当前位置:文档之家› 食品技术发展的简史

食品技术发展的简史

食品技术发展的简史
食品技术发展的简史

食品加工技术的简史

食品加工起源于社会成员明火加热或者煮熟肉类、根茎和植株,使之适于食用。但是,当时的食物没有任何形式和程度的保藏。进入农耕社会,食物开始需要储存和保藏。公元前3000-1500年,埃及人发现了某些加工食物的方法,如干藏鱼类和禽类,酿造酒类,磨面烘焙面包等。中东的游牧民族应用这些方法并有所发展,保藏食品,预防饥荒,改进膳食质量并使之多样化。公元前1500年在世界各地种植了甜菜以外的今天食用的主要作物。

在其后的几千年中,尽管存在气候、作物和食品嗜好的差异,许多地方分别发展了相似的食品加工方法。在中国出现了豆腐和军用给养的炒米和肉干。日本有了米酒、盐、调味的大豆酱油和豆酱。在欧洲,罗马出现了第一台水磨和最早的商业烘焙作坊。

第二个千年之初,欧洲迅速发展的贸易和连绵不断的战争促进了食品加工技术的交流,例如,1148年第二次十字军东征把糖从中东带到英国;马可波罗从中国带回面条;葡萄牙人从东印度群岛带回丁香,学会了保存腌菜和沙司,鉴别腐败的肉;西班牙征服者发现秘鲁人生吃天然干燥的鸭子、兔子和骆驼。他们还带回许多在欧洲从来没有见过的食物如鳄梨、木瓜、马铃薯、番茄和可可等。同期,葡萄人从拉丁美洲和印度引入了辣椒。

随着社会的进化,食品加工技术出现了专业化分工,如磨面作坊、干酪制造作坊、酿造作坊和蒸馏酒作坊等。原料和加工方法小有改变,就形成了多个干酪、啤酒、葡萄酒和面包的地域性品种。许多加工业成为今日食品工业的前驱,有些食品迄今已经生产了800年之久。在这个阶段,水力和畜力驱动的机械设备缩短了生产时间,减少了人力需求,例如在英国一地就有6000个水力磨坊,每个可以满足400个居民的需求。

在温带地区,应用干制、腌制、烟熏等技术保藏肉类和蔬菜;酿造醋用来保藏蔬菜和肉类;煮制蔬菜和水果,减少水分,制作果酱和酸辣酱。罗马人用冰冷藏水果和蔬菜,随后英国Francis Bacon提出了在鸡膛里填雪进行冷藏的构思。城镇和城市的增加和扩展,促使食品保藏技术的发展,延长了食品的存储寿命,保证食品从乡村地区运输到城市,满足城市居民的需求。1600年——1700年的奴隶贸易改变了食品供应、饮食习惯、农业和商业。奴隶运输船从巴西返回时,把玉米、木薯、红薯、花生和豆类带回非洲,成为必需的食品。1725年,可可从西非传到欧洲,英国建立了第一家巧克力工厂。同期,美国60多家蒸馏酒厂使用奴隶商人提供的糖蜜酿造朗姆酒。朗姆酒反过来给奴隶商人提供了从非洲购买奴隶的资金,这些奴隶被卖到西印度群岛的甘蔗种植园。鳕鱼腌制和奴隶贸易在英国、美国、非洲、加勒比和拉丁美洲之间也存在类似的循环。

食品加工的规模由于18世纪的工业革命而迅速扩大,但是食品加工仍然依靠技艺和经验在家族内部的世代相传。缺少科学的支撑。1700年,氯净化水,柠檬酸调味和保藏食品成为最早的科学发现。同期,法国开发了全新的食品加工过程。拿破仑悬赏12000法郎,为陆军和海军开发长期保存的食品。巴黎的酿酒商和腌菜商,尼古拉·阿尔伯特使用瓦罐包装煮熟肉类和蔬菜,软木塞和火漆给容器封口,1804年他开办了第一个真空包装,杀菌的罐头工厂,1809年他赢得了拿破仑的奖赏。

