当前位置:文档之家› 分布式光纤传感器

分布式光纤传感器

分布式光纤传感器
分布式光纤传感器

光纤分布式声波传感技术

刘德中通信学院 2013010917006

内容摘要

声波属于物质波,其实质是质点振动、应力、压力等在弹性介质中的多样表现形式。在声学的研究领域中,声波的产生机制、传播形式以及检测方法是会共同涉及的内容。目前的声波检测技术就是利用声波信号在弹性介质内的传播变化实现对检测目标的测探、准确识别、定位等。

在光纤传感领域,当前的一个研究热点就是光纤声波检测,它可以用作水听器,应用于海洋、陆地石油、天然气勘探输油管道实时检测预警系统;也可用作光纤麦克风,用光纤光栅制成的声波传感探头基元以光纤光栅的中心波长调制来获得传感信息的,它具有灵敏度高、抗干扰能力强、全光纤的特点,同时还具有能够实现波分复用、检测探头的微型化等特点。

关键词:声波检测光纤传感技术分布式震动传感布里渊散射

一、技术原理

(一)基于光纤光栅的传感器

基于光纤光栅的传感器的原理是当温度、应变、折射率、应力、浓度等外界环境因素出现变化时,光纤光栅的有效折射率或者是光纤光栅周期就会发生

改变,从而使得光纤光栅的中心波长出现变化,对这一变化量经过信号处理之

后,就能够获得所需要检测的参数。这一过程中,传感信号的获得方式是通过光

纤光栅中心波长的调制实现的,相比于强度调制传感器而言,光纤光栅传感器

的灵敏度更高,更广的动态测量范围。所以,基于光纤光栅的传感器以其自身强

大的抗干扰能力、高灵敏

度以及对光源的稳定性及

能量特征要求低的特性,

使其在精确、精密测量方

面十分合适,光纤光栅传

感器目前已经占据了以光

纤为主要材料的44%左右。

(二)光纤声波传感器

声音属于微压动态信号,要想测量声音信号,可以通过监测频率或声压来实现。一般情况下,人们在传递和探测声信号时,会使用电子式传声器,该传声

器具有声-电换能原理,然而在一些特殊的环境中,如在核磁共振、强电磁干扰

或易燃易爆环境中,一些电子式传声器会失去作用,加之信号衰减会给传感器

端的弱电量信号带来不利影响,所以在较远的距离间无法使用电子式传声器,

这给远距测量带来了诸多难题。为了让信息能够准确传递出去,必须研宄一种

无源传声器,这种传声器不受电磁的干扰,还能在较远的距离间进行传输。光纤

声波传感器是光纤微压传感器中的一种,它具有一定的特殊性,要想实现声-光

换能,不能缺少的器件就是光纤声波传感器,它具有很多优点,例如损耗较小,

能够避免电磁干扰,能够在较远的距离间进行传输等,所以光纤声波传感器的

应用十分广泛。目前,光纤水听器与光纤麦克风是光纤声波传感器的两个主要

研宄方向。

(三)布里渊散射

布里渊散射是入射光与声波或传播的压力波(密度波)相互作用的结果。传播的压力波等效于一个以一定速度%(频率QB)移动的密度光栅,因此,布里渊

散射可认为是入射光在移动的光栅上的散射,多普勒效应使得散射光的频率不

同于入射光。散射光相对于泵浦光有一个频移,通常称为布里渊频移。其大小

主要由光纤的声学特性和弹性力学特性决定,此外还与散射角和入射光频率有

关:

式中:Vs为布里渊散射光的斯托克斯光光频;Va为入射光光频;n为光纤折射率;Vo心为介质中声速;Vb为布里渊频移;θ为散射光与入射光的夹角。

故背向布里渊散射的布里渊频移最大为:

其中Va为温度和应变的函数。大量的理论和实验研究证明,光纤中布里渊散射信号的布里渊频移和功率与光纤所处环境和所承受的应变在一定条件

下呈线性变化关系,并由下式给出:

式中:△Vb为布里渊频移变化量;△ξ为应变的变化量;ΔT为温度变化量;CvT布里渊频移温度系数;Cvξ为布里渊频移应变系数;ΔPb为布里渊功

率变化量;Cpt为布里渊功率温度系数;Cpξ为布里渊功率应变系数。

因此,在已知温度、应变系数的情况下测定布里渊散射信号的频移和功率,通过上面两式就可以得到温度和应变信息,这就是基于布里渊散射的分布式传

感技术的传感机理。

二、发展现状

(一)进入实用化阶段,逐步形成传感领域的一个新的分支

1、不少光纤传感器以其特有的有点,替代或更新了传统的测试系统,同时出现了

一些应用管线技术的新型测试系统,如分布式光纤测温系统、以光纤光栅为主

的光纤只能结构。

2、改造了传统的测试系统,把传统的电子式测量仪表改造成安全可靠的现金光纤

是仪表。许多特殊场合——核工业、化工和石油钻探中也都应用了光纤传感系

(二)新的传感技术不断出现,促进了相关领域技术的发展

光纤传感网络的出现,促进了智能材料和只能结构的发展,光子晶体光纤用于传

感的可能性促进了光子晶体的发展等。

智能材料是指将敏感元件嵌入被测构件机体和材料中,从而在构件或材料常规工

作的同事实现对其安全运转、故障等的实时监控。其中,光纤和电导线与多种材

料的有效结合是关键问题之一。

(三)原理性研究扔出与重要位置

由于很多光纤传感器的开发是以取代当前已被广泛采用的传统几点传感系统为目

的,所以尽管光纤传感器具有诸多优势,其市场渗透所面临的困难和挑战仍很巨

大。而那些具有前所未有全新功能的光纤传感器则在竞争中占有明显优势。(四)相关的应用开发也还任重道远

在很多领域,光纤传感技术尚未实现产业化,许多关键技术仍然停留在实验室样

机阶段,距离商业化还有一定距离。

三、应用领域

(一)火灾检测与报警——港口/码头

1、传送带火灾检测

2、仓库火灾预测与报警

3、柴油、两面、易燃原料垛露天场所火灾探测

(二)电力电缆检测

1、电缆状态检测

2、探测和识别电力电缆的热点

3、电力设备的保护

4、优化输配电的资本

5、变电站和开关柜的检测

6、电缆隧道与电缆夹层火灾检测

7、附件检测

(三)管道检测

(四)压力容器/油管监测

1、过热点监测

2、状态监测

3、膨胀/压缩监测

(五)发电厂监测(远程监测)

四、未来趋势

对光纤声波传感器的研究自20世纪90年代以来已经有了很大的进展.目前,国外已有根

据各种原理研制的光纤声波传感器,如光纤微弯声波传感器、光纤光栅声波传感器和各种干涉型光纤声波传感器,并且还在继续对之进行研究,如UniversityofStrathclyde,NationalDefenseAcademyof Japan,BatteneMemorialInstitute等许多大学和科研单位都在对提高它的信噪比和动态测量范围等性能进行研究.

