当前位置:文档之家› 定积分学案

定积分学案

定积分学案
定积分学案

定积分

编稿:周尚达审稿:张扬责编:严春梅

目标认知

学习目标:

1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念、几何意义。

2.直观了解微积分基本定理的含义,并能用定理计算简单的定积分。

3.应用定积分解决平面图形的面积、变速直线运动的路程和变力作功等问题,在解决问题的过程中体

验定积分的价值.

教学重点:

正确计算定积分,利用定积分求面积。

教学难点:

定积分的概念,将实际问题化归为定积分问题。

学习策略:

①运用“以直代曲”、“以不变代变”的思想方法,理解定积分的概念。

②求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数.

③求导运算与求原函数运算互为逆运算.

知识要点梳理

知识点一:定积分的概念

如果函数在区间上连续,用分点将

区间分为n个小区间,在每个小区间上任取一点(i=1,2,3…,n),作和式

,当时,上述和式无限趋近于某个常数,这个常数叫做在区间上的定积分.记作.即=,这里,与分别叫做积分与积分,区间叫做,函数叫做,

叫做,叫做.

说明:

(1)定积分的值是一个常数,可正、可负、可为零;

(2)用定义求定积分的四个基本步骤:①分割;②近似代替;③求和;④取极限.

知识点二:定积分的几何意义

设函数在区间上连续.

在上,当时,定积分在几何上表示由曲线以及直线

与轴围成的;

在上,当时,由曲线以及直线与轴围成的曲边梯形位于轴下方,定积分在几何上表示曲边梯形面积的;

在上,当既取正值又取负值时,曲线的某些部分在轴的上方,

而其他部分在轴下方,如果我们将在轴上方的图形的面积赋予正号,在轴下方的图形的面积赋予负号;

在一般情形下,定积分的几何意义是曲线,两条直线与轴所围成的各部分面积的.

知识点三:定积分的性质

(1)(为常数),

(2),

(3)(其中),

(4)利用函数的奇偶性求积分:

若函数在区间上是奇函数,则;

若函数在区间上是偶函数,则.

知识点四:微积分基本定理

微积分基本定理(或牛顿-莱布尼兹公式):

如果在上连续,且,则。其中叫做的一个原函数.

注意:

①求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函

数.由此,求导运算与求原函数运算互为逆运算.

②由于也是的原函数,其中c为常数.

知识点五:应用定积分求曲边梯形的面积

1. 如图,由三条直线,,轴(即直线)及一条曲线

()围成的曲边梯形的面积:

2.如图,由三条直线,,轴(即直线)及一条曲线

()围成的曲边梯形的面积:

3.由三条直线轴及一条曲线(不妨设在区间

上,

在区间上)围成的图形的面积:

=+.

4. 如图,由曲线及直线,围成图形的面积:

知识点六:定积分在物理中的应用

①变速直线运动的路程

作变速直线运动的物体所经过的路程,等于其速度函数在时间区间上的定

积分,即.

②变力作功

物体在变力的作用下做直线运动,并且物体沿着与相同的方向从移动到

,那么变力所作的功.

规律方法指导

3.利用定积分求由两条曲线围成的平面图形面积的步骤:

(1)画出草图,在直角坐标系中画出曲线或直线的大致图像;

(2)解方程组求出交点坐标,确定积分的上、下限;

(3)借助图形确定出被积函数;

(4)写出平面图形的定积分表达式;

(5)运用公式求出平面图形的面积.

经典例题精析

类型一:利用定积分的几何定义求定积分

1.说明定积分所表示的几何意义,并根据其意义求出定积分的值。

解析:设,则,表示半径为2的个圆,

由定积分的概念可知,表示如图所示的以2为半径的圆的面积,

所以

总结升华:利用定积分的几何意义画出相应的图形解答。

举一反三:

【变式1】由,,以及轴围成的图形的面积写成定积分是____________;

【答案】

【变式2】用定积分表示下列图形的阴影部分的面积(不计算)

(1)(2)

【答案】(1),(2)

【变式3】说明下列定积分所表示的几何意义,并根据其意义求出定积分的值。

(1);(2);

【答案】

(1)设,

则表示由直线,,以及轴围成的梯形的面积,该梯形面积为

∴。

(2)设,

则表示由直线,,以及轴围成的矩形的面积,

该矩形面积为,所以。

【变式4】利用定积分的几何定义求定积分:

(1);(2)

【答案】

(1)设,则表示个圆,由定积分的概念可知,所求积分就是圆的面积,

所以

(2)设,则表示如图的曲边形,其面积,

故.

