当前位置:文档之家› Abstract Location-Based Services Technical and Business Issues

Abstract Location-Based Services Technical and Business Issues

Abstract Location-Based Services Technical and Business Issues
Abstract Location-Based Services Technical and Business Issues

Location-Based Services: Technical and Business Issues

Diep Dao, Chris Rizos and Jinling Wang

School of Surveying and Spatial Information Systems

The University of New South Wales, Sydney NSW 2052, Australia

Abstract

Geographical Information System (GIS) and Global Positioning System (GPS) technologies are expanding their traditional applications to embrace a stream of consumer-focused, location-based applications. Through an integration with handheld devices capable of wireless communication and mobile computing, a wide range of what might be generically referred to as "Location-Based Services" (LBS) may be offered to mobile users.

A location-based service is able to provide targetted spatial information to mobile workers and consumers. These include utility location information, personal or asset tracking, concierge and route-guidance information, to name just a few of the possible LBS. The technologies and applications of LBS will play an ever increasingly important role in the modern, mobile, always-connected society.

This paper endeavours to provide some background to the technology underlying location-based services and to discuss some issues related to developing and launching LBS. These include whether wireless mobile technologies are ready to support LBS, which mobile positioning technologies can be used and what are their shortcomings, and how GIS developers manipulate spatial information to generate appropriate map images on mobile devices (such as cell phones and PDAs). In addition the authors discuss such issues as interoperability, privacy protection and the market demand for LBS. Introduction

Mobile location-based commerce ("mobile e-commerce" or simply "l-commerce") refers to the provision of location-based information on mobile devices as a result of a user request. In other words, it "aims to provide specific, targeted information to users based on each specific user’s location at any time" (Benson, 2001). In the case of emergency calls, it is obvious that if the call responders have information concerning the location of the people making the call, then the response time can be reduced. Hence security and safety are important considerations for a "mobile society". The second type of application is where location-specific information on something nearby (to the mobile device, or user’s location) is sought. These are so-called "concierge services". The requested information may be related to points-of-interest such as hospitals, restaurants, cinemas, car parks, ATMs, and so on. Such a service may provide information about the point-of-interest, or route-guidance to find it.

There are also many examples of applications in typical work practices which might not be viewed as a form of "l-commerce", but which nevertheless benefit from using procedures that have a "spatial component". For example, in the case of a gas pipeline breakdown emergency call, a worker has to go into the field and quickly find the location of the broken pipe, details of the owners of nearby properties, etc. A mobile device (with positioning capability) can be used to query a GIS database of valves that would permit the isolation of the gas supply at the appropriate location.

One of the main drivers for the development of ubiquitous positioning technology that can support a wide range of location-based services is the U.S. Federal Communications Commission (FCC) requirement for emergency service response to mobile E911 calls (AllNetDevices Staff, 2001a). The FCC’saccuracy requirements are 100 m (67%) for network-based technologies and 50 m (67%) for handset-based technologies (FCC

2001). The deadline for the implementation of a nationwide E911 service (the "E" is for "enhanced") was October 2001. However this deadline was waived for one year because many telecommunication carriers did not have the necessary technology in place. As far as Europe is concerned, "Early in 2000, it seemed likely that the European Commission would follow America's lead in mandating mobile network operators to automatically locate subscribers via their wireless device" (Hoyde, 2001). In order to satisfy such requirements, telecommunication carriers have been forced to make large investments to incorporate location-determination capability within their networks (or at the very least ensure that the handset capability can be linked to their network).

Investors are now considering what business plans could support revenue-raising location-based services -- "It is a critical element for wireless operators as they search for ways to turn costly government-mandated enhanced 911 technology into profit-generating services" (Marek, 2001). Another driver for LBS development (as opposed to location determination capability to support the mandated E911 requirements) is that wireless network operators want to distinguish themselves from their competitors by offering special services. The most valuable (and profitable) service is therefore likely to be one that addresses a mobile user's request, via a small handheld device -- by providing pertinent information with minimum delay, appropriate for their location.

In essence, LBS can only be provided through the integration of wireless communications and computing technologies, with 'spatial elements' such as positioning technologies and spatial data sets. These components form a network using wireless communication standards to transfer service requests and information between a mobile user and a service (or server) facility. The location-based service facility is able to perform spatial functions based on the user’s location, generally with the aid of a Geographical Information System.

Many mobile wireless product manufacturers (e.g. Compaq, Palm, Ericsson, Motorola, Nokia, etc.), and mobile computing and mapping software developers (e.g. Autodesk, Intergraph, MapInfo, Xmarc, Oracle, Webraska, AirFlash, Cell-loc, CellPoint, and others), are entering the competitive market of LBS. First generation location-based services have been deployed in Europe, on the American continent, in Japan, throughout Asia and in Australia. One of them is Genie (in Japan and Australia), provided by Intergraph and Xmarc.The Genie LBS can provide users with routing, proximity searching, geo-location and map rendering functionality (https://www.doczj.com/doc/921520904.html,). IntelliWhere, a division of Intergraph, launched a new platform for location-based services in December 2000 called IntelliWhere Genie, also targetted for mobile workers (https://www.doczj.com/doc/921520904.html,).

Another popular location-based service in Japan, called J-Navi, was jointly developed by Xmarc and J-Phone. J-Navi is a type of mobile 'yellow pages', and services up to a million transaction requests per day (https://www.doczj.com/doc/921520904.html,). Webraska, a worldwide provider of wireless navigation, mapping and traffic information services and technologies for telecommunication carriers, has also launched a location-based service platform called Webraska Personal Navigation Suite. The Webraska-based LBS was introduced in Europe in 2000 (https://www.doczj.com/doc/921520904.html,). In Australia one of the first location-based services was the product of a cooperation between Ericsson and Tourism Victoria. The service provides traveller information such as accommodation and restaurant details, relevant to their current location (McLorinan et al, 2000). L4 Mobile,

a provider of location-based wireless applications and services for the mobile data market in Australia and New Zealand, also announced a commercial location-based services platform. “This will allow L4 Mobile to provide wireless operators with the opportunity to offer high value location-based services to business and consumer customers” (Simon, 2000). In addition, AutoDesk and MapInfo, two well known mapping/spatial software developers, have developed two location-based services, AutoDesk OnSite and MapInHand respectively, that can be accessed by mobile workers using PDAs.

The E911 Phase II completion due date was 1st October 2001, however this deadline has been extended. "RCN notes, yet current estimates indicate it may be years before Phase II is fully implemented.... With handset-based technologies, deployment could take up to four years from the proposal deadline" (Wrolstad, 2001a & b). "Sprint PCS and Verizon Wireless are seen as possibly meeting the Oct. 1 deadline" (Sutherland, 2001). Several carriers, in partnership with location technology developers, are currently conducting field trials with a view to meeting the FCC requirement.

Despite setbacks concerning the E911 rollout in the U.S., many telecommunications carriers see location-based services as being the new 'boom' that will drive developments in wireless communication technology as well as promising new sources of revenues. "Location information will become an integral part of the personalized mobile Internet applications and services" (Location Interoperability Forum, 2001). However, note the warning about 'overselling' LBS: "Mobile location Services are still a technology, not an industry" (ibid, 2001).

Mobile Wireless Communication Standards and LBS

Mobile Wireless System Components

In general, a wireless communication system consists of three main components: the Mobile Switching Centres (MSC) or central processing equipment, the base stations and the user handsets (e.g., Prasad 1998). The MSC is responsible for interacting with a large number of base stations, controlling call processing and billing. They make use of some very important databases, such as the home location register (HLR) and the visiting location register (VLR). The HLR contains subscriber registrations and service profile information. The VLR is used when a customer of a serving system area has 'roamed' into another area.

The base stations are the 'links' between the MSC and the handsets. A base station manages a cell within a wireless telephony network, containing many mobile handsets. The base station typically comprises a control unit, radio base station equipment and an antenna. The mobile handsets may be cell phones or small handheld computing devices known as Personal Digital Assistants (PDA). A mobile handset consists of a control/interface unit, a transceiver and an antenna system.

When a user (calling party) makes a call from his/her cell phone, the calling base station receives the call and transfers it to the calling MSC. The calling MSC processes the call, retrieves the caller profile from the database and makes the relevant information available to the MSC. The called party receives the call via a called base station. Communication between MSCs is performed via the fixed telephone system.

Mobile Communication Protocols

Wireless mobile communication protocols are complex and, unfortunately, not globally interoperable. The U.S. has developed their mobile network based on the IS-41 (Interim Standard 41) standard, while Europe uses the GSM (Global System for Mobility) standard. Nowadays, GSM networks seem to offer superior solutions for value-added services and hence are becoming increasingly popular in many parts of the world, including the U.S. GSM has also deployed two important standards for the development of LBS, the Short Message Service (SMS) and the General Packet Radio System (GPRS). GSM uses both Time Division Multiple Access (TDMA) and Frequency Division Multiple Access (FDMA) multiplexing techniques.

Advanced Mobile Phone Service (AMPS) was the first analog cellular system introduced in the U.S. AMPS employs the FDMA technique, and uses IS-41 for roaming management. Digital AMPS (D-AMPS) provides digital services. It uses TDMA, and the IS-41 standard for roaming management. Code Division Multiple Access (CDMA), or IS-95, is another standard that also uses IS-41 for mobility management. This is a comparatively new cellular phone standard. While GSM is used in Europe, DAMPS and CDMA are mostly used in the U.S. In Australia, the mobile networks are mostly GSM-based, although CDMA services have also been recently introduced. Current LBS applications are usually developed with either the CDMA (IS-95) or GSM mobile network standards in mind, as well as future Universal Mobile Telecommunications System (UMTS) standards.

