和函数的关系;第三步,在函数模型的应用过程中,通过函数模型以及模型的求解,更全面地体现函数与方程的关系,逐步建立起函数与方程的联系. 本节课是这一小节的第二节课,即用二分法求方程的近似解.它以上节课的“连续函数的零点存在定理”为确定方程解所在区间的依据,从求方程近似解这个侧面来体现“方程与函数的关系”;而且在“用二分法求函数零点的步骤”中渗透了算法的思想,为学生后续学习算法的内容埋下伏笔;充分体现新课程“渗透算学方法,关注数学文化以及重视信息技术应用”的理念.求方程近似解其中隐含“逼进”的数学思想,并且运用“二分法”来逼近目标是一种普通而有效的方法,其关键是逼近的依据. 学生学习情况分析 同学们有了第一节课的基础,对函数的零点具备基本的认识;而二分法来自生活,是由生活中抽象而来的,只要我们选材得当,能够激发学生的学习兴趣,达到渗透数学思想关注数学文化的目的,学生也能够很容易理解这种方法.其中运用“二分法”进行区间缩小的依据、总结出“运用二分法求方程的近似解”的步骤、将“二分法”运用到生活实际,是需要学生“跳跳”才能摘到的“桃子”. 设计理念 本节课倡导积极主动、勇于探索的学习方式,应用从生活实际——理论——实际应用的过程,应用数形结合、图表、信息技术,采用教师引导——学生探索相结合的教学方法,注重提高学生提出问题、分析问题和解决问题的能力,让学生经历直观感知、观察发现、抽象与概括、符号表示、运算求解、数据处理、反思与建构等思维过程. 教学目标 1.理解二分法的概念,掌握运用二分法求简单方程近似解的方法;利用信息技术辅助教学,让学生用计算器自己验证求方程近似值的过程; 2.体会二分法的思想和方法,使学生意识到二分法是求方程近似解的一种方法;让学生能够了解近似逼近思想,培养学生探究问题的能力和创新能力,以及严谨的科学态度; 3.体验并理解函数与方程的相互转化的数学思想方法;感受正面解决问题困难时,通过迂回的方法使问题得到解决的快乐. 教学重点与难点 教学重点:能够借用计算器用二分法求相应方程的近似解,根所在区间的确定及逼近的思想. 教学难点:对二分法的理论支撑的理解,区间长度的缩小. 教学过程 1.教学基本流程图

非线性薛定谔方程的孤子解和怪波解

非线性薛定谔方程的孤子解和怪波解 摘要:光纤中光波的传输模型一直是当前研究的热点理论模型之一,从非线性薛定谔方程到金格堡-朗道方程,都试图对其进行更好的阐释,其次对于非线性动力学系统中,非线性薛定谔方程的解有呈现出非常多有趣的特征,对于其中特定解的研究能够让我们了解脉冲演化的本质,所以本文主要从孤子解的传输入手,并且简单介绍了怪波解的解形式。 薛定谔方程又称薛定谔波动方程,是量子力学的一个基本方程,同时又是量子力学的基本假设之一,由奥地利物理学家薛定谔1926年在《量子化就是本征值问题》中提出的,它在量子力学中的地位非常重要,相当于牛顿定律对于经典力学一样。 随着人们对世界的不断探索,非线性现象逐渐走进人们的视野,这种现象一般大都用非线性偏微分方程的数学模型来描述,显然线性方程已经不能满足人们的需求。 1973年,Hasegawa从含有非线性项的色散方程中推导出了非线性薛定谔方程。非线性薛定谔方程(NLS)是普适性很强的一个基本方程,最简单的形式是: 其中为常数。因为这个方程在几乎所有的物理分支及其他科学领域得到了广泛的应用,如超导,光孤子在光纤中传播,光波导,等离子体中的Langnui波等,所以许多学者对此方程的研究投入了很大的热情,至今还在生机勃勃的向前发展着。 1 分步傅里叶法计算演化过程 对于处理非线性性薛定谔方程,常用的数值仿真方式为分步傅里叶方法,为了简单起见,只考虑二阶色散和自相位调制,不考虑高阶色散、自陡以及四波混频等高阶非线性效应。上述方程中做 2 β为二阶色散,γ表示Kerr效应系数,g和α分别代表光纤中的增益和损耗。对上述方程转化到频域,先不考虑增益和损耗。可以得到 2 k k k k k dA i A i a a dz βγ =?+F. 其中2 2 2 k i β β ?=Ω 令() exp k k A B i z β =?可以得到 () 2exp k k k k dB i a a i z dz γβ =-? F 以上方程可以用四阶龙格库塔直接求解,但是速度较慢,所以我们需要做差分处理。 ()() ()()() 2 exp k k k k k B z z B z i a z a z i z z γβ +?- =-? ? F 再利用() exp k k A B i z β =?可以得到 ()()()() ()()() 2 2 exp exp exp k k k k k k k k A z z A i a z a z z i z a z i a z z i z γβ γβ ?? +?=+??? ?? ?? ?? ≈????? ?? F F 然后做傅里叶反变换就可以得到最终的结果 ()()()() 2 1exp exp - k k k k a z z a z i a z z i z γβ ?? +?=????? ?? F F

