当前位置:文档之家› 机械抛光

机械抛光

机械抛光
机械抛光

机械抛光

工艺简介

机械抛光是依靠非常细小的抛光粉的磨削、滚压作用,除去试样磨面上的极薄一层金属,使工件表面粗糙度降低,以获得光亮、平整表面的加工方法。

工艺特点

抛光不能提高工件的尺寸精度或几何形状精度,而是以得到光滑表面或镜面光泽为目的,有时也用以消除光泽(消光)。

机械抛光是靠切削、材料表面塑性变形去掉被抛光后的凸部而得到平滑面的抛光方法,一般使用油石条、羊毛轮、砂纸等,以手工操作为主,特殊零件如回转体表面,可使用转台等辅助工具,表面质量要求高的可采用超精研抛的方法。

超精研抛是采用特制的磨具,在含有磨料的研抛液中,紧压在工件被加工表面上,作高速旋转运动。利用该技术可以达到Ra0.008μm的表面粗糙度,是各种抛光方法中最高的。光学镜片模具常采用这种方法。

应用范围

抛光常常用于增强产品的外观,防止仪器的污染,除去氧化,创建一个反射表面,或防止腐蚀的管道。

在冶金中,抛光用于形成平坦,无缺陷的表面,用于在显微镜下检查金属的微观结构。

抛光不锈钢也可以增加不锈钢的清洁卫生程度。

抛光也用于制造光反射器。

震动抛光机使用方法-振动抛光机操作步骤【干货】

震动抛光机使用方法 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 震动研磨机,源自台湾精工技术,采用台湾原装马达,高效稳定的保证。震动研磨机应用行业:震动研磨机在自行车、铝压铸件、锌压铸件、家具五金、服装五金、箱包五金件、眼镜配件、钟表配件、锁、电子配件、各类首饰、珠宝及粉末冶金、树脂等;针对于不锈钢、铁、铜、锌、铝、镁合金等材质经冲压、压铸、铸造、锻造,针对于线材、陶瓷、玉石、珊瑚、合成树脂、塑料、瓷器等材质物品表面抛光、倒角、去除毛边、除锈、粗磨光、精密磨光、光泽打光。 震动研磨机的产品说明:震动研磨机采用先进的螺旋流动,三次元振动的加工原理,可实现大批量生产,省人、省力、省能源。震动研磨机适用于中小尺寸工件的表面抛光、倒角、去除毛边、磨光、光泽打光处理,处理后不破坏零件的原有形状和尺寸精度,可消除零件内部应力,并提高了零件表面光洁度、精度.震动研磨机的特点:1. 震动研磨机振幅较大、翻转较强、切削力高,适用于较小型工作之研磨抛光。2. 震动研磨机适用大批量中、小、尺寸零件的研磨抛光加工,提高工效6~10倍,节省成本大约1/3. 3. 振动研磨机适用于铝、铜、铝合金、铁、白铁、锌、镁合金等,各种金属之去毛边、去批风、倒角、抛光均可。均适用振动研磨机 特点 1、震动研磨机振幅较大、翻转较强、切削力高,适用于较小型工作之研磨抛光。 2、震动研磨机适用大批量中、小、尺寸零件的研磨抛光加工,提高工效6~10倍,节省成本大约1/3. 3、震动研磨机适用于铝、铜、铝合金、铁、白铁、锌、镁合金等,各种金属之去毛边、去批风、倒角、抛光均可 磁力研磨机

磁力抛光机去毛刺使用说明书全解

使用说明书

苏州大越精密去毛刺机 目录 使用说明书 (1) 目录 (2) 安全使用 (3) 设备简介、工作原理、功能特点 (4) 设备用途、优点 (5) 机器使用解答.........................................................6-7 代码显示解答 (7) 安装与接线 (8) 操作流程 (9) 设备日常保养、保修卡 (10) 服务联系方式 (11)

安全使用 使用本机器前请先仔细阅读使用说明书。 1.为了保证安全避免火灾,请勿将液体和水溅入电线和插头上,以及后盖板冷却风扇 上,并且在机器台面上尽可能保持干燥和清洁。 2.使用该设备时请勿将磁性工件投入加工(如铁,带磁性工件),需要时候需和厂家联 系,勿将电子贵重物品放置在机器台面上(如手表、手机、电子设备仪器等)。3.该设备零部件损坏或工作出现异常时,立即切断电源停止工作并通知相关售后服务 人员。 4.机器表面发热时,注意查看后盖的冷风散热风扇是否正常运转。禁止高温应用。 5.在不使用该设备时请将电源关闭,切断总电源。 6.电源需加装过流开关,建议选用6A以内。 7.请勿长时间低频率工作,雷电可能导致损坏机器。 警告 1. 铁类,易被磁大型金属,放在抛光槽内,可能对人体造成严重伤害. 2. 名贵手表、电子产品放在抛光槽内可能导致损坏.