19世纪,科学研究的步伐加快。俄国化学家Gottlieb Kirchhoff发明了淀粉水解葡萄糖的过程。荷兰化学家创造了“蛋白质”的术语。罐藏和冷藏的技术以不曾想象的速度发展。1810年英国第一个获得了镀锡薄板罐的专利权,1849年美国设计制造了制罐机,两个普通工人使用机器每天可以制造1500个空罐,而以前两个熟练技术工人每天只能制造120个空罐。1861年,巴尔的摩的罐头制造者在使用氯化钙把杀菌水温提高到121℃,把加热时间从6小时缩短到30分钟。1874年发明了蒸汽压力杀菌釜,促进罐头工业迅速扩展。1858年法国发明第一台液氨制冷机,1873年瑞典开发了第一台制冷压缩机。法国化学家和微生物学家路易斯.巴斯德在1862年开发了巴氏杀菌以的过程。在19世纪末,科学发现已经改变了小规模技艺型食品加工业的面貌。进入20世纪,建立了我们今天所知道的食品工业。1929年,Lever Brothers和Margine Union合并,成立了世界第一家跨国食品公司。

20世纪食品加工取得了全面的技术进展,例如1901年发明了速溶咖啡,1903年氢化油获得第一个专利权。1908年法国颁发了透明“塞路玢”的第一个专利。同年,从海藻中分离了增味剂——谷氨酸钠。1923年,用玉米生产的葡萄糖广泛用于焙烤制品、饮料和糖果的生产。

电力的推广使食品工业发生了革命性的变化,推动制造新的专业化的机器。例如,Hobart 公司开发了第一台电动面团混合机、电动食品切割机和马铃薯去皮机。此时,食品加工业供应必需品,如干燥食品、糖和烹调油等以及需要在家庭和餐饮单位的厨房再调理加工的食品,如罐藏肉和蔬菜。第一次世界大战推动了这些食品进入军需膳食。不久出现美味食品市场,如热带水果罐头、糖果和冰淇淋。第二次世界大战后,开发了范围广泛的即时正餐、休闲食品和方便食品,军需给养在一定程度上刺激民用食品的开发。从上世纪50年代起,大学开始建立食品科学与技术专业,各地成立了食品技术研究所,研究食品工艺、产品和包装,每年开发出数千个新产品。

注:本文译自Food Processing Technology Principles and Practice的引言,读来对于食品加工的历史可以略知一二,原书作者记载某些史实有误,特别是对于我国古代对于食品加工的贡献,记录有失客观和公允。

数据库技术的发展史

数据库技术的发展史 数据库技术的发展,已经成为先进信息技术的重要组成部分,是现代计算机信息系统和计算机应用系统的基础和核心。数据库技术最初产生于20世纪60年代中期,到今天近几十年的历史,其发展速度之快,使用X围之广是其它技术所远不及的。 先介绍一下数据模型的概念:数据模型是数据库系统的核心和基础。数据模型的发展经历了格式化数据模型(包括层状数据模型和网状数据模型)、关系数据模型两个阶段,正在走向面向对象的数据模型等非传统数据模型的阶段。 层状数据模型每个节点间是一对多的父子之间的联系,比如一个父亲三个儿子;中心下的几个部门,部门里的人。网状数据模型中允许任意两个节点间有多种联系,层次模型实际上是网状模型的一个特例;如同学生选课,一个学生可以选修多门课程,某一课程也可被多名学生选修。关系数据模型,职工,比如我(编号,XX,性别,所属部门,籍贯),我和马薇,X晖,陈曙光等就组成了一X关系模型的数据表。 根据数据模型的发展,数据库技术可以相应地划分为三个阶段:第一代的网状、层次数据库系统;第二代的关系数据库系统;第三代的以面向对象模型为主要特征的数据库系统。