2017_2018学年高中数学第三章函数的应用3-1函数与方程3-1-2用二分法求方程的近似解优化练习新人教A版必修1

用二分法求方程的近似解 [课时作业] [A 组 基础巩固] 1.下列图象与x 轴均有交点,其中不能用二分法求函数零点的是( ) 答案:B 2.用“二分法”可求近似解,对于精确度ε说法正确的是( ) A .ε越大,零点的精确度越高 B .ε越大,零点的精确度越低 C .重复计算次数就是ε D .重复计算次数与ε无关 答案:B 3.用二分法求函数f (x )=x 3+5的零点可以取的初始区间是( ) A .[-2, 1] B .[-1,0] C .[0,1] D .[1,2] 解析:f (-2)=-3<0,f (1)=6>0 逐次验证得出初始区间为A. 答案:A 4.定义在R 上的函数f (x )的图象是连续不断的曲线,已知函数f (x )在区间(a ,b )上有一个零点x 0,且f (a )·f (b )<0,用二分法求x 0时,当f ? ????a +b 2=0时,则函数f (x )的零点是( ) A .(a ,b )外的点 B .x =a +b 2 C .区间? ????a ,a +b 2或? ?? ??a +b 2,b 内的任意一个实数 D .x =a 或x =b 答案:B 5.设f (x )=3x +3x -8,用二分法求方程3x +3x -8=0在x ∈(1,2)内近似解的过程中,计算得到f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根落在区间( ) A .(1,1.25) B .(1.25,1.5) C .(1.5,2) D .不能确定

解析:∵f(1)<0,f(1.5)>0,f(1.25)<0,则由f(1.25)·f(1.5)<0可知方程根落在(1.25,1.5)上. 答案:B 6.用二分法研究函数f(x)=x2+6x-2的零点时,第一次经过计算f (0)<0,f(0.5)>0可得其中一个零点x0∈________,第二次应计算________. 解析:由零点的存在性可知,x0∈(0,0.5),取该区间的中点0.5 2 =0.25,∴第二次应计算 f(0.25). 答案:(0,0.5) f(0.25) 7.求方程log3x+x=3的解所在区间是________. 解析:构造函数f(x)=log3x+x-3,找出函数零点所在的初始区间, ∵f(2)<0,f(3)>0,∴x0∈(2,3). 答案:(2,3) 8.若方程x3-x+1=0在区间(a,b)(a,b是整数,且b-a=1)上有一根, 则a+b=________. 解析:设f(x)=x3-x+1,则f(-2)=-5<0, f(-1)=1>0可得a=-2,b=-1,∴a+b=-3. 答案:-3 9.求方程2x3+3x-3=0的一个近似解.(精确度0.1) 解析:设f(x)=2x3+3x-3,∵f(0)=-3<0,f(1)=2>0,∴函数在(0,1)内存在零点,即方程在(0,1)内有实数解,取(0,1)作为初始区间,利用二分法逐次计算,列表如下:

线性代数习题[第三章] 矩阵的初等变换与线性方程组

习题 3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆(2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ????=--????-?? (2)11121212221 2n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????01,2,,i i a b i n ≠????=?? 2.设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()()1 d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111 a a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2 A A =,试证: ()()R A R A E n +-=

人教A版数学必修一第三章 函数与方程

第三章函数与方程 一、方程的根与函数的零点课型A 例1.函数1()f x x x =+的零点个数为(A ) A .0 B .1 C .2 D .3 例2.函数1()44x f x e x -=+-的零点所在区间为(B ) A.(1,0)- B.(0,1) C.(1,2) D.(2,3) 例3.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是(D ) A .()6,2- B .[]6,2- C .{}6,2- D .()(),26,-∞-+∞U 例4.若1x 是方程lg 3x x +=的解,2x 是310=+x x 的解,则21x x +的值为(C ) A . 23B .32C .3D .31 例5.义在R 上的偶函数()x f y =在(]0,∞-上递增,函数()x f 的一个零点为2 1-,求满足

14log 0f x ??≥ ??? 的x 的取值集合1,12x ??∈???? 二、用二分法求方程的近似解课型A 例1.例1 下列函数中能用二分法求零点的是(C) 例2函数图象与x 轴均有交点,但不宜用二分法求交点横坐标的是(B)