分布式光纤声波传感器,它基于Sagnac非互易相位调制干涉原理,其特色在于测量数据的获得不是通过光时域反射法(OTDR)或光学频域反射法(OFDR),而是通过频域内的载波技术来实现的.由于光纤Sagnac干涉对由热和振动引起的低频变化不敏感,具有测量准确,定位精度高,测量距离长等优点.因此本技术在流体管道泄漏的实时监测方面有很好的应用前景.但此项技术需要解决以下关键问题:

1)基于Sagnac效应的光纤陀螺仪原理,研究泄漏声发射信号对光信号的相位调制机理及

泄漏声信号的光学参数表征。对于长距离管道泄漏检测而言,扰动信号为一声信号,即泄漏产生的声发射信号。该信号对于光纤中传播的光信号要进行相位调制,其调制信号与声信号的频率及其声信号的产生位置直接相关。

2)当泄漏发生时,声发射信号的传播特征不同,如频率范围、幅度大小和在管内液体中的

传播形式等对光纤的作用也不同,需要建立不同的调制模型进行分析研究。

3)在传感器研制方面,采用集成技术,着重研究光纤的增敏(对声波敏感)技术。为保证干涉

仪的互易性需要采取同光路、同模式及同偏振态的三同措施。这就需要对器件做优化选择。

4)由于其调制信号为弱信号,因此在光电转换技术、弱信号检测电路以及相应的信号处理

软硬件等方面需要做进一步研究。

5)由于光纤干涉仪的相位随温度的变化而变化,因此对温度的影响要进行补偿,可以采用

软件补偿措施,即进行温度标定。

参考文献

[1]王秀彦,吴斌,何存富,刘增华光纤传感技术在检测中的应用与展望[J].北京工业大学

学报

[2]李仁禄,郭锦锦,杨远洪基于布里渊散射的分布式光纤传感技术的研究及进展[J].

红外与激光工程

[3]张靖涛光纤声波振动检测系统及分布式振动传感技术研究[D].北京邮电大学

光纤传感器

光纤传感器 ①光纤传感器的基本原理 光纤传感器通过光导纤维把输入变量转换成调制的光信号。光纤传感器的测量原理有两种。 (1) 物性型光纤传感器原理 物性型光纤传感器是利用光纤对环境变化的敏感性,将输入物理量变换为调制的光信号。其工作原理基于光纤的光调制效应,即光纤在外界环境因素,如温度、压力、电场、磁场等等改变时,其传光特性,如相位与光强,会发生变化的现象。因此,如果能测出通过光纤的光相位、光强变化,就可以知道被测物理量的变化。 这类传感器又被称为敏感元件型或功能型光纤传感器。 激光器的点光源光束扩散为平行波,经分光器分为两路,一为基准光路,另一为测量光路。外界参数(温度、压力、振动等)引起光纤长度的变化和相位的光相位变化,从而产生不同数量的干涉条纹,对它的模向移 动进行计数,就可测量温度或压力等。 图1 物性型光纤传感器工作原理示意图 (2) 结构型光纤传感器原理 结构型光纤传感器是由光检测元件(敏感元件)与光纤传输回路及测量电路所组成的测量系统。其中光纤仅作为光的传播媒质,所以又称为传光型或非功能型光纤传感器。 图2 结构型光纤传感器工作原理示意图

(3) 拾光型光纤传感器原理 用光纤作为探头,接收由被测对象辐射的光或被其反射、散射的光。其典型例子如光纤激光 多普勒速度计、辐射式光纤温度传感器等。 图3 拾光型光纤传感器工作原理示意图 ②光纤传感器的优点 与传统的各类传感器相比,光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质,具有光纤及光学测量的特点,有一系列独特的优点。 (1) 电绝缘性能好。 (2) 抗电磁干扰能力强。 (3) 非侵入性。 (4) 高灵敏度。 (5) 容易实现对被测信号的远距离监控。 (6) 耐腐蚀,防爆。 (7) 光路有可挠曲性,便于与计算机联接。 (8) 结构简单,体积小,重量轻,耗电少等。

光纤传感器使用方法

FS-V21/21G/21RP/21RM/21X 光纤传感器调试方法 1、基本组成 本系列的光纤传感器外观基本由以下几部分组成,从左到右依次为: (1)SET键,此按钮可用于敏感度设定。本传感器的基本原理为:通过光纤探头对不同介质折射率的感应,从而获得数字信号,显示在屏幕上,通过显示数值的大小与设定灵敏值的比较发送开关量。 (2)指示灯,此灯在传感器有信号输出时发生亮灭变化。 (3)“设定灵敏值”,在屏幕上显示为绿色,表明当前设定的灵敏值。当探头采集到的数值变化至此数值时,传感器产生信号。 (4)“当前灵敏值”,在屏幕上显示为红色,显示传感器当前采集的数值。(5)“选择按钮”,及左右箭头,可以实现各种功能的选择,相当于翻页键 (6)“模式选择按钮”,此按钮可用于设定不同的工作模式。 2、接线方法 (1)F S-V21/21G/21R/21RM/21X:棕线:L+24V 黑线:信号线 橙线:1-5V 蓝线:公共端 (2)FS-V21RP:棕线:L+24V 黑线:信号线蓝线:公共端 3、灵敏度校准 (1)全自动校准:在工件进入探头的灵敏区域时,按住“SET”键不放,保持3秒,灵敏值将会被设定,显示为绿色 (2)两点校准:在工件未进入灵敏区域时,按住“SET”键保持三秒,有一个敏感值被记忆,然后将工件放置在敏感区域,按下“SET”键保持三秒,另一个敏感值被记忆,当敏感值从一个值变化为另一值时,传感器产生电平变化。 (3)一般校准:也可以通过按“选择按钮”,及左右键来增减敏感度的设定值。 (4)位置校准:在工件未进入灵敏区域时,按住“SET”键保持

三秒,然后将工件放置在离探头一定距离,按下“SET”键保持三秒,一个敏感值被记忆,当工件每次到达此位置时,传感器产生电平变化。 4、常开常闭设定 按下最右侧的开关选择按钮,可以选择,内部开关为常闭还是常开。