第一代数据库的代表是1969年IBM公司研制的层次模型的数据库管理系统IMS和70年代美国数据库系统语言协商CODASYL下属数据库任务组DBTG提议的网状模型。层次数据库的数据模型是有根的定向有序树,网状模型对应的是有向图。这两种数据库奠定了现代数据库发展的基础。这两种数据库具有如下共同点: 1.支持三级模式(外模式、模式、内模式),模式之间具有转换(或成为映射)功能,保证了数据库系统具有数据与程序的物理独立性和一定的逻辑独立性; 2.用存取路径来表示数据之间的联系; 3.有独立的数据定义语言; 4.导航式的数据操纵语言。 网状数据库 最早出现的是网状DBMS。网状模型中以记录为数据的存储单位。记录包含若干数据项。网状数据库的数据项可以是多值的和复合的数据。每个记录有一个惟一地标识它的内部标识符,称为码(DatabaseKey,DBK),它在一个记录存入数据库时由DBMS自动赋予。DBK可以看作记录的逻辑地址,可作记录的替身,或用于寻找记录。网状数据库是导航式(Navigation)数据库,用户在操作数据库时不但说明要做什么,还要说明怎么做。例如在查找语句中不但要说明查找的对象,而且要规定存取路径。

电子技术发展史概述-首次

电子技术发展史概述 电子技术是十九世纪末、二十世纪初发展起来的新兴技术。由于物理学的重大突破,电子技术在二十世纪发展最为迅速,应用最为广泛,成为近代科学技术发展的一个重要标志。 从20世纪60年代开始,电子器件出现了飞速的发展,而且随着微电子和半导体制造工艺的进步,集成度不断提高。CPLD/FPGA、ARM、DSP、A/D、D/A、RAM和ROM等器件之间的物理和功能界限正日趋模糊,嵌入式系统和片上系统(SOC)得已实现。以大规模可编程集成电路为物质基础的EDA技术打破了软硬件之间的设计界限,使硬件系统软件化。这已成为现代电子设计的发展趋势。 现在,人们已经掌握了大量的电子技术方面的知识,而且电子技术还在不断的发展着。这些知识是人们长期劳动的结晶。 我国很早就已经发现电和磁的现象,在古籍中曾有“磁石召铁”和“琥珀拾芥”的记载。磁石首先应用于指示方向和校正时间,在《韩非子》和东汉王充著《论衡》两书中提到的“司南”就是指此。以后由于航海事业发展的需要,我国在十一世纪就发明了指南针。在宋代沈括所著的《梦溪笔谈》中有“方家以磁石磨针锋,则能指南,然常微偏东,不全南也”的记载。这不仅说明了指南针的制造,而且已经发现了磁偏角。直到十二世纪,指南针才由阿拉伯人传入欧洲。 在十八世纪末和十九世纪初的这个时期,由于生产发展的需要,在电磁现象方面的研究工作发展的很快。库仑在 1785 年首先从实验室确定了电荷间的相互作用力,电荷的概念开始有了定量的意义。

