当前位置:文档之家› 均值不等式练习题

均值不等式练习题

均值不等式练习题
均值不等式练习题

利用均值不等式求最值的方法

一.均值不等式

1.(1)若R b a ∈,,则ab b a 22

2≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则

ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22??

? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +

≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”)

若0x ≠,则11122-2x x x x x x

+≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a

b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a

+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2

)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们

的积的最小值,正所谓“积定和最小,和定积最大”.

(2)求最值的条件“一正,二定,三取等”

(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.

一、配凑

1. 凑系数

例1. 当04

<

->x ,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2828x x +-=()为定值,故只需将y x x =-()82凑上一个系数即可。

y x x x x x x =-=-≤+-=()[()]()8212282122822

82· 当且仅当282x x =-,即x =2时取等号。

所以当x =2时,y x x =-()

82的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

2. 凑项

例2. 已知x <54,求函数f x x x ()=-+-42145

的最大值。 解析:由题意知450x -<,首先要调整符号,又()42145x x --·

不是定值,故需对42x -进行凑项才能得到定值。 ∵x x <->5

4

540, ∴f x x x x x ()()=-+

-=--+-+42145541543≤---+=-+=2541543231()x x · 当且仅当54154-=-x x

,即x =1时等号成立。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

3. 分离

例3. 求y x x x x =+++-27101

1()≠的值域。 解析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

y x x x x x x x x =+++=+++++=++++22710115141141

5()()() 当x +>10,即x >-1

时 y x x ≥+++=2141

59()·(当且仅当x =1时取“=”号)。 当x +<10,即x <-1

时 y x x ≤-++=52141

1()·(当且仅当x =-3时取“=”号)。 ∴y x x x x =+++27101

1()≠-的值域为(][)-∞+∞,,19Y 。 评注:分式函数求最值,通常化成y m g x A g x

B A m =+

+>>()()()00,,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。

二、整体代换

例4. 已知a b a b >>+=0021

,,,求t a b =+11的最小值。 解法1:不妨将11a b

+乘以1,而1用a +2b 代换。 ()()()111112ab ab

a b +=++·· =+++=++≥+=+12232322322

b a a b

b a a b

b a a b

· 当且仅当2b a a b =时取等号,由22121122b a a b a b a b =+=?????=-=-????

?,得 即a b =-=-????

?21122时,t a b =+11的最小值为322+。 解法2:将11a b

+分子中的1用a b +2代换。 a b a a b b b a a b b a a b

+++=+++=++≥+2212232322 评注:本题巧妙运用“1”的代换,得到t b a a b =+

+32,而2b a 与a b 的积为定值,即可用均值不等式求得t a b =

+11的最小值。

三、换元

例5. 求函数y x x =++225

的最大值。 解析:变量代换,令t x =+

2,则x t t y t t =-≥=+222021(),则 当t =0时,y =0

当t >0时,y t t t t =+≤=1

21122124

·

当且仅当21t t

=,即t =22时取等号。 故x y =-=3

2

24时,m a x 。 评注:本题通过换元法使问题得到了简化,而且将问题转化为熟悉的分式型函数的求最值问题,从而为构造积为定值创造有利条件。

四、取平方

例6. 求函数y x x x =-+-<<21521252

()

的最大值。 解析:注意到2152x x --与的和为定值。 y x x x x x x 22

2152422152421528

=-+-=+--≤+-+-=()()()()()

又y >0,所以022<≤y

当且仅当2152x x

-=-,即x =32

时取等号。 故y m a x =22。

评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。

总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。

[练一练] 1. 若02<

x =-()63的最大值。 2. 求函数y x xx =-+>13

3()的最小值。 3. 求函数y x x x =+->281

1()的最小值。 4. 已知x y >>00,,且

119x y +=,求x y +的最小值。 参考答案:1.

3 2. 5 3. 8 4.

49

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式)

典题精讲

例1(1)已知0<x <

31,求函数y=x(1-3x)的最大值; (2)求函数y=x+x

1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论.

(1)解法一:∵0<x <

3

1,∴1-3x >0. ∴y=x(1-3x)= 31·3x(1-3x)≤31[2

)31(3x x -+]2=121,当且仅当3x=1-3x ,即x=61时,等号成立.∴x=61时,函数取得最大值12

1. 解法二:∵0<x <31,∴3

1-x >0. ∴y=x(1-3x)=3x(31-x)≤3[2

31x x -+]2=121,当且仅当x=31-x,即x=61时,等号成立. ∴x=61时,函数取得最大值121. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x

x 1?=2,当且仅当x=1时,等号成立. 当x <0时,y=x+x

1=-[(-x)+)(1x -]. ∵-x >0,∴(-x)+)(1x -≥2,当且仅当-x=x

-1,即x=-1时,等号成立. ∴y=x+x

1≤-2. 综上,可知函数y=x+

x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备.

变式训练1当x >-1时,求f(x)=x+

1

1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与11+x 的积为常数. 解:∵x >-1,∴x+1>0.

∴f(x)=x+

11+x =x+1+11+x -1≥2)1(1)1(+?+x x -1=1.