光纤传感器应用

光纤传感技术的应用 在机械、电子仪器仪表、航天航空、石油、化工、生物医学、环保、电力、冶金、交通运输、轻纺、食品等国民经济各领域的生产过程自动控制、在线检测、故障诊断、安全报警以及军事等方面有着广泛的应用。 1 光纤传感器的特征 光纤传感器系统按照在传感器中的作用分为两种类型:功能型和非功能型。功能型光纤传感器光纤不仅起传光作用,而且是敏感元件,非功能型光学传感器中,光纤不是敏感元件。描述光波特征的参量很多(如光强、波长、相位、振幅态和模式分布等),这些参量在光纤传输中都可能受外界影响而发生变化。如当温度、压力、加速度、电压、电流、位移、振动、转动、弯曲、应变以及化学量和物理量等对光路产生影响时,均使这些参量发生相应变化,光纤传感器就是根据这些参量随外界因素的变化关系来检测各相应物理量的大小。光纤传感器由光源、传输光纤、光电元件等部分组成。其中光源是光纤传感器的重要组成部件,目前常用的有白炽灯,激光器和发光二极管。光电元件多用半导体光电二极管。 与其它常规传感器相比,光纤传感器有如下特点: (1)高灵敏度,抗电磁干扰。由于光纤传感器检测系统不传送电信号,因此,光信号在中不会与电磁波发生作用,也不受任何电噪声的影响,由于这一特征,光纤传感器在电力系统的检测中得到了广泛应用。 (2)频带宽、动态范围大。 (3)可根据实际需要做成各种形状。 (4)可以用很近似的技术基础构成传感不同物理量的传感器,这些物理量包括声场、磁场、压力、温度、加速度、位移、液位、流量、电流、辐射等; (5)便于与计算机和光纤系统相连,易于实现系统的遥测和控制。 (6)结构简单、体积小、质量轻、耗能小。正由于它的这些优点,其应用领域非常广阔市场前景也比较广。 2 国内外光纤传感器的发展情况 美国是最早研制光纤传感器并投资最大的国家并且取得很大成就。从1977开始由美国海军研究所主持的光纤传感器系统共有5个公司参加,主要研究方向是水声器、磁强计和其它水下检测有关设备。1980年开始研究,1984年进行飞行实验的现代数字光纤控制系统(ADOSS),采用光纤译码的光纤传感器系统代替直升飞机驾驶员的控制,最终将实现用光纤液压传动系统代替电源。另外,光纤陀螺(FOG)计划、核辐射监控(NRM)计划、飞机发动机监控(AEM)计划、民用研究计划(CRP)使光纤传感器技术迅猛发展,在军事、民用、电力、监控、桥梁、医学生物检测等方面得到广泛应用。 3 光纤传感器的应用 光纤传感器的应用非常广泛,几乎涉及国民经济的所有重要领域和人们的日常生活。在现代信息社会中,传感器技术迅猛发展,其中光纤传感器以其独特的优点应用非常广泛,包括工业、军事、医疗、通讯、过程控制以及恶劣环境下物理量的测量,如光纤传感器在石油领域中的应用、光纤传感器在军事领域的应用、光纤传感器在医学中的应用、光纤传感器在土木工程中的应用、光纤传感器在环境监控中的应用、光纤传感器在飞机上的应用、在电力系统上的应用、光纤传感器的发展动态与研究方面等。“中国2010年远景规划”已将传感器列为重点发展的产业之一,随着我国加入世界贸易组织,传感器的市场需求和发展空间的潜力是非常大的。可以预见,随着制作技术的日益成熟和器件性能的不断提高,不久的将来光纤传感器必将在海洋、化工、水利电力等各个领域显示其应用活力。

分布式光纤传感技术

光纤光栅传感器是一种常用的光学传感器件,分布式光纤光栅就属于准分布式光纤传感器件中的一种。选题方向合理。请尽快确定课题完成方式,明确研究内容,尽快开展课题调研论证工作。75 分布式光纤光栅传感技术 光纤传感技术是一种以光纤为媒介,光为载体,感知和传输外界信号(被测量)的新型传感技术,是伴随着光导纤维及光纤通信技术发展而逐步形成的。在光通信系统中,光纤被用作远距离传输光波信号的媒质,在这类应用中,光纤传输的光信号受外界因素的影响越小越好,但是,在实际的光传输过程中,光纤容易受到外界环境因素的影响,如温度、压力、应变等外界条件的变化将引起光纤中传输光波的特征参数如频率、相位、光强、偏振态等的变化,通过测量这些参数的变化,就可以得到外界作用于光纤的物理量,这就是光纤传感技术。光纤传感技术的基本原理是:将光源的光入射进光纤,当光在光纤中传输的过程中受到外界物理量影响,使得被测参数与光纤内传输的光相互作用,进行调制,从而使其光学性质如光的频率、波长(颜色)、强度、相位、偏振态等发生变化成为被调制的信号光,然后将这一调制的信号光送入光探测器中进行解调,经信号处理后就可获得被测参数。 光纤传感器与传统传感器相比具有许多明显优势: 1)体积小、重量轻,几何形状具有多方面的适应性,可以做成任意形状的传感器和传感器阵列。 2)抗电磁干扰能力强、耐高温、耐腐蚀,在易燃、易爆环境下安全可靠。 3)光纤传感器件多是无源器件,对被测对象影响较小。 4)便于复用,便于成网。它既可以作为信息的传递媒介,又可以作为信号测量的传感装置。 5)光纤传感器传输频带宽,动态范围大,测量距离长。 光纤传感器的种类很多,按照其工作方式可分为:点式、准分布式和分布式三类。其中,准分布式光纤传感器是使用传感网络系统进行测量的,其光纤不作为传感元件,只作为传输元件,其敏感元件为多个点式的传感器,它们采用串联或各种网络结构形式连接起来,利用波分复用、时分复用或频分复用等技术形成分布式网络系统,进而可以较精确地分时或同时得到被测量信息的空间分布,也可同时得到某一点或某些空间点上不同被测量的分布信息。 光纤光栅传感器除了具有一般光纤传感器耐高温、耐腐蚀等优点之外,还具有波长编码,抗干扰能力强等特性。另外,它较易于在一根光纤中连续写入多个光栅,以制成分布式光纤光栅传感,制得的光栅阵列轻巧柔软,可与渡分复用或时分复用技术等相结合,且十分适于作为分布式传感兀件贴于结构表面或埋人到材料和结构的内部,以实现对结构应变、温度以及压力等的多点监测,这对于目