Standards that support LBS

LBS span technologies from 2 generation (2G) wireless communication through the so-called 2.5 generation (2.5G), to the third generation (3G). 2.5G is an evolution from the 2G technology such as GSM, and currently includes SMS and GPRS. These are 'always connected' network standards. SMS is able to transfer text messages, that can be a combination of words and numbers. Each short message is up to 160 characters in length for Latin alphabets, and 70 characters for non-Latin alphabets like Chinese or Arabic. SMS is now one of the standards used for providing mobile mapping information, such as turn-by-turn directions, in text format. However, the SMS limitations (primarily the ability to send only 160 characters of text) can be overcome by using GPRS, and enhanced forms of SMS that it supports.

GPRS is a newly introduced standard in Europe and the U.S., and has been available in Australia since the end of 2001 (https://www.doczj.com/doc/921520904.html,.au). GPRS is supported by GSM and TDMA mobile networks. GPRS has some advantages in comparison to 2G data services on GSM network and SMS. First of all, GPRS is Internet-enabled. Secondly, GPRS theoretically offers higher data transfer speed. The highest speed that GPRS can reach is up to 171.2Kbps when all 8 timeslots are used. ('Time slot' is a unit of division of a frequency range in TDMA techniques.) This speed is three times faster than a fixed telecommunication network (56Kbps). In reality each user will normally be assigned about 3 timeslots and therefore the speed is much lower. The data transfer speed over the mobile network will therefore not be quicker than over the fixed network. Moreover, GPRS needs support from other technologies such as SMS for storing and forwarding messages, as well as 3G technologies such as EDGE and HSCSD (High Speed Circuit Switched Data) with higher capacity for data transfer. Hence some LBS applications may have to wait for several years to be supported by fully operational 2.5G or 3G mobile telephony networks.

The so-called 'Wireless Internet' or 'Mobile Internet' also permits telecommunication carriers to add more services, including location-based services, to existing wireless networks. The Mobile/Wireless Internet is being developed under some constraints. First of all the range of wireless communication systems is very diverse. The Mobile/Wireless Internet must be compatible with GSM, CDMA and AMPS. Secondly, the small size of mobile devices means a restricted user interface, less powerful CPU and comparatively low memory capacity. The wireless network, in comparison with the standard wireline network, "has limited bandwidth, longer latency and lower degree of reliability to deliver wireless data" (Lin & Chlamtac, 2001). Moreover, standard Internet content will not be interpreted correctly by the micro-browsers found in mobile devices. Therefore new mobile Internet standards are needed, such as the Wireless Application Protocol (WAP) and the Wireless Markup Language (WML).

WML is based on the eXtensile Markup Language (XML), which is a markup language developed for delivering database contents via the standard Internet. WML is therefore similar to HyperText Markup Language (HTML), but is designed for the efficient delivery of data across limited bandwidth mobile telephony networks. A WML page is called a 'deck', and in one WML page it is possible to have many sub-pages, referred to as 'cards'. Each WML card is identified by an Internet-standard Uniform Resource Locator (URL). Users navigate with the WML browser through the WML cards.

WAP is designed to operate over many wireless networks. It is a stack of protocols, which are similar to the standard Internet on PCs, as indicated in Figure 1. WAP gateways provide efficient wireless access to the Internet, as shown in Figure 2, and handle requests from WAP-enabled handsets, and pass requests to, and receive data from, a server (because handsets cannot communicate directly with the server). Moreover, the gateway translates WAP to the TCP/IP Internet protocol for application servers which do not support WAP.

Internet WAP

Wireless Bearer (GSM, CDPD…)

Wireless Datagram Protocol (WDP) Wireless Transaction Protocol (WTP) Wireless Session Protocol (WSP) Wireless Application Environment (WAE) Wireless Transport Layer Security TCP/IP, UDP/IP, Media SSL/TLS HTTP Application Environment

(HTML, Java) Figure 1: WAP Architecture (Lin & Chlamtac, 2001)

Figure 2: WAP Model (Lin & Chlamtac, 2001)

Positioning and LBS

Determining the location of mobile users is one of the most challenging tasks that must be undertaken in order to enable a location-based service. LBS providers currently use different methods to determine locations.

Non-GPS Positioning Techniques

The most common non-GPS solutions for mobile positioning are: Cell of Origin, Time of Arrival , Angle of Arrival and Enhanced Observed Time Difference. All make use of the wireless telecommunications system itself.

Cell of Origin (COO) is the most straightforward solution, and uses the cell identification information within the mobile telephony network to identify the approximate location of the caller. However, this technique is often not very useful because of the low positioning accuracy. Time of Arrival (TOA) is a commonly used network-based solution for determining the position of mobile callers. The differences in the time of arrival of the signal from a user's mobile device to at least three base stations are used to calculate the location of that device. The Angle of Arrival (AOA) technique seeks to determine the location of a mobile device based on the angle at which signals transmitted from the device arrive at the base station(s).

The Enhanced Observed Time Difference (E-OTD) technique determines the location of a mobile device by using location receivers which are geographically dispersed across a wide area. These so-called Location Measurement Units (LMU) each have an accurate timing source. When it is possible for E-OTD (software-enabled) mobile devices and the LMUs to receive signals from at least three base stations, the time difference of arrival of the signal from each base station at the handset and at the LMU are calculated. The estimated location of the handset is calculated, based on the combination of the differences in time, through a hyperbolic positioning technique. The E-OTD technique offers an accuracy level from 50 to 125m (Prasad, 2002).

Global Positioning System

The Global Positioning System (GPS)is a satellite-based navigation system developed and operated by the U.S. Department of Defense. GPS is a position, velocity and time

determination system that is truly global, is able to operate 24 hours a day under all weather conditions, and charges no user fees. GPS offers comparatively high accuracy, when operational conditions are favourable. In cases of outdoor positioning, when signals from the constellation of GPS satellites are not obstructed, sub-dekametre horizontal accuracy (<10m) is assured (Ludden, 2000). GPS is a relatively mature technology, and current receiver hardware is smaller, lighter, cheaper and uses less power than earlier generation equipment.

GPS does, however, have some serious limitations due to the strong attenuation of the satellite signals by buildings, foliage, etc. Therefore GPS does not operate well (or at all) in dense 'urban canyon' areas, or inside buildings. Yet these are often the very areas where demand for location-based services is the highest. Furthermore, in order to use GPS, the mobile handsets must be modified to integrate GPS receiver chips.

However, since GPS offers so many advantages it is considered a 'first choice' solution for many mobile positioning applications, even for the FCC's emergency service E911 requirements, and the LBS that can be supported by the location determination technology implemented for mobile telephony. Although modifying mobile handsets is required, this is not seen as a significant disadvantage as most handsets are replaced every 3 or 4 years. The cost of upgrading a handset to incorporate a GPS receiver is not very expensive. According to SnapTrack, a leading mobile handset-based GPS designer, "Those handset upgrades are estimated to cost an additional $5 - $10 per handset, but that likely will be reduced as handset makers step up mass volume production" (https://www.doczj.com/doc/921520904.html,). Moreover, handset-based positioning techniques offer users the ability to turn on, and turn off, the location-determination function when they want to, something which cannot be done in the case of network-based positioning techniques. In order to overcome the problem of positioning indoors and in urban areas, some GPS receivers have been developed that can operate in weak signal environments. Assisted GPS

Assisted GPS (A-GPS) refers to the GPS positioning technique whereby there is assistance data provided from a special GPS server/base station by the mobile telephony network. A-GPS enables GPS positioning even in urban and indoor areas, where the signal is too weak to be acquired using standard signal tracking procedures within the receiver. For example, the approximate location information of the GPS-enabled handset (derived from the COO technique) can aid the tracking of the satellite signals, and the ephemeris data (transmitted to the mobile device from a GPS base station receiver) can permit fast position computation even in a so-called 'cold start'. Sometimes the actual measurement and position computation is done not in the handset, but at a location server integrated within the mobile telephony network.

SnapTrack deploys a location server connected to one or more stationary GPS base station receivers to implement the A-GPS technique. The process takes just a few seconds, whereas conventional GPS receivers can take many minutes (if at all). The SnapTrack mobile GPS can provide position accuracy from the sub-dekametre level (in ideal, outdoor conditions) to comparatively low accuracy of many tens of metres (indoors or where there are significant amounts of multipath) (https://www.doczj.com/doc/921520904.html,). Similar A-GPS implementations include those by Global Locate (https://www.doczj.com/doc/921520904.html,), Parthus (https://www.doczj.com/doc/921520904.html,), Enuvis

(https://www.doczj.com/doc/921520904.html,), and Sigtec (https://www.doczj.com/doc/921520904.html,.au), though there are subtle differences in hardware, software and system architecture.

LBS Location Management Components – MPC and GMLC

The Gateway Mobile Location Centre (GMLC) and the Mobile Positioning Centre (MPC) are gateways to connect the positioning components of the GSM mobile telephony network and location-based service applications. One of their functions is to calculate the position of the mobile device (the technique used depends on the mobile positioning system used), and deliver this information to the application. To perform this task, it is necessary to have communication interfaces between the mobile telephony network and the LBS application. For the MPC the interface is the Mobile Positioning Protocol (MPP) (currently version 1.1). In the case of the GMLC, the interfaces are being developed and standardized by the Open Location Service initiative. Ericsson’s mobile positioning centre is an example of an operable facility. It delivers location estimates for mobile cell phones in a format that can be used by any Geographical Information System. "Ericsson's MPS is the only system available today that can position all mobile phones," and "The basic location method applies to GSM, TDMA and all other network technologies. Even more, it gives the end-user full control of when and by which service he wants to be positioned. That is a key to user comfort and commercial success" (Ericsson Mobile Positioning, https://www.doczj.com/doc/921520904.html,). Spatial Data and LBS

Apart from considerations of data transfer across wireless networks and mobile positioning, another essential component of the LBS architecture is storing and analysing spatial data. Geographical Information Systems are used to store, manage and analyse spatial data.

Geographical Information System

A Geographical Information System (GIS) refers to the computer-based capability to manipulate geographical data (i.e. all data that has a spatial attribute associated with it).

A GIS includes functions to support the operations of acquisition, compilation, storage, update, management, retrieval, presentation and analysis of data. Spatial data in the form of maps or images can be stored in vector format or raster format. All GIS data are 'geo-referenced', so that all coordinate information is in a well-defined reference framework (or 'datum').