当且仅当x+1=

1

1+x ,即x=0时,取得等号. ∴f(x)min =1. 变式训练2求函数y=1

33224+++x x x 的最小值. 思路分析:从函数解析式的结构来看,它与基本不等式结构相差太大,而且利用前面求最值的方法不易求解,事实上,我们可以把分母视作一个整体,用它来表示分子,原式即可展开.

解:令t=x 2+1,则t≥1且x 2=t-1.

∴y=1

33224+++x x x =1113)1(3)1(22++=++=+-+-t t t t t t t t . ∵t≥1,∴t+t 1≥2t t 1?=2,当且仅当t=t

1,即t=1时,等号成立. ∴当x=0时,函数取得最小值3.

例2已知x >0,y >0,且x 1+y

9=1,求x+y 的最小值. 思路分析:要求x+y 的最小值,根据极值定理,应构建某个积为定值,这需要对条件进行必要的变形,下面给出三种解法,请仔细体会.

解法一:利用“1的代换”, ∵x 1+y

9=1, ∴x+y=(x+y)·(x 1+y

9)=10+y x x y 9+. ∵x >0,y >0,∴y x x y 9+≥2y

x x y 9?=6. 当且仅当y

x x y 9=,即y=3x 时,取等号. 又x 1+y

9=1,∴x=4,y=12. ∴当x=4,y=12时,x+y 取得最小值16. 解法二:由x 1+y

9=1,得x=9-y y . ∵x >0,y >0,∴y >9. x+y=9-y y +y=y+999-+-y y =y+99-y +1=(y-9)+9

9-y +10. ∵y >9,∴y-9>0.

∴999-+-y y ≥29

9)9(-?-y y =6. 当且仅当y-9=

99-y ,即y=12时,取得等号,此时x=4.∴当x=4,y=12时,x+y 取得最小值16.解法三:由x 1+y

9=1,得y+9x=xy, ∴(x-1)(y-9)=9.

∴x+y=10+(x-1)+(y-9)≥10+2)9)(1(--y x =16,

当且仅当x-1=y-9时取得等号.又x 1+y

9=1, ∴x=4,y=12.

∴当x=4,y=12时,x+y 取得最小值16.

绿色通道:本题给出了三种解法,都用到了基本不等式,且都对式子进行了变形,配凑出基本不等式满足的条件,这是经常需要使用的方法,要学会观察,学会变形,另外解法二,通过消元,化二元问题为一元问题,要注意根据被代换的变量的范围对另外一个变量的范围的影响.

黑色陷阱:本题容易犯这样的错误:

x 1+y 9≥2xy 9①,即xy

6≤1,∴xy ≥6. ∴x+y≥2xy ≥2×6=12②.∴x+y 的最小值是12. 产生不同结果的原因是不等式①等号成立的条件是x 1=y

9,不等式②等号成立的条件是x=y.在同一个题目中连续运用了两次基本不等式,但是两个基本不等式等号成立的条件不同,会导致错误结论.

变式训练已知正数a,b,x,y 满足a+b=10,

y b x a +=1,x+y 的最小值为18,求a,b 的值. 思路分析:本题属于“1”的代换问题.

解:x+y=(x+y)(y b x a +)=a+x ay y bx ++b=10+x

ay y bx +. ∵x,y >0,a,b >0,

∴x+y≥10+2ab =18,即ab =4.

又a+b=10,

∴???==8

,2b a 或???==.2,8b a 例3求f(x)=3+lgx+x

lg 4的最小值(0<x <1).

思路分析:∵0<x <1,

∴lgx <0,x

lg 4<0不满足各项必须是正数这一条件,不能直接应用基本不等式,正确的处理方法是加上负号变正数.

解:∵0<x <1,∴lgx <0,x lg 4<0.∴-x

lg 4>0. ∴(-lgx)+(-x lg 4)≥2)lg 4)(lg (x

x --=4. ∴lgx+x lg 4≤-4.∴f(x)=3+lgx+x

lg 4≤3-4=-1. 当且仅当lgx=x lg 4,即x=100

1时取得等号. 则有f(x)=3+lgx+

x lg 4 (0<x <1)的最小值为-1. 黑色陷阱:本题容易忽略0<x <1这一个条件.

变式训练1已知x <

45,求函数y=4x-2+5

41-x 的最大值. 思路分析:求和的最值,应凑积为定值.要注意条件x <4

5,则4x-5<0. 解:∵x <4

5,∴4x-5<0. y=4x-5+541-x +3=-[(5-4x)+x 451-]+3 ≤-2x

x 451)45(-?-+3=-2+3=1. 当且仅当5-4x=x

451-,即x=1时等号成立. 所以当x=1时,函数的最大值是1.

变式训练2当x <

23时,求函数y=x+3

28-x 的最大值. 思路分析:本题是求两个式子和的最大值,但是x·3

28-x 并不是定值,也不能保证是正值,所以,必须使用一些技巧对原式变形.可以变为y=21(2x-3)+328-x +23=-(x

x 238223-+-)+23,再求最值. 解:y=21(2x-3)+328-x +23=-(x

x 238223-+-)+23, ∵当x <23时,3-2x >0,

∴x x 238223-+-≥x x 2382232-?-=4,当且仅当x

x 238223-=-,即x=-21时取等号. 于是y≤-4+23=25-,故函数有最大值2

5-. 例4如图3-4-1,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.

图3-4-1

(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?

(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?