一文深度了解光纤传感器的应用场景

一文深度了解光纤传感器的应用场景 文| 传感器技术(WW_CGQJS)光纤传感器与测量技术是当今传感器技术领域新的发展引应用,其测量用的光纤传感器有很多种类,有很多种工作方式。国内市场上光纤传感器应用主要在以下四种:光纤陀螺、光纤光栅传感器、光纤电流传感器和光纤水听器。下面对这四种产品分别介绍一下。光纤传感器应用种类一、光纤陀螺。 光纤陀螺按原理可分为干涉型、谐振型和布里渊型,这是三代光纤陀螺的代表。第一代干涉型光纤陀螺,目前该项技术已经成熟,适合进行批量生产和商品化;第二代谐振型光纤陀螺,暂时还处于实验室研究向实用化推进的发展阶段;第三代布里渊型,它还处于理论研究阶段。 光纤陀螺结构根据所采用的光学元件有三种实现方法:小型分立元件系统、全光纤系统和集成光学元件系统。目前分立光学元件技术已经基本退出,全光纤系统用在开环低精度、低成本的光纤陀螺中,集成光学器件陀螺由于其工艺简单、总体重复性好、成本低,所以在高精度光纤陀螺很受欢迎,是其主要实现方法。 二、光纤光栅传感器 目前国内外传感器领域的研究热点之一光纤布拉格光栅传感器。传统光纤传感器基本上可分为两种类型:光强型和干

涉型。光强型传感器的缺点在于光源不稳定,而且光纤损耗和探测器容易老化;干涉型传感器由于要求两路干涉光的光强同等,所以需要固定参考点而导致应用不方便。 目前开发的以光纤布拉格光栅为主的光纤光栅传感器可以避免出现上面两种情况,其传感信号为波长调制、复用能力强。在建筑健康检测、冲击检测、形状控制和振动阻尼检测等应用中,光纤光栅传感器是最理想的灵敏元件。光纤光栅传感器在地球动力学、航天器、电力工业和化学传感中有广泛的应用。三、光纤电流传感器 电力工业的迅猛发展带动电力传输系统容量不断增加,运行电压等级也越来越高,电流也越来越大,这样测量起来就非常困难,这就显现出光纤电流传感器的优点了。在电力系统中,传统的用来测量电流的传感器是以电磁感应为基础,这就存在以下缺点:它容易爆炸以至引起灾难性事故;大故障电流会造成铁芯磁饱和;铁芯发生共振效应;频率响应慢;测量精度低;信号易受干扰;体积重量大、价格昂贵等等,已经很难满足新一代数字电力网的发展需要。这个时候光纤电流传感器应运而生。 四、光纤水听器 光纤水听器主要用来测量水下声信号,它通过高灵敏度的光纤相干检测,将水声信号转换为光信号,并通过光纤传至信号处理系统进行识别。与传统水听器相比,光纤水听器具有

基恩士光纤传感器的分类及原理

基恩士光纤传感器的分类 KEYENCE光纤传感器根据光受被测对象的调制形式可以分为:强度调制型、偏振态制型、相位制型、频率制型;KEYENCE光纤传感器根据光是否发生干涉可分为:干涉型和非干涉型;KEYENCE光纤传感器根据是否能够随距离的增加连续地监测被测量可分为:分布式和点分式;根据光纤在传感器中的作用可以分为:一类是功能型(传感型)传感器; 另一类是非功能型(传光型)传感器。 基恩士光纤传感器的原理 KEYENCE光纤传感器光纤布拉格光栅传感器(FBS)是一种使用频率最高,范围最广的光纤传感器,这种传感器能根据环境温度以及/或者应变的变化来改变其反射的光波的波长。光纤布拉格光栅是通过全息干涉法或者相位掩膜法来将一小段光敏感的光纤暴露在一个光强周期分布的光波下面。这样光纤的光折射率就会根据其被照射的光波强度而永久改变。这种方法造成的光折射率的周期性变化就叫做光纤布拉格光栅。 当一束广谱的光束被传播到光纤布拉格光栅的时候,光折射率被改变以后的每一小段光纤就只会反射一种特定波长的光波,这个波长称为布拉格波长,这种特性就使光纤布拉格光栅只反射一种特定波长的光波,而其它波长的光波都会被传播。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.doczj.com/doc/914380408.html,/

拉曼型分布式光纤传感器DTS.

拉曼型分布式光纤传感器DTS 拉曼型分布式光纤传感器DTS描述: 产品简介 拉曼型分布式光纤传感器DTS是国内外应用较成熟的分布式光纤测温技术,利用自发拉曼散射效应和光时域反射技术实时获得沿光纤分布的温度信息,结合智能火灾判断算法,可及时预警火灾隐患,并精确定位火灾发生位置。 诺驰光电的DTS产品采用模块化设计,可靠性高;同时凭借高速微弱信号处理技术优势,实现0.5m空间分辨率,技术指标国内领先。诺驰光电可提供基于多模光纤和单模光纤的DTS,尤其适合高压电缆在线监测、电力载流量分析、交通隧道火情监测、油气储罐火情监测、输煤皮带火情监测、大坝渗漏监测应用。 测量原理 拉曼型分布式光纤传感器DTS的温度测量基于自发拉曼Raman散射效应。大功率窄脉宽激光脉冲入射到传感光纤后,激光与光纤分子相互作用,产生极其微弱的背向散射光,包括温度不敏感的斯托克斯Stokes光和温度敏感的反斯托克斯Anti-stokes光,两者波长不一样,经波分复用器WF分离后由高灵敏的探测器APD探测,根据两者的光强比值可计算出温度。而位置的确定是基于光时域反射OTDR技术,利用高速数据采集测量散射信号的回波时间即可确定散射信号所对应的光纤位置。

技术优势 ?连续分布式温度测量,无测量盲区?光纤即为传感器,可抗干扰 ?测量距离长?可精确定位 ?测量速度快?本质安全,适于易燃易爆环境下长 期工作 ?测量稳定可靠,误报率低?光纤寿命长,几十年免维护 性能特点 ?测量距离:10km?空间分辨率:0.5m—10m ?取样分辨率:0.25m—1m?测量时间:5s ?测量精度:1℃?友好的用户软件,提供可视化界面?提供单模光纤版本产品应用Applications 性能指标