3.机器使用时候必须接地,通电前确认输入电源电压正确。 4.不要把机器安装在太阳照射、雨淋、过于潮湿、强酸、碱车间内. 5.自行维修需要和厂家联系确认,否则对修理人员可能成严重伤害. 设备简介 感谢您购买我们公司精密零件去毛刺抛光机!我们是自主研发的一种新型抛光设备,本机采用全球先进上好材料,简单操控独特的设计,彻底解决传统抛光的难题。解决了伤工件、死角、管内、通孔、盲孔等抛光研磨一系列的问题,提升了抛光效率及产品的品质。 工作原理 本抛光去毛刺机是利用超强的磁场力量,传动细小的研磨钢针,使抛光也产生高速旋浮流动,换向翻滚,以众多去毛刺不锈钢钢针轻轻滑过工件各个表面及工件内孔、内外牙及表面摩擦,达到清洗、去油垢杂质、去除毛边、研磨光亮的精密抛光效果。 功能特点 ●成本低,采用半永久性不锈钢针磨材,消耗极低。

CMP化学机械抛光Slurry的蜕与

CMP Slurry的蜕与进 岳飞曾说:“阵而后战,兵法之常,运用之妙,存乎一心。”意思是说,摆好阵势以后出战,这是打仗的常规,但运用的巧妙灵活,全在于善于思考。正是凭此理念,岳飞打破了宋朝对辽、金作战讲究布阵而非灵活变通的通病,屡建战功。如果把化学机械抛光(CMP,Chemical Mechanical Polishing)的全套工艺比作打仗用兵,那么CMP工艺中的耗材,特别是slurry的选择无疑是“运用之妙”的关键所在。 “越来越平”的IC制造 2006年,托马斯?弗里德曼的专著《世界是平的》论述了世界的“平坦化”大趋势,迅速地把哥伦布苦心经营的理论“推到一边”。对于IC制造来说,“平坦化”则源于上世纪80年代中期CMP技术的出现。 CMP工艺的基本原理是将待抛光的硅片在一定的下压力及slurry(由超细颗粒、化学氧化剂和液体介质组成的混合液)的存在下相对于一个抛光垫作旋转运动,借助磨粒的机械磨削及化学氧化剂的腐蚀作用来完成对工件表面材料的去除,并获得光洁表面(图1)。 1988年IBM开始将CMP工艺用于4M DRAM器件的制造,之后各种逻辑电路和存储器件以不同的发展规模走向CMP。CMP将纳M粒子的研磨作用与氧化剂的化学作用有机地结合起来,满足了特征尺寸在0.35μm以下的全局平坦化要求。目前,CMP技术已成为几乎公认的惟一的全局平坦化技术,其应用范围正日益扩大。 目前,CMP技术已经发展成以化学机械抛光机为主体,集在线检测、终点检测、清洗等技术于一体的CMP技术,是集成电路向微细化、多层化、薄型化、平坦化工艺发展的产物。同时也是晶圆由200mm向300mm乃至更大直径过渡、提高生产率、降低制造成本、衬底全局平坦化所必需的工艺技术。 Slurry的发展与蜕变 “CMP技术非常复杂,牵涉众多的设备、耗材、工艺等,可以说CMP本身代表了半导体产业的众多挑战。”安集微电子的CEO王淑敏博士说,“主要的挑战是影响CMP工艺和制程的诸多变量,而且这些变量之间的关系错综复杂。其次是CMP的应用范围广,几乎每一关键层都要求用到CMP进行平坦化。不同应用中的研磨过程各有差异,往往一个微小的机台参数或耗材的变化就会带来完全不同的结果,slurry的选择也因此成为CMP工艺的关键之一。” CMP技术所采用的设备及消耗品包括:抛光机、slurry、抛光垫、后CMP清洗设备、抛光终点检测及工艺控制设备、废物处理和检测设备等。其中slurry和抛光垫为消耗品。Praxair的研发总监黄丕成博士介绍说,一个完整的CMP工CM和抛光垫是slurry艺主要由抛光、后清洗和计量测量等部分组成。抛光机、.P工艺的3大关键要素,其性能和相互匹配决定CMP能达到的表面平整水平(图2)。

抛光机设计说明书

技术学院 毕业设计(论文) 题目抛光机设计 系 (部) 专业 班级 姓名 指导老师 系主任 年月日

目 录 综 述 ........................................................................................................................... 2 1. 抛光桶设计参数 ...................................................................................................... 5 2. 传动方案 .................................................................................................................. 6 3. V 带的设计 ................................................................................................................ 6 3.1确定设计功率...................................................................................................... 6 3.2选择带的型号...................................................................................................... 7 3.3确定带轮的基准直径21d d 和.............................................................................. 7 3.4验算带的速度...................................................................................................... 7 3.5确定中心距A 和V 带基准长度d L .................................................................... 7 3.6确定中心距和小轮包角...................................................................................... 8 3.7确定V 带根数Z ................................................................................................. 8 3.8确定初拉力0F ..................................................................................................... 8 3.9计算作用在轴上的压力...................................................................................... 8 3.10带轮结构设计.................................................................................................... 9 4. 滚筒的设计 ............................................................................................................ 10 4.1滚筒结构............................................................................................................ 10 4.2轴承的选择........................................................................................................ 10 4.3键的校核............................................................................................................ 10 5. 结论 ........................................................................................................................ 11 6. 参考文献 . (12)