思路分析:设每间虎笼长为x m ,宽为y m ,则(1)是在4x+6y=36的前提下求xy 的最大值;而(2)则是在xy=24的前提下来求4x+6y 的最小值.

解:(1)设每间虎笼长为x m ,宽为y m ,则由条件,知4x+6y=36,即2x+3y=18.

设每间虎笼的面积为S ,则S=xy.

方法一:由于2x+3y≥2y x 32?=2xy 6,

∴2xy 6≤18,得xy≤227,即S≤2

27. 当且仅当2x=3y 时等号成立.

由???=+=,1832,22y x y x 解得???==.

3,5.4y x 故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大. 方法二:由2x+3y=18,得x=9-

23y. ∵x >0,∴0<y <6.

S=xy=(9-23y)y=2

3 (6-y)y. ∵0<y <6,∴6-y >0.

∴S≤23[2

)6(y y +-]2=227. 当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m 时,可使面积最大.

(2)由条件知S=xy=24.

设钢筋网总长为l,则l=4x+6y.

方法一:∵2x+3y≥2y x 32?=2xy 6=24,

∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y 时,等号成立.

由???==,

24,32xy y x 解得???==.4,6y x 故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小. 方法二:由xy=24,得x=y

24.

∴l=4x+6y=y 96

+6y=6(y 16+y)≥6×2y y

?16=48,当且仅当y 16=y ,即y=4时,等号成立,此时x=6. 故每间虎笼长6 m,宽4 m 时,可使钢筋总长最小.

绿色通道:在使用基本不等式求函数的最大值或最小值时,要注意:

(1)x,y 都是正数;

(2)积xy (或x+y )为定值;

(3)x 与y 必须能够相等,特别情况下,还要根据条件构造满足上述三个条件的结论.

变式训练某工厂拟建一座平面图为矩形且面积为200 平方米的三级污水处理池(平面图如图3-4-2所示),由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两道隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水处理池的长和宽,使总造价最低,并求出最低造价.

图3-4-2

思路分析:在利用均值不等式求最值时,必须考虑等号成立的条件,若等号不能成立,通常要用函数的单调性进行求解.

解:设污水处理池的长为x 米,则宽为

x 200米(0<x≤16,0<x

200≤16),∴12.5≤x≤16. 于是总造价Q(x)=400(2x+2×x 200)+248×2×x 200+80×200. =800(x+x 324)+16 000≥800×2x

x 324?+16 000=44 800, 当且仅当x=x

324 (x >0),即x=18时等号成立,而18?[12.5,16],∴Q(x)>44 800. 下面研究Q(x)在[12.5,16]上的单调性.

对任意12.5≤x 1<x 2≤16,则x 2-x 1>0,x 1x 2<162<324.

Q(x 2)-Q(x 1)=800[(x 2-x 1)+324(1

211x x -)] =800×2

12112)324)((x x x x x x --<0, ∴Q(x 2)>Q(x 1).∴Q(x)在[12.5,16]上是减函数.

∴Q(x)≥Q(16)=45 000.

答:当污水处理池的长为16米,宽为12.5米时,总造价最低,最低造价为45 000元.

问题探究

问题某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高.当住第n 层楼时,上下楼造成的不满意度为n.但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低.设住第n 层楼时,环境不满意程度为n

8.则此人应选第几楼,会有一个最佳满意度. 导思:本问题实际是求n 为何值时,不满意度最小的问题,先要根据问题列出一个关于楼层的函数式,再根据基本不等式求解即可.

探究:设此人应选第n 层楼,此时的不满意程度为y. 由题意知y=n+n 8

.

∵n+n 8≥2248

=?n n ,

当且仅当n=n 8

,即n=22时取等号.

但考虑到n ∈N *,

∴n≈2×1.414=2.828≈3,

即此人应选3楼,不满意度最低.

P

(完整版)一元一次不等式组测试题1含答案

第九章、不等式(组)单元测试题 一、 选择题(.每题3分,共30分) 1、如果a 、b 表示两个负数,且a <b ,则( ). (A)1>b a (B)b a <1 (C)b a 11< (D)ab <1 2、 a 、b 是有理数,下列各式中成立的是( ). (A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 3、 若由x <y 可得到ax >ay ,应满足的条件是( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0 4、 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). (A)a <0 (B)a >-1 (C)a <-1 (D)a <1 5、 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种 出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ). (A)11 (B)8 (C)7 (D)5 6、 若不等式组?? ?>≤+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1 8、若不等式组0,122x a x x +??->-? ≥有解,则a 的取值范围是( ) A .1a >- B .1a -≥ C .1a ≤ D .1a < 9、关于x 的不等式组无解,那么a 的取值范围是( ) A 、a ≤4.5 B 、a >4.5 C 、a <4.5 D 、a ≥4.5 10、如图是测量一颗玻璃球体积的过程: (1)将300ml 的水倒进一个容量为500ml 的杯子中; (2)将四颗相同的玻璃球放入水中,结果水没有满; (3)再加一颗同样的玻璃球放入水中,结果水满溢出. 根据以上过程,推测这样一颗玻璃球的体积在( ) (A )20cm 3以上,30cm 3以下 (B )30cm 3以上,40cm 3以下

