当前位置:文档之家› 氨基酸分析仪整理.ppt

氨基酸分析仪整理.ppt

蛋白质与氨基酸的关系

一、蛋白质与氨基酸的关系 一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。 畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。 二、氨基酸间的相互关系 组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。 蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。 氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降低异亮氨酸的吸收率, 使尿中异亮氨酸排出量增加。此外, 精氨酸和甘氨酸可消除由于其他氨基酸过量所造成的有害作用, 这种作用可能与它们参加尿酸的形成有关。 一、蛋白质与氨基酸的关系 一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。 畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。 二、氨基酸间的相互关系 组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。 蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。 氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降

蛋白质和氨基酸的呈色反应

实验二蛋白质和氨基酸的呈色反应 一、实验目的 1.了解构成蛋白质的基本结构单位及主要联接方式。 2.了解蛋白质和某些氨基酸的呈色反应原理。 3.学习几种常用的鉴定蛋白质和氨基酸的方法 二、呈色反应: (一)双缩脱反应: 1.原理: 尿素加热至180℃左右生成双缩脲并放出一分子氨。双缩脲在碱性环境中能与cu2+结合生成紫红色化合物,此反应称为双缩脲反应。蛋白质分子中有肽键,其结构与双缩脲相似,也能发生此反应。可用于蛋白质的定性或定量测定。 一切蛋白质或二肽以上的多肽部有双缩脲反应,但有双缩脲反应的物质不一定都是蛋白质或多肽。 2.试剂: (1)尿索: 10克 (2)10%氢氧化钠溶液 250毫升 (3)1%硫酸铜溶液 60毫升 (4)2%卵清蛋白溶液 80毫升 3.操作方法: 取少量尿素结晶,放在干燥试管中。用微火加热使尿素熔化。熔化的尿素开始硬化时,停止加热,尿素放出氨,形成双缩脲。冷后,加10%氢氧化钠溶液约1毫升,振荡混匀,再加1%硫酸铜溶液1滴,再振荡。观察出现的粉红颜色。避免添加过量硫酸铜,否则,生成的蓝色氢氧化铜能掩盖粉红色。 向另一试管加卵清蛋白溶液约l毫升和10%氢氧化钠溶液约2毫升,摇匀,再加1%硫酸铜溶液2滴,随加随摇,观察紫玫色的出现。

(二)茚三酮反应 1.原理: 除脯氨酸、羟脯氨酸和茚三酮反应产生黄色物质外,所有α—氨基酸及一切蛋白质都能和茚三酮反应生成蓝紫色物质。 该反应十分灵敏,1:1 500 000浓度的氨基酸水溶液即能给出反应,是一种常用的氨基酸定量测定方法。 茚三酮反应分为两步,第一步是氨基酸被氧化形成CO 2、NH 3 和醛,水合 茚三酮被还原成还原型茚三酮;第二步是所形成的还原型茚三酮同另一个水合茚三酮分于和氨缩合生成有色物质。 反应机理如下: 此反应的适宜pH为5—7,同一浓度的蛋白质或氨基酸在不同pH条件下的颜色深浅不同,酸度过大时甚至不显色。 2.试剂: (1)蛋白质溶液 100毫升 2%卵清蛋白或新鲜鸡蛋清溶液(蛋清:水=1:9) (2)0.5%甘氨酸溶液 80毫升 (3)0.1%茚三酮水溶液 50毫升 (4)0.1%茚三酮—乙醇溶液 20毫升