化学机械抛光工艺(CMP)全解

化学机械抛光液(CMP)氧化铝抛光液具体添加剂 摘要:本文首先定义并介绍CMP工艺的基本工作原理,然后,通过介绍CMP系统,从工艺设备角度定性分析了解CMP的工作过程,通过介绍分析CMP工艺参数,对CMP作定量了解。在文献精度中,介绍了一个SiO2的CMP平均磨除速率模型,其中考虑了磨粒尺寸,浓度,分布,研磨液流速,抛光势地形,材料性能。经过实验,得到的实验结果与模型比较吻合。MRR 模型可用于CMP模拟,CMP过程参数最佳化以及下一代CMP设备的研发。最后,通过对VLSI 制造技术的课程回顾,归纳了课程收获,总结了课程感悟。 关键词:CMP、研磨液、平均磨除速率、设备 Abstract:This article first defined and introduces the basic working principle of the CMP process, and then, by introducing the CMP system, from the perspective of process equipment qualitative analysis to understand the working process of the CMP, and by introducing the CMP process parameters, make quantitative understanding on CMP.In literature precision, introduce a CMP model of SiO2, which takes into account the particle size, concentration, distribution of grinding fluid velocity, polishing potential terrain, material performance.After test, the experiment result compared with the model.MRR model can be used in the CMP simulation, CMP process parameter optimization as well as the next generation of CMP equipment research and development.Through the review of VLSI manufacturing technology course, finally sums up the course, summed up the course. Key word: CMP、slumry、MRRs、device 1.前言 随着半导体工业飞速发展,电子器件尺寸缩小,要求晶片表面平整度达到纳米级。传统的平坦化技术,仅仅能够实现局部平坦化,但是当最小特征尺寸达到

化学机械抛光液配方组成,抛光液成分分析及技术工艺

化学机械抛光液配方组成,抛光原理及工艺导读:本文详细介绍了化学机械抛光液的研究背景,机理,技术,配方等,需要注意的是,本文中所列出配方表数据经过修改,如需要更详细的内容,请与我们的技术工程师联系。 禾川化学专业从事化学机械抛光液成分分析,配方还原,研发外包服务,提供一站式化学机械抛光液配方技术解决方案。 1.背景 基于全球经济的快速发展,IC技术(Integrated circuit, 即集成电路)已经渗透到国防建设和国民经济发展的各个领域,成为世界第一大产业。IC 所用的材料主要是硅和砷化镓等,全球90%以上IC 都采用硅片。随着半导体工业的飞速发展,一方面,为了增大芯片产量,降低单元制造成本,要求硅片的直径不断增大;另一方面,为了提高IC 的集成度,要求硅片的刻线宽度越来越细。半导体硅片抛光工艺是衔接材料与器件制备的边沿工艺,它极大地影响着材料和器件的成品率,并肩负消除前加工表面损伤沾污以及控制诱生二次缺陷和杂质的双重任务。在特定的抛光设备条件下,硅片抛光效果取决于抛光剂及其抛光工艺技术。 禾川化学技术团队具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。 样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川

化学技术团队,我们将为企业提供一站式配方技术解决方案! 2.硅片抛光技术的研究进展 20世纪60年代中期前,半导体抛光还大都沿用机械抛光,如氧化镁、氧化锆、氧化铬等方法,得到的镜面表面损伤极其严重。1965年Walsh和Herzog 提出SiO2溶胶-凝胶抛光后,以氢氧化钠为介质的碱性二氧化硅抛光技术就逐渐代替旧方法,国内外以二氧化硅溶胶为基础研究开发了品种繁多的抛光材料。 随着电子产品表面质量要求的不断提高, 表面平坦化加工技术也在不断发展,基于淀积技术的选择淀积、溅射玻璃SOG( spin-on-glass) 、低压CVD( chemical vapor deposit) 、等离子体增强CVD、偏压溅射和属于结构的溅射后回腐蚀、热回流、淀积-腐蚀-淀积等方法也曾在IC艺中获得应用, 但均属局部平面化技术,其平坦化能力从几微米到几十微米不等, 不能满足特征尺寸在0. 35 μm 以下的全局平面化要求。 1991 年IBM 首次将化学机械抛光技术( chemical mechanical polishing , 简称CMP)成功应用到64 Mb DRAM 的生产中, 之后各种逻辑电路和存储器以不同的发展规模走向CMP, CMP 将纳米粒子的研磨作用与氧化剂的化学作用有机地结合起来, 满足了特征尺寸在0. 35微米以下的全局平面化要求。CMP 可以引人注目地得到用其他任何CMP 可以引人注目地得到用其他任何平面化加工不能得到的低的表面形貌变化。目前, 化学机械抛光技术已成为几乎公认为惟一的全局平面化技术,逐渐用于大规模集成电路(LSI) 和超大规模集成电路(ULSI) ,可进一步提高硅片表面质量,减少表面缺陷。