均值不等式习题大全

均值不等式题型汇总 杨社锋 均值不等式是每年高考必考内容,它以形式灵活多变而备受出题人的青睐,下面我们来细数近几年来均值不等式在高考试题中的应用。 类型一:证明题 1. 设*,,1,a b R a b ∈+=求证:1 125()()4 a b a b ++≥ 2. 设,,(0,),a b c ∈+∞)a b c ≥++ 3. 设,,(0,),a b c ∈+∞求证:222 b c a a b c a b c ++≥++ 4. 设,,(0,),a b c ∈+∞求证:222 a b c ab bc ac ++≥++ 5. 已知实数,,x y z 满足:222 1x y z ++=,求xy yz +得最大值。 6. 已知正实数,,a b c ,且1abc =9≥ 7. (2010辽宁)已知,,a b c 均为正实数,证明:22221 11()a b c a b c +++++≥,并确定,,a b c 为何值时,等号成立。 类型二:求最值: 利用均值不等式求最值是近几年高考中考查频率最高的题型之一。使用均值不等式的核心在于配凑,配凑的精髓在于使得均值不等式取等号的条件成立。 1. 设11,(0,)1x y x y ∈+∞+=且,求x y +的最小值。 2. 设,(0,)1x y x y ∈+∞+=且,求 112x y +的最小值。 3. 已知,a b 为正实数,且1a b +=求1ab ab +的最小值。 4. 求函数11(01)1y x x x =+<<-的最小值。

变式:求函数291(0)122 y x x x =+<<-的最小值。 5. 设,(0,)x y ∈+∞,35x y xy +=,求34x y +的最小值。 6. 设,(0,)x y ∈+∞,6x y xy ++=求x y +的最小值。 7. 设,(0,)x y ∈+∞,6x y xy ++=求xy 的最大值。 8. (2010浙江高考)设,x y 为实数,若22 41x y xy ++=,求2x y +的最大值。 9. 求函数y = 的最大值。 变式:y = 10. 设0x >求函数21x x y x ++=的最小值。 11. 设设1x >-求函数211 x x y x ++=+的最小值。 12. (2010山东高考)若任意0x >,231 x a x x ≤++恒成立,求a 的取值范围. 13. 求函数22233(1)22 x x y x x x -+=>-+的最大值。 类型三、应用题 1.(2009湖北)围建一个面积为2 360m 的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需要维修),其它三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45/m 元,新墙的造价为180/m 元,设利用旧墙的长度为x (单位:m )。 (1)将y 表示为x 的函数(y 表示总费用)。 (2)试确定x ,使修建此矩形场地围墙的总费用最少。并求出最小总费用。 2.(2008广东)某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房。经测算,如果将楼房建为x 层(10x ≥),则每平方米的平均建筑费用为56048x +(单位:元)。为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,

高考均值不等式经典例题

高考均值不等式经典例题 1.已知正数,,a b c 满足2 15b ab bc ca +++=,则58310a b c +++的最小值为 。 2.设M 是ABC V 内一点,且30AB AC A =∠=?u u u r u u u r g ,定义()(,,)f M m n p =,其中,,m n p 分别是 ,,MBC MCA MAB V V V 的面积,若1()(,,)2 f M x y =,则14x y +的最小值为 . 3.已知实数1,12 m n >>,则224211n m m n +--的最小值为 。 4.设22110,21025() a b c a ac c ab a a b >>>++-+-的最小值为 。 5.设,,a b c R ∈,且222 ,2222a b a b a b c a b c ++++=++=,则c 的最大值为 。 6.已知ABC V 中,142, 10sin sin a b A B +=+=,则ABC V 的外接圆半径R 的最大值为 。 7.已知112,,339 a b ab ≥≥=,则a b +的最大值为 。 8. ,,a b c 均为正数,且222412a ab ac bc +++=,则a b c ++的最小值为 。 9. ,,,()4a b c R a a b c bc +∈+++=-2a b c ++的最小值为 。 10. 函数()f x =的最小值为 。 11.已知0,0,228x y x y xy >>++=,则2x y +的最小值为 。 12.若*3()k k N ≥∈,则(1)log k k +与(1)log k k -的大小: 。 13.设正数,,x y z 满足22340x xy y z -+-=,则当xy z 取最大值时,212x y z +-的最大值为 。 14.若平面向量,a b r r 满足23a b -≤r r ,则a b ?r r 的最小值为 。 15. 的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 。 16.设{}n a 是等比数列, 公比q =n S 为{}n a 的前n 项和,记*21 17()n n n n S S T n N a +-=∈,设0n T 为数列{}n T 的最大项,则0n = 。

精选一元一次不等式组练习题及答案

八下2.6一元一次不等式组 一、选择题 1、下列不等式组中,解集是2<x <3的不等式组是( ) A 、???>>23x x B 、???<>23x x C 、? ??><23x x D 、???<<23x x 2、在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( ) A 、a <12 B 、a <0 C 、a >0 D 、a <-12 3、不等式组10235x x +??+??,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( )A 、①与② B 、②与③ C 、③与④ D 、①与④ 7、如果不等式组x a x b >?? B. 109m > C. 1910m > D. 1019 m > 二、填空题 9、若y 同时满足y +1>0与y -2<0,则y 的取值范围是______________. 10、不等式组3010x x -+<121m x m x 无解,则m 的取值范围是 . A B C D