食品营养学_练习题_第六章蛋白质和氨基酸

第六章蛋白质和氨基酸 一、填空 1、除8种必需氨基酸外,还有组氨酸是婴幼儿不可缺少的氨基酸。 2、营养学上,主要从蛋白质含量、被消化吸收程度和被人体利用程度三方面来全面评价食品蛋白质的营养价值。 3、谷类食品中主要缺少的必需氨基酸是赖氨酸。 4、最好的植物性优质蛋白质是大豆蛋白。 5、谷类食品含蛋白质7.5-15% 。 6、牛奶中的蛋白质主要是酪蛋白。 7、人奶中的蛋白质主要为乳清蛋白。 8、蛋白质和能量同时严重缺乏的后果可产生干瘦性营养不良。 9、蛋白质与糖类的反应是蛋白质或氨基酸分子中的氨基与还原糖的羰基之间的反应,称为羰氨反应,该反应主要损害的氨基酸是赖氨酸,蛋白质消化性和营养价值也因此下降。 10、谷类蛋白质营养价值较低的主要原因是优质蛋白质含量较低。 11、蛋白质净利用率表达为消化率*生物价。 12、氮平衡是指摄入氮和排出氮的差值。 二、选择 1、膳食蛋白质中非必需氨基酸A具有节约蛋氨酸的作用。 A.半胱氨酸 B.酪氨酸 C.精氨酸 D.丝氨酸 2、婴幼儿和青少年的蛋白质代谢状况应维持D。 A.氮平衡 B. 负氮平衡 C.排出足够的尿素氮 D.正氮平衡 3、膳食蛋白质中非必需氨基酸B具有节约苯丙氨酸的作用。 A.半胱氨酸 B.酪氨酸 C.丙氨酸 D.丝氨酸 4、大豆中的蛋白质含量是D。 A.15%-20% B.50%-60% C.10%-15% D.35%-40% 5、谷类食物中哪种氨基酸含量比较低? B A.色氨酸 B.赖氨酸 C.组氨酸 D.蛋氨酸 6、合理膳食中蛋白质供给量占膳食总能量的适宜比例是B。 A. 8% B. 12% C.20% D.30% 7、在膳食质量评价内容中,优质蛋白质占总蛋白质摄入量的百分比应为D。 A. 15% B. 20% C.25% D.30% 8、以下含蛋白质相对较丰富的蔬菜是B。 A. 木耳菜 B. 香菇 C. 菠菜 D. 萝卜 9、评价食物蛋白质营养价值的公式×100表示的是D。 A.蛋白质的消化率 B.蛋白质的功效比值 C.蛋白质的净利用率 D.蛋白质的生物价 10、限制氨基酸是指D。

生物化学习题及答案(氨基酸和蛋白质)

生物化学习题(氨基酸和蛋白质) 一、名词解释: 两性离子:指在同一氨基酸分子上含有正负两种电荷,又称兼性离子或偶极离子 必需氨基酸:指人体(和其他哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸等电点:指氨基酸的正离子浓度和负离子浓度相等时的环境pH,用符号pI表示。 一级结构:蛋白质多肽链中氨基酸的排列顺序 二级结构:蛋白质分子的局部区域内,多肽链按一定方向盘绕和折叠的方式 三级结构:蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象 四级结构:多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构 超二级结构:蛋白质分子中相邻的二级结构单位组合在一起形成的有规则的、在空间上能辨认的二级结构组合体 盐析:在蛋白质分子溶液中加入一定量的高浓度中性盐(如硫酸铵),使蛋白质溶解度降低并沉淀析出的现象 盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象 蛋白质的变性:蛋白质分子的天然构象遭到破坏导致生物活性丧失的现象; 蛋白质在受到光照、热、有机溶剂及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变 蛋白质的复性:在一定条件下,变性的蛋白质分子回复其原有的天然构象并回复生物活性的现象同源蛋白质:来自不同种类生物的序列和功能类似的蛋白质。如血红蛋白 别构效应:某些不涉及蛋白质活性的物质,结合于蛋白质活性部位以外的其它部位(别构部位),引起蛋白质的构象变化,而导致蛋白质活性改变的现象。 肽单位:又称肽基,是肽链主链上的重复结构。由参与肽键合成的N原子、C原子和它们的四个取代成分:羰基氧原子、酰胺氢原子和两个相邻的α-C原子组成的一个平面单位。 二、填空题: 1、天然氨基酸中,甘氨酸(Gly)不含不对称碳原子,故无旋光性。 2、常用于检测氨基酸的颜色反应是茚三酮。 3、通常可用紫外分光光度法测定蛋白质含量,这是因为蛋白质分子中的 Phe 、 Tyr和Trp (三字符表示)三种氨基酸残基有紫外吸收能力。 4、写出四种沉淀蛋白质的方法:盐析、有机溶剂、重金属盐和加热变性。 (生物碱试剂、某些酸类沉淀法) 5、蛋白质多肽链中的肽键是通过一个氨基酸残基的氨基和另一氨基酸的羧基连接而形成的。 6、大多数蛋白质中氮的含量较恒定,平均为16 %,如测得1g样品含氮量为10mg,则蛋白质含量