光纤传感器技术简介

光纤传感器技术简介 摘要:光纤传感器技术经过二十多年的研发阶段,已经步入了实用阶段。光纤传感器特有的优点以及广泛的种类使其具备了替代传统传感器的能力。通过环境变量对光纤中传输光束强度、相位、偏振、光谱等光学特性的调制,使光纤传感器能够在远距离监控恶劣环境中系统的温度、应力、电流等不同的物理量。光纤在这个过程中同时起到了信号传感和传输的作用。光纤传感技术在工业,生物,工程,智能结构,人居生活等方面都有广阔的应用前景。本文旨在为读者介绍光纤传感器技术和它的一些应用领域。 关键词: 光纤传感器; 调制型光纤传感器; 分布式传感器; 传感器的应用 An Introduction to Fiber Optic Sensor Technology Liu Wj Abstract: The technology of fiber optic sensor has entered the stage of practical application after the past decades’ development. Fiber optic sensors, with their unique advantages and a wide range of types, have the ability to displace traditional sensors. Fiber optic sensor technology offers the possibility of sensing different parameters like strain, temperature, pressure in harsh environment and remote locations. These kinds of sensors modulate some features of the light wave in an optical fiber such an intensity and phase or use optical fiber as a medium for transmitting the measurement information. This paper is an introduction to fiber optic sensor technology and some of the applications that make this branch of optic technology, which is still in its early infancy, an interesting field. Key words: Fiber optic sensors; modulation based fiber optic sensors; distributed sensors; sensor applications 0引言 光电子学和光纤通信的进步带来了许多新的产业的革命,光纤不仅可以作为一种传输介质,同时也可以用来设计传感系统。利用光纤作为传感元件,或者通过光纤来和传感元件联系的技术都包含在光纤传感器技术的范畴内,光纤传感器技术现在已经是光纤技术中的一个重要分支。光纤质量轻、体积小、电绝缘、耐高温、多参量测量、抗电磁干扰能力强。同时光纤具有传光特性,无需其他介质就能把待测量值与光纤内光特性变化联系起来,集信息传感和传输与一体,容易组成光纤传感网络。这些都使它拥有了其它电子传感器件不具备的优势。

最新光纤传感器的应用研究

光纤传感器的应用研 究

光纤传感器的应用研究 孙义才 2011301510103 电科三班 摘要:光纤传感技术是一门新的科学技术,也是信息社会的一个重要技术基础,在当代高科技中占有十分重要的位置。该技术是测量技术、半导体技术、计算机技术、信息处理技术、微电子学、光学、声学、精密机械、仿生学、材料科学等众多学科相互交叉的综合性高新技术和密集型前沿技术。本课题主要了解光纤导光的基本原理及其在传感技术上应用的物理基础,重点研究光纤传感器敏感的物理量、光纤传感器的基本类型及其相关应用。 关键词:传感器;光纤通信;禁带宽度;光纤传感温度计;光纤传感压强计。 1.序言 光纤传感技术是二十世纪七十年代左右随着光纤通信技术的萌芽而迅速建立起来的,通过以光波这一载体并光纤这一媒质,起到具有感知与信号传输的新型传感技术。作为被测量信号载体的光波和作为光波传播媒质的光纤,具有一系列独特的、其他载体和媒质难以相比的优点。传感技术是近几年热门的应用技术,传感器在朝着灵敏、精确、适应性强、小巧和智慧化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。 现阶段,光纤传感领域在世界中的发展大致分为两大方面:应用开发与相关原理性研究。 2.1光纤传感器的结构原理 以电为基础的传统传感器是一种把测量的状态转变为可测的电信号的装置。它的电源、敏感元件、信号接收和处理系统以及信息传输均用金属导线连接,见图(a)。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成由光发送器发出的光经源光纤引导至敏感元件。这时,光的某一性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理得到所期待的被测量。 可见,光纤传感器与以电为基础的传统传感器相比较,在测量原理上有本质的差别。传统传感器是以机—电测量为基础,而光纤传感器则以光学测量为基础。

分布式光纤传感器系统测量原理

分布式光纤传感器系统测量原理 [摘要]: 光在光纤中传播,光与介质中光学声子、声学声子发生碰撞,会产生后向散射的光,这些后向散射的光的频率、强度均会发生改变。其改变量的大小与折射率等有关,而折射率等因素受光纤的应变、温度的影响。 [关键词]:光纤;光纤传感器;测量 中国分类号:TN6 文献标识码:A 文章编号:1002-6908(2007)0110021-01 1.BOTDR的分布式温度和应变测量 BOTDR的分布式应变测量原理,当入射光在光纤中传播时,入射光会与声波声子相互作用,产生布里渊散射。其散射光的传播方向与入射光的传播方向相反。当入射光的波长那布里渊散射的最大能量的频率与入射光的频率之差大约是11GHz。这个频移量就叫做布里渊频移。如果光纤沿径向发生了应变,那布里渊散射对应于应力的频移量,如图1所示: 为了测量分布式的应变,通过使用BOTDR技术,沿着光纤观测布里渊散射光的频谱,确定布里渊频移的大小,从而达到测量应力的目的。如图2所示。在光纤的一端脉冲光入射,同时在这端使用时间域的BOTDR接收布里渊后向散射光。因此,产生布里渊散射的位置与脉冲光发射的位置的距离Z可以由下列登时确定,在这个式中,时间T是发射脉冲光与接收的布里渊散射光的时间差。 为了能获得布里渊散射光的频谱,我们重复上面所做的步骤,我们缓慢的改变入射光的频谱宽度。在布里渊散射光的不同频率段,我们能获得大量的分布式能量。如图2所示。所以,我们能够从获得的布里渊散射光的波形,知道在光纤中任何位置,那散射光的频谱。所以,我们固定频谱到那些Lorentzian弯曲和使用能量峰值的频谱。通过相应弯曲位置的应力。 应变与布里渊频率的改变量的各自联系。在实际的测量中,测量之前,(1)中的系数和布里渊频移可以在无应变时测量出来。然后,频移转换成应变。 注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