类型二:运用微积分定理求定积分

2.运用微积分定理求定积分

(1),(2),(3)

思路点拨:根据求导函数与求原函数互为逆运算,找到被积函数的一个原函数,利用微积分基本定理求解.

解析:

(1)∵,∴;

(2)∵,∴;

(3)∵,∴.

总结升华:求定积分最常用的方法是微积分基本定理,其关键是找出使得

的原函数。通常我们可以运用基本函数的求导公式和四则运算法则从反方向求,即利用求导函数与求原函数互为逆运算。

有时需要将原式化简后再求解,有时不易找到原函数,此时可以用其他方法(如:定积分的几何定义).

举一反三:

【变式1】计算下列定积分的值:

(1);(2);(3).

【答案】

(1)∵,

∴;

(2)∵,

∴.

(3)∵,

∴;

【变式2】计算下列定积分的值:

(1),(2),(3)

【答案】

(1)

(2)

(3)

类型三:运用积分的性质求定积分

3.求定积分:;

思路点拨:对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分,根据定积分对区间的可加性,对给定的积分区间适当分成几个积分区间,计算各个积分,最后求和,得出结果.

解析:=+

=+

=;

总结升华:对于图形由两部分组成的函数在求积分时,应注意用性质=

+进行化简.对于含绝对值的函数求积分,一般先把绝对值号去掉,写成分段函数,合理地确定积分区间,再进行积分.

举一反三:

【变式1】设是连续函数,若,,则

____________;

【答案】;

【变式2】已知函数,计算.

【答案】=+

=+

=+

=.

举一反三:

【变式1】设是偶函数,若,则____________;

【答案】∵是偶函数,∴

【变式2】求定积分:

【答案】∵是偶函数,

.

类型四:利用定积分求平面图形面积

5.求直线与抛物线所围成的图形面积.

思路点拨:画出简图,结合图形确定积分区间。

解析:如图,由得交点,,

所求面积:.

总结升华:求平面图形的面积体现了数形结合的思想,求图形的面积的一般步骤是:(1)画出图形,并把图形适当分解为若干个基本的曲边梯形;

(2)找出相关曲线的交点坐标,即解方程组,确定每个曲边梯形的积分区间(即积分上下限);

(3)确定被积函数,即解决“积什么”的问题,是解题的关键;

(4)写出表示各曲边梯形面积的定积分表达式;

(5)计算各个定积分,求出所求的面积.

举一反三:

【变式1】求由曲线(),,围成的平面图形的面积.

【答案】如图,由()和,得交点;

法一:所求面积为矩形面积减去由曲线(),

,,围成的平面图形的面积.

故所求面积为

法二:所求面积为。【变式2】求由曲线围成的平面图形的面积.

【答案】由得;由得.

所求面积:

【变式3】求抛物线与直线所围成的图形的面积.

【答案】解方程组得或

即交点.

由于阴影的面积不易直接由某个函数的定积分来求得,我们把它合理的划分一下,

便于进行积分计算。

过点作虚线,把阴影部分分成了两部分,分别求出两部分的面积,再求和.

=.

需要指出的是,积分变量不一定是,有时根据平面图形的特点,也可选作为积分变量,以简化计算。但要注意积分上限、下限的确定.

若选为积分变量,则上限、下限分别为-1和3,所以要求的面积为:

=.

定积分的简单应用求体积

定积分的简单应用求体 积 Document number:BGCG-0857-BTDO-0089-2022

定积分的简单应用(二) 复习: (1) 求曲边梯形面积的方法是什么 (2) 定积分的几何意义是什么 (3) 微积分基本定理是什么 引入: 我们前面学习了定积分的简单应用——求面积。求体积问题也是定积分的一个重要应用。下面我们介绍一些简单旋转几何体体积的求法。 1. 简单几何体的体积计算 问题:设由连续曲线()y f x =和直线x a =,x b =及x 轴围成的平面图形(如图甲) 绕x 轴旋转一周所得旋转体的体积为V ,如何求V 分析: 在区间[,]a b 内插入1n -个分点,使0121n n a x x x x x b -=<<<<<=,把曲线()y f x =(a x b ≤≤)分割成n 个垂直于x 轴的“小长条”,如图甲所示。设第i 个“小长条”的宽是1i i i x x x -?=-,1,2,,i n =。这个“小长条”绕x 轴旋转一周就得到一个厚度是i x ?的小圆片,如图乙所示。当i x ?很小时,第i 个小圆片近似于底面半径为()i i y f x =的小圆柱。因此,第i 个小圆台的体积i V 近似为2()i i i V f x x π=? 该几何体的体积V 等于所有小圆柱的体积和:

2221122[()()()]n n V f x x f x x f x x π≈?+?+ +? 这个问题就是积分问题,则有: 22()()b b a a V f x dx f x dx ππ==?? 归纳: 设旋转体是由连续曲线()y f x =和直线x a =,x b =及x 轴围成的曲边梯形绕x 轴旋转而成,则所得到的几何体的体积为2()b a V f x dx π=? 2. 利用定积分求旋转体的体积 (1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数 (2) 分清端点 (3) 确定几何体的构造 (4) 利用定积分进行体积计算 3. 一个以y 轴为中心轴的旋转体的体积 若求绕y 轴旋转得到的旋转体的体积,则积分变量变为y ,其公式为 2()b a V g y dy π=? 类型一:求简单几何体的体积 例1:给定一个边长为a 的正方形,绕其一边旋转一周,得到一个几何体,求它的体积 思路: 由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定积分上、下限,确定被积函数即可求出体积。 解:以正方形的一个顶点为原点,两边所在的直线为,x y 轴建立如图所示的平面直角 坐标系,如图:BC y a =。则该旋转体即为圆柱的体积为: 22300|a a V a dx a x a πππ=?==?

定积分的概念(教学内容)

授课题目定积分的概念 课时数1课时 教学目标理解定积分的基本思想和概念的形成过程,掌握解决积分学问题的“四步曲”。 重点与难点重点:定积分的基本思想方法,定积分的概念形成过程。难点:定积分概念的理解。 学情分析我所教授的学生从知识结构上来说属于好坏差别很大,有的接受新知识很快,有的很慢,有的根本听不懂,基 于这些特点,结合教学内容,我以板书教学为主,多媒 体教学为辅,把概念较强的课本知识直观化、形象化, 引导学生探索性学习。 教材分析本次课是学生学习完导数和不定积分这两个概念后的学习,定积分概念的建立为微积分基本定理的引出做了铺 垫,起到了承上启下的作用。而且定积分概念的引入体 现着微积分“无限分割、无穷累加”“以直代曲、以不变 代变”的基本思想。所以无论从内容还是数学思想方面, 本次课在教材中都处于重要的地位。 教学方法根据对学生的学情分析,本次课主要采用案例教学法,问题驱动教学法,讲与练互相结合,以教师的引导和讲 解为主,同时充分调动学生学习的主动性和思考问题的 积极性。

教学手段 传统教学与多媒体资源相结合。 课程资源 同济大学《高等数学》(第七版)上册 教学内容与过程 一、定积分问题举例 1、曲边梯形的面积 设)(x f y =在区间],[b a 上非负连续。由)(,0,,x f y y b x a x ====所围成的图形称为曲边梯形(见下图),求其面积A ,具体计算步骤如下: (1)分割:在区间],[b a 中任意插入1-n 个分点 b x x x x x a n n =<<<<<=-1210Λ 把],[b a 分成n 个小区间 ],[,],,[],,[12110n n x x x x x x -Λ 它们的长度依次为:n x x x ???,,,21Λ (2)近似代替:区间],[1i i x x -对应的第i 个小曲边梯形面积,)(i i i x f A ?≈?ξ ]).,[(1i i i x x -∈?ξ (3)求和:曲边梯形面积∑∑==?≈?=n i i i n i i x f A A 1 1 )(ξ (4)取极限:曲边梯形面积,)(lim 10∑=→?=n i i i x f A ξλ其中 }.,,m ax {1n x x ??=Λλ 2、变速直线运动路程 设物体做直线运动,已知速度)(t v v =是时间间隔],[21T T 上的非负连续函数,计算这段时间内物体经过的路程s ,具体计算步骤与上相似 x a b y o 1x i x 1-i x i ξ

《定积分》教学设计与反思

《定积分》教学设计与反思 学习目标 1、通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分. 2、通过实例体会用微积分基本定理求定积分的方法. 教学重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 教学难点:了解微积分基本定理的含义. 一、自主学习: 1.定积分的定义:, 2.定积分记号: 思想与步骤 几何意义. 3.用微积分基本定理求定积分 二、新知探究 新知1:微积分基本定理: 背景:我们讲过用定积分定义计算定积分,但如果要计算,其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 探究问题1:变速直线运动中位置函数S(t)与速度函数v(t)之间的联系 设一物体沿直线作变速运动,在时刻t时物体所在位移为S(t),速度为v(t)(), 则物体在时间间隔内经过的位移记为,则 一方面:用速度函数v(t)在时间间隔求积分,可把位移= 另一方面:通过位移函数S(t)在的图像看这段位移还可以表示为 探究问题2: 位移函数S(t)与某一时刻速度函数v(t)之间的关系式为 上述两个方面中所得的位移可表达为 上面的过程给了我们启示 上式给我们的启示:我们找到了用的原函数(即满足)的数值差来计算在上的定积分的方法。 定理如果函数是上的连续函数的任意一个原函数,则