蛋白质和氨基酸性质

实验一蛋白质与氨基酸的理化性质实验 一、实验目的 1.了解蛋白质和某些氨基酸的颜色反应原理。 2.学习几种常用的鉴定蛋白质和氨基酸的方法。 3.学习蛋白质等电点的测定。 二、蛋白质的盐析与变性 1.原理 在水溶液中的蛋白质分子由于表面生成水化层和双电层而成为稳定的亲水胶体颗粒,在一定的理化因素影响下,蛋白质颗粒可因失去电荷和脱水破坏水化层和双电层而沉淀。 蛋白质的沉淀反应分为可逆反应和不可逆反应两类。 (1)可逆的沉淀反应此时蛋白质分子的结构尚未发生显著变化,除去引起沉淀的因素后,沉淀的蛋白质仍能重新溶解于溶剂中,并保持其天然性质而不变性。如大多数蛋白质的盐析作用或在低温下用乙醇(或丙酮)短时间作用与蛋白质。提纯蛋白质时,常利用此类反应分离蛋白质。 (2)不可逆的沉淀反应此时蛋白质分子内部结构发生重大变化,蛋白质常因变性而发生沉淀现象,沉淀后的蛋白质不再复溶于同类的溶剂中,加热引起的蛋白质沉淀与凝固、蛋白质与重金属离子或某些有机酸的反应都属于此类反应。 有时蛋白质变性后,由于维持溶液稳定的条件仍然存在(如电荷层),蛋白质并不絮凝析出。因此变性后的蛋白质并不一定都表现出沉淀现象。反之沉淀的蛋白质也未必都已变性。 2.试剂与材料 (1)蛋白质溶液[5%卵清蛋白溶液或鸡蛋清的水溶液 500ml (新鲜鸡蛋清:水=1:9)] (2)pH4.7乙酸-醋酸钠的缓冲溶液 100 ml (3)3%硝酸银溶液 10 ml (4)5%三氯乙酸溶液 50 ml (5)95%乙醇 250 ml (6)饱和硫酸铵溶液 250 ml

(7)硫酸铵结晶粉末 1000g (8)0.1mol/L盐酸溶液 300 ml (9)0.1mol/L氢氧化钠溶液 100ml (10)0.05mol/L碳酸钠溶液 100ml (11)0.1mol/L乙酸溶液 100ml (12)2%氯化钡溶液 150 ml 3.实验步骤 (1)蛋白质的盐析加入无机盐(硫酸铵、硫酸钠、氯化钠等)的浓溶液后,蛋白质水溶液溶解度发生变化,过饱和的蛋白质会发生絮凝沉淀,这种加入盐溶液或固体盐能析出蛋白质的现象称为盐析。加入的盐浓度不同,析出的蛋白质现象也不同,人们常用逐步提高蛋白质溶液中盐浓度的方法,使蛋白质分批沉淀,此类盐析方法称为分段盐析。 例如,球蛋白可在半饱和硫酸铵溶液中析出,而清蛋白则在饱和硫酸铵溶液中才能析出。通过盐析来制备的蛋白质沉淀物,当加水稀释降低盐类浓度时,它又能再溶解,故蛋白质的盐析作用是一种可逆沉淀过程。 加5%卵清蛋白溶液5ml于试管中,再加等量的饱和硫酸铵溶液,搅拌均匀后静置数分钟则析出球蛋白的沉淀。倒出少量沉淀物,加少量水,观察是否溶解,试解释实验现象。将试管内沉淀物过滤,向滤液中逐渐添加硫酸铵粉末,并慢速搅拌直到硫酸铵粉末不再溶解为止(饱和状态),此时析出的沉淀为清蛋白。 取出部分清蛋白沉淀物,加少量蒸馏水,观察沉淀的再溶解现象。 (2)重金属离子沉淀蛋白质重金属离子与蛋白质结合成不溶于水的复合物。 取1支试管,加入蛋白质溶液2ml,再加3%硝酸银溶液1~2滴,震荡试管,观察是否有沉淀产生。放置片刻,倾去上层清液,加入少量的蒸馏水,观察沉淀是否溶解。(3)某些有机酸沉淀蛋白质取1支试管,加入蛋白质溶液2ml,再加入1ml5%三氯乙酸溶液,振荡试管,观察沉淀的生成。放置片刻,倾出上清液,加入少量蒸馏水,观察沉淀是否溶解。 (4)有机溶剂沉淀蛋白质取1支试管,加入2ml蛋白质溶液,再加入2ml95%乙醇。混匀,观察沉淀的产生。加入少量的蒸馏水,观察沉淀是否溶解。 三、蛋白质的颜色反应