光纤传感器的基本原理及在医学上的应用

2008年9月中国医学物理学杂志Sep .,2008 第25卷第5期 ChineseJournalofMedicalPhysics Vol.25.No.5 光纤传感器的基本原理及在医学上的应用 孙素梅1,陈洪耀2,3,尹国盛2(1.漯河医学高等专科学校,河南漯河462000;2.河南大学物理与电子学院,河南开封 475004;3.中国科学院安徽光学精密机械研究所,安徽合肥230031) 摘要:目的:本文的目的简要介绍光纤传感器的基本原理和简单分类,重点阐述传光型光纤传感器在医学的压力、流速、pH值等五方面的应用。方法:光纤传感器基本原理是将光源发出的光经光纤送入调制区,在调制区内,外界被测参数与进入调制区的光相互作用,使光的强度、频率、相位、偏振等发生变化成为被调制的信号光,再经光纤送入光探测器、解调器而获得被测物理量。光纤传感器按其传感原理可分为两大类:一类是传光型传感器,另一类是传感型传感器。结果:目前在医学上应用的主要是传光型光纤传感器。光纤传感器主要优点:小巧、绝缘、不受射频和微波干扰、测量精度高。医疗上的图象传输是传输型光纤传感器应用中很有特色的一部分。只需将许多光纤组成光纤束,就可以做成能有效地使图象空间量子化的传感器。自从光导纤维引入到内窥镜以后,扩大了内窥镜的应用范围。光导纤维柔软、自由度大、传输图象失真小、直径细等优点使得各种内窥镜检查人体的各个部位几乎都是可行的,且操作中不会引起病人的痛苦与不适。其中光纤血管镜已应用于人类的心导管检查中。在进行激光血管成形术时,血管镜可提供很多重要的信息,用以引导激光辐射的方向,选择激光的能量和持续时间,并可了解在成形术后的治疗效果。光纤内窥镜不仅用于诊断,也正进入治疗领域中,例如用于做息肉切除手术等。微波加温治疗技术是当前治疗癌症的有效途径,但微波加温治疗癌症技术的温度难以控制,而光纤温度传感器恰可以对微波加温治疗癌症的有效温度进行监测,从而使温度不致于过高杀死人体的正常细胞,也不会过低达不到治疗目的,使癌细胞进一步扩散。光纤温度传感器在癌症治疗方面的研究和开发正日益兴起。结论:光纤传感器作为一种优势明显的新型传感器在医学领域得到应用,为治疗疾病提供了一种崭新的方法。可以预见随着制作技术的日益成熟和器件性能的不断提高,不久的将来光纤传感器必将会进一步推动医学的飞速发展。 关键词:光纤传感器;测量;医学;应用中图分类号:R312 文献标识码:A 文章编号:1005-202X (2008)05-0846-05 The Basic Principle and Applications on Medical of Fiber Optic Sensors SUNSu-mei1,CHENHong-yao2,3,YINGuo-sheng2 (1.LuoheMedicalCollege,LuoheHe'nan462000,China;2.ChinaPhysicsandElectronicsCollege,He'nanUniversity,KaifengHe'nan475004,China;3.TheAn'huiInstituteofOpticsandPrecisionMechanics,TheChineseAcademyofSciences,HefeiAnhui230031,China) Abstract:Objective:Thisarticlesimplyintroducedthebasicprincipleoffiberopticsensoranditsapplicationespeciallyonmedicalinbloodpressure,thespeedofflow,thepHvalueetc.Method:Thefiberopticsensorbasicprincipleisthelightwhichsendsoutthephotosourcesendsinafterthefiberopticthemodulationarea,inthemodulationarea,theoutsidewasmeasuredtheparameterwithentersthemodulationareathelighttoaffectmutually,causesthelighttheintensity,thefrequency,thephase,thepolarizationtooccurchangesintothesignallightwhichmodulates,againpassesthroughthefiberoptictosendinthelightdetector,thedemodulatorobtainsismeasuredthephysicalquantity.Thefiberopticsensormaydivideintotwokindsaccordingtoitssensingprinciple:onekindisthelight-passingsensor;theotheristhesensingsensor.Result:Atpresent,themainapplicationinthemedicineisthelight-passingfiberopticsensor.Themainadvantagesoffiberoptic sensorare:exquisite,insulation,notinfluencedbytheradiofrequencyandthemicrowave.Themeasuringaccuracyish igh.Theimagetransmissioninmedicalisthespecialpartof theapplicationonthetransmissionmodesfiberopticsensor.Onlytieaplentyoffiberoptictocompositionfiberoptics,wecouldmakethesensorwhichcancausetheimagespace 收稿日期:2008-03-10 作者简介:孙素梅(1954-),女,漯河医学高等专科学校物理教研室 副教授。Tel :0395-296452713939575106;E -mail : sunsumei2007@https://www.doczj.com/doc/914380408.html, 。 846--

口罩机光纤传感器组成及特点

口罩作为此次疫情的重要防备工具,市场需求量很大,为响应国家号召,解决医疗物资紧缺的燃眉之急,推出口罩机常用区域光纤传感器,助力口罩等物资复产,从而做到高效抗击疫情。 口罩机光纤传感器主要由光源、传输光纤、光电探测器和信号处理部分等组成。其基本原理是将来自光源的光经过光纤送入传感头(调制器),使待测量参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位和偏振态等)发生变化,成为被调制的信号光,再经过光纤送入光电探测器,将光信号转化为电信号,后经过信号处理后还原出被测物理量。光纤传感器一般可分为功能型(传感型)传感器和非功能型(传光型)传感器两大类。 与传统的传感器相比,光纤传感器具有独特的优点: (1)灵敏度高 由于光是一种波长极短的电磁波,通过光的相位便得到其光学长度。以光纤干涉仪为例,由于所使用的光纤直径很小,受到微小的机械外力的作用或温度变化时其光学长度要发生变化,从而引起较大的相位变化 (2)抗电磁干扰、电绝缘、耐腐蚀、本质安全

由于光纤传感器是利用光波传输信息,而光纤又是电绝缘、耐腐蚀的传输媒质,并且安全可靠,这使它可以方便有效地用于各种大型机电、石油化工、矿井等强电磁干扰和易燃易爆等恶劣环境中。 (3)测量速度快 光的传播速度最快且能传送二维信息,因此可用于高速测量。对雷达等信号的分析要求具有极高的检测速率,应用电子学的方法难以实现,利用光的衍射现象的高速频谱分析便可解决。 (4)信息容量大 被测信号以光波为载体,而光的频率很高,所容纳的频带很宽,同一根光纤可以传翰多路信号。 (5)适用于恶劣环境 光纤是一种电介质,耐高压、耐腐蚀、抗电磁干扰,可用于其它传感器所不适应的恶劣环境中。 以上内容的介绍,供大家参考了解一下,如有这方面的兴趣或需求,可以咨询一下南京凯基特电气有限公司了解更多详情。