1820 年,奥斯特从实验时发现了电流对磁针有力的作用,揭开了电学理论的新的一页。同年,安培确定了通有电流的线圈的作用与磁铁相似,这就指出了此现象的本质问题。有名的欧姆定律是欧姆在 1826 年通过实验而得出的。法拉第对电磁现象的研究有特殊贡献,他在1831 年发现的电磁感应现象是以后电子技术的重要理论基础。在电磁现象的理论与使用问题的研究上,楞次发挥了巨大的作用,他在1833 年建立确定感应电流方向的定则(楞次定则)。其后,他致力于电机理论的研究,并阐明了电机可逆性的原理。楞次在 1844 年还与英国物理学家焦耳分别独立的确定了电流热效应定律(焦耳 - 楞次定律)。与楞次一道从事电磁现象研究工作的雅可比在 1834 年制造出世界上第一台电动机,从而证明了实际应用电能的可能性。电机工程得以飞跃的发展是与多里沃 - 多勃罗沃尔斯基的工作分不开的。这位杰出的俄罗斯工程师是三相系统的创始者,他发明和制造出三相异步电机和三相变压器,并首先采用了三相输电线。在法拉第的研究工作基础上,麦克斯韦在 1864 年至 1873 年提出了电磁波理论。他从理论上推测到电磁波的存在,为无线电技术的发展奠定了理论基础。1888 年,赫兹通过实验获得电磁波,证实了麦克斯韦的理论。但实际利用电磁波为人类服务的还应归功于马克尼和波波夫。大约在赫兹实验成功七年之后,他们彼此独立的分别在意大利和俄国进行通信试验,为无线电技术的发展开辟了道路。 人类在自然界斗争的过程中,不断总结和丰富着自己的知识。电子科学技术就是在生产斗争和科学实验中发展起来的。 1883 年美国发明

电子技术发展史概述-首次

电子技术发展史概述电子技术是十九世纪末、二十世纪初发展起来的新兴技术。由于物理学的重大突破,电子技术在二十世纪发展最为迅速,应用最为广泛,成为近代科学技术发展的一个重要标志。 从20世纪60年代开始,电子器件出现了飞速的发展,而且随着微电子和半导体制造工艺的进步,集成度不断提高。CPLD/FPGA、ARM、DSP、A/D、D/A、RAM和ROM等器件之间的物理和功能界限正日趋模糊,嵌入式系统和片上系统(SOC)得已实现。以大规模可编程集成电路为物质基础的EDA技术打破了软硬件之间的设计界限,使硬件系统软件化。这已成为现代电子设计的发展趋势。 现在,人们已经掌握了大量的电子技术方面的知识,而且电子技术还在不断的发展着。这些知识是人们长期劳动的结晶。 我国很早就已经发现电和磁的现象,在古籍中曾有“磁石召铁”和“琥珀拾芥”的记载。磁石首先应用于指示方向和校正时间,在《韩非子》和东汉王充着《论衡》两书中提到的“司南”就是指此。以后由于航海事业发展的需要,我国在十一世纪就发明了指南针。在宋代沈括所着的《梦溪笔谈》中有“方家以磁石磨针锋,则能指南,然常微偏东,不全南也”的记载。这不仅说明了指南针的制造,而且已经发现了磁偏角。直到十二世纪,指南针才由阿拉伯人传入欧洲。 在十八世纪末和十九世纪初的这个时期,由于生产发展的需要,在电磁现象方面的研究工作发展的很快。库仑在1785年首先从实验室确定了电荷间的相互作用力,电荷的概念开始有了定量的意义。1820年,奥斯特从实验时发现了电流对磁针有力的作用,揭开了电学理论的新的一页。同年,安培确定了通有电流的线圈的作用与磁铁相似,这就指出了此现象的本质问题。有名的欧姆定律是欧姆在1826年通过实验而得出的。法拉第对电磁现象的研究有特殊贡献,他在1831年发现的电磁感应现