有机化学 第十四章 氨基酸和蛋白质的性质

第十四章氨基酸和蛋白质的性质 蛋白质和核酸是生命现象的物质基础,是参与生物体内各种生物变化最重要的组分。蛋白质存在于一切细胞中,它们是构成人体和动植物的基本材料,肌肉、毛发、皮肤、指甲、血清、血红蛋白、神经、激素、酶等都是由不同蛋白质组成的。蛋白质在有机体中承担不同的生理功能,它们供给肌体营养、输送氧气、防御疾病、控制代谢过程、传递遗传信息、负责机械运动等。核酸分子携带着遗传信息,在生物的个体发育、生长、繁殖和遗传变异等生命过程中起着极为重要的作用。 人们通过长期的实验发现:蛋白质被酸、碱或蛋白酶催化水解,最终均产生α-氨基酸。因此,要了解蛋白质的组成、结构和性质,我们必须先讨论α-氨基酸。 第一节氨基酸 氨基酸是羧酸分子中烃基上的氢原子被氨基(-NH2)取代后的衍生物。目前发现的天然氨基酸约有300种,构成蛋白质的氨基酸约有30余种,其中常见的有20余种,人们把这些氨基酸称为蛋白氨基酸。其它不参与蛋白质组成的氨基酸称为非蛋白氨基酸。 一、α-氨基酸的构型、分类和命名 构成蛋白质的20余种常见氨基酸中除脯氨酸外,都是α-

氨基酸,其结构可用通式表示: RCHCOOH NH2 这些α-氨基酸中除甘氨酸外,都含有手性碳原子,有旋光性。其构型一般都是L-型(某些细菌代谢中产生极少量D-氨基酸)。 氨基酸的构型也可用R、S标记法表示。 根据α-氨基酸通式中R-基团的碳架结构不同,α-氨基酸可分为脂肪族氨基酸、芳香族氨基酸和杂环族氨基酸;根据R-基团的极性不同,α-氨基酸又可分为非极性氨基酸和极性氨基酸;根据α-氨基酸分子中氨基(-NH2)和羧基(-COOH)的数目不同,α-氨基酸还可分为中性氨基酸(羧基和氨基数目相等)、酸性氨基酸(羧基数目大于氨基数目)、碱性氨基酸(氨基的数目多于羧基数目)。 氨基酸命名通常根据其来源或性质等采用俗名,例如氨基乙酸因具有甜味称为甘氨酸、丝氨酸最早来源于蚕丝而得名。在使用中为了方便起见,常用英文名称缩写符号(通常为前三个字母)或用中文代号表示。例如甘氨酸可用Gly或

蛋白质与氨基酸的关系教案资料

精品文档 一、蛋白质与氨基酸的关系 一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。 畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。 二、氨基酸间的相互关系 组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。 蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。 氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降低异亮氨酸的吸收率, 使尿中异亮氨酸排出量增加。此外, 精氨酸和甘氨酸可消除由于其他氨基酸过量所造成的有害作用, 这种作用可能与它们参加尿酸的形成有关。 一、蛋白质与氨基酸的关系 一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。 畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。 二、氨基酸间的相互关系 组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。 蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。 氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降 精品文档