该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法。 例1.计算下列定积分: 新知2:用定积分几何意义求下列各式定积分: 若求 新知3:用定积分求平面图形的面积 1、计算函数在区间的积分 2、计算函数在区间的积分 3、求与在区间围成的图形的面积 通过此题的计算你发现了什么? 教学反思 本课的教学设计,是在新课程标准理念指导下,根据本班学生实际情况进行设计的。从实施情况来看,整堂课学生情绪高涨、兴趣盎然。在教学中,教师一改往日应用题教学的枯燥、抽象之面貌,而是借用学生已有的知识经验和生活实际,有效地理解了微积分的基本定理,具体反思如下: 1、改变定理的表述形式,丰富信息的呈现方式。 根据高中学生的认知特点,我在教学过程中,出示例题、习题时,呈现形式力求多样、新颖,让学生多种感官一起参与,以吸引学生的注意力,培养对数学的兴趣。本课的教学中,我大胆地改变了教材中实例分析顺序,重组和创设了这样一个情境,从而引入速度关于时间的定积分背景,即切合学生的生活实际,又让学生发现了定理的实际意义,理解了定理的本质,激发了学生学习的兴趣。并更好地为下一环节的自主探索、主动发展作好充分的准备。 2、突出数学应用价值,培养学生的应用意识和创新能力 《数学课程标准》中指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念,例题中涉及路程和速度,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的应用意识。

人教新课标版数学高二-2-2导学案 1.5 定积分概念第一课时

1.5 定积分概念第一课时 (结合配套课件、作业使用,效果更佳) 周;使用时间17 年月日;使用班级;姓名 【学习目标】 1.了解“以直代曲”、“以不变代变”的思想方法. 2.会求曲边梯形的面积和汽车行驶的路程. 重点:会求曲边梯形的面积和汽车行驶的路程. 难点:了解“以直代曲”、“以不变代变”的思想方法. 【检查预习】预习课本,完成导学案“自主学习”部分,准备上课回答. 【自主学习】 知识点一曲边梯形的面积 思考1如何计算下列两图形的面积? 思考2如图,为求由抛物线y=x2与直线x=1,y=0所围成的平面图形的面积S,图形与我们熟悉的“直边图形”有什么区别? 思考3能否将求曲边梯形的面积问题转化为求“直边图形”的面积问题?(归纳主要步骤) (2)求曲边梯形面积的方法 把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形,对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图②所示).

(3)求曲边梯形面积的步骤:①分割,②近似代替,③求和,④取极限. 知识点二 求变速直线运动的(位移)路程 如果物体做变速直线运动,速度函数为v =v (t ),那么也可以用 、 、 、 的方法,求出它在a ≤t ≤b 内所作的位移s . 【合作探究】 类型一 求曲边梯形的面积 例1 求由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形面积. 跟踪训练1 求由抛物线y =x 2与直线y =4所围成的曲边梯形的面积. 类型二 求变速运动的路程 例2 有一辆汽车在笔直的公路上变速行驶,在时刻t 的速度为v (t )=3t 2+2(单位:km/h), 那么该汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km)是多少? 跟踪训练2 一辆汽车在笔直的公路上变速行驶,设汽车在时刻t 的速度为v (t )=-t 2+5(t 的单位:h ,v 的单位:km/h),试计算这辆汽车在0≤t ≤2这段时间内汽车行驶的路程s (单 位:km). 【学生展示】探究点一 【教师点评】探究点二及【学生展示】出现的问题 【当堂检测】 1.把区间[1,3] n 等分,所得n 个小区间的长度均为( ) A.1n B.2n C.3n D.12n 2.函数f (x )=x 2在区间?? ??i -1n ,i n 上( ) A .f (x )的值变化很小 B .f (x )的值变化很大 C .f (x )的值不变化 D .当n 很大时,f (x )的值变化很小 3.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值等于( ) A .只能是左端点的函数值f (x i )

§1.7定积分的简单应用

定积分的简单应用 一:教学目标 知识与技能目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==? =??及,所以两曲线的交点为 (0,0)、(1,1),面积S=1 1 20 xdx x dx = -? ?,所以 ?1 2 0S =(x -x )dx 321 3 023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 2 x y =y x A B C D O