化学机械抛光液(CMP)氧化铝抛光液具汇总

化学机械抛光液(CMP)氧化铝抛光液 一、行业的界定与分类 (2) (一)化学机械抛光 (2) 1、化学机械抛光概念 (2) 2、CMP工艺的基本原理 (2) 3、CMP技术所采用的设备及消耗品 (2) 4、CMP过程 (2) 5、CMP技术的优势 (2) (二)化学机械抛光液 (3) 1、化学机械抛光液概念 (3) 2、化学机械抛光液的组成 (3) 3、化学机械抛光液的分类 (3) 4、CMP过程中对抛光液性能的要求 (3) (三)化学机械抛光液的应用领域 (3) 二、原材料供应商 (4) 三、化学机械抛光液行业现状 (4) (一)抛光液行业现状 (4) 1、国际市场主要抛光液企业分析 (4) 2、我国抛光液行业运行环境分析 (4) 3、我国抛光液行业现状分析 (5) 4、我国抛光液行业重点企业竞争分析 (5) (二)抛光液行业发展趋势 (5) (三)抛光液行业发展的问题 (5) 四、需求商 (6) (一)半导体硅材料 (6) 1、电子信息产业介绍 (6) 2、半导体硅材料的简单介绍 (6) (二)分立器件行业 (7) (三)抛光片 (8)

化学机械抛光液行业研究 一、行业的界定与分类 (一)化学机械抛光 1、化学机械抛光概念 化学机械抛光(英语:Chemical-Mechanical Polishing,缩写CMP),又称化学机械平坦化(英语:Chemical-Mechanical Planarization),是半导体器件制造工艺中的一种技术,用来对正在加工中的硅片或其它衬底材料进行平坦化处理。 2、CMP工艺的基本原理 基本原理是将待抛光工件在一定的下压力及抛光液(由超细颗粒、化学氧化剂和液体介质组成的混合液)的存在下相对于一个抛光垫作旋转运动,借助磨粒的机械磨削及化学氧化剂的腐蚀作用来完成对工件表面的材料去除,并获得光洁表面。 3、CMP技术所采用的设备及消耗品 主要包括,抛光机、抛光液、抛光垫、后CMP清洗设备、抛光终点检测及工艺控制设备、废物处理和检测设备等,其中抛光液和抛光垫为消耗品。 4、CMP过程 过程主要有抛光、后清洗和计量测量等部分组成,抛光机、抛光液和抛光垫是CMP工艺的3大关键要素,其性能和相互匹配决定CMP能达到的表面平整水平。 5、CMP技术的优势 最初半导体基片大多采用机械抛光的平整方法,但得到的表面损伤极其严重,基于淀积技术的选择淀积、溅射玻璃SOG(spin-on-glass)、低压CV D(chemicalvaporde-posit)、等离子体增强CVD、偏压溅射和属于结构的溅射后回腐蚀、热回流、淀积-腐蚀-淀积等方法也曾在IC工艺中获得应用,但均属局部平面化技术,其平坦化能力从几微米到几十微米不等,不能满足特征尺寸在

化学机械抛光液行业研究

化学机械抛光液行业研究 一、行业的界定与分类 (2) (一)化学机械抛光 (2) 1、化学机械抛光概念 (2) 2、CMP工艺的基本原理 (2) 3、CMP技术所采用的设备及消耗品 (2) 4、CMP过程 (2) 5、CMP技术的优势 (2) (二)化学机械抛光液 (3) 1、化学机械抛光液概念 (3) 2、化学机械抛光液的组成 (3) 3、化学机械抛光液的分类 (3) 4、CMP过程中对抛光液性能的要求 (3) (三)化学机械抛光液的应用领域 (3) 二、原材料供应商 (4) 三、化学机械抛光液行业现状 (4) (一)抛光液行业现状 (4) 1、国际市场主要抛光液企业分析 (4) 2、我国抛光液行业运行环境分析 (4) 3、我国抛光液行业现状分析 (5) 4、我国抛光液行业重点企业竞争分析 (5) (二)抛光液行业发展趋势 (5) (三)抛光液行业发展的问题 (5) 四、需求商 (6) (一)半导体硅材料 (6) 1、电子信息产业介绍 (6) 2、半导体硅材料的简单介绍 (6) (二)分立器件行业 (7) (三)抛光片 (8)