3.均值不等式(全国卷1)

第三节:均值不等式 1.★★若正数a b c ,,满足24288c bc ac ab +++=,则2a b c ++的最小值为 A. 3 B.23C.2 D.2 2 答案:D 2. ★★(2014 河北唐山二模文)若实数a b c ,,满足2228a b c ++=,则a b c + +的最大值为 A.9 B.23 C.3 2 D.2 答案:D 3. ★★(2014 河北衡水四调理)已知,,,ABC A B C ?∠∠∠中的对边分别为,,a b c ,若 1, 2 2a cosC c b =+=,则ABC ?的周长的取值范围是__________. 答案:](32, 4. ★ (2014 河北衡水三调理)已知,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( ) A .a b c >> B .b c a >> C .b a c >> D .a c b >> 答案:C 5.★★( 2014 河北衡水三调理)已知各项均为正数的等比数列满足, 若存在两项 的最小值为 ( ) A . B . C . D .9 答案:A 6. ★★(2014 河北衡水三调文)已知0,0,lg 2lg8lg 2x y x y >>+=,则113x y +的最小值是. 答案:4 7. ★★(2014 河北衡水四调文)函数2()2l n f x x x b x a =+-+(0,)b a R >∈在点{}n a 7652a a a =+,m n a a 114 4,a m n =+则3 2 539 4

(),()b f b 处的切线斜率的最小值 是( ) A.2 1 答案:A 8. ★★(2014 河北冀州中学月考文)若正实数满足 恒成立,则 的最大值为. 答案:1 9. ★★★(2012 山西襄汾中学高考练兵理)设x 、y 满足约束条件,若目 标函数(00)z ax by a b =+>>其中,的最大值为3,则+的最小值为 A .3 B .1 C .2 D .4 答案:A 10. ★★★(2014 河南郑州2014第一次质量预测理)已知,a b 是两个互相垂直的单位向量,且1c a c b ?=?= ,则对任意的正实数t ,1||c ta b t ++ 的最小值是( ) A .2 B ..4 D .答案:B 11. ★★(2014 河南中原名校期中联考理)已知00x y >,>,若222y x m m x y 8+>+恒成立,则实数m 的取值范围是 A .42m m ≥≤或- B .24m m ≥≤或- C .24m -<< D .42m -<< 答案:D 12. ★(2013 河南许昌市期中理)若实数x y ,满足221x y xy ++=,则x y +的最大值是 . 答案: ,x y 2x y +=M ≥M 23023400x y x y y -+≥?? -+≤??≥? 1a 2 b

0.均值不等式的常见题型

均值不等式的常见题型 一基本习题 2、已知正数a,b 满足ab=4,那么2a+3b 的最小值为() A10B12C43D46 3、已知a >0,b >0,a+b=1则 b a 11+的取值范围是() A(2,+∞)B[2,+∞)C(4,+∞)D[4,+∞) 4、设x,y 为正数,(x+y)( +x 1y 4)的最小值为() A 6B 9C 12D 15 5、设+∈R b a ,,则下列不等式中不成立的是() A 4)11)((≥++b a b a B ab ab b a 22 2≥+C 21≥+ab ab D ab b a ab ≤+2 6、设0,0>>b a ,则下列不等式中成立的是() A 221≥++ab b a B 4)11)((≥++b a b a C b a ab b a +≥+22D ab b a ab >+2 8、已知下列不等式:①)(233+∈>+R x x x ;②),(322355+∈+≥+R b a b a b a b a ;③)1(222--≥+b a b a .其中正确的个数是() A0个B1个C2个D3个 9、已知1,01a b ><<则log log a b b a +的取值范围是() A (2,)+∞ B [2,)+∞ C (,2)-∞- D (,2]-∞- 二有关范围问题 1、若正数b a ,满足3++=b a ab ,则ab 的取值范围是. 以及b a +的取值范围. 2、已知x >0,y >0且x+2y+xy=30,求xy 的最大值. 3、已知0,0x y >>且211x y +=,若222x y m m +>+恒成立,则实数m 的取值范围是——————————。

一元一次不等式与不等式组 综合测试题

一元一次不等式与不等式组 综合测试题 一、填空(每小题3分,共30分) 1.如果,则 (用“>”或“<”填空). 2.当 时,式子的值大于的值. 3.满足不等式组的整数解为 . 4.不等式的负整数解是 . 5.某足协举办了一次足球比赛,计分规则为:胜一场积3分,平一场积1 分,负一场积0分.若甲队比赛了5场后的积7分,则甲队平 场. 6.若不等式组的解集中任何一个的值均在的范围内,则a的取值范围是 . 7.k满足时,方程的解是正数. 8.不等式组的解集是 . 9.已知不等式的正整数解是1,2,则a的取值范围是 . 10.尚明要到离家5千米的某地开会,若他6时出发,计划8时前赶到,那 么他每小时至少 走 千米. 二、选择(每小题3分,共30分) 11.若,那么下列结论错误的是( ) A. B. C. D. 12.一个数的与-4的差不小于这个数的2倍加上5所得的和,则可列不等 式是( ) A. B. C. D. 13.已知关于的不等式组的解集为,则的值是( ) A. B.-2 C.-4 D. 14.若不等式组有解,那么的取值范围是( ) A. B. C. D. 15.已知,若要使不为负数,则k的取值范围是( ) A. B. C. D. 16.若不等式的解集是,则a的值是( ) A.34 B.22 C.-3 D.0 17.一家三口准备参加旅行团外出旅游,甲旅行社告知:“父母买全票, 女儿按半价优惠.”乙旅行社告知:“家庭旅游可按团体票价,即每人 均按全价的收费.”若这两家旅行社的票价相同,那么( ) A.甲比乙优惠 B.乙比甲优惠 C. 甲与乙相同 D.与原来票价相同 18.不等式组的解集是,则m的取值范围是( )