巩固练习 计算由曲线36y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x = 以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯 形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =-与曲线2y x =的交点的横坐标, 直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图1. 7一2 阴影部分的 面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 334 82822044 2222140||(4)|23 x x x =+-=. 由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的草图, 再借助图形直观确定出被积函数以及积分的上、下限. 例3.求曲线], [sin 320π∈=x x y 与直线,,3 20π==x x x 轴所围成的图形面积。

定积分教学设计

定积分的简单应用 一、教学目标 1、 知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、 过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、 情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 二、 教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题,正确计算。 三、教学过程 (一)创设问题情境: 复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 引入:.计算 dx x ? --2 2 2 4 2.计算 ?-22 sin π πdx x 思考:用定积分表示阴影部分面积 选择X 为积分变量,曲边梯形面积为 (二)研究开发新结论 1计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成图形的面积S. 2计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成的图形的面积S. 总结解题步骤:1找到图形----画图得到曲边形. 2曲边形面积解法----转化为曲边梯形,做出辅助线. dx x f dx x f s b a b a ??-=)()(21

3定积分表示曲边梯形面积----确定积分区间、被积函数. 4计算定积分. (三)巩固应用结论 例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积. 分析:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得 到。 解:2 01y x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、 (1,1),面积 S=1 20 x dx = -? ? ,所以 ?1 20S =x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象; 2.求交点; 3.用定积分表示所求的面积; 4.微积分基本定理求定积分。 巩固练习 计算由曲线36y x x =-和2y x =所围成的图形的面积. 例2.计算由直线4y x =- ,曲线y =x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =- 与曲线y =的横坐标,直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线y = 的草图,所求面积为图1. 7一2 阴影部分的面积. 解方程组4 y y x ?=?? =-?? 得直线4y x =-与曲线y =8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 28 4 4 [(4)]x dx = +--? ? ? -1

N0.14《定积分的概念》导学案

N0.14《定积分的概念》导学案 目标展示: 1、掌握求曲边梯形面积的步骤。 2、了解定积分的定义和几何意义。 课程导读(阅读教材P38—P49后完成下列问题) 化很大 C .f (x )的值不变化 D .当n 很大时,f (x )的值变化很小 2.在求由x =a ,x =b (a 当n →+∞时,无限趋近于一个常数A ,则A 可用定积分表示为 ( ) A .dx x ?101 B .dx x p ?10 C .dx x p ?1 0)1( D .dx n x p ?10)( 4.当n 很大时,函数f (x )=x 2在区间????i -1n ,i n 上的值能够用下列哪个值近似代替( ). A .f ????1n B .f ????2n C .f ??? ?i n D .f (0) 5.求由抛物线y =2x 2与直线x =0,x =t (t >0),y =0所围成的曲边梯形的面积时,将区间[0,t ]等分成n 个小区间,则第i -1个区间为( ) A.????i -1n ,i n B.????i n ,i +1n C.????t (i -1)n ,ti n D.????t (i -2)n ,t (i -1)n 6.由直线x =1,y =0,x =0和曲线y =x 3所围成的曲边梯形,将区间4等分,则曲边梯形 面积的近似值(取每个区间的右端点)是( ) A.119 B.111256 C.110270 D.2564 7.在等分区间的情况下,f (x )= 11+x 2(x ∈[0,2])及x 轴所围成的曲边梯形面积和式的极限形式准确的是( ) A.lim n →∞∑i =1n [1 1+????i n 2·2n ] B.lim n →∞∑i =1n [11+????2i n 2·2n ] C.lim n →∞∑i =1n ????11+i 2·1n D.lim n →∞∑i =1n [11+????i n 2·n ] 8.已知??13f (x )d x =56,则( ) A.??12f (x )d x =28 B.??2 3f (x )d x =28 C.??122f (x )d x =56 D.??12f (x )d x +??2 3f (x )d x =56 9.下列等式成立的是( ) A a b xdx b a -=? B. 5.0=?xdx b a

定积分的简单应用(6)

§1.7 定积分的简单应用(一) 一:教学目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 解:201y x x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、(1,1),面积 S=1 1 20 xdx x dx = -? ?,所以 ?1 20S =(x -x )dx 32 1 3023 3x x ??=-????=13 例2.计算由直线4y x =-,曲线2y x =以及x 轴所围图形的面积S. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图阴影部分的面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 33482822044 2222140||(4)|3323 x x x =+-=. 例3.求曲线],[sin 3 20π ∈=x x y 与直线,,3 20π ==x x x 轴所围成的图形面积。 答案: 2 33 2320 = -=? ππo x xdx S |cos sin = 练习 1、求直线32+=x y 与抛物线2x y =所围成的图形面积。 答案:3 32 33323132 23 1= -+=--? |))x x x dx x x S (-+(= 2、求由抛物线342-+-=x x y 及其在点M (0,-3) 2 x y =y x = A B C D O