化学机械抛光液行业研究 一、行业的界定与分类 (一)化学机械抛光 1、化学机械抛光概念 化学机械抛光(英语:Chemical-Mechanical Polishing,缩写CMP),又称化学机械平坦化(英语:Chemical-Mechanical Planarization),是半导体器件制造工艺中的一种技术,用来对正在加工中的硅片或其它衬底材料进行平坦化处理。 2、CMP工艺的基本原理 基本原理是将待抛光工件在一定的下压力及抛光液(由超细颗粒、化学氧化剂和液体介质组成的混合液)的存在下相对于一个抛光垫作旋转运动,借助磨粒的机械磨削及化学氧化剂的腐蚀作用来完成对工件表面的材料去除,并获得光洁表面。 3、CMP技术所采用的设备及消耗品 主要包括,抛光机、抛光液、抛光垫、后CMP清洗设备、抛光终点检测及工艺控制设备、废物处理和检测设备等,其中抛光液和抛光垫为消耗品。 4、CMP过程 过程主要有抛光、后清洗和计量测量等部分组成,抛光机、抛光液和抛光垫是CMP工艺的3大关键要素,其性能和相互匹配决定CMP能达到的表面平整水平。 5、CMP技术的优势 最初半导体基片大多采用机械抛光的平整方法,但得到的表面损伤极其严重,基于淀积技术的选择淀积、溅射玻璃SOG(spin-on-glass)、低压CV D(chemicalvaporde-posit)、等离子体增强CVD、偏压溅射和属于结构的溅射后回腐蚀、热回流、淀积-腐蚀-淀积等方法也曾在IC工艺中获得应用,但均属局部平面化技术,其平坦化能力从几微米到几十微米不等,不能满足特征尺寸在

化学机械抛光工艺(CMP)

化学机械抛光工艺(CMP) 摘要:本文首先定义并介绍CMP工艺的基本工作原理,然后,通过介绍CMP系统,从工艺设备角度定性分析了解CMP的工作过程,通过介绍分析CMP工艺参数,对CMP作定量了解。在文献精度中,介绍了一个SiO2的CMP平均磨除速率模型,其中考虑了磨粒尺寸,浓度,分布,研磨液流速,抛光势地形,材料性能。经过实验,得到的实验结果与模型比较吻合。MRR 模型可用于CMP模拟,CMP过程参数最佳化以及下一代CMP设备的研发。最后,通过对VLSI 制造技术的课程回顾,归纳了课程收获,总结了课程感悟。 关键词:CMP、研磨液、平均磨除速率、设备 Abstract:This article first defined and introduces the basic working principle of the CMP process, and then, by introducing the CMP system, from the perspective of process equipment qualitative analysis to understand the working process of the CMP, and by introducing the CMP process parameters, make quantitative understanding on CMP.In literature precision, introduce a CMP model of SiO2, which takes into account the particle size, concentration, distribution of grinding fluid velocity, polishing potential terrain, material performance.After test, the experiment result compared with the model.MRR model can be used in the CMP simulation, CMP process parameter optimization as well as the next generation of CMP equipment research and development.Through the review of VLSI manufacturing technology course, finally sums up the course, summed up the course. Key word: CMP、slumry、MRRs、device 1.前言