电子技术发展历程

电子技术发展历程 术是十九世纪末、二十世纪初开始发展起来的新兴技术,二十世纪发展最迅速,应用最广泛,成为近代科学技术发展的一个重要标志。 一代电子产品以电子管为核心。四十年代末世界上诞生了第一只半导体三极管,它以小巧、轻便、省电、寿命长等特点,很快地被各国应用起来,在很大范围内取代了电子管。五十年代末期,世界上出现了第一块集成电路,它把许多晶体管等电子元件集成在一块硅芯片上,使电子产品向更小型化发展。集成电路从小规模集成电路迅速发展到大规模集成电路和超大规模集成电路,从而使电子产品向着高效能低消耗、高精度、高稳定、智能化的方向发展。由于,电子计算机发展经历的四个阶段恰好能够充分说明电子技术发展的四个阶段的特性,所以下面就从电子计算机发展的四个时代来说明电子技术发展的四个阶段的特点。 世界上第一台电子计算机于1946年在美国研制成功,取名ENIAC (Electronic Numerical Integrator and Calculator)。这台计算机使用了18800个电子管,占地170平方米,重达30吨,耗电140千瓦,价格40多万美元,是一个昂贵耗电的"庞然大物"。由于它采用了电子线路来执行算术运算、逻辑运算和存储信息,从而就大大提高了运算速度。ENIAC每秒可进行5000次加法和减法运算,把计算一条弹道的时间短为30秒。它最初被专门用于弹道运算,后来经过多次改进而成为能进行各种科学计算的通用电子计算机。从1946年2月交付使用,到1955年10月最后切断电源,ENIAC服役长达9年。尽管ENIAC还有许多弱点,但是在人类计算工具发展史上,它仍然是一座不朽的里程碑。它的成功,开辟了提高运算速度的极其广阔的可能性。它的问世,表明电子计算机时代的到来。从此,电子计算机在解放人类智力的道路上,突飞猛进的发展。电子计算机在人类社会所起的作用,与第一次工业革命中蒸汽机相比,是有过之而无不及的。ENIAC问世以来的短短的四十多年中,电子计算机的发展异常迅速。迄今为止,它的发展大致已经了下列四代: 第一代(1946~1957年)是电子计算机,它的基本电子元件是电子管,内存储器采用水银延迟线,外存储器主要采用磁鼓、纸带、卡片、磁带等。由于当时电子技术的限制,运算速度只是每秒几千次~几万次基本运算,内存容量仅几千个字。程序语言处于最低阶段,主要使用二进制表示的机器语言编程,后阶段采用汇编语言进行程序设计。因此,第一代计算机体积大,耗电多,速度低,造价高,使用不便;主要局限于一些军事和科研部门进行科学计算。 第二代(1958~1970年)是晶体管计算机。1948年,美国贝尔实验室发明了晶体管,10年后晶体管取代了计算机中的电子管,诞生了晶体管计算机。晶体管计算机的基本电子元件是晶体管,内存储器大量使用磁性材料制成的磁芯存储器。与第一代电子管计算机相比,晶体管计算机体积小,耗电少,成本低,逻辑功能强,使用方便,可靠性高。 第三代(1963~1970年)是集成电路计算机。随着半导体技术的发展,1958年夏,美国德克萨斯公司制成了第一个半导体集成电路。集成电路是在几平方毫米的基片,集中了几十个或上百个电子元件组成的逻辑电路。第三代集成电路计算机的基本电子元件是小规模集成电路和中规模集成电路,磁芯存储器进一步发展,并开始采用性能更好的半导体存储器,运算速度提高到每秒几十万次基本运算。由于采用了集成电路,第三代计算机各方面性能都有了极大提高:体积缩小,价格降低,功能增强,可靠性大大提高。 第四代(1971年~日前)是大规模集成电路计算机。随着集成了上千甚至上万个电子元件的大规模集成电路和超大规模集成电路的出现,电子计算机发展进入了第四代。第四代计算机的基本元件是大规模集成电路,甚至超大规模集成电路,集成度很高的半导体存储器替代了磁芯存储器,运算速度可达每秒几百万次甚至上亿次基本运算。 (一)电子管(1883年到1904年电子管问世)

生物发展史(与高中课本配套)(免费)之欧阳数创编

生物科学发展史 生物科学发展史既包括科学家对生命现象的研究过程,又包括科学家研究生命现象时所持有的不同观点和态度;既包括生物学理论和方法的形成演变,又包括不同学科之间的联系、科学与社会的相互影响。在近几年的高考题中有关生物科学发展史中的一些实验设计思路、研究方法时有出现。预计今年高考理科综合中的最后2个生物大题有可能以生物科学发展史有背景出题。现就现行高中生物教材中有关生物科学发展的问题进行一次专题小节。 一、生物科学发展的三个阶段 1.描述性生物学阶段:20世纪以前 2.实验生物学阶段:1900年孟德尔遗传规律的重新发现——1953年 3.分子生物学阶段:1953年DNA分子双螺