1 氨基酸与蛋白质

蛋白质化学习题答案 一、名词解释 1、等电点:当氨基酸或蛋白质在溶液中所带正负电荷相等时,此时溶液的pH值即氨基酸或蛋白质的等电点。 2、肽键:一个氨基酸的α羧基与另一氨基酸的α氨基脱水缩合形成的酰胺键。 3、氨基酸残基:多肽链中每个氨基酸单位。 4、蛋白质的一级结构:多肽链中氨基酸的组成和排列顺序。 5、蛋白质的二级结构:蛋白质分子中由于肽键平面的相对旋转构成的局部空间构象。 6、蛋白质变性:在理化因素的作用下,使蛋白质的空间结构破坏,导致理化性质改变和生物学活性丧失的过程,但并未涉及一级结构的改变。 7、亚基:在蛋白质分子的四级结构中,具有独立三级结构的多肽链为一个亚基。 8、沉降系数:对于特定蛋白质颗粒,其在重力场中的沉降速度与离心加速度之比为一常数,称为沉降系数。 9、电泳:带电粒子在电场中向相反电极移动的现象。 10、茚三酮反应:在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。 二、填空 1、蛋白质的具有两性电离性质,当蛋白质处于某一pH值溶液中时,它所带的正负电荷数相等,此时的蛋白质成为(兼性离子),该溶液的pH值称为蛋白质的(等电点); 2、标准氨基酸中,含羟基的氨基酸是丝氨酸、(苏氨酸)和(络氨酸); 3、酸性氨基酸有(谷氨酸)和(天冬氨酸); 4、蛋白质颗粒表面的(同种电荷)和(水化膜)是蛋白质亲水胶体稳定的两个因素; 5、稳定蛋白质的次级键主要包括(氢键)、(盐键)和疏水作用等; 6、在pH6.0时将一个丙、精、谷3种氨基酸的混合液进行纸上电泳,移向正极的是(谷氨酸),移向负极的是(精氨酸); 7、球状蛋白质中有(极性)侧链的氨基酸残基常位于分子(表面)而与水结合; 8、沉淀蛋白质的主要方法包括(盐析)、(有机溶剂沉淀)、重金属盐沉淀和生物碱试剂沉淀;

氨基酸和蛋白质的性质.

实验16 氨基酸和蛋白质的性质 一、实验目的 验证氨基酸和蛋白质的某些重要化学性质 二、仪器与药品 清蛋白、CuSO4、醋酸铅、HgCl2、(NH4)2SO4、5% Hac、苦味酸、鞣酸、茚三酮、1%甘氨酸、1%酪氨酸、1%色氨酸、1%鸡蛋白、浓HNO3、20%NaOH、饱和CuSO4、硝酸汞试剂、30% NaOH、10%硝酸铅、恒温水浴锅 三、实验步骤 1.用重金属盐沉淀蛋白质 (1)在盛有1ml清蛋白的试管中加入饱和试样,观察现象? 试样:CuSO4、Pb(Ac)2、HgCl2 (2)蛋白质的可逆沉淀 在盛有2ml清蛋白的试管中加入2ml饱和(NH4)2SO4。振荡观察现象?取此浑浊液加入 1-3水振荡,观察现象? (3)蛋白质与生物碱反应 再支盛有0.5ml蛋白质液的试管中加入5%Hac至呈酸性,分别加入饱和苦味酸和鞣酸,观察现象? 2.蛋白质的颜色反应 (1)与茚三酮反应 在4支试管中分别加入1%甘氨酸、1%酪氨酸、1%色氨酸、1%鸡蛋白各1ml,加入茚三酮试剂2-3滴,沸水浴中加热10-15min,观察现象? (2)黄蛋白反应 在试管中加入1ml清蛋白和1ml浓HNO3,加热煮沸,观察现象? (3)蛋白质的二缩脲反应 在盛有1ml清蛋白和1ml20%NaOH溶液的试管中,滴加几滴CuSO4液共热,观察现象? 取1%甘氨酸作对比试验,观察现象? (4)蛋白质与硝酸汞试剂作用 在盛有2ml清蛋白的试管中,加入硝酸汞试剂2-3滴,观察现象,小心加热,观察现象? 用酪氨酸重复上述过程,现象如何? 3.用碱分解蛋白质 取1-2ml清蛋白放入试管中,加入2-4ml30%NaOH,煮沸2-3min,析出沉淀,继续沸腾,用湿润红石蕊试纸检验。 上述热浴液加入1ml10%Pb(NO3)2,煮沸,观察现象? 四、问题讨论 1. 1.怎样区分蛋白质的可逆沉淀和不可逆沉淀? 2. 2.在蛋白质的二缩脲反应中,为什么要控制硫酸铜溶液的加入良?过量的硫酸铜会导 致什么结果?

氨基酸与蛋白质 [习题及答案]