化学机械抛光CMP技术的发展应用及存在问题

化学机械抛光(CMP)技术的发展、应用及存在问题 雷红 雒建斌 马俊杰 (清华大学摩擦学国家重点实验室 北京 100084) 摘要:在亚微米半导体制造中,器件互连结构的平坦化正越来越广泛采用化学机械抛光(C MP)技术,这几乎是目前唯一的可以提供在整个硅圆晶片上全面平坦化的工艺技术。本文综述了化学机械抛光的基本工作原理、发展状况及存在问题。 关键词:C MP 设备 研浆 平面化技术 Advances and Problems on Chemical Mechanical Polishing Lei Hong Luo Jianbin Ma J unjie (T he S tate K ey Lab oratery of T rib ology,Tsinghua University100084) Abstract:Chemical mechanical polishing(C MP)has become widely accepted for the planarization of device interconnect structures in deep submicron semiconductor manu facturing1At present,it is the only technique kn own to provide global planarization within the wh ole wafers1The progress and problem of C MP are reviewed in the paper1 K eyw ords:CMP Equipment Slurry Planarization 1 C MP的发展、应用 随着半导体工业沿着摩尔定律的曲线急速下降,驱使加工工艺向着更高的电流密度、更高的时钟频率和更多的互联层转移。由于器件尺寸的缩小、光学光刻设备焦深的减小,要求片子表面可接受的分辨率的平整度达到纳米级[1]。传统的平面化技术如基于淀积技术的选择淀积、溅射玻璃S OG、低压C VD、等离子体增强C VD、偏压溅射和属于结构的溅射后回腐蚀、热回流、淀积—腐蚀—淀积等,这些技术在IC工艺中都曾获得应用。但是,它们虽然也能提供“光滑”的表面,却都是局部平面化技术,不能做到全局平面化。目前,已被公认的是,对于最小特征尺寸在0135μm及以下的器件,必须进行全局平面化,为此必须发展新的全局平面化技术。 90年代兴起的新型化学机械抛光(Chem ical M echanical P olishing,简称C MP)技术则从加工性能和速度上同时满足了圆片图形加工的要求。C MP技术是机械削磨和化学腐蚀的组合技术,它借助超微粒子的研磨作用以及浆料的化学腐蚀作用在被研磨的介质表面上形成光洁平坦表面[2、3]。C MP技术对于器件制造具有以下优点[1]: (1)片子平面的总体平面度:C MP工艺可补偿亚微米光刻中步进机大像场的线焦深不足。 (2)改善金属台阶覆盖及其相关的可靠性:C MP 工艺显著地提高了芯片测试中的圆片成品率。 (3)使更小的芯片尺寸增加层数成为可能:C MP 技术允许所形成的器件具有更高的纵横比。 因而,自从1991年美国I BM公司首先将C MP工艺用于64Mb DRAM的生产中之后,该技术便顺利而迅速地在各种会议和研究报告中传播,并逐步进入工业化生产[4、5]。目前美国是C MP最大的市场,它偏重于多层器件,欧洲正在把C MP引入生产线,而日本和亚太地区将显著增长,绝大多数的半导体厂家采用了金属C MP,而且有能力发展第二代金属C MP工艺。据报道[6],1996年日本最大十家IC制造厂家中,有七家在生产0135μm器件时使用了C MP平坦化工艺,韩国和台湾也已开始C MP在内的亚微米技术。近年来,C MP发展迅猛,在过去三年中,化学机械抛光设备的需求量已增长了三倍,并且在今后的几年内,预计C MP设备市场仍将以60%的增长幅度上升。C MP 技术成为最好也是唯一的可以提供在整个硅圆晶片上全面平坦化的工艺技术,C MP技术的进步已直接影响着集成电路技术的发展。 C MP的研究开发工作已从以美国为主的联合体SE M ATECH发展到全球,如欧洲联合体J ESSI,法国研究公司LETI和C NET,德国Fraunhofer研究所等[7],日本和亚洲其它国家和地区如韩国、台湾等也在加速研究与开发,并呈现出高竞争势头。并且研究从居主导地位的半导体大公司厂家的工艺开发实验室正扩展到设备和材料供应厂家的生产发展实验室。 C MP技术的应用也将从半导体工业中的层间介质(I LD),绝缘体,导体,镶嵌金属W、Al、Cu、Au,多晶硅,硅氧化物沟道等的平面化[8],拓展到薄膜存贮磁盘,微电子机械系统(MFMS),陶瓷,磁头,机械磨具,精密阀门,光学玻璃,金属材料等表面加工领域。

抛光机的使用方法以及注意事项示范文本

抛光机的使用方法以及注意事项示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

抛光机的使用方法以及注意事项示范文 本 使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 汽车表面经喷涂之后,可能会出现粗粒、砂纸痕、流 痕、反白、橘皮等漆膜表面的细小缺陷,为了弥补这些缺 陷,通常在喷涂后进行研磨抛光处理,以提高漆膜的镜面 效果,达到光亮、平滑、艳丽的要求。这里我们来了解一 下抛光机的构造及操作注意事项。 抛光机由底座、抛盘、抛光织物、抛光罩及盖等基本 元件组成。电动机固定在底座上,固定抛光盘用的锥套通 过螺钉与电动机轴相连。抛光织物通过套圈紧固在抛光盘 上,电动机通过底座上的开关接通电源起动后,便可用手 对试样施加压力在转动的抛光盘上进行抛光。抛光过程中 加入的抛光液可通过固定在底座上的塑料盘中的排水管流

入置于抛光机旁的方盘内。抛光罩及盖可防止灰土及其他杂物在机器不使用时落在抛光织物上而影响使用效果。 抛光机操作的关键是要设法得到最大的抛光速率,以便尽快除去磨光时产生的损伤层。同时也要使抛光损伤层不会影响最终观察到的组织,即不会造成假组织。前者要求使用较粗的磨料,以保证有较大的抛光速率来去除磨光的损伤层,但抛光损伤层也较深;后者要求使用最细的材料,使抛光损伤层较浅,但抛光速率低。解决这个矛盾的最好的办法就是把抛光分为两个阶段进行。粗抛目的是去除磨光损伤层,这一阶段应具有最大的抛光速率,粗抛形成的表层损伤是次要的考虑,不过也应当尽可能小;其次是精抛(或称终抛),其目的是去除粗抛产生的表层损伤,使抛光损伤减到最小。 抛光机抛光时,试样磨面与抛光盘应绝对平行并均匀地轻压在抛光盘上,注意防止试样飞出和因压力太大而产