2017年定积分导学案

1.5定积分的概念 (一) 一,学习任务 1.连续函数 2.曲边梯形的面积 (1)曲边梯形: (2)求曲边梯形面积的方法与步骤: ①分割: ②近似代替: ③求和: ④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积. 【例题1】求由直线x =1,y =0及曲线y =x 2所围成的图形的面积S . 思考1在求曲边梯形面积中第一步“分割”的目的是什么? 思考2求曲边梯形面积时,能否直接对整个曲边梯形进行“以直代曲”呢?怎样才能减小误差? 3.变速直线运动的路程 一般地,如果物体做变速直线运动,速度函数为v =v (t ),那么也可以采用分割、近似代替、求和、取极限的方法,求出它在a ≤t ≤b 内的位移s . 【例题2】一辆汽车做变速直线运动,设汽车在时刻t 的速度v (t )= - t 2+2 , 求汽车在t =0到t =1这段时间内运动的路程s . 二,巩固练习 1.和式)1(y 5 1i i ∑=+可表示为。。。。。。。。。。。。。。。。。。。。。。。。。。。( ) A .(y 1+1)+(y 5+1) B .y 1+y 2+y 3+y 4+y 5+1 C .y 1+y 2+y 3+y 4+y 5+5 D .(y 1+1)(y 2+1)…(y 5+1) 2.在求由x =a 、x =b (a

[a ,b ]上等间隔地插入n -1个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列说法中正确的个数是 ( ) ①n 个小曲边梯形的面积和等于S ; ②n 个小曲边梯形的面积和小于S ; ③n 个小曲边梯形的面积和大于S ; ④n 个小曲边梯形的面积和与S 之间的大小关系无法确定 A .1个 B .2个 C .3个 D .4个 3.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值等于。。。。。。。。。。。。( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1) C .可以是该区间内任一点的函数值f (ξi )(ξi ∈[x i ,x i +1]) D .以上答案均不正确 4.在求由函数y =1 x 与直线x =1、x =2、y =0所围成的平面图形的面积时,把区间[1,2]等分 成n 个小区间,则第i 个小区间为。。。。。。。。。。。。。。。。。。。。。。。。。。( ) A .[i -1n ,i n ] B .[n +i -1n ,n +i n ] C .[i -1,i ] D .[i n ,i +1n ] 5.曲线y =cos x (0≤x ≤2π)与y =1围成的面积是。。。。。。。。。。。。。。。。。( ) A .4π B .5π 2 C .3π D .2π 6.当n 很大时,函数f (x )=x 2在区间],1[n i n i (i =1,2,…,n )上的值可以用______近似代替 ( ) A.n i B .)(n f 1 C .)(n i f D .n 1 7.求直线x =0、x =2、y =0与曲线y =x 2所围成曲边梯形的面积. 学习报告(学生): 教学反思(教师):

高中数学选修2-2优质学案:§1.5 定积分的概念

[学习目标] 1.了解定积分的概念.2.理解定积分的几何意义.3.通过求曲边梯形面积的过程和解决有关汽车行驶路程问题的过程,了解“以直代曲”“以不变代变”的思想.4.能用定积分的定义求简单的定积分. 知识点一曲边梯形的面积和汽车行驶的路程 1.曲边梯形的面积 (1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线________所围成的图形称为曲边梯形(如图①所示). (2)求曲边梯形面积的方法 把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些________,对每个__________“以直代曲”,即用__________的面积近似代替__________的面积,得到每个小曲边梯形面积的________,对这些近似值______,就得到曲边梯形面积的________(如图②所示). (3)求曲边梯形面积的步骤:①________,②________,③________,④________. 2.求变速直线运动的(位移)路程 如果物体做变速直线运动,速度函数v=v(t),那么也可以采用________,________,________,________的方法,求出它在a≤t≤b内所作的位移s. 思考(1)如何计算下列两图形的面积?