高中数学竞赛均值不等式讲义

均值不等式 1.均值不等式 知识点1: 二元均值不等式可以推广到n 元,即: 设,,, 123 a a a a n 为n 个非负实数,则 12n a a a n ++ + ≥1 23 a a a a n === =). 如何证明? 知识点2: 设,,, 123 a a a a n 为n 个非负实数 ,n Q , 12n n a a a A n ++ += , n G =, 12 111n n n H a a a = ++,则n n n n Q A G H ≥≥≥(等号成立当且仅当 123a a a a n ====) 更一般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=1 1 ( )n i i a n α α =∑,特 别的,我们有: lim ()n f G αα→=,1 1 ()( )n i i a f n α α α==∑为关于α的增函数. 知识点3:重要结论 (1)2 22,,,.a b c R a b c ab bc ac ∈++≥++ (2) ()2 ,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5) ,,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++ (6) 222;2a a a b b a b b -≥-+≥(a,b,c>0) (7) 2222221 ()()3 a b b c c a a b c a b c ++≤++++(a,b,c>0) (8)正实数(1,2,3...)i a i n =,则 21 1 1 n n i i i i a n a ==?≥∑∑ (当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++ 知识点4:加权平均值不等式 已知 12+...1(0,1,2.,,,) n i w w w w i n +=>=,则对任意正实数 12112212........n w w w n n n w a w a w a a a a +++≥.

均值不等式求最值的常用技巧及习题

利用基本不等式求最值的常用技巧及练习题(含解答)(经典) 一.基本不等式的常用变形 1.若0x >,则12x x + ≥ (当且仅当1x =时取“=” );若0x <,则1 2x x +≤- (当且仅当 _____________时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当____________时取“=”) 2.若0>ab ,则2≥+a b b a (当且仅当____________时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当_________时取“=” ) 注:(1)当两个正数的积为定植时,可以求它们和的最小值,当两个正数的和为定植时, 可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 二、利用基本不等式求最值的技巧: 技巧一:直接求: 例1 已知,x y R + ∈,且满足 134 x y +=,则xy 的最大值为 ________。 解:因为x >0,y>0 ,所以 34x y +≥=当且仅当34x y =,即x=6,y=8时取等 号) 1, 3.xy ∴≤,故xy 的最大值3. 变式:若44log log 2x y +=,求11 x y +的最小值.并求x ,y 的值 解:∵44log log 2x y += 2log 4=∴xy 即xy=16 2 1211211==≥+∴xy y x y x 当且仅当x=y 时等号成立 技巧二:配凑项求 例2:已知5 4x < ,求函数14245 y x x =-+-的最大值。

一元一次不等式组测试题及答案

一元一次不等式组测试题(提高) 一、选择题 1.如果不等式的解集是x<2,那么m的取值范围是( ) A.m=2 B.m>2 C.m<2 D.m≥2 2.(贵州安顺)若不等式组有实数解.则实数m的取值范围是 ( ) A. B. C. D. 3.若关于x的不等式组无解,则a的取值范围是 ( ) A.a<1 B.a≤l C.1 D.a≥1 4.关于x的不等式的整数解共有4个,则m的取值范围是 ( ) A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤7 5.某班有学生48人,会下象棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的人有() A.20人 B.19人 C.11人或13人 D.20人或19人 6.某城市的一种出租车起步价是7元(即在3km以内的都付7元车费),超过3km后,每增加1km加价元(不足1km按1km计算),现某人付了元车费,求这人乘的最大路程是() A.10km B.9 km C.8km D.7 km 7.不等式组的解集在数轴上表示为(). 8.解集如图所示的不等式组为(). A. B. C. D. 二、填空题 1.已知,且,则k的取值范围是________. 2.某种药品的说明书上,贴有如右所示的标签,一次服用这种药品的剂量设为x, 则x范围是 . 3.如果不等式组的解集是0≤x<1,那么a+b的值为_______. 4.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子. 5.对于整数a、b、c、d,规定符号.已知则b+d的值是________. 6. 在△ABC中,三边为、、, (1)如果,,,那么的取值范围是; (2)已知△ABC的周长是12,若是最大边,则的取值范围是; (3). 7. 如图所示,在天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围为. 三、解答题 13.解下列不等式组. (1) (2)