化学机械抛光的主要要素

孔洞和Te原子在快速可逆相变过程中起重要作用 日前Gartner发布的2017年全球半导体市场初步统计显示,三星去年在全球半导体市场的份额达到14.6%,首次超越英特尔公司成为全球最大芯片制造商。去年全球半导体收入为4197亿美元,同比增长22.2%。供应不足局面推动存储芯片收入增长64%,它在半导体总收入中的占比达到31%。除了三星首度登上全球第一大半导体厂,SK海力士跃居全球第3,美光排名也跃升至第4位。供应不足引发的价格上涨成为了推动存储芯片收入增长的关键动力。 在半导体存储器中,市场主导的三种存储器技术为动态随机存储器(DRAM)、闪存(Flash)和静态随机存储器(SRAM)。随着工艺技术节点推进至45nm 以下,目前这三种存储器技术都已经接近各自的基本物理极限,DRAM的进一步发展对光刻精度提出了巨大挑战;Flash中电容变得异常的高和薄,为了延伸进一步提升密度,Flash 的栅介质必须选用高k值的材料;而SRAM 则随着工艺的演进开始面临信噪比和故障率方面的挑战。 相变存储器就是基于O v s h i n s k y效应的元件,被命名为O v s h i n s k y电效应统一存储器.(O v s h i n s k y [3]首次描述了基于相变理论的存储器,材料在非晶态—晶态—非晶态相变过程中,其非晶态和晶态呈现不同的光学和电学特性,因此可以用非晶态代表“0”,晶态代表“1”实现信息存储,这被称为O v s h i n s k y电子效应。) 相变存储器利用电能(热量)使相变材料在晶态(低阻)与非晶态(高阻)之间相互转换,实现信息的读取、写入和擦除,工作原理是将数据的写入和读取分为3个过程——分别是“设置(Set )”、“重置(Res et )”和“读取(Re ad)”。“Se t”过程就是施加一个宽而低的脉冲电流于相变材料上,使其温度升高到晶化温度T x以上、熔点温度T m以下,相变材料形核并结晶,此时相变材料的电阻较低,代表数据“1”。“R e s e t”过程就是施加一个窄而强的脉冲电流于相变材料上,使其温度升高到熔点温度T m以上,随后经过一个快速冷却的淬火过程(降温速率> 109K / s),相变材料从晶态转变成为非晶态,此时相变材料的电阻很高,代表数据“0”。“Re ad”过程则是在器件2端施加低电压,如果存储的数据是“0”,那么器件的电阻较高,因而产生的电流较小,所以系统检测到较小的电流回馈时就判断是数据“0”;如果存储的数据是“1”,那么器件的电阻较低,因而产生的电流较大,所以系统检测到较大的电流回馈时就判断是数据“1” 早期的相变存储材料由于结晶时会发生相变分离等原因,晶速率较慢(约微秒量级),如碲(T e)基合金,而到20世 纪80年代初,科研人员发现了一批具有高速相变能力、晶态和非晶态具有明显光学性质差异的相变材料,其中G e - S b - T e体系是最成熟的相变材料,G e -S b - T e合金结晶速度快,因此写入和擦除速度都非常快,能够满足高速存储性能的要求,由I n t e l和意法半导体(STMicroelectronics)组建的恒忆(Numo n yx)公司开发的相变存储器(图2)就基于Ge-Sb-Te合金 相变材料在非晶态和晶态之间的纳秒级相变导致的电阻巨大差异是相变存储器的进行数据储存的重要依据。虽然很多材料在固态时都具有多重相态,但并不是所有的这些材料都具备相变材料的特征。首先,材料在非晶态与晶态之间的电阻差异要大,才可以满足相变存储器的数据储存要求,比如王国祥[9]测量了Ge-Sb-Te薄膜的电阻,从GST薄膜的R-T曲线(图4)可以看到,非晶态- f c c - h e x的两个转变温度分别为168℃和约300℃,非晶与h e x结构的薄膜电阻率相差约为6个数量级,非晶与f c c结构则相差4个数量级,这样的电阻差异就能够满足存储要求;其次,材料的结晶速度要很快(纳秒级),且相变前后材料的体积变化要小,晶态和非晶态可循环次数高,以保证数据能够高速重复写入,这就意味着用作存储材料可以获得更快的操作速度;最后对材料的热稳定性也有一定要求,结晶温度足够高,材料的热稳定性会好,以保证相变存储器可以在较高的温度下工作,数据才能够保存足够长时间,但是结晶温度过高也会带来负面影响,比如需要更高的操作电压或电流等。 首先,在相变存储单元中,选通器件(MOS 晶体管或二极管)的驱动能力是有限的(0.5 mA/m),而器件RESET 操作固有的能耗决定了器件的能量效率,因此我们需要降低相变材料层中有效相变区域的非晶化电流,以降低器件操作驱动的难度,有效降低器件的操作功耗;其次,GST 材料本身的结晶温度过低,造成了材料的非晶态热稳定性较差的问题,使GST 材

抛光机使用说明书

抛光机使用说明书 一、抛光机外形图 (1) 二、技术参数 (3) 三、机床用途与性能特点原理 (4) 四、机床的结构 (4) 五、机床的传动与气控系统 (5) 六、机床的电器系统 (5) 七、机床的安装与试车前准备 (6) 八、机床的润滑 (6) 九、机床的试车与操作 (7) 十、机床的安全与维护 (8)