光纤传感器原理与应用

光纤传感器原理与应用 1 引言 传感器技术、通信技术、计算机技术是现代信息技术的三大支柱,传感器作为探测与获取外界信息的重要环节之一而被应用于工业、农业及军事等各个领域。 近20多年来,光纤传感器的发展则大有取代传统传感器的趋势。光纤传感器是光通信和集成光学技术发展的结晶,与以往的传感器不同,它将被测信号的状态以光学的形式取出[1]。光信号不仅能被人所直接感知,利用半导体二极管等小型简单元件还可以进行光电、光学转换,极易与一些电子装备相匹配。此外,光纤不仅是一种敏感元件,还是一种优良的低损耗传输线,因此,光纤传感器还可以用于传统的传感器所不适用的远距离测量。 自从20世纪70年代末光纤传感器诞生以来,便由于其具有的防火、防爆、精度高、损耗低、体积小、重量轻、寿命长、性价比高、复用性好、响应速度快、抗电磁干扰、频带范围宽、动态范围大、易与光纤传输系统组成遥测网络等优点而被广泛地应用于各行各业。随着对其研究的不断深入,光纤传感器势必会对科学研究、国民生产、日常生活等诸多领域产生深远影响。 2 光纤传感器基本构成及原理 光纤传感器由光源、入射光纤、出射光纤、光调制器、光探测器以及解调制器组成。其基本原理是将光源的光经入射光纤送人调制区,光在调制区内与外界被测参数相互作用,使光的光学性质(如强度、波长、频率、相位、偏正态等)发生变化而成为被调制的信号光,再经出射光纤送入光探测器、解调器而获得被测参数。 光纤传感器按传感原理可分为两类:一类是传光型(非功能型)传感器[2],另一类是传感型(功能型)传感器[3]。在传光型光纤传感器中,光纤仅作为光的传输媒质,对被测信号的感觉是靠其它敏感元件来完成的,这种传感器中出射光纤和入射光纤是不连续的,两者之间的调制器是光谱变化的敏感元件或其它性质的敏感元件。在传感型光纤传感器中光纤兼有对被测信号的敏感及光信号的传输作用,将信号的“感”和“传” 合而为一,因此这类传感器中光纤是连续的。

光纤传感器

传感器的工作原理及应用 ————光纤传感器 光纤传感器具有灵敏度高、电绝缘性能好、抗电磁干扰、光路可弯曲、便于使用线遥测、耐腐蚀、耐高温、体积小、质量轻等优点,可广泛用于位移、速度、加速度、压力、漏寓、液位、流量、水声、电流、磁场、放射性射线等物理量的测量,在制造业、军事、航天、航空、航海和其他科学研究中有着广泛的应用。 一、光纤传感器的基本工作原理 光纤传感器是一种将被测对象那个的状态转变为可测的光信号的传感器。其工作原理是将光源入射的光束经由光纤送入调制器,在调制器内与外界参数的相互作用,使光的光学性质,如光的强度、波长、频率、相位、偏振态等发生变化,成为被调制的光信号,再经过光纤送入光器件、经解调器后获得被测参数。在整个过程中光束经由光纤导入,经过调制器后再射出。其中光纤的作用首先是传输光束,其次是起到光调制器的作用。 二、光纤传感器的应用 激光多普勒光纤流速测量系统 设激光光源频率为0f 经分束器分成两束光,其中被声光调制器调制成频率为01f f -的一束光射入探测器中,另一束频率为0f 的光经 光纤射到被测物体流中。例如当血液里的红血球以速度v 运动时,根据多普勒效应,其反射光的光谱产生频率为0f f ±?的光,他与01f f -的光在光电探测器中混频后,形成1f f ±?的振荡信号,通过测量f ?便可

以换算出血流速度v 。声光调制频率一般取40z MH 。在频率分析仪上 除有40z MH 的调整频率的一个峰外还有移动的f ?次峰,根据次峰可以确定血流等流体的速度。 光纤传感器涡轮流量计 涡轮流量计通过内磁式传感器检测涡轮的转速而实现流量测量,是一种广泛的流量测量仪表。随着光纤传感器技术的发展可以将反射型光纤传感器与传统的涡轮流量测量原理相结合,制造出具有双光纤传感器的涡轮流量计。与传统的内磁式涡轮流量计相比,光纤传感器涡轮流量计具备正反流量测量的性能。在检测原理上,光纤传感器克服了由内磁式传感器的磁性引力带来的影响,有效地扩大了涡轮流量计的量程比。光纤传感器涡轮流量计就是对涡轮流量进行改进,使其叶片端面适宜反射光线,利用反射型光纤传感器及光电转换电路检测涡轮叶片的旋转,从而测量出流量的。反射型光纤传感器一般采用多模玻璃光纤,单根芯纤的直径为200m μ,孔径为0.3m 。反射型光纤传感

光纤传感器的分类及特点

1 光纤传感器基本原理 随着工艺水平的提高,光纤技术目前相对成熟。光纤传感器即为应用光纤传输的基本原理组合的一个广电感应系统。通常的光纤传感系统由光源、光导纤维、光传感元件,光调制元件和信号处理部分组成[3]。其工作原理如下图所示:光源发出的光经过光导纤维进入光传感元件,而在光传感元件中受到周围环境场的影响而发生变化的光再进入光调制机构,由其将传感元件测量的参数调制成幅度、相位、偏振等信息,这一过程称为光电转换过程,最后利用微处理器进行信号分析。 如前所述可以看出光纤传感器的传感机理和电磁传感器的传感机理是相似的,但是光纤传感器由于其测量信号的载体是激光,其在光导纤维内部传播,很难受到外界电磁场干扰,因此适合复杂工况下的检测,且操作方便灵活,信号输出自动化。 2 光纤传感器的分类及特点 2.1 光纤传感器的分类 2.1.1 光纤传感器的分类有不同的方式 按光纤在光纤传感器中的作用可分为传感型和传光型两种类型。 传感型光纤传感器的光纤不仅起传递光作用,同时又是光电敏感元件。由于外界环境对光纤自身的影响,待测量的物理量通过光纤作用于传感器上,使光波导的属性(光强、相位、偏振态、波长等)被调制。传感器型光纤传感器又分为光强调制型、相位调制型、振态调制型和波长调制型等。 2.1.2 传光型光纤传感器 传光型光纤传感器是将经过被测对象所调制的光信号输入光纤后,通过在输出端进行光信号处理而进行测量的,这类传感器带有另外的感光元件对待测物理量敏感,光纤仅作为传光元件,必须附加能够对光纤所传递的光进行调制的敏感元件才能组成传感元件。光纤传感器根据其测量范围还可分为点式光纤传感器、积分式光纤传感器、分布式光纤传感器三种。其中,分布式光纤传感器被用来检测大型结构的应变分布,可以快速无损测量结构的位移、内部或表面应力等重要参数。目前用于土木工程中的光纤传感器类型主要有 Math-Zender干涉型光纤传感器,Fabry-pero 腔式光纤传感器,光纤布喇格光栅传感器等。 2.2 光纤传感器的特点 研究和工程应用表明光纤传感器具有如下特点: ⑴高灵敏度,抗电磁干扰。由于光纤传感器检测系统很难受到外界场的干扰,且光信号在传输中不会与电磁波发生作用,也不受任何电噪声的影响,由于这一特征,光纤传感器在电力系统的检测中得到了广泛应用。 ⑵光纤具有很好的柔性和韧性,所以传感器可以根据现场检测需要做成不同的形状。 ⑶测量的频带宽、动态响应范围大。 ⑷可移植性强,可以制成不同的物理量的传感器,包括声场、磁场、压力、温度、加速度、位移、液位、流量、电流、辐射等。 ⑸可嵌入性强,便于与计算机和光纤系统相连,易于实现系统的遥测和控制。 3.光纤传感器土木工程中的应用举例 随着光纤传感技术的发展,在土木工程领域光纤传感器得到了广泛的应用,用来测量混凝土结构变形及内部应力,检测大型结构、桥梁健康状况等,其中最主要的都是将光纤传感器作为一种新型的应变传感器使用。