Data in GIS is of course spatial, and refers to a unique location on the earth's surface -- its geographical location with respect to a datum. A spatial object must have following four characteristics defined:

? Location: it exists at a known point on the earth’s surface.

? Form: it has a geometric representation, with any geographical feature being represented by one of three basic geometric types: point, line and polygon.

? Attribute: properties that describe the nature of the object.

? Spatial relationship with other objects -- some basic relationships are boundary of an area, adjacent areas, distance between any two geometric objects, distance buffer of an object (consisting of all points within a given distance from that object), etc.

(Syafi’i, 2000).

Database Management Systems for Spatial Data

Conventional Relational Database Management Systems (RDBMS) are generally used to store spatial data. However, a RDBMS is designed only for transactions involving comparatively simple data types such as characters and numeric data. Spatial data are usually complex objects that require more than one data structure to describe them, and their spatial relationships.

A new generation database management system, known as the Object Relational Database Management System (ORDBMS), has been developed. The ORDBMS merges the object-oriented management system that allows the storage of complex data as objects, and the relational database management system to offer the ability to manage the relationships between objects. A Structure Query Language (e.g. SQL2 or SQL3) can support all database management operations, as well as object-oriented data modelling (Syafi’i, 2000).

ORDBMS offers facilities such as user-defined data types (UDT) and user-defined functions (UDF). These enable users to store and manage complex spatial data, as an object, along with data from other sources such as CAD (Computer Aided Designs) and images in the same database. More importantly, ORDBMS allows spatial analysis to be performed in the database server using SQL commands instead of in the application. Oracle8 Spatial Cartridge is an example of a spatial database that stores geometric objects as Abstract Data Types (ADT), a user-defined data type, in feature-based tables, within the RDBMS. Most LBS developers, such as AirFlash, AutoDesk, CellPoint, GeoTouch, IntelliWhere, Webraska, Xmarc, currently use Oracle8 to store their spatial data.

From a GIS perspective, location-based services do not include many complex spatial analyses. However, it is the nature, completeness and accuracy of the database content that impacts on the quality of the subsequent LBS. For a certain service area, the database must include all the appropriate features such as roads and points of interest (hotels, parks, ATMs, restaurants, public traffic stations, tourist points, shops, etc.). In addition, digital 'maps' of the area are needed. These can be a portfolio of raster maps or images, a vector map that can be created 'on-the-fly' when requested, or archived aerial/satellite photographs or images. All roads and points of interest (and appropriate labels) must be shown, and be geo-referenced so that its location on the 'map' is correct. The spatial data analysis functions used for location-based services are typically geometric functions involving the computation of distance, area, volume and directions. However, in a LBS a distance between two points may be expressed in travel time (for different means of transportation -- car, by foot, public transport, etc.), or in travel cost, rather than in metric units.

Among the location-based service concepts, the definitions of geocoding and routing must be clarified. Geocoding refers to processes of, for example, translating a real-world address such as a street number into a latitude/longitude coordinate value. There are also reverse-geocoding functions that convert a latitude/longitude coordinate into a street address. Routing functions are used to create a route, and display it on a map or image. The shortest route from point A to point B is also able to be calculated based on flow analysis of the appropriate geometric calculations. For example, there may be several possible routes to travel from point A to point B. The shortest route between these

points could be calculated based on a function of time, type of road and means of transport. For example, travel at 5am is generally quicker than at 8am, on the same road, with a car.

The Complete LBS System

The LBS architecture basically comprises the components shown in Figure 3. The first component is the mobile positioning system. This can be network-based (AOA, TOA, TDOA), or handset-based (E-OTD, GPS), or A-GPS. The second component is the mobile telephony network, which delivers the service to users. Service gateways in the mobile telephony network are essential. Their function is to connect positioning systems with the wireless network and the location-based service application. The third component is the location-based service application itself. This consists of an application server and a spatial database (or even a 'warehouse'). Components communicate with each other via application programming interfaces (APIs). These are designed to help wireless Internet developers integrate location-based services into mobile telephony networks. They also allow the application server to communicate with the spatial database and with the billing server. The processing centre for a location-based service platform is the application server that handles user interface functions and communicates with the spatial database or data warehouse.

LBS Issues

Diverse Mobile Mapping Standards

The issue of mobile mapping is important in the context of LBS as the ability to display mapping information on mobile devices such as cell phones and PDAs is limited. The spatial information may simply be text (street address of a point of interest, turn-by-turn directions, etc.), images (e.g. of current traffic conditions), map images (area of interest, shortest route from current location to a specific destination etc.), and so on. In general, attractive 'maps' are the best means of depicting spatial information, and are hence an essential element of LBS. Moreover, with the development of 3G telecommunications and the wireless Internet, users will be able to gain access to a wide variety of map information.

However, developing mapping applications for the mobile/wireless Internet is challenging, for several reasons. The major concern is the restricted display capability of mobile devices. Apart from the limited map features that can be displayed, the speed of data transmission to mobile devices is also slow in comparison to a wired network. Moreover, "Each device speaks a different wireless protocol and supports a variety of different Wireless Markup Languages (there are over 30 such languages) – these different standards preclude a web site developer from writing every application to individually support every single device available" (Oracle, 2000). For example, WAP-enabled cell phones support the WML. On the other hand, Palm Operating System devices support TTML (Tagged Text Markup Language), and voice-activated Internet applications support the VoiceXML and VoxML mark-up languages.

Mobile Network SMS, GPRS, Wireless Internet Service

Gateway

(GMLC)

Figure 3: Location-Based Service Components (“?” is location information)

Mobile mapping requires standards that allow data content to be easily transferred and displayed across the wireless Internet to any one of a large variety of mobile devices. For displaying spatial data on the standard Internet, Scaleable Vector Graphics (SVG) and Geography Markup Language (GML) are two important standards. The data in these formats are delivered across the Internet via XML. In the case of the mobile/wireless Internet, there should be conversion of standard Internet markup languages (XML and HTML) to languages that mobile devices can understand (e.g. WML, Handheld Device Markup Language - HDML, VoiceXML and SMS).

One leading mobile middleware product that enables these conversions is the Oracle 9i Application Server Wireless Edition (Oracle 9iAS Wireless). "It converts any Internet content to XML and transforms the XML to any markup language supported by any device (HTML, WML, HDML, VoiceXML, VoxML, SMS, etc.)". Therefore, "Oracle9i AS Wireless provides comprehensive support for the development of 'Location-based Services" (Oracle Technology Network, 2001). Oracle9iAS Wireless uses eLocation APIs, which are Java-based, to allow any Oracle9iAS Wireless application to interact with the spatial data management features in the spatial database. Interoperability

Interoperability is a must for the widespread adoption of location-based services. "Achieving the full value for location services depends on consistent communication across different regions, technology platforms, networks, application domains, and classes of products" (Reichardt, 2001). Moreover, interoperability ensures network security and privacy. It also helps to facilitate billing and revenue sharing (Location Interoperability Forum, 2001). Therefore, "a truly interpretable Open Location Services Platform is essential for long-term success in this market" (Reichardt, 2001). The issue of interoperability needs to be addressed across:

? Wireless Systems/Networks (GSM, CDMA and TDMA).

? Positioning Technologies (COO, AOA, TDOA, E-OTD and A-GPS).

? Core Network (Multi-Vendor and Inter-Gateways).

? Applications:

? Different network and contents interfaces (WAP, SMS and GPRS).

? Different content formats (maps, routes and languages).

The Open GIS Consortium (OGC), which is the world’s authoritative industrial organization for information processing matters related to spatial and location information, announced the Open Location Service (OpenLS) Initiative. The OpenLS Initiative focuses on developing interface standards "needed by industry to support implementation of the location services invoked by mobile or wireless Internet devices in end to end settings" (Hecht, 2000). "Similar to the way that HTTP protocols enabled the growth of activity in the World Wide Web, OpenLS standards, resulting from OGC's cooperative testbed process, have the potential to enable significant growth of Location Services markets in the Wireless Web" (Burnett, 2000). Figure 4 shows the components of a location-based service that the OpenLS focuses on.

The Location Interoperability Forum (LIF) is another organization dealing with specifications "pertaining to the query and response for the actual location or position of the mobile device" (Open Location Service, 2000). The following are the main objectives of the LIF:

? "Reduce/limit multiplicity of positioning technologies to be deployed.

? Promote common methods and interfaces for standards-based positioning

technologies (Cell-ID, E-OTD, and A-GPS).

? Define common interfaces and methods between applications and the wireless

networks irrespective of their underlying air interfaces and positioning technologies. ? Define/adopt common interfaces between applications and the different types of content engines and databases" (Location Interoperability Forum, 2001).

Internet Wireless – IP Platform Control Network Management Network Services Gateway

Services

Mobile Positioning Server

Figure 4: OpenLS interface Focus Areas (Hecht, 2000)

Market Capacity

Many computing and spatial information business analysts believe that LBS represent the ideal means by which spatial information can be provided to a wide range of public users. For mobile workers, all information needed to undertake the field work may be accessed from their mobile devices. For everyday activities LBS provide quick response to requests for location-related information. The capability of finding the nearest hotel or hospital location, and obtaining turn-by-turn directions to that destination, delivered via cell phones, is welcomed by everyone. Some even predict that LBS will, in the near future, be one of the most important sources of revenue for the wireless communications

industry. Reed (2001) states "telecommunication companies are making huge investments, and they know LBS technology is a key application from which they can generate revenue". VanderMeer (2001), Airbiquity Inc,. a developer of wireless data communication solutions, "…predicts that by 2005 the location-based service (LBS) market will exceed $11 billion in revenue…".

On the other hand, there are skeptical voices among analysts about the real attraction of location-based services. Reed (2001) states "…LBS technology faces limited bandwidth, hard-to-use interfaces, slow response, small screen size, high costs and limited applications as well as multiple, and often conflicting, standards". In addition, the LBS market seems to be speculative and "the real value and the future of mobile location-specific services lies in the developed relationships with customers and improved efficiencies of many business processes" (Sonnen, 2001). The most important concern is whether consumers are really interested in LBS, and whether they are willing to pay for them.