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

2018年高考备考+均值不等式和柯西不等式+含历年高考真题

1 成立。 5、(2012 福建)已知函数 f(x)=m-| x-2|, m € R,且 f(x+2)》0解集为[-1,1]. 1 丄 丄 (1)求 m 的值; (2)若 a,b,c € R 且a + + 3c =m,求证:a + 2b +3c >9 1、(2008 江苏)设 a , b , c 为正实数,求证: 3 a 11 — 3 + abc 》2*; 3 . c b 3 2、(2010辽宁理数) 已知a,b, c 均为正数,证明: b 2 丄I )2 6.3,并确定a,b,c 为何值时,等号 b c 3、(2012江苏理数) 1 已知实数x , y 满足:|x y| -,|2x 3 y| 5 求证:|y| 18 - 4、( 2013新课标n ) 设a,b,c 均为正数,且a b c 1,证明: 1 (i )ab bc ca 一 3 2 a (n )— b b 2 c 2 1. c a

(n) a b c d 是 a b cd 的充要条件. 6、(2011浙江)设正数x, y, z 满足2x 2y z 1. (i)若 ab cd ,贝U a b c d ; ⑴求3xy yz zx 的最大值; (2)证明: 3 1 xy 1 1 1 yz 1 xz 125 26 7.(2017全国新课标II 卷)已知a 0,b 0,a b 2。证明: (1) (a b)(a 5 b 5) 4 ; (2) a b 2。 8.(2017 天津)若 a,b R , ab 0,则 a 4 4 b 4 1 -的最小值为 9. 【2015咼考新课标 ab 2,理24】设a, b, c, d 均为正数,且a c d ,证明:

均值不等式高考题

应用一、求最值 直接求 例1、若x ,y 是正数,则22)21 ()21(x y y x +++的最小值是【 】 A .3 B .27 C .4 D .2 9 例2、设y x b a b a b a R y x y x 11,32,3,1,1,,+=+==>>∈则若的最大值为【 】 A. 2 B. 23 C. 1 D. 21 练习1.若0x >,则2 x x +的最小值为 . 练习2.设,x y 为正数, 则14 ()()x y x y ++的最小值为【 】 A.6 B. 9 C. 12 D. 15 练习3.若0,0>>b a ,且函数224)(2 3+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于【 】 A.2 B .3 C .6 D .9 练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨. 练习5.求下列函数的值域: (1)22 213x x y + = (2)x x y 1+= 练习6.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则 2 ()a b cd +的最小值是【 】 A.0 B.4 C.2 D.1 例3、已知0,0,01,a b c a b c >>>++=且则111 (1)(1)(1)a b c ---最小值为【 】 A. 5 B. 6 C. 7 D. 8 凑系数 例4、若x y ∈+R ,,且14=+y x ,则x y ?的最大值是 . 练习1.已知,x y R +∈,且满足 134 x y +=,则xy 的最大值为 . 练习2. 当40<-+ =x x x x f 在x a =处取最小值,则a =【 】 A.21+ B .31+ C .3 D .4 练习1.已知5 4x <,求函数14245y x x =-+-的最大值. 练习2.函数1 (3)3 x x x +>-的最小值为【 】 A. 2 B. 3 C. 4 D. 5 练习3.函数2 32(0)x x x +>的最小值为【 】 A.3932 B. 39423952392

二元一次方程组和不等式组测试题

二元一次方程组和不等式组测试题 1.已知关于x 的不等式组?? ???<->>a x x x 12 无解,则a 的取值范围是( ) A 、1-≤a B 、2≤a C 、21<<-a D 、1-a 2.已知方程组???=+=+15 231032y x y x ,不解方程组则=+y x 3.已知关于x 的不等式组()324213 x x a x x --≤???+>-??的解集是13x ≤<,则=a 4.已知关于x 的不等式组???--≥-1 230φx a x 的整数解有5个,则a 的取值范围是_____ 5.某商场计划在一月份销售彩电1000台,据统计本月前10天平均每天销售32台.现商场决定开展促销活动,并追加月计划量的20%,则这个商场本月后20天至少平均每天销售多少台? 6.风景点门票是每人10元,20人以上(含20人)的团体八折优惠.现有18位游客买20人的团体票; (1)问这样比普通票总共便宜多少钱? (2)此外,不足20人时,需多少人以上买20人的团体票才比普通票便宜?

7.车站有有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节A,B两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排B A,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少? 8.某园林的门票每张10元,一次使用.考虑到人们的不同需求,也为了吸引更多的游客,该 园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年),年票分A,B,C三类:A类年票每张120元,持票者进入园林时,无需再购买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元. (1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式; (2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算.

均值不等式【高考题】

应用一、求最值 直接求 例1、若x ,y 是正数,则22)21()21(x y y x +++ 的最小值是【 】 A .3B .27C .4D .2 9 例2、设y x b a b a b a R y x y x 11,32,3,1,1,,+=+==>>∈则 若的最大值为【 】 A. 2B. 23 C. 1D. 2 1 练习1.若0x >,则2x x +的最小值为. 练习2.设,x y 为正数, 则14()()x y x y ++的最小值为【 】 A.6 B.9C. 12D. 15 练习3.若0,0>>b a ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于【 】 A.2B .3C .6D .9 练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =吨. 练习5.求下列函数的值域: (1)22 213x x y += (2)x x y 1+= 练习6.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则 2 ()a b cd +的最小值是【 】 A.0B.4C.2D.1 例3、已知0,0,01,a b c a b c >>>++=且则111(1)(1)(1)a b c ---最小值为【 】 A. 5 B.6 C.7 D.8 凑系数 例4、若x y ∈+R ,,且14=+y x ,则x y ?的最大值是. 练习1.已知,x y R +∈,且满足 134 x y +=,则xy 的最大值为. 练习2. 当40<-+ =x x x x f 在x a =处取最小值,则a =【 】 A.21+B .31+C .3D .4 练习1.已知54x <,求函数14245 y x x =-+-的最大值. 练习2.函数1(3)3 x x x +>-的最小值为【 】 A. 2B. 3C. 4D.5 练习3.函数232(0)x x x +>的最小值为【 】 A.39323923952392