旋结构模型的建立———— 二、生物科学研究的方法 1.观察法:生物科学研究最基本的方 法,也是从客观世界获得原始 的第一手材料的方法。观察包 括人的肉眼观察及放大镜、显 微镜观察。观察结果必须是可 以重复的。只有重复的结果才 是可检验的,从而才是可靠的 结果。 3.假说和实验:在观察中往往会发现问 题,为了要解释或解决这些问 题,一般是先是提出某种设想或 假说,然后设计实验来验证这个 设想或假设。 4.模型研究:常用的生物学模型有以下几种: ①生物模型:又叫模式生物,如大肠杆

菌、果蝇、小鼠等 ②机械和电子模型:如DNA双螺旋结构、 仿生学、人工智能等 ③抽象模型:如生态学、种群遗传学中的 数学方程等 三、高中教材中提到的有关生物科学发展史问题 必修本第一册 1.细胞学说:19世纪30年代,德国植物 学家施莱登和动物学家施旺提 出。指出细胞是一切动植物结构 的基本单位。(P3) 2.染色质:染色质这个名词最早是德国生 物学家瓦尔德尔提出来的,主要 是指细胞核内容易被碱性染料染 成深色的物质,因此叫做染色 质。(P32)

电子技术发展历程

电子技术发展历程 Prepared on 22 November 2020

电子技术发展历程术是十九世纪末、二十世纪初开始发展起来的新兴技术,二十世纪发展最迅速,应用最广泛,成为近代科学技术发展的一个重要标志。 一代电子产品以电子管为核心。四十年代末世界上诞生了第一只半导体三极管,它以小巧、轻便、省电、寿命长等特点,很快地被各国应用起来,在很大范围内取代了电子管。五十年代末期,世界上出现了第一块集成电路,它把许多晶体管等电子元件集成在一块硅芯片上,使电子产品向更小型化发展。集成电路从小规模集成电路迅速发展到大规模集成电路和超大规模集成电路,从而使电子产品向着高效能低消耗、高精度、高稳定、智能化的方向发展。 由于,电子计算机发展经历的四个阶段恰好能够充分说明电子技术发展的四个阶段的特性,所以下面就从电子计算机发展的四个时代来说明电子技术发展的四个阶段的特点。 世界上第一台电子计算机于1946年在美国研制成功,取名ENIAC (Electronic Numerical Integrator and Calculator)。这台计算机使用了18800个电子管,占地170平方米,重达30吨,耗电140千瓦,价格40多万美元,是一个昂贵耗电的"庞然大物"。由于它采用了电子线路来执行算术运算、逻辑运算和存储信息,从而就大大提高了运算速度。ENIAC每秒可进行5000次加法和减法运算,把计算一条弹道的时间短为30秒。它最初被专门用于弹道运算,后来经过多次改进而成为能进行各种科学计算的通用电子计算机。从1946年2月交付使用,到1955年10月最后切断电源,ENIAC服役长达9年。尽管ENIAC还有许多弱点,但是在人类计算工具发展史上,它仍然是一座不朽的里程碑。它的成功,开辟了提高运算速度的极其广阔的可能性。