A study carried out by Driscoll-Wolfe Marketing & Research Consulting (summarized by Driscoll, 2001; and published by RCR Wireless News on 19/3/2001) tries to quantify customers’ level of interest in, and willingness to pay for, LBS. From a survey of 20,000 households the study found that people would use routing assistance on average twice per month and look up a 'point-of-interest' less than twice per month. People who have Internet-capable PDAs or cell phones were found to be more likely to use LBS. "The research also indicates that more than 75% of respondents under age 45 would expect to use a routing assistance service at least once a month" (Driscoll, 2001). It also turns out that "16% of respondents who do not subscribe to cellular service expressed a strong level of interest in subscribing in order to obtain access to these services. An additional 15% expressed a slight interest in subscribing to cellular for location-related services. The majority (57%) of those who do not currently subscribe to cellular service would still have no interest in subscribing even if location-related services were offered at no additional cost" (ibid, 2001). It is clear that LBS developers need to "focus on killer applications", which are economically viable, "rather than frivolous services such as ‘dial-your-daily-horoscope’" (Wee, 2001).

In summary, the market for LBS is currently very speculative. There are some serious concerns, such as whether consumers are prepared to pay for LBS and how much revenue can be generated by LBS. However, the potential for LBS cannot be easily rejected. Reed (2001) states "providers will quickly evolve their offerings, and the infrastructure will grow to meet the market requirements….I also believe the LBS industry has potential to completely reshape the geospatial industry". "Information about a potential customer’s location can be particularly valuable" (Sonnen, 2001).

User Privacy

Another important issue for LBS is wireless location privacy protection. The locations of customers, whose mobile devices have position-determination capability, may be known to an accuracy better than 100m whenever they make a call. Hence their everyday 'tracks' can be recorded and analysed unless safeguards are introduced. Such customers are worried about the privacy of information about their locations. According to a study by Driscoll-Wolfe Marketing & Research Consulting (2001), there is concern about "potential threats to personal security and use of personal location records for

commercial purposes and legal actions." and therefore "Respondents emphasized the importance of being able to control who receives their location information.".

It is necessary for telecommunications carriers to understand how important customers' location privacy is. Currently, "vendors and carriers are being naive [about wireless privacy concerns from consumers] and haven't done the proper market research to detect that concern" (Hamblen, 2001). The LBS vendors themselves have admitted that "privacy will be a concern" but "users must be assured that they have several ways to request receipt of location-based information (known as opt-in), as well as have opportunities to opt-out" (ibid, 2001). Carriers should be able to distinguish between those customers that want location-based services (or location-based advertising), and those who do not.

Furthermore, carriers should protect their location information by not forwarding it to advertisers or other service providers unless the users authorize them to do so. In the U.S., The Location Privacy Protection Act has been introduced into the Senate by Senator John Edwards. "The bill requires companies that provide wireless location-based services to notify users when they collect information about their location. The bill also prohibits the use or sale of the information without permission of the user" (AllNetDevices Staff, 2001b). "We need to get ahead of the curve on what will soon be a real problem" (ibid, 2001b).

Protection Groups of consumers seem to be very concerned about such issues. The Center for Democracy and Technology (CDT), in the U.S., is calling upon location-based service developers to pay particular attention to mobile customer location privacy. "CDT believes that a separate proceeding to craft strong, technology neutral privacy rules implementing the wireless location information provisions of section 222 of the Communications Act should commence immediately" (Dempsey & Mulligan, 2001). Section 222 requires "express prior authorization" before providing commercial access to user's location information. In Europe, the European Commission is also trying to address the location privacy issues by drafting a Europe-wide Data Privacy Act. Concluding Remarks

The paper has discussed several aspects impacting on the implemention of location-based services. These include knowledge on the wireless network that is capable of supporting LBS, mobile positioning techniques, and issues concerning spatial databases. Additional issues such as interoperability, privacy and market capacity were also discussed. Despite current problems and drawbacks, location-based services represent a promising future class of spatially-enabled mobile applications.

Acknowledgement

The authors would like to thank the reviewers Dr. Richard Klukas and Dr. Jim Ray for their valuable comments and suggestions.

References

AllNetDevices Staff (2001a) Location Services Coming Slowly,

https://www.doczj.com/doc/921520904.html,/wireless/news/2001/07/12

AllNetDevices Staff (2001b) Location Privacy Bill Introduced,

https://www.doczj.com/doc/921520904.html,/wireless/news/2001/07/13/location_privacy.html

Benson J. (2001) LBS Technology Delivers Information Where and When it is Needed, Business Geographics, https://www.doczj.com/doc/921520904.html,/bg/2001/0201/0201lbs.asp

Burnett J.(2000) OGC Announces Wireless Location Services Initiative, https://www.doczj.com/doc/921520904.html,/News/00-10-30.htm

Dempsey J.X & Mulligan D. (2001) Comments of the Center for Democracy and Technonoly, https://www.doczj.com/doc/921520904.html,/privacy/issues/location/010406fcc.shtml

Driscoll C. (2001) Are Consumers Interested in Wireless Internet Location-Based Services? https://www.doczj.com/doc/921520904.html,/wireless/w_locationbased.htm

Driscoll-Wolfe Marketing & Research Consulting (2001) Wireless Location Privacy Study, https://www.doczj.com/doc/921520904.html,/WLS%20Privacy%20PR.htm

FCC (2001)

https://www.doczj.com/doc/921520904.html,/911/enhanced/releases/factsheet_requirements_012001.pdf

Hamblen M. (2001) Privacy Concerns Mount Over Wireless Location Technology,

https://www.doczj.com/doc/921520904.html,/english/crd_location_421927.html

Hecht L. (2001) Open Location Services: Vision and Objectives, Corporate Roles and

Work Program Summary, https://www.doczj.com/doc/921520904.html,/docs/OLS_Oveview.htm

Hoyde S.D.L. (2001) Location-Based Services: A Legal Requirement? https://www.doczj.com/doc/921520904.html,/ge/2001/0701/0701lbs.asp

Lin Y. & Chlamtac I. (2001) Wireless and Mobile Network Architectures, John Wiley

& Sons, Inc., New York.

Ludden B. (2000) Location Technology, https://www.doczj.com/doc/921520904.html,/about-

LIF/documents

Location Interoperability Forum (2001) https://www.doczj.com/doc/921520904.html,/

Marek S. (2001) The Unstoppable SnapTrack,

https://www.doczj.com/doc/921520904.html,/pdf/SnapTrack%20Wireless%20Week%20Article.pdf

McLorinan A., MacDonald C. & Cavallo L. (2000) Ericsson and Tourism Victoria in Location-Based Information Trials Via Mobile Devices, https://www.doczj.com/doc/921520904.html,.au/MediaCentre/Releases/release_20000128_tourism.asp.

Open Location Service (2000) OpenLS Executive Overview,

https://www.doczj.com/doc/921520904.html,/docs/OpenLS_ExecOverview.htm

Oracle Technology Network (2001) Oracle9i AS Wireless Business White Paper, https://www.doczj.com/doc/921520904.html,/mobile/collateral/9iASWE_Datasheet_Mar20.pdf

Prasad R (1998) Universal Wireless Personal Communications, Arctech House, 664pp.

Prasad, M. (2002) Location Based Services,

https://www.doczj.com/doc/921520904.html,/application/lbs/lbs002pf.htm

公文写作规范格式

商务公文写作目录 一、商务公文的基本知识 二、应把握的事项与原则 三、常用商务公文写作要点 四、常见错误与问题

一、商务公文的基本知识 1、商务公文的概念与意义 商务公文是商业事务中的公务文书,是企业在生产经营管理活动中产生的,按照严格的、既定的生效程序和规范的格式而制定的具有传递信息和记录作用的载体。规范严谨的商务文书,不仅是贯彻企业执行力的重要保障,而且已经成为现代企业管理的基础中不可或缺的内容。商务公文的水平也是反映企业形象的一个窗口,商务公文的写作能力常成为评价员工职业素质的重要尺度之一。 2、商务公文分类:(1)根据形成和作用的商务活动领域,可分为通用公文和专用公文两类(2)根据内容涉及秘密的程度,可分为对外公开、限国内公开、内部使用、秘密、机密、绝密六类(3)根据行文方向,可分为上行文、下行文、平行文三类(4)根据内容的性质,可分为规范性、指导性、公布性、陈述呈请性、商洽性、证明性公文(5)根据处理时限的要求,可分为平件、急件、特急件三类(6)根据来源,在一个部门内部可分为收文、发文两类。 3、常用商务公文: (1)公务信息:包括通知、通报、通告、会议纪要、会议记录等 (2)上下沟通:包括请示、报告、公函、批复、意见等 (3)建规立矩:包括企业各类管理规章制度、决定、命令、任命等; (4)包容大事小情:包括简报、调查报告、计划、总结、述职报告等; (5)对外宣传:礼仪类应用文、领导演讲稿、邀请函等; (6)财经类:经济合同、委托授权书等; (7)其他:电子邮件、便条、单据类(借条、欠条、领条、收条)等。 考虑到在座的主要岗位,本次讲座涉及请示、报告、函、计划、总结、规章制度的写作,重点谈述职报告的写作。 4、商务公文的特点: (1)制作者是商务组织。(2)具有特定效力,用于处理商务。 (3)具有规范的结构和格式,而不像私人文件靠“约定俗成”的格式。商务公文区别于其它文章的主要特点是具有法定效力与规范格式的文件。 5、商务公文的四个构成要素: (1)意图:主观上要达到的目标 (2)结构:有效划分层次和段落,巧设过渡和照应 (3)材料:组织材料要注意多、细、精、严 (4) 正确使用专业术语、熟语、流行语等词语,适当运用模糊语言、模态词语与古词语。 6、基本文体与结构 商务文体区别于其他文体的特殊属性主要有直接应用性、全面真实性、结构格式的规范性。其特征表现为:被强制性规定采用白话文形式,兼用议论、说明、叙述三种基本表达方法。商务公文的基本组成部分有:标题、正文、作者、日期、印章或签署、主题词。其它组成部分有文头、发文字号、签发人、保密等级、紧急程度、主送机关、附件及其标记、抄送机关、注释、印发说明等。印章或签署均为证实公文作者合法性、真实性及公文效力的标志。 7、稿本 (1)草稿。常有“讨论稿”“征求意见稿”“送审稿”“草稿”“初稿”“二稿”“三稿”等标记。(2)定稿。是制作公文正本的标准依据。有法定的生效标志(签发等)。(3)正本。格式正规并有印章或签署等表明真实性、权威性、有效性。(4)试行本。在试验期间具有正式公文的法定效力。(5)暂行本。在规定