初一不等式组练习题30道

一、选择题(4×8=32) 1、下列数中是不等式> 的解的有(A ) 76, 73, 79, 80, 74.9, 75.1, 90, 60 A、5个 B、6个 C、7个 D、8个 2、下列各式中,是一元一次不等式的是(C ) A、5+4>8 B、 C、≤5 D、≥0 3、若,则下列不等式中正确的是(D ) A、B、C、D、 4、用不等式表示与的差不大于,正确的是(D ) A、B、C、D、 5、不等式组的解集为(D ) A 、> B、< < C、< D、空集 6、不等式> 的解集为(C ) A、> B 、<0 C、>0 D、< 7、不等式<6的正整数解有(C ) A 、1个 B 、2个C、3 个D、4个 8、下图所表示的不等式组的解集为(A ) A 、B、C、D、 二、填空题(3×6=18) 9、“ 的一半与2的差不大于”所对应的不等式是0.5x-2≤-1 10、不等号填空:若a

20、方程组的解为负数,求的范围 六、列不等式(组)解应用题(10) 22、某次数学测验,共16个选择题,评分标准为:;对一题给6分,错一题扣2分,不答不给分。某个学生有1题未答,他想自己的分数不低于70分,他至少要对多少题?

高中数学讲义 均值不等式

微专题45 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=L (1)调和平均数:12111n n n H a a a = +++L (2)几何平均数:12n n n G a a a =L (3)代数平均数:12n n a a a A n +++= L (4)平方平均数:222 12n n a a a Q n +++=L 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===L 特别的,当2n =时,22G A ≤?2 a b ab +≤ 即基本不等式 3、基本不等式的几个变形: (1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 324y x x x =+≥右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两个2x ,则2223 342222334y x x x x x x x x =+=++≥??=

高考备考 均值不等式和柯西不等式 含历年高考真题

1、(2008江苏)设a ,b ,c 为正实数,求证: 333111a b c +++abc ≥. 2、(2010辽宁理数)已知c b a ,,均为正数,证明:36 )111(2222≥+++++c b a c b a ,并确 定c b a ,,为何值时,等号成立。 3、(2012江苏理数)已知实数x ,y 满足:1 1|||2|3 6 x y x y +<-<,,求证:5 ||18 y <. 4、(2013新课标Ⅱ)设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 5、(2012福建)已知函数f (x )=m -|x -2|,m ∈R,且f (x +2)≥0的解集为[-1,1]. (1)求m 的值; (2)若a ,b ,c ∈R,且1a + 12b + 1 3c =m ,求证:a + 2b +3c ≥9 6、(2011浙江)设正数z y x ,,满足122=++z y x . (1)求zx yz xy ++3的最大值; (2)证明: 26 125 111113≥+++++xz yz xy 7. (2017全国新课标II 卷) 已知3 3 0,0,2a b a b >>+=。证明: (1)5 5 ()()4a b a b ++≥; (2)2a b +≤。 8.(2017天津) 若,a b ∈R ,0ab >,则4441 a b ab ++的最小值为___________. 9. 【2015高考新课标2,理24】设,,,a b c d 均为正数,且a b c d +=+,证明: (Ⅰ)若ab cd >+> (Ⅱ)>是a b c d -<-的充要条件. 10. 【2015高考福建,理21】选修4-5:不等式选讲 已知0,0,0a b c >>>,函数()||||f x x a x b c =++-+的最小值为4. (Ⅰ)求a b c ++的值; (Ⅱ)求2221 14 9 a b c ++的最小值. 11.【2015高考陕西,理24】(本小题满分10分)选修4-5:不等式选讲

最新均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--?? 231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

一元一次不等式组练习题及答案(经典)

一元一次不等式组 一、选择题 1、下列不等式组中,解集是2<x <3的不等式组是( ) A 、?? ?>>2 3 x x B 、???<>23x x C 、?? ?><2 3 x x D 、?? ?<<2 3 x x 2、在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( ) A 、a < 1 2 B 、a <0 C 、a >0 D 、a <- 12 3、(2007年湘潭市)不等式组10235 x x +?? +?? ,②4x >,③2x <,④21x ->-,从这四个不 等式中取两个,构成正整数解是2的不等式组是( ) A 、①与② B 、②与③ C 、③与④ D 、①与④ 7、如果不等式组x a x b >?? B. 109m > C. 1910m > D. 1019 m > 二、填空题 9、若y 同时满足y +1>0与y -2<0,则y 的取值范围是______________. 10、(2007年遵义市)不等式组30 10x x -+<121 m x m x 无解,则m 的取值范围是 . 13、不等式组15x x x >-?? ????>? 的解集为x >2,则a 的取值范围是 _____________. A B C D

相关主题
文本预览
相关文档 最新文档