例3.若函数() f x在[],a b上(D). f x在区间[],a b上为减函数,则() A.至少有一个零点 B.只有一个零点 C.没有零点 D.至多有一个零点 例4.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x0∈________,第二次应计算________.以上横线上应填的内容为(A) A.(0,0.5),f(0.25)B.(0,1),f(0.25) C.(0.5,1),f(0.25)D.(0,0.5),f(0.125) 例5.()2ln(2)3 =--的零点所在区间为(B) f x x x A.(2,3) B.(3,4) C.(4,5) D.(5,6) 例6.求方程3250 --=在区间[2,3]内的实根,由计算器可算得(2)1 x x f=-,(3)16 f=,f=,那么下一个有根区间为 .(2,2.5) (2.5) 5.625

第四章 差分方程方法

第四章 差分方程方法 在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等等,但是,往往都需要用计算机求数值解。这就需要将连续变量在一定条件下进行离散化,从而将连续型模型转化为离散型模型,因此,最后都归结为求解离散形式的差分方程解的问题。关于差分方程理论和求解方法在数学建模和解决实际问题的过程中起着重要作用。 下面就不同类型的差分方程进行讨论。所谓的差分方程是指:对于一个数列{}n x ,把数列中的前1+n 项()n i x i ,2,1,0=关联起来所得到的方程。 4.1常系数线性差分方程 4.1.1 常系数线性齐次差分方程 常系数线性齐次差分方程的一般形式为 02211=+?+++---k n k n n n x a x a x a x (4.1) 其中k 为差分方程的阶数,()k i a i ,,2,1 =为差分方程的系数,且()n k a k ≤≠0。对应的代数方程 02211=++++--k k k k a a a λλλ (4.2) 称为差分方程的(4.1)的特征方程,其特征方程的根称为特征根。 常系数线性齐次差分方程的解主要是由相应的特征根的不同情况有不同的形式。下面分别就特征根为单根、重根和复根的情况给出差分方程解的形式。 1. 特征根为单根 设差分方程(4.1)有k 个单特征根 k λλλλ,,,,321 ,则差分方程(4.1)的通解为 n k k n n n c c c x λλλ+++= 2211, 其中k c c c ,,,21 为任意常数,且当给定初始条件 ()0i i x x = ()k i ,,2,1 = (4.3) 时,可以惟一确定一个特解。 2. 特征根为重根 设差分方程(4.1)有l 个相异的特征根()k l l ≤≤1,,,,321λλλλ ,重数分别为 l m m m ,,,21 且k m l i i =∑=1 则差分方程(4.1)的通解为

高中数学第三章函数的应用3.1函数与方程3.1.1方程的根与函数的零点课时训练无答案新人教A版必修

3.1.1 方程的根与函数的零点 一、选择题 1.y =2x -1的图象与x 轴的交点坐标及其零点分别是( ) A. 12,12 B .? ????12,0,12 C .-12,-12 D .? ?? ??-12,0,-12 2.函数y =x 2+a 存在零点,则a 的取值范围是( ) A .a >0 B .a ≤0 C .a ≥0 D .a <0 3. 下列函数中,既是偶函数又在区间 ()0,+∞上存在零点的是( ) A .1y x = B .x y e -= C .lg y x = D .21y x =-- 4.已知函数f (x )的图象是连续不断的,有如下的x ,f (x )对应值表: A .2个 B .3个 C .4个 D .5个 5.若函数y=f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,则下列说法正确的是 ( ) A.若f (a )·f (b )>0,不存在实数c ∈(a ,b ),使得f (c )=0 B.若f (a )·f (b )<0,存在且只存在一个实数c ∈(a ,b ),使得f (c )=0 C.若f (a )·f (b )>0,有可能存在实数c ∈(a ,b ),使得f (c )=0 D.若f (a )·f (b )<0,有可能不存在实数c ∈(a ,b ),使得f (c )=0 6.已知函数f (x )为奇函数,且该函数有三个零点,则三个零点之和等于( ) A.0 B.1 C.-1 D.不能确定 7.已知f (x )是定义域为R 的奇函数,且在(0,+∞)内的零点有1003个,则f (x )的零点的个数为( )

A .1003 B .1004 C .2006 D .2007 8.方程3log 3x x += 的解所在的区间为( ) A .(0,2) B .(1,2) C .(2,3) D .(3,4) 二、填空题 9.二次函数y =ax 2 +bx +c 中,a ·c <0,则函数零点的个数是________. 10. 函数212()log f x x x =-的零点个数为 . 11.函数f (x )=????? 2x 2-x -1,x ≤0,3x -4,x >0的零点的个数为________. 12.已知函数???≤-->-=0 ,20,12)(2x x x x x f x 若函数m x f x g 3)()(+=有三个零点,则实数m 的取值范围 . 三、解答题 13.函数()log (1)log (3)(01)a a f x x x a =-++<<. (1)求函数f (x )的定义域; (2)求函数f (x )的零点.

相关主题
文本预览
相关文档 最新文档