(2)求曲边梯形面积时,对曲边梯形进行“以直代曲”,怎样才能尽量减小求得的曲边梯形面积的误差? 知识点二 定积分的概念 如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

人教A版选修2-2 1.5.3 定积分的概念 学案 (1)

1.5.3 定积分的概念 预习课本P45~47,思考并完成下列问题 (1)定积分的概念是什么?几何意义又是什么? (2)定积分的计算有哪些性质? [新知初探] 1.定积分的概念与几何意义 (1)定积分的概念:一般地,设函数f (x )在区间[a ,b ]上连续,用分点a =x 0

中的阴影部分的面积). [点睛] 利用定积分的几何意义求定积分的关注点. (1)当f (x )≥0时,??a b f (x )d x 等于由直线x =a ,x =b ,y =0与曲线y =f (x )围成曲边梯形的面积,这是定积分的几何意义. (2)计算??a b f (x )d x 时,先明确积分区间[a ,b ],从而确定曲边梯形的三条直边x =a ,x =b ,y =0,再明确被积函数f (x ),从而确定曲边梯形的曲边,这样就可以通过求曲边梯形的面积S 而得到定积分的值: 当f (x )≥0时,??a b f (x )d x =S ;当f (x )<0时, ??a b f (x )d x =-S . 2.定积分的性质 (1)??a b kf (x )d x =k ??a b f (x )d x (k 为常数). (2)??a b [f 1(x )±f 2(x )]d x =??a b f 1(x )d x ±??a b f 2(x )d x . (3)??a b f (x )d x =??a c f (x )d x +??c b f (x )d x (其中a

定积分的简单应用

定积分的简单应用 海口实验中学陈晓玲 一、教材分析 “定积分的简单应用”是人教A版《普通高中课程标准实验教科书数学》选修2-2第一章1.7的内容。从题目中可以看出,这一节教学的要求就是让学生在充分认识导数与积分的概念,计算,几何意义的基础上,掌握用积分手段解决实际问题的基本思想和方法,在学习过程中了解导数与积分的工具性作用,从而进一步认识到数学知识的实用价值以及数学在实际应用中的强大生命力。在整个高中数学体系中,这部分内容也是学生在高等学校进一步学习数学的基础。 二、教学目标(以教材为背景,根据课标要求,设计了本节课的教学目标) 1、知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 三、教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题。 四、教学用具:多媒体 五、教学设计

教学环节教学设计师生 互动 设计意图 一、 创设情境 引出新课1、生活实例: 实例1:国家大剧院的主题构造 类似半球的构造,如何计算建造时中间玻璃段的使用面积? 边缘的玻璃形状属于曲边梯形,要计算使用面积可以通过计算 曲边梯形的面积实现。 实例2:一辆做变速直线运动的汽车,我们如何计算它行驶的 路程? 2、复习回顾: 如何计算曲边梯形的面积? 3、引入课题: 定积分的简单应用 学生:观 察。 教师:启 发,引导 学生:思 考,回 忆。 学生:疑 惑,思 考,感 受。 教师:启 发,引 导。 学生:复 习,回忆 老师:引 入课题 数学源于生活,又服 务于生活。 通过对国家大剧院的 观察,创设问题情境,体 验数学在现实生活中的 无处不在,激发学生的学 习热情,引导他们积极主 动的参与到学习中来。 启发学生把物理问题 与数学知识联系起来,训 练学生对学科间的思维 转换和综合思维能力。 学生感受定积分的工 具性作用与应用价值。 在生活实例的启发 下,引导学生把所学知识 与实际问题联系起来,回 忆如何计算曲边梯形面 积。 这是这节课的知识基 础。 引入本节课的课题。 哎呀,里程表坏了,你 能帮我算算我走了多 少路程吗? x y o y f(x) = a b A ?=b a dx x f A) (

§1.5.3定积分的概念教案

1.5.3定积分的概念 教学目标 能用定积分的定义求简单的定积分; 理解掌握定积分的几何意义; 重点 定积分的概念、定积分法求简单的定积分、 定积分的几何意义 难点 定积分的概念、定积分的几何意义 复习: 1. 回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法,解决步骤 2.对这四个步骤再以分析、理解、归纳,找出共同点. 新课讲授 1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<= 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?=), 在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ= ,作和式: 1 1 ()()n n n i i i i b a S f x f n ξξ==-= ?= ∑ ∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数 S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为: ()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分()b a f x dx ?是一个常数,即n S 无限趋近的常数S

(n →+∞时)称为()b a f x dx ? ,而不是n S . (2)用定义求定积分的一般方法是: ①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈; ③求和:1()n i i b a f n ξ=-∑ ; ④取极限:() 1 ()lim n b i a n i b a f x dx f n ξ→∞ =-=∑ ? (3)曲边图形面积:()b a S f x dx =?;变速运动路程2 1 ()t t S v t dt =?; 变力做功 ()b a W F r dr = ? 2.定积分的几何意义 如果在区间[,]a b 上函数连 续且恒有 ()0 f x ≥,那么定积分 ()b a f x dx ? 表示由直线,x a x b ==(a b ≠),0y =和曲线() y f x = 所围成的 曲边梯形的面积。 例1.计算定积分2 1 (1)x dx +? 分析:所求定积分即为如图阴影部分面积,面积为5 2 。 即:2 1 5(1)2 x dx += ? 思考:若改为计算定积分 22 (1)x dx -+? 呢? 改变了积分上、下限,被积函数在 [2,2]-上出现了负值如何解决呢? (后面解决的问题) 练习 计算下列定积分 1.50(24)x dx -? 解:5 0(24)945x dx -=-=? 2.1 1x dx -? 解:11 111111122 x dx -= ??+ ??=?