第三章氨基酸和蛋白质 一.填空题 1.组成蛋白质分子的碱性氨基酸有___、___和___;酸性氨基酸有___和___。并在下列空格中填入合适的氨基酸名称。 (1)___是带芳香族侧链的极性氨基酸。 (2)___和___是带芳香族侧链的非极性氨基酸。 (3)___是含硫的极性氨基酸。 (4)___或___是相对分子质量小且不含硫的氨基酸,在一个肽涟折叠的蛋白质中它能形成内部氢键。 (5)在一些酶的活性中心中起重要作用并含羟基的极性较小的氨基酸是___。 2.氨基酸的等电点是指___。氨基酸在等电点时,主要以___离子形式存在,在 pH > pI的溶液中,大部分以___离子形式存在,在 pH < pI 的溶液中,大部分以___离子形式存在。 3.脯氨酸和羟脯氨酸与茚三酮反应产生___色的物质,而其他氨基酸与茚三酮反应产生___色的物质。 4.范斯莱克法测定氨基氮主要利用___与___作用生成___。 5.通常可用紫外分光光度法测定蛋白质的含量,这是因为蛋白质分子中的___、___和___三种氨基酸的共扼双键有紫外吸收能力。 6.常用的拆开蛋白质分子中二硫键的方法有___法或___法,常用的试剂为___或___。 7.蛋白质之所以出现各种内容丰富的构象是因为___键和___键能有不同程度的转动。 8.蛋白质α螺旋模型,每圈螺旋包含___个氨基酸残基,高度为___;每个氨基酸残基沿轴上升___,并沿轴旋转___度。两条相当伸展的肽链(或同一条肽链的两个伸展的片段)之间形成氢键的结构单元称为___。 9.一般来说,球状蛋白质的___性氨基酸侧链位于分子内部,___性氨基酸侧链位于分子表面。 10.维持蛋白质构象的化学键有___、___、___、___、___。蛋白质的二级结构有___、___、___和___等几种基本类型。 二.单选题 1下列氨基酸中,哪个含有吲哚环?( ) (A)甲硫氨酸 (B)苏氨酸 (C)色氨酸(D)缬氨酸 2下列氨基酸溶液除哪个外都能使偏振光发生旋转?( ) (A)丙氨酸 (B)甘氨酸 (C)亮氨酸 (D)丝氨酸 3.下图为一个常见生化物质的滴定曲线,下列关于这图的叙述中除哪个外都是正确的?() (A)这化合物有两个可解离基团 (B)这化合物是一个简单的氨基酸 (C)这化合物在PH 5到7之间显示最大缓冲能力 (D)A代表羧基的解离范围 4.下列哪一种氨基酸侧链基团的pka值最接近于生理pH值?( ) (A)半胱氨酸 (B)谷氨酸 (C)谷氨酰胺 (D)组氨酸 5.肽键在下列哪个波长具有最大光吸收( ) (A)215nm (B)260nm (C)280nm (D)340nm 6.蛋白质一级结构与功能关系的特点是( ) (A)相同氨基酸组成的蛋白质,功能一定相同(B)一级结构相近的蛋白质,其功能类似性越大