关于会议纪要的规范格式和写作要求

关于会议纪要的规范格式和写作要求 一、会议纪要的概念 会议纪要是一种记载和传达会议基本情况或主要精神、议定事项等内容的规定性公文。是在会议记录的基础上,对会议的主要内容及议定的事项,经过摘要整理的、需要贯彻执行或公布于报刊的具有纪实性和指导性的文件。 会议纪要根据适用范围、内容和作用,分为三种类型: 1、办公会议纪要(也指日常行政工作类会议纪要),主要用于单位开会讨论研究问题,商定决议事项,安排布置工作,为开展工作提供指导和依据。如,xx学校工作会议纪要、部长办公会议纪要、市委常委会议纪要。 2、专项会议纪要(也指协商交流性会议纪要),主要用于各类交流会、研讨会、座谈会等会议纪要,目的是听取情况、传递信息、研讨问题、启发工作等。如,xx县脱贫致富工作座谈会议纪要。 3、代表会议纪要(也指程序类会议纪要)。它侧重于记录会议议程和通过的决议,以及今后工作的建议。如《××省第一次盲人聋哑人代表会议纪要》、《xx市第x次代表大会会议纪要》。 另外,还有工作汇报、交流会,部门之间的联席会等方面的纪要,但基本上都系日常工作类的会议纪要。 二、会议纪要的格式 会议纪要通常由标题、正文、结尾三部分构成。

1、标题有三种方式:一是会议名称加纪要,如《全国农村工作会议纪要》;二是召开会议的机关加内容加纪要,也可简化为机关加纪要,如《省经贸委关于企业扭亏会议纪要》、《xx组织部部长办公会议纪要》;三是正副标题相结合,如《维护财政制度加强经济管理——在xx部门xx座谈会上的发言纪要》。 会议纪要应在标题的下方标注成文日期,位置居中,并用括号括起。作为文件下发的会议纪要应在版头部分标注文号,行文单位和成文日期在文末落款(加盖印章)。 2、会议纪要正文一般由两部分组成。 (1)开头,主要指会议概况,包括会议时间、地点、名称、主持人,与会人员,基本议程。 (2)主体,主要指会议的精神和议定事项。常务会、办公会、日常工作例会的纪要,一般包括会议内容、议定事项,有的还可概述议定事项的意义。工作会议、专业会议和座谈会的纪要,往往还要写出经验、做法、今后工作的意见、措施和要求。 (3)结尾,主要是对会议的总结、发言评价和主持人的要求或发出的号召、提出的要求等。一般会议纪要不需要写结束语,主体部分写完就结束。 三、会议纪要的写法 根据会议性质、规模、议题等不同,正文部分大致可以有以下几种写法: 1、集中概述法(综合式)。这种写法是把会议的基本情况,讨

titlesec宏包使用手册

titlesec&titletoc中文文档 张海军编译 makeday1984@https://www.doczj.com/doc/921520904.html, 2009年10月 目录 1简介,1 2titlesec基本功能,2 2.1.格式,2.—2.2.间隔, 3.—2.3.工具,3. 3titlesec用法进阶,3 3.1.标题格式,3.—3.2.标题间距, 4.—3.3.与间隔相关的工具, 5.—3.4.标题 填充,5.—3.5.页面类型,6.—3.6.断行,6. 4titletoc部分,6 4.1.titletoc快速上手,6. 1简介 The titlesec and titletoc宏包是用来改变L A T E X中默认标题和目录样式的,可以提供当前L A T E X中没有的功能。Piet van Oostrum写的fancyhdr宏包、Rowland McDonnell的sectsty宏包以及Peter Wilson的tocloft宏包用法更容易些;如果希望用法简单的朋友,可以考虑使用它们。 要想正确使用titlesec宏包,首先要明白L A T E X中标题的构成,一个完整的标题是由标签+间隔+标题内容构成的。比如: 1.这是一个标题,此标题中 1.就是这个标题的标签,这是一个标签是此标题的内容,它们之间的间距就是间隔了。 1

2titlesec基本功能 改变标题样式最容易的方法就是用几向个命令和一系列选项。如果你感觉用这种方法已经能满足你的需求,就不要读除本节之外的其它章节了1。 2.1格式 格式里用三组选项来控制字体的簇、大小以及对齐方法。没有必要设置每一个选项,因为有些选项已经有默认值了。 rm s f t t md b f up i t s l s c 用来控制字体的族和形状2,默认是bf,详情见表1。 项目意义备注(相当于) rm roman字体\textrm{...} sf sans serif字体\textsf{...} tt typewriter字体\texttt{...} md mdseries(中等粗体)\textmd{...} bf bfseries(粗体)\textbf{...} up直立字体\textup{...} it italic字体\textit{...} sl slanted字体\textsl{...} sc小号大写字母\textsc{...} 表1:字体族、形状选项 bf和md属于控制字体形状,其余均是切换字体族的。 b i g medium s m a l l t i n y(大、中、小、很小) 用来标题字体的大小,默认是big。 1这句话是宏包作者说的,不过我感觉大多情况下,是不能满足需要的,特别是中文排版,英文 可能会好些! 2L A T E X中的字体有5种属性:编码、族、形状、系列和尺寸。 2

毕业论文写作要求与格式规范

毕业论文写作要求与格式规范 关于《毕业论文写作要求与格式规范》,是我们特意为大家整理的,希望对大家有所帮助。 (一)文体 毕业论文文体类型一般分为:试验论文、专题论文、调查报告、文献综述、个案评述、计算设计等。学生根据自己的实际情况,可以选择适合的文体写作。 (二)文风 符合科研论文写作的基本要求:科学性、创造性、逻辑性、

实用性、可读性、规范性等。写作态度要严肃认真,论证主题应有一定理论或应用价值;立论应科学正确,论据应充实可靠,结构层次应清晰合理,推理论证应逻辑严密。行文应简练,文笔应通顺,文字应朴实,撰写应规范,要求使用科研论文特有的科学语言。 (三)论文结构与排列顺序 毕业论文,一般由封面、独创性声明及版权授权书、摘要、目录、正文、后记、参考文献、附录等部分组成并按前后顺序排列。 1.封面:毕业论文(设计)封面具体要求如下: (1)论文题目应能概括论文的主要内容,切题、简洁,不超过30字,可分两行排列;

(2)层次:大学本科、大学专科 (3)专业名称:机电一体化技术、计算机应用技术、计算机网络技术、数控技术、模具设计与制造、电子信息、电脑艺术设计、会计电算化、商务英语、市场营销、电子商务、生物技术应用、设施农业技术、园林工程技术、中草药栽培技术和畜牧兽医等专业,应按照标准表述填写; (4)日期:毕业论文(设计)完成时间。 2.独创性声明和关于论文使用授权的说明:需要学生本人签字。 3.摘要:论文摘要的字数一般为300字左右。摘要是对论文的内容不加注释和评论的简短陈述,是文章内容的高度概括。主要内容包括:该项研究工作的内容、目的及其重要性;所使用的实验方法;总结研究成果,突出作者的新见解;研究结论及其意义。摘要中不列举例证,不描述研究过程,不做自我评价。

公文格式规范与常见公文写作

公文格式规范与常见公文写作 一、公文概述与公文格式规范 党政机关公文种类的区分、用途的确定及格式规范等,由中共中央办公厅、国务院办公厅于2012年4月16日印发,2012年7月1日施行的《党政机关公文处理工作条例》规定。之前相关条例、办法停止执行。 (一)公文的含义 公文,即公务文书的简称,属应用文。 广义的公文,指党政机关、社会团体、企事业单位,为处理公务按照一定程序而形成的体式完整的文字材料。 狭义的公文,是指在机关、单位之间,以规范体式运行的文字材料,俗称“红头文件”。 ?(二)公文的行文方向和原则 ?、上行文下级机关向上级机关行文。有“请示”、“报告”、和“意见”。 ?、平行文同级机关或不相隶属机关之间行文。主要有“函”、“议案”和“意见”。 ?、下行文上级机关向下级机关行文。主要有“决议”、“决定”、“命令”、“公报”、“公告”、“通告”、“意见”、“通知”、“通报”、“批复”和“会议纪要”等。 ?其中,“意见”、“会议纪要”可上行文、平行文、下行文。?“通报”可下行文和平行文。 ?原则: ?、根据本机关隶属关系和职权范围确定行文关系 ?、一般不得越级行文 ?、同级机关可以联合行文 ?、受双重领导的机关应分清主送机关和抄送机关 ?、党政机关的部门一般不得向下级党政机关行文 ?(三) 公文的种类及用途 ?、决议。适用于会议讨论通过的重大决策事项。 ?、决定。适用于对重要事项作出决策和部署、奖惩有关单位和人员、变更或撤销下级机关不适当的决定事项。