以上为本公司标准型号及参数,可根据客户要求进行设计、制造

三、机床的用途与性能、特点及原理 本机型主要针对各种不锈钢圆筒及封头内外表面的抛光或拉线,如:食品、化工用不锈钢罐、压力容器、椭圆封头、锥形封头、反应、过滤器等。 工作原理:以砂带、砂碟、拉线轮等为磨料,针对流体设备的构造特点,采用气压浮动补偿和压力弹簧的恒压磨削技术实现流体设备内外表面的磨削抛光。采用变频器可实现转台、升降及横向进给的灵活位移,从而实现自动抛磨,降低劳动强度。 四、机床的结构 本机床主要由以下几个部分组成(参考外形图) 1.立臂 2.横臂 3.连接架 4.小立臂 5.立抛机头 6.卧抛机头 1.立臂:采用焊接钢结构件、导轨与矩形管、度座等拼焊而成,顶部装有减速机座,利用减速机输出链轮旋转带动连接架来完成横臂的上下行走。立臂两端装有限位开关,控制滑板超程。 2.横臂:采用焊接钢结构件,由导轨与矩形管、机头连接板等拼焊而成,在导轨下端装有齿条,利用减速机输出齿轮旋转带动横臂左右行走。横臂两端的连接板使机头与横臂连接在一起,导轨两端装有限位开关控制横臂超程。 3.装,并与升降链条连接,与升降减速机配合共同完成横臂的升降与左右位移。 4.小立臂:小立臂与折弯板与导轨、机座等组焊而成与横臂相连,依靠减速机旋转带动线杠转动从而达到升降行走,导轨两端装有限位开关,控制滑板超程。 5.立抛机头:立抛机头为拼焊组合结构件,用来安装磨削电机与气缸、弹簧等部件,并与小立臂相连接,共同完成磨头的灵活位移。从而实现对封头、

CMP化学机械抛光Slurry的蜕与进

CMP Slurry的蜕与进 岳飞曾说:“阵而后战,兵法之常,运用之妙,存乎一心。”意思是说,摆好阵势以后出战,这是打仗的常规,但运用的巧妙灵活,全在于善于思考。正是凭此理念,岳飞打破了宋朝对辽、金作战讲究布阵而非灵活变通的通病,屡建战功。如果把化学机械抛光(CMP,Chemical Mechanical Polishing)的全套工艺比作打仗用兵,那么CMP工艺中的耗材,特别是slurry的选择无疑是“运用之妙”的关键所在。 2006年,托马斯?弗里德曼的专著《世界是平的》论“越来越平”的IC制造? 述了世界的“平坦化”大趋势,迅速地把哥伦布苦心经营的理论“推到一边”。对于IC制造来说,“平坦化”则源于上世纪80年代中期CMP技术的出现。 CMP工艺的基本原理是将待抛光的硅片在一定的下压力及slurry(由超细颗粒、化学氧化剂和液体介质组成的混合液)的存在下相对于一个抛光垫作旋转运动,借助磨粒的机械磨削及化学氧化剂的腐蚀作用来完成对工件表面材料的去除,并获得光洁表面(图1)。 1988年IBM开始将CMP工艺用于4MDRAM器件的制造,之后各种逻辑电路和存储器件以不同的发展规模走向CMP。CMP将纳米粒子的研磨作用与氧化剂的化学作用有机地结合起来,满足了特征尺寸在0.35μm以下的全局平坦化要求。目前,CMP技术已成为几乎公认的惟一的全局平坦化技术,其应用范围正日益扩大。 目前,CMP技术已经发展成以化学机械抛光机为主体,集在线检测、终点检测、清洗等技术于一体的CMP技术,是集成电路向微细化、多层化、薄型化、平坦化工艺发展的产物。同时也是晶圆由200mm向300mm乃至更大直径过渡、提高生产率、降低制造成本、衬底全局平坦化所必需的工艺技术。 Slurry的发展与蜕变?“CMP技术非常复杂,牵涉众多的设备、耗材、工艺等,可以说CMP本身代表了半导体产业的众多挑战。”安集微电子的CEO王淑敏博士说,“主要的挑战是影响CMP工艺和制程的诸多变量,而且这些变量之间的关系错综复杂。其次是CMP的应用范围广,几乎每一关键层都要求用到CMP 进行平坦化。不同应用中的研磨过程各有差异,往往一个微小的机台参数或耗材的变化就会带来完全不同的结果,slurry的选择也因此成为CMP工艺的关键之一。” CMP技术所采用的设备及消耗品包括:抛光机、slurry、抛光垫、后CMP清洗设备、抛光终点检测及工艺控制设备、废物处理和检测设备等。其中slurr y和抛光垫为消耗品。Praxair的研发总监黄丕成博士介绍说,一个完整的CMP工艺主要由抛光、后清洗和计量测量等部分组成。抛光机、slurry和抛光垫是CMP工艺的3大关键要素,其性能和相互匹配决定CMP能达到的表面平整水平(图2)。

相关主题
文本预览
相关文档 最新文档