氨基酸和蛋白质的性质

氨基酸和蛋白质的性质 一、实验目的:验证氨基酸和蛋白质的某些重要化学性质。 二、实验原理:蛋白质是存在于细胞中的一种含氮的生物高分子化合物,在酸、碱存在下,或受酶的作用,水解成相对分子质量较小的 、胨、多肽和二羧胡椒嗪,而水解的最终产物为各种氨基酸,其中以α-氨基酸为主。 关于氨基酸和蛋白质的性质我们只做蛋白质的沉淀、蛋白质的颜色反应和蛋白质的分解等性质实验,这些性质有助于认识或鉴定氨基酸和蛋白质。 三、实验步骤 1.蛋白质的沉淀 (1)用重金属盐沉淀蛋白质取3支试管,标明号码,各盛1mL清蛋白溶液,分别加入饱和硫酸铜、碱性醋酸铅、氯化汞2-3滴(小心有毒),观察有无蛋白质沉淀析出? (2)蛋白质的可逆沉淀取2mL清蛋白溶液,放在试管里,加入同体积的饱和硫酸铵溶液,将混合物稍加振荡,析出蛋白质沉淀使溶液变浑或呈絮状沉淀。将1mL浑浊的液体倾入;另一支试管中,加入1-3mL水,振荡时,蛋白质沉淀是否溶解? (3)蛋白质与生物碱试剂反应取2支试管,各加0.5mL蛋白质溶液,并滴加5%的醋酸使之呈酸性。然后分别滴加饱和的苦味酸溶液和饱和的鞣酸溶液,直到沉淀发生为止。 2.蛋白质的颜色反应 (1)与茚三酮反应在4支试管里,分别加入1%的甘氨酸、酪氨酸、色氨酸和鸡蛋白溶液各1mL,再分别滴加茚三酮试剂2-3滴,在沸水浴中加热10-15min观察有什么现象?(2)黄蛋白反应于试管中加入1-2mL清蛋白溶液和1mL农硝酸,此时呈现白色沉淀或浑浊。在灯焰上加热煮沸,此时溶液和沉淀是否都呈黄色?有时由于煮沸使析出的沉淀水解,而使沉淀全部或部分溶解,溶液的黄色是否变化? (3)蛋白质的二缩脲反应取1-2mL 20%氢氧化钠溶液放在试管中,再加几滴硫酸铜溶液共热,现象如何?是否由于蛋白质与硫酸铜生成了络合物而呈紫色? 取1%甘氨酸溶液作对比试验,此时仅有氢氧化铜沉淀析出。 (4)蛋白质与硝酸汞试剂作用取2mL清蛋白溶液放入试管中,加硝酸汞试剂2-3滴,现象如何?小心加热,此时原先析出的白色絮状是否聚集成块状?并显砖红色,有时溶液也呈红色。用酪氨酸重复上述过程,现象如何? 3.用碱分蛋白质 取1-2mL清蛋白溶液放在试管里,加两倍体积的30%碱液,把混合物煮沸2-3min,此时析出沉淀,继续沸腾时,此沉淀又溶解,放出氨气。 上面的热溶液中加入1mL 10%硝酸铅溶液,再将混合物煮沸,起初生成的白色氢氧化铅沉淀溶解在过量的碱液中。如果蛋白质与碱作用有硫脱下,则生成硫化铅,结果清亮的液体逐渐变成棕色。若脱下的硫较多时,则析出暗棕色或黑色的硫化铅沉淀。 注释 【1】重金属在浓度很小时就能沉淀蛋白质,与蛋白质形成不溶于水的类似盐的化合物。因此蛋白质是许多重金属中毒时的解毒剂,用重金属盐沉淀蛋白质和蛋白质加热沉淀均是不可逆的。 【2】碱金属和镁盐在相当高的浓度下能使很多蛋白质从它们的溶液中沉淀出来。硫酸铵具有特别显著的盐析作用,不论在弱酸溶液中还是中性溶液中都能使蛋白质沉淀。其他的盐需要使溶液呈酸性反应才能盐析完全,用硫酸铵时,使溶液呈酸性反应也能大大加强盐析作用。 【3】茚三酮水合物的组成如下:

氨基酸蛋白质性质

有机化学实验教案 实验名称:氨基酸和蛋白质的性质 11化学班yingshou 【实验原理】 蛋白质是存在于细胞中的一种含氮的生物高分子化合物,在酸、碱存在下,或受酶的作用,水解成相对分子质量较小的月示、胨、多肽和二羧胡椒嗪,而水解的最终产物为各种氨基酸,其中以α-氨基酸为主。关于氨基酸和蛋白质的性质我们只做蛋白质的沉淀、蛋白质的颜色反应和蛋白质的分解等性质实验,这些性质有助于认识或鉴定氨基酸和蛋白质。 一、蛋白质的沉淀反应原理: 蛋白质是亲水胶体,当其稳定因素被破坏或与某些试剂结合成不溶性盐类后,即自溶液中沉淀析出 二、颜色反应原理: 蛋白质的呈色反应是指蛋白质所含的某些氨基酸及其特殊结构,在一定条件下可与某些试剂发生了生成有色的物质的反应。不同蛋白质分子所含的氨基酸残基也是不完全相同,因此所发生的成色反应也不完全一样。另外呈色反应并不是蛋白质的专一反应,某些非蛋白质类物质(含有-CS-NH、-CH2-NH2、-CRH-NH2、-CHOH-CH2NH2等基团的物质)也能发生类似的颜色反应。因此,不能仅仅根据呈色反应的结果为阳性就来判断被测物质一定是蛋白质。三、用碱分解蛋白质原理 蛋白质因受某些物理或化学因素的影响,分子的空间构象被破坏,从而导致其理化性质发生改变并失去原有的生物学活性的现象称为蛋白质的变性作用。 【仪器和药品】 仪器:试管、量筒、滴管、 药品:清蛋白溶液、硫酸铜、碱性醋酸铅、氯化汞、饱和硫酸铵、5%醋酸、饱和苦味酸、饱和鞣酸、1%甘氨酸、络氨酸、色氨酸、茚三酮试剂、浓硝酸、20%氢氧化钠、硝酸汞、30&碱液、10%硝酸铅 【实验过程和步骤】 1.蛋白质的沉淀 (1)用重金属盐沉淀蛋白质取3支试管,标明号码,各盛1mL清蛋白溶液,分别加入饱和硫酸铜、碱性醋酸铅、氯化汞2-3滴(小心有毒),观察有无蛋白质沉淀析出? (2)蛋白质的可逆沉淀取2mL清蛋白溶液,放在试管里,加入同体积的饱和硫酸铵溶液,将混合物稍加振荡,析出蛋白质沉淀使溶液变浑或呈絮状沉淀。将1mL浑浊的液体倾入;另一支试管中,加入1-3mL水,振荡时,蛋白质沉淀是否溶解? (3)蛋白质与生物碱试剂反应取2支试管,各加0.5mL蛋白质溶液,并滴加5%的醋酸使之呈酸性。然后分别滴加饱和的苦味酸溶液和饱和的鞣酸溶液,直到沉淀发生为止。 2.蛋白质的颜色反应 (1)与茚三酮反应在4支试管里,分别加入1%的甘氨酸、酪氨酸、色氨酸和鸡蛋白溶液各1mL,再分别滴加茚三酮试剂2-3滴,在沸水浴中加热10-15min观察有什么现象? (2)黄蛋白反应于试管中加入1-2mL清蛋白溶液和1mL农硝酸,此时呈现白色沉淀或浑浊。在灯焰上加热煮沸,此时溶液和沉淀是否都呈黄色?有时由于煮沸使析出的沉淀水解,而使沉淀全部或部分溶解,溶液的黄色是否变化?