分布式光纤传感温度报警系统

分布式光纤传感温度报警系统Ξ 张在宣 郭 宁 余向东 吴孝彪 (中国计量学院光电子技术研究所,杭州310034) 摘 要 研制了一种由分布光纤温度传感器系统组成的新型在线自动温度检测、报警系统,它是一种特殊的光纤通信网络,也是一种光纤雷达。文中讨论了系统的工作原理、调制与解调原理,系统的组成结构和系统的报警特性。在一根2km光纤上可采集一千个温度信息并能进行空间定位,是一种理想的温度报警系统。 关键词 分布光纤温度传感器 光时域反射技术 温度报警系统 一、前 言 分布式光纤温度传感器系统实质上是分布光纤喇曼(Raman)光子传感器(DOFRPS)系统,它是近年来发展起来的一种用于实时测量空间温度场的光纤传感系统。在系统中光纤既是传输媒体又是传感媒体,利用光纤背向喇曼散射的温度效应,光纤所处空间各点的温度场调制了光纤中的背向喇曼散射的强度,即反斯托克斯(stokes)背向喇曼散射光的强度),经波分复用器和光电检测器采集了带有温度信息的背向喇曼散射光电信号,再经信号处理系统解调后,将温度信息实时从噪声中提取出来并进行显示,它是一种典型的光纤通信网络;在时域里,利用光纤中光波的传播速度和背向光回波的时间间隔,利用光纤的光时域反射(O TDR)技术对所测温度点定位,它是一种典型的光雷达系统。 分布光纤传感系统中的传感光纤不带电,抗射频和电磁干扰,防燃、防爆、抗腐蚀、耐高电压和强电磁场、耐电离辐射,能在有害环境中安全运行,系统具有自标定、自校准和自检测功能;即使在光纤受损时不仅可继续工作,而且可检测出断点位置。在一根2km光纤上可采集一千个温度信息并能进行空间定位,由于分布光纤传感系统的优越特性,已经开始应用于火灾自动温度报警系统。 分布光纤温度传感器的主要用途: 11用于煤矿、隧道的温度自动报警控制系统; 21油库、油轮,危险品仓库,大型货轮,军火库等温度自动报警控制系统; 31高层建筑、智能大厦、桥梁、高速公路等在线动态检测和火灾防治及报警; 41各种大、中型变压器,发电机组的温度分布测量,热保护和故障诊断; 51地下和架空高压电力电缆的热检测与监控; 61火力发电所的配管温度、供热系统的管道、输油管道的热点检测和故障诊断;化工原料、照相材料及油料生产过程在线动态检测; 71作为一种典型的机敏结构用于航空、航天飞行器在线动态检测和机器人的神经网络系统。 分布光纤温度传感系统是一种光机电和计算机一体化的高科技,世界上有英国、日本、瑞士和我国研制生产,英国、日本等应用于大型变压器、发电机组热保护和保障诊断,日本、瑞士和我国开始应用于火灾自动报警控制系统。 分布光纤温度传感器系统可显示温度的传播方向、速度和受热面积。可将报警区域的 42计量技术 20001№2Ξ国家首批产学研工程项目资助

光纤传感器的应用实例

功率放大器的制作与调试实训报告 一、实训目的 1.通过自己动手实践加深对集成运算放大器工作原理的认识。 2.通过思考实验中遇到的问题来加深对电子技术知识的认识。 3.通过动手焊接电路和查找线路中的故障来培养自己的动手能力。 二、实训线路及器材 1.实训电路 2.工作原理 图上所示电路为本作品—双电源供电BTL音频功率放大器(双声道)原理图,本作品自带电源电路,简单实用。其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。TDA 2030(1)为同相放大器,输入信号Vin通过交流

耦合电容C1馈入同相输入端1脚。D7为整流桥堆起整流作用,C13.C14起滤波作用,R5是音量调节电位器,C1是输入耦合电容,。R2、R6决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为(R2+R6)/R6=(0.68+22)/0.68=33.3倍,C15起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。C3、C5、C7、C8为电源高频旁路电容,防止电路产生自激振荡 3.元器件清单 名称规格型号数量位号 集成电路TDA2030 1 IC 整流二极管1N4007 2 D1,D2 电阻器100K 4 R1,R2,R3,R5 电阻器 4.7K 1 R4 电阻器 电阻器 电阻器 电阻器 电阻器 电阻器 电阻器 瓷片电容器 瓷片电容器 瓷片电容器 瓷片电容器 电解电容 电解电容 电位器 电位器 2P接线输出端子 音频输入插座 3P电源插座 直推电源开关 IC散热器 散热器螺丝 发光LED 变压器 瓷片电容 4.实训主要材料 设计的TDA2030采用双电源供电,采用双电源输入,可采用一个变压器,通过变压器把220V常用电压变成正负12V作为电源输入。 5.实训工具 三、训练步骤及内容 1. 第一步是画电路原理图,根据老师给的图画出原理图。 2.第二步是分析原理图,我在分析次原理图时发现原理比较简单,就是以TDA2030A为放大芯片,加上电源滤波电容和过压过流保护,和反馈部分的电阻,基本上就没什么了。分

相关主题
文本预览
相关文档 最新文档