?、命令(令)。适用于公布行政法规和规章、宣布施行重大强制性措施、批准授予和晋升衔级、嘉奖有关单位和人员。 ?、公报。适用于公布重要决定或者重大事项。 ?、公告。适用于向国内外宣布重要事项或者法定事项。 ?、通告。适用于在一定范围内公布应当遵守或者周知的事项。?、意见。适用于对重要问题提出见解和处理办法。 ?、通知。适用于发布、传达要求下级机关执行和有关单位周知或者执行的事项,批转、转发公文。 ?、通报。适用于表彰先进、批评错误、传达重要精神和告知重要情况。 ?、报告。适用于向上级机关汇报工作、反映情况,回复上级机关的询问。 ?、请示。适用于向上级机关请求指示、批准。 ?、批复。适用于答复下级机关请示事项。 ?、议案。适用于各级人民政府按照法律程序向同级人民代表大会或者人民代表大会常务委员会提请审议事项。 ?、函。适用于不相隶属机关之间商洽工作、询问和答复问题、请求批准和答复审批事项。 ?、纪要。适用于记载会议主要情况和议定事项。?(四)、公文的格式规范 ?、眉首的规范 ?()、份号 ?也称编号,置于公文首页左上角第行,顶格标注。“秘密”以上等级的党政机关公文,应当标注份号。 ?()、密级和保密期限 ?分“绝密”、“机密”、“秘密”三个等级。标注在份号下方。?()、紧急程度 ?分为“特急”和“加急”。由公文签发人根据实际需要确定使用与否。标注在密级下方。 ?()、发文机关标志(或称版头) ?由发文机关全称或规范化简称加“文件”二字组成。套红醒目,位于公文首页正中居上位置(按《党政机关公文格式》标准排

ctex 宏包说明 ctex

ctex宏包说明 https://www.doczj.com/doc/921520904.html,? 版本号:v1.02c修改日期:2011/03/11 摘要 ctex宏包提供了一个统一的中文L A T E X文档框架,底层支持CCT、CJK和xeCJK 三种中文L A T E X系统。ctex宏包提供了编写中文L A T E X文档常用的一些宏定义和命令。 ctex宏包需要CCT系统或者CJK宏包或者xeCJK宏包的支持。主要文件包括ctexart.cls、ctexrep.cls、ctexbook.cls和ctex.sty、ctexcap.sty。 ctex宏包由https://www.doczj.com/doc/921520904.html,制作并负责维护。 目录 1简介2 2使用帮助3 2.1使用CJK或xeCJK (3) 2.2使用CCT (3) 2.3选项 (4) 2.3.1只能用于文档类的选项 (4) 2.3.2只能用于文档类和ctexcap.sty的选项 (4) 2.3.3中文编码选项 (4) 2.3.4中文字库选项 (5) 2.3.5CCT引擎选项 (5) 2.3.6排版风格选项 (5) 2.3.7宏包兼容选项 (6) 2.3.8缺省选项 (6) 2.4基本命令 (6) 2.4.1字体设置 (6) 2.4.2字号、字距、字宽和缩进 (7) ?https://www.doczj.com/doc/921520904.html, 1

1简介2 2.4.3中文数字转换 (7) 2.5高级设置 (8) 2.5.1章节标题设置 (9) 2.5.2部分修改标题格式 (12) 2.5.3附录标题设置 (12) 2.5.4其他标题设置 (13) 2.5.5其他设置 (13) 2.6配置文件 (14) 3版本更新15 4开发人员17 1简介 这个宏包的部分原始代码来自于由王磊编写cjkbook.cls文档类,还有一小部分原始代码来自于吴凌云编写的GB.cap文件。原来的这些工作都是零零碎碎编写的,没有认真、系统的设计,也没有用户文档,非常不利于维护和改进。2003年,吴凌云用doc和docstrip工具重新编写了整个文档,并增加了许多新的功能。2007年,oseen和王越在ctex宏包基础上增加了对UTF-8编码的支持,开发出了ctexutf8宏包。2009年5月,我们在Google Code建立了ctex-kit项目1,对ctex宏包及相关宏包和脚本进行了整合,并加入了对XeT E X的支持。该项目由https://www.doczj.com/doc/921520904.html,社区的开发者共同维护,新版本号为v0.9。在开发新版本时,考虑到合作开发和调试的方便,我们不再使用doc和docstrip工具,改为直接编写宏包文件。 最初Knuth设计开发T E X的时候没有考虑到支持多国语言,特别是多字节的中日韩语言。这使得T E X以至后来的L A T E X对中文的支持一直不是很好。即使在CJK解决了中文字符处理的问题以后,中文用户使用L A T E X仍然要面对许多困难。最常见的就是中文化的标题。由于中文习惯和西方语言的不同,使得很难直接使用原有的标题结构来表示中文标题。因此需要对标准L A T E X宏包做较大的修改。此外,还有诸如中文字号的对应关系等等。ctex宏包正是尝试着解决这些问题。中间很多地方用到了在https://www.doczj.com/doc/921520904.html,论坛上的讨论结果,在此对参与讨论的朋友们表示感谢。 ctex宏包由五个主要文件构成:ctexart.cls、ctexrep.cls、ctexbook.cls和ctex.sty、ctexcap.sty。ctex.sty主要是提供整合的中文环境,可以配合大多数文档类使用。而ctexcap.sty则是在ctex.sty的基础上对L A T E X的三个标准文档类的格式进行修改以符合中文习惯,该宏包只能配合这三个标准文档类使用。ctexart.cls、ctexrep.cls、ctexbook.cls则是ctex.sty、ctexcap.sty分别和三个标准文档类结合产生的新文档类,除了包含ctex.sty、ctexcap.sty的所有功能,还加入了一些修改文档类缺省设置的内容(如使用五号字体为缺省字体)。 1https://www.doczj.com/doc/921520904.html,/p/ctex-kit/

文档书写格式规范要求

学生会文档书写格式规范要求 目前各部门在日常文书编撰中大多按照个人习惯进行排版,文档中字体、文字大小、行间距、段落编号、页边距、落款等参数设置不规范,严重影响到文书的标准性和美观性,以下是文书标准格式要求及日常文档书写注意事项,请各部门在今后工作中严格实行: 一、文件要求 1.文字类采用Word格式排版 2.统计表、一览表等表格统一用Excel格式排版 3.打印材料用纸一般采用国际标准A4型(210mm×297mm),左侧装订。版面方向以纵向为主,横向为辅,可根据实际需要确定 4.各部门的职责、制度、申请、请示等应一事一报,禁止一份行文内同时表述两件工作。 5.各类材料标题应规范书写,明确文件主要内容。 二、文件格式 (一)标题 1.文件标题:标题应由发文机关、发文事由、公文种类三部分组成,黑体小二号字,不加粗,居中,段后空1行。 (二)正文格式 1. 正文字体:四号宋体,在文档中插入表格,单元格内字体用宋体,字号可根据内容自行设定。 2.页边距:上下边距为2.54厘米;左右边距为 3.18厘米。

3.页眉、页脚:页眉为1.5厘米;页脚为1.75厘米; 4.行间距:1.5倍行距。 5.每段前的空格请不要使用空格,应该设置首先缩进2字符 6.年月日表示:全部采用阿拉伯数字表示。 7.文字从左至右横写。 (三)层次序号 (1)一级标题:一、二、三、 (2)二级标题:(一)(二)(三) (3)三级标题:1. 2. 3. (4)四级标题:(1)(2)(3) 注:三个级别的标题所用分隔符号不同,一级标题用顿号“、”例如:一、二、等。二级标题用括号不加顿号,例如:(三)(四)等。三级标题用字符圆点“.”例如:5. 6.等。 (四)、关于落款: 1.对外行文必须落款“湖南环境生物专业技术学院学生会”“校学生会”各部门不得随意使用。 2.各部门文件落款需注明组织名称及部门“湖南环境生物专业技术学院学生会XX部”“校学生会XX部” 3.所有行文落款不得出现“环境生物学院”“湘环学院”“学生会”等表述不全的简称。 4.落款填写至文档末尾右对齐,与前一段间隔2行 5.时间落款:文档中落款时间应以“2016年5月12日”阿拉伯数字

政府公文写作格式规范

政府公文写作格式 一、眉首部分 (一)发文机关标识 平行文和下行文的文件头,发文机关标识上边缘至上页边为62mm,发文机关下边缘至红色反线为28mm。 上行文中,发文机关标识上边缘至版心上边缘为80mm,即与上页边距离为117mm,发文机关下边缘至红色反线为30mm。 发文机关标识使用字体为方正小标宋_GBK,字号不大于22mm×15mm。 (二)份数序号 用阿拉伯数字顶格标识在版心左上角第一行,不能少于2位数。标识为“编号000001” (三)秘密等级和保密期限 用3号黑体字顶格标识在版心右上角第一行,两字中间空一字。如需要加保密期限的,密级与期限间用“★”隔开,密级中则不空字。 (四)紧急程度 用3号黑体字顶格标识在版心右上角第一行,两字中间空一字。如同时标识密级,则标识在右上角第二行。 (五)发文字号 标识在发文机关标识下两行,用3号方正仿宋_GBK字体剧