氨基酸和蛋白质

第3章氨基酸和蛋白质单元自测题 一.名词解释或概念比较 1.氨基酸 2.肽键与肽 3.结构域 4.单体蛋白和寡聚蛋白 5.蛋白质的构象与构型 6.肽键 7.蛋白质的化学修饰 8.疏水效应 9.分子伴侣10.Western印迹 11.同促效应与异促效应 12.Bohr效应 13.抗原决定簇 14.半抗原 15.亲和层析 16.必须氨基酸与非必须氨基酸 7.透析 18.双向电泳19.Edman降解法 20.等电点 21.多克隆抗体与单克隆抗体 22.单纯蛋白质与綴合蛋白质 23.同寡聚蛋白与杂寡聚蛋白 24.等电聚焦 二.填空题 1.氨基酸在晶体状态或在水溶液中主要以形式存在。 2.天冬氨酸的pK1(α-COOH)值是2.09,pK2(β-COOH)值是3.86,pK3(α-NH3+)值是9.82,它的等电点是。组氨酸的pK1(α-COOH)值是1.82,pK2(咪唑基)值是6.00,pK3(α-NH3+)值是 9.17,它的等电点是。 3.在近紫外区能吸收紫外光的氨基酸有,和。其中的摩尔吸光系数最大。 4.在氨基酸的含量分析中,可以先用法分离氨基酸,再用显色法进行定量分析。5.在进行蛋白质的N末端氨基酸序列分析中,主要利用反应。 6.根据蛋白质的形状和溶解度的差异,可以将它们分为,和。 7.球状蛋白质中,大部分的氨基酸残基在分子的表面,而大部分的氨基酸残基在分子的内核。 8.生物体内的蛋白质在折叠过程中通常有和参与。 9.目前研究蛋白质晶体结构的方法主要是。 10.血红蛋白(Hb)与氧结合时呈现效应,是通过血红蛋白的现象实现的。肌肉组织中CO2和H+促进O2的释放,这种现象称为效应。 11.用溴化氰水解蛋白质时,肽键在残基的右端裂解。 12.用胰凝乳蛋白酶水解蛋白质时,肽键在和残基的右端裂解。 13.蛋白质分子上的磷酸化修饰位点主要在,和三种氨基酸上。14.在膜蛋白的跨膜区上,氨基酸朝向分子外侧,氨基酸朝向分子内侧。 15.镰刀型红细胞贫血是由于正常血红蛋白分子中的一个被置换引起的。 16.胰岛素是分泌的多肽激素。前胰岛素原被蛋白酶水解,失去N端的,生成。再经过肽酶激活,失去,生成具有生物活性的胰岛素。 17.在不同生物体内行使相同或相似功能的蛋白质称为,其氨基酸序列中有许多位置的氨基酸

相关主题
文本预览
相关文档 最新文档