2017-2018学年高中数学北师大版选修2-2同步配套教学案:第四章 章末小结 知识整合与阶段检测

[对应学生用书P44] 一、定积分 1.定积分的概念: ??a b f (x )d x 叫函数f (x )在区间[a ,b ]上的定积分. 2.定积分的几何意义: 当f (x )≥0时,??a b f (x )d x 表示的是 y =f (x )与直线x =a ,x =b 和x 轴所围成的曲边梯形的面积. 3.定积分的性质: (1)∫b a 1d x =b -a . (2)??a b kf (x )d x =k ??a b f (x )d x . (3)??a b [f (x )±g (x )]d x =??a b f (x )d x ±??a b g (x )d x . (4)??a b f (x )d x =??a c f (x )d x +??c b f (x )d x . 定积分的几何意义和性质相结合求定积分是常见类型,多用于被积函数的原函数不易求,且被积函数是熟知的图形. 二、微积分基本定理 1.如果连续函数f (x )是函数F (x )的导函数,即f (x )=F ′(x ),则??a b f (x )d x =F (x )| b a =F (b )-F (a ). 2.利用微积分基本定理求定积分,其关键是找出被积函数的一个原函数.求一个函数的原函数与求一个函数的导数是互逆运算,因此,应熟练掌握一些常见函数的导数公式. 三、定积分的简单应用 定积分的应用在于求平面图形的面积及简单旋转几何体的体积,解题步骤为: ①画出图形.②确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限.③确定被积函数.④写出平面图形面积或旋转体体积的定积分表达式.⑤运用微积分基本定理计算定积分,求出平面图形的面积或旋转几何体的体积.

知识讲解_定积分的简单应用(基础)

定积分的简单应用 【学习目标】 1.会用定积分求平面图形的面积。 2.会用定积分求变速直线运动的路程 3.会用定积分求变力作功问题。 【要点梳理】 要点一、应用定积分求曲边梯形的面积 1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x =(()0f x ≥)围成的曲边梯形的面积: ()[()()]b b a a S f x dx f x g x dx ==-?? 2.如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线 ()y f x =(0)(≤x f )围成的曲边梯形的面积: ()()[()()]b b b a a a S f x dx f x dx g x f x dx = =-=-? ?? 3.由三条直线,(),x a x b a c b x ==<<轴及一条曲线()y f x =(不妨设在区间[,]a c 上 ()0f x ≤,在区间[,]c b 上()0f x ≥)围成的图形的面积: ()c a S f x dx = + ? ()b c f x dx ? =()c a f x dx -?+()b c f x dx ?. 4. 如图,由曲线11()y f x =22()y f x =12()()f x f x ≥及直线x a =,x b =()a b <围

成图形的面积: 1212[()()]()()b b b a a a S f x f x dx f x dx f x dx =-=-??? 要点诠释: 研究定积分在平面几何中的应用,其实质就是全面理解定积分的几何意义: ① 当平面图形的曲边在x 轴上方时,容易转化为定积分求其面积; ② 当平面图形的一部分在x 轴下方时,其在x 轴下的部分对应的定积分为负值,应取其相反数(或绝对值); 要点二、求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形; (2)确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数的上、下位置; (4)写出平面图形面积的定积分表达式; (5)运用微积分基本定理计算定积分,求出平面图形的面积。 要点三、定积分在物理中的应用 ① 速直线运动的路程 作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间 [,]a b 上的定积分,即()b a S v t dt =?. ②变力作功 物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W = ()b a F x dx ? . 要点诠释: 1. 利用定积分解决运动路程问题,分清运动过程中的变化情 况是解决问题的关键。应注意的是加速度的定积分是速度,速度的定积分是路程。 2. 求变力作功问题,要注意找准积分变量与积分区间。 【典型例题】 类型一、求平面图形的面积 【高清课堂:定积分的简单应用 385155 例1】 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【思路点拨】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。

相关主题
文本预览
相关文档 最新文档