中排布。年份、序号用阿拉伯数字标识,年份用全称,用六角括号“〔〕”括入。序号不用虚位,不用“第”。发文字号距离红色反线4mm。 (六)签发人 上行文需要标识签发人,平行排列于发文字号右侧,发文字号居左空一字,签发人居右空一字。“签发人”用3号方正仿宋_GBK,后标全角冒号,冒号后用3号方正楷体_GBK标识签发人姓名。多个签发人的,主办单位签发人置于第一行,其他从第二行起排在主办单位签发人下,下移红色反线,最后一个签发人与发文字号在同一行。 二、主体部分 (一)标题 由“发文机关+事由+文种”组成,标识在红色反线下空两行,用2号方正小标宋_GBK,可一行或多行居中排布。 (二)主送机关 在标题下空一行,用3号方正仿宋_GBK字体顶格标识。回行是顶格,最后一个主送机关后面用全角冒号。 (三)正文 主送机关后一行开始,每段段首空两字,回行顶格。公文中的数字、年份用阿拉伯数字,不能回行,阿拉伯数字:用3号Times New Roman。正文用3号方正仿宋_GBK,小标题按照如下排版要求进行排版:

tabularx宏包中改变弹性列的宽度

tabularx宏包中改变弹性列的宽度\hsize 分类:latex 2012-03-07 21:54 12人阅读评论(0) 收藏编辑删除 \documentclass{article} \usepackage{amsmath} \usepackage{amssymb} \usepackage{latexsym} \usepackage{CJK} \usepackage{tabularx} \usepackage{array} \newcommand{\PreserveBackslash}[1]{\let \temp =\\#1 \let \\ = \temp} \newcolumntype{C}[1]{>{\PreserveBackslash\centering}p{#1}} \newcolumntype{R}[1]{>{\PreserveBackslash\raggedleft}p{#1}} \newcolumntype{L}[1]{>{\PreserveBackslash\raggedright}p{#1}} \begin{document} \begin{CJK*}{GBK}{song} \CJKtilde \begin{tabularx}{10.5cm}{|p{3cm} |>{\setlength{\hsize}{.5\hsize}\centering}X |>{\setlength{\hsize}{1.5\hsize}}X|} %\hsize是自动计算的列宽度,上面{.5\hsize}与{1.5\hsize}中的\hsize前的数字加起来必须等于表格的弹性列数量。对于本例,弹性列有2列,所以“.5+1.5=2”正确。 %共3列,总列宽为10.5cm。第1列列宽为3cm,第3列的列宽是第2列列宽的3倍,其宽度自动计算。第2列文字左右居中对齐。注意:\multicolum命令不能跨越X列。 \hline 聪明的鱼儿在咬钩前常常排祠再三& 这是因为它们要荆断食物是否安全&知果它们认为有危险\\ \hline 它们枕不会吃& 如果它们判定没有危险& 它们就食吞钩\\ \hline 一眼识破诱饵的危险,却又不由自主地去吞钩的& 那才正是人的心理而不是鱼的心理& 是人的愚合而不是鱼的恳奋\\

2-1论文写作要求与格式规范(2009年修订)

广州中医药大学研究生学位论文基本要求与写作规范 为了进一步提高学位工作水平和学位论文质量,保证我校学位论文在结构和格式上的规范与统一,特做如下规定: 一、学位论文基本要求 (一)科学学位硕士论文要求 1.论文的基本科学论点、结论,应在中医药学术上和中医药科学技术上具有一定的理论意义和实践价值。 2.论文所涉及的内容,应反映出作者具有坚实的基础理论和系统的专门知识。 3.实验设计和方法比较先进,并能掌握本研究课题的研究方法和技能。 4.对所研究的课题有新的见解。 5.在导师指导下研究生独立完成。 6.论文字数一般不少于3万字,中、英文摘要1000字左右。 (二)临床专业学位硕士论文要求 临床医学硕士专业学位申请者在临床科研能力训练中学会文献检索、收集资料、数据处理等科学研究的基本方法,培养临床思维能力与分析能力,完成学位论文。 1.学位论文包括病例分析报告及文献综述。 2.学位论文应紧密结合中医临床或中西结合临床实际,以总结临床实践经验为主。 3.学位论文应表明申请人已经掌握临床科学研究的基本方法。 4.论文字数一般不少于15000字,中、英文摘要1000字左右。 (三)科学学位博士论文要求 1.研究的课题应在中医药学术上具有较大的理论意义和实践价值。 2.论文所涉及的内容应反映作者具有坚实宽广的理论基础和系统深入的专门知识,并表明作者具有独立从事科学研究工作的能力。 3.实验设计和方法在国内同类研究中属先进水平,并能独立掌握本研究课题的研究方法和技能。

4.对本研究课题有创造性见解,并取得显著的科研成果。 5.学位论文必须是作者本人独立完成,与他人合作的只能提出本人完成的部分。 6.论文字数不少于5万字,中、英摘要3000字;详细中文摘要(单行本)1万字左右。 (四)临床专业学位博士论文要求 1.要求论文课题紧密结合中医临床或中西结合临床实际,研究结果对临床工作具有一定的应用价值。 2.论文表明研究生具有运用所学知识解决临床实际问题和从事临床科学研究的能力。 3.论文字数一般不少于3万字,中、英文摘要2000字;详细中文摘要(单行本)5000字左右。 二、学位论文的格式要求 (一)学位论文的组成 博士、硕士学位论文一般应由以下几部分组成,依次为:1.论文封面;2. 原创性声明及关于学位论文使用授权的声明;3.中文摘要;4.英文摘要;5.目录; 6.引言; 7.论文正文; 8.结语; 9.参考文献;10.附录;11.致谢。 1.论文封面:采用研究生处统一设计的封面。论文题目应以恰当、简明、引人注目的词语概括论文中最主要的内容。避免使用不常见的缩略词、缩写字,题名一般不超过30个汉字。论文封面“指导教师”栏只写入学当年招生简章注明、经正式遴选的指导教师1人,协助导师名字不得出现在论文封面。 2.原创性声明及关于学位论文使用授权的声明(后附)。 3.中文摘要:要说明研究工作目的、方法、成果和结论。并写出论文关键词3~5个。 4.英文摘要:应有题目、专业名称、研究生姓名和指导教师姓名,内容与中文提要一致,语句要通顺,语法正确。并列出与中文对应的论文关键词3~5个。 5.目录:将论文各组成部分(1~3级)标题依次列出,标题应简明扼要,逐项标明页码,目录各级标题对齐排。 6.引言:在论文正文之前,简要说明研究工作的目的、范围、相关领域前人所做的工作和研究空白,本研究理论基础、研究方法、预期结果和意义。应言简

公文写作毕业论文写作要求和格式规范

(公文写作)毕业论文写作要求和格式规范

中国农业大学继续教育学院 毕业论文写作要求和格式规范 壹、写作要求 (壹)文体 毕业论文文体类型壹般分为:试验论文、专题论文、调查方案、文献综述、个案评述、计算设计等。学生根据自己的实际情况,能够选择适合的文体写作。 (二)文风 符合科研论文写作的基本要求:科学性、创造性、逻辑性、实用性、可读性、规范性等。写作态度要严肃认真,论证主题应有壹定理论或应用价值;立论应科学正确,论据应充实可靠,结构层次应清晰合理,推理论证应逻辑严密。行文应简练,文笔应通顺,文字应朴实,撰写应规范,要求使用科研论文特有的科学语言。 (三)论文结构和排列顺序 毕业论文,壹般由封面、独创性声明及版权授权书、摘要、目录、正文、后记、参考文献、附录等部分组成且按前后顺序排列。 1.封面:毕业论文(设计)封面(见文件5)具体要求如下: (1)论文题目应能概括论文的主要内容,切题、简洁,不超过30字,可分俩行排列; (2)层次:高起本,专升本,高起专; (3)专业名称:现开设园林、农林经济管理、会计学、工商管理等专业,应按照标准表述填写; (4)密级:涉密论文注明相应保密年限; (5)日期:毕业论文完成时间。 2.独创性声明和关于论文使用授权的说明:(略)。

3.摘要:论文摘要的字数壹般为300字左右。摘要是对论文的内容不加注释和评论的简短陈述,是文章内容的高度概括。主要内容包括:该项研究工作的内容、目的及其重要性;所使用的实验方法;总结研究成果,突出作者的新见解;研究结论及其意义。摘要中不列举例证,不描述研究过程,不做自我评价。 论文摘要后另起壹行注明本文的关键词,关键词是供检索用的主题词条,应采用能够覆盖论文内容的通用专业术语,符合学科分类,壹般为3~5个,按照词条的外延层次从大到小排列。 4.目录(目录示例见附件3):独立成页,包括论文中的壹级、二级标题、后记、参考文献、和附录以及各项所于的页码。 5.正文:包括前言、论文主体和结论 前言:为正文第壹部分内容,简单介绍本项研究的背景和国内外研究成果、研究现状,明确研究目的、意义以及要解决的问题。 论文主体:是全文的核心部分,于正文中应将调查、研究中所得的材料和数据加工整理和分析研究,提出论点,突出创新。内容可根据学科特点和研究内容的性质而不同。壹般包括:理论分析、计算方法、实验装置和测试方法、对实验结果或调研结果的分析和讨论,本研究方法和已有研究方法的比较等方面。内容要求论点正确,推理严谨,数据可靠,文字精炼,条理分明,重点突出。 结论:为正文最后壹部分,是对主要成果的归纳和总结,要突出创新点,且以简练的文字对所做的主要工作进行评价。 6.后记:对整个毕业论文工作进行简单的回顾总结,对给予毕业论文工作提供帮助的组织或个人表示感谢。内容应尽量简单明了,壹般为200字左右。 7.参考文献:是论文不可或缺的组成部分。它既可反映毕业论文工作中取材广博程度,又可反映文稿的科学依据和作者尊重他人研究成果的严肃态度,仍能够向读者提供有关

配合前面的ntheorem宏包产生各种定理结构

%=== 配合前面的ntheorem宏包产生各种定理结构,重定义一些正文相关标题===% \theoremstyle{plain} \theoremheaderfont{\normalfont\rmfamily\CJKfamily{hei}} \theorembodyfont{\normalfont\rm\CJKfamily{song}} \theoremindent0em \theoremseparator{\hspace{1em}} \theoremnumbering{arabic} %\theoremsymbol{} %定理结束时自动添加的标志 \newtheorem{definition}{\hspace{2em}定义}[chapter] %\newtheorem{definition}{\hei 定义}[section] %!!!注意当section为中国数字时,[sction]不可用! \newtheorem{proposition}{\hspace{2em}命题}[chapter] \newtheorem{property}{\hspace{2em}性质}[chapter] \newtheorem{lemma}{\hspace{2em}引理}[chapter] %\newtheorem{lemma}[definition]{引理} \newtheorem{theorem}{\hspace{2em}定理}[chapter] \newtheorem{axiom}{\hspace{2em}公理}[chapter] \newtheorem{corollary}{\hspace{2em}推论}[chapter] \newtheorem{exercise}{\hspace{2em}习题}[chapter] \theoremsymbol{$\blacksquare$} \newtheorem{example}{\hspace{2em}例}[chapter] \theoremstyle{nonumberplain} \theoremheaderfont{\CJKfamily{hei}\rmfamily} \theorembodyfont{\normalfont \rm \CJKfamily{song}} \theoremindent0em \theoremseparator{\hspace{1em}} \theoremsymbol{$\blacksquare$} \newtheorem{proof}{\hspace{2em}证明} \usepackage{amsmath}%数学 \usepackage[amsmath,thmmarks,hyperref]{ntheorem} \theoremstyle{break} \newtheorem{example}{Example}[section]

论文写作格式规范与要求(完整资料).doc

【最新整理,下载后即可编辑】 广东工业大学成人高等教育 本科生毕业论文格式规范(摘录整理) 一、毕业论文完成后应提交的资料 最终提交的毕业论文资料应由以下部分构成: (一)毕业论文任务书(一式两份,与论文正稿装订在一起)(二)毕业论文考核评议表(一式三份,学生填写表头后发电子版给老师) (三)毕业论文答辩记录(一份, 学生填写表头后打印出来,答辩时使用) (四)毕业论文正稿(一式两份,与论文任务书装订在一起),包括以下内容: 1、封面 2、论文任务书 3、中、英文摘要(先中文摘要,后英文摘要,分开两页排版) 4、目录 5、正文(包括:绪论、正文主体、结论) 6、参考文献 7、致谢 8、附录(如果有的话) (五)论文任务书和论文正稿的光盘

二、毕业论文资料的填写与装订 毕业论文须用计算机打印,一律使用A4打印纸,单面打印。 毕业论文任务书、毕业论文考核评议表、毕业论文正稿、答辩纪录纸须用计算机打印,一律使用A4打印纸。答辩提问记录一律用黑色或蓝黑色墨水手写,要求字体工整,卷面整洁;任务书由指导教师填写并签字,经主管院领导签字后发出。 毕业论文使用统一的封面,资料装订顺序为:毕业论文封面、论文任务书、考核评议表、答辩记录、中文摘要、英文摘要、目录、正文、参考文献、致谢、附录(如果有的话)。论文封面要求用A3纸包边。 三、毕业论文撰写的内容与要求 一份完整的毕业论文正稿应包括以下几个方面: (一)封面(见封面模版) (二)论文题目(填写在封面上,题目使用2号隶书,写作格式见封面模版) 题目应简短、明确,主标题不宜超过20字;可以设副标题。(三)论文摘要(写作格式要求见《摘要、绪论、结论、参考文献写作式样》P1~P2) 1、中文“摘要”字体居中,独占一页

Groff 应用

使用Groff 生成独立于设备的文档开始之前 了解本教程中包含的内容和如何最好地利用本教程,以及在使用本教程的过程中您需要完成的工作。 关于本教程 本教程提供了使用Groff(GNU Troff)文档准备系统的简介。其中介绍了这个系统的工作原理、如何使用Groff命令语言为其编写输入、以及如何从该输入生成各种格式的独立于设备的排版文档。 本教程所涉及的主题包括: 文档准备过程 输入文件格式 语言语法 基本的格式化操作 生成输出 目标 本教程的主要目标是介绍Groff,一种用于文档准备的开放源码系统。如果您需要在应用程序中构建文档或帮助文件、或为客户和内部使用生成任何类型的打印或屏幕文档(如订单列表、故障单、收据或报表),那么本教程将向您介绍如何开始使用Groff以实现这些任务。 在学习了本教程之后,您应该完全了解Groff的基本知识,包括如何编写和处理基本的Groff输入文件、以及如何从这些文件生成各种输出。

先决条件 本教程的目标读者是入门级到中级水平的UNIX?开发人员和管理员。您应 该对使用UNIX命令行Shell和文本编辑器有基本的了解。 系统要求 要运行本教程中的示例,您需要访问运行UNIX操作系统并安装了下面这些软件的计算机(请参见本教程的参考资料部分以获取相关链接): Groff。Groff分发版中包括groff前端工具、troff后端排版引擎和本教 程中使用的各种附属工具。 自由软件基金会将Groff作为其GNU Project中的一部分进行了发布,所 发布的源代码符合GNU通用公共许可证(GPL)并得到了广泛的移植,几乎对于所有的UNIX操作系统、以及非UNIX操作系统(如Microsoft?Windows?)都有相应 的可用版本。 在撰写本教程时,最新的Groff发布版是Version 1.19.2,对于学习本教 程而言,您至少需要Groff Version 1.17。 gxditview。从Version 1.19.2开始,Groff中包含了这个工具,而在以 前的版本中,对其进行了单独的发布。 PostScript Previewer,如ghostview、gv或showpage。 如果您是从源代码安装Groff,那么请参考Groff源代码分发版中的自述 文件,其中列举了所需的任何额外的软件,而在编译和安装Groff时可能需要 使用这些软件。 介绍Groff 用户通常在字处理软件、桌面发布套件和文本布局应用程序等应用程序环 境中创建文档,而在这些环境中,最终将对文档进行打印或导出为另一种格式。整个文档准备过程,从创建到最后的输出,都发生在单个应用程序中。文档通

TeX 使用指南(常见问题)

TeX 使用指南 常见问题(一) 1.\makeatletter 和\makeatother 的用法? 答:如果需要借助于内部有\@字符的命令,如\@addtoreset,就需要借助于另两个命令 \makeatletter, \makeatother。 下面给出使用范例,用它可以实现公式编号与节号的关联。 \begin{verbatim} \documentclass{article} ... \makeatletter % '@' is now a normal "letter" for TeX \renewcommand\theequation{\thesection.\arabic{equation}} \@addtoreset{equation}{section} \makeatother % '@' is restored as a "non-letter" character for TeX \begin{document} ... \end{verbatim} 2.比较一下CCT与CJK的优缺点? 答:根据王磊的经验,CJK 比CCT 的优越之处有以下几点: 1)字体定义采用LaTeX NFSS 标准,生成的DVI 文件不必像CCT 那样需要用patchdvi 处理后才能预览和打印。而且一般GB 编码的文件也不必进行预处理就可直接用latex 编译。2)可使用多种TrueType 字体和Type1 字体,生成的PDF 文件更清楚、漂亮。 3)能同时在文章中使用多种编码的文字,如中文简体、繁体、日文、韩文等。 当然,CCT 在一些细节上,如字体可用中文字号,字距、段首缩进等。毕竟CJK 是老外作的吗。 谈到MikTeX 和fpTeX, 应该说谈不上谁好谁坏,主要看个人的喜好了。MikTeX 比较小,不如fpTeX 里提供的TeX 工具,宏包全,但一般的情况也足够了。而且Yap 比windvi 要好用。fpTeX 是teTeX 的Windows 实现,可以说各种TeX 的有关软件基本上都包括在内。 3.中文套装中如何加入新的.cls文件? 答:放在tex文件的同一目录下,或者miktex/localtexmf/tex/latex/下的某个子目录下,可以自己建一个。 4.怎样象第几章一样,将参考文献也加到目录? 答:在参考文献部分加入 \addcontentsline{toc}{chapter}{参考文献}

论文的写作格式及规范

论文的写作格式及规范

附件9: 科学技术论文的写作格式及规范 用非公知公用的缩写词、字符、代号,尽量不出现数学式和化学式。 2作者署名和工作单位标引和检索,根据国家有关标准、数据规范为了提高技师、高级技师论文的学术质量,实现论文写的科学化、程序化和规范化,以利于科技信息的传递和科技情报的作评定工作,特制定本技术论文的写作格式及规范。望各位学员在注重科学研究的同时,做好科技论文撰写规范化工作。 1 题名 题名应以简明、确切的词语反映文章中最重要的特定内容,要符合编制题录、索引和检索的有关原则,并有助于选定关键词。 中文题名一般不宜超过20 个字,必要时可加副题名。英文题名应与中文题名含义一致。 题名应避免使作者署名是文责自负和拥有著作权的标志。作者姓名署于题名下方,团体作者的执笔人也可标注于篇首页地脚或文末,简讯等短文的作者可标注于文末。 英文摘要中的中国人名和地名应采用《中国人名汉语拼音字母拼写法》的有关规定;人名姓前名后分写,姓、名的首字母大写,名字中间不加连字符;地名中的专名和通名分写,每分写部分的首字母大写。 作者应标明其工作单位全称、省及城市名、邮编( 如“齐齐哈尔电业局黑龙江省齐齐哈尔市(161000) ”),同时,在篇首页地脚标注第一作者的作者简介,内容包括姓名,姓别,出生年月,学位,职称,研究成果及方向。

3摘要 论文都应有摘要(3000 字以下的文章可以略去)。摘要的:写作应符合GB6447-86的规定。摘要的内容包括研究的目的、方法、结果和结论。一般应写成报道性文摘,也可以写成指示性或报道-指示性文摘。摘要应具有独立性和自明性,应是一篇完整的短文。一般不分段,不用图表和非公知公用的符号或术语,不得引用图、表、公式和参考文献的序号。中文摘要的篇幅:报道性的300字左右,指示性的100 字左右,报道指示性的200字左右。英文摘要一般与中文摘要内容相对应。 4关键词 关键词是为了便于作文献索引和检索而选取的能反映论文主题概念的词或词组,一般每篇文章标注3?8个。关键词应尽量从《汉语主题词表》等词表中选用规范词——叙词。未被词表收录的新学科、新技术中的重要术语和地区、人物、文献、产品及重要数据名称,也可作为关键词标出。中、英文关键词应一一对应。 5引言 引言的内容可包括研究的目的、意义、主要方法、范围和背景等。 应开门见山,言简意赅,不要与摘要雷同或成为摘要的注释,避免公式推导和一般性的方法介绍。引言的序号可以不写,也可以写为“ 0”,不写序号时“引言”二字可以省略。 6论文的正文部分 论文的正文部分系指引言之后,结论之前的部分,是论文的核心, 应按GB7713--87 的规定格式编写。 6.1层次标题

相关主题
文本预览
相关文档 最新文档