生物化学发展简史

现代生物化学始于18、19世纪: 1828年,德国化学家弗里德里希·维勒从无机化合物氰化铵合成有机化合物尿素 1833年,法国化学家安塞姆·佩恩发现第一个酶——淀粉酶 1869年,瑞典生物学家弗雷德里希·米歇尔发现遗传物质——核素 1877年,霍佩-赛勒首次提出名词Biochemie,即英语中的Biochemistry 20世纪生物化学快速发展: 1902年,英国生理学家欧内斯特. 斯塔林首次提出“hormone”来表示激素 1912年,英国科学家霍普金斯发现食物辅助因子——维生素 1926年,德国科学家奥图·瓦伯格发现呼吸作用关键酶——细胞色素氧化酶 1926年,美国科学家J.B.萨姆纳(美国)首次分离提纯了脲酶 1902年,英国生理学家欧内斯特. 斯塔林首次提出“hormone”来表示激素 1912年,英国科学家霍普金斯发现食物辅助因子——维生素 1926年,德国科学家奥图·瓦伯格发现呼吸作用关键酶——细胞色素氧化酶 1926年,美国科学家J.B.萨姆纳(美国)首次分离提纯了脲酶 1902年,英国生理学家欧内斯特. 斯塔林首次提出“hormone”来表示激素 1912年,英国科学家霍普金斯发现食物辅助因子——维生素 1926年,德国科学家奥图·瓦伯格发现呼吸作用关键酶——细胞色素氧化酶 1926年,美国科学家J.B.萨姆纳(美国)首次分离提纯了脲酶 1940年代,糖酵解、三羧酸循环、氧化磷酸化等重要生理生化途径被陆续阐明 20世纪50年代后生物化学标志性成就: 1953年,Watson和Crick提出DNA双螺旋结构模型 1958年,Crick提出“中心法则”;Sanger测定胰岛素分子结构 1960年代,Arber等发现限制性内切酶 1961年,Jacob和Monod提出“操纵子学说” 1966年,Nirenberg和Khorana破译遗传密码 1970年代,Termin和Baltimore发现反转录酶;Berg等成功进行了DNA体外重组;Coben 建立分子克隆体系 1980年,Sanger 确定DNA序列测定方法 1985年,Mulis建立聚合酶链式反应(PCR)技术 1995年,Fire和Mello阐明RNA干扰(RNAi)机制 1997年,第一只克隆羊诞生 2000年,人类基因组计划完成 我国科学家对生物化学的贡献 1930年代,吴宪教授首次提出蛋白变性理论、血液生化 1965年,中科院生化所与有机化学所人工合成有功能的蛋白质--牛胰岛素 1973年,X-射线分析出猪胰岛素空间结构 1983年,酵母丙氨酸转移核糖核酸的人工全合成( tRNAAla ) 2002年,水稻基因组

几种数据库类型说明及发展历史

几种数据库类型说明及发展历史 1.IBM 的DB2 作为关系数据库领域的开拓者和领航人,IBM在1977年完成了System R 系统的原型,1980年开始提供集成的数据库服务器—— System/38,随后是SQL/DSforVSE和VM,其初始版本与SystemR研究原型 密切相关。DB2 forMVSV1 在1983年推出。该版本的目标是提供这一新方案所承诺的简单性,数据不相关性和用户生产率。1988年DB2 for MVS 提供了强大的在线事务处理(OLTP)支持,1989 年和1993 年分别以远程 工作单元和分布式工作单元实现了分布式数据库支持。最近推出的DB2 Universal Database 6.1则是通用数据库的典范,是第一个具备网上功能的多媒体关系数据库管理系统,支持包括Linux在内的一系列平台。 2.Oracle Oracle 前身叫SDL,由Larry Ellison 和另两个编程人员在1977创办,他们开发了自己的拳头产品,在市场上大量销售,1979 年,Oracle公司引入了第一个商用SQL 关系数据库管理系统。Oracle公司是最早开发 关系数据库的厂商之一,其产品支持最广泛的操作系统平台。目前Oracle 关系数据库产品的市场占有率名列前茅。 https://www.doczj.com/doc/9117688863.html,rmix Informix在1980年成立,目的是为Unix等开放操作系统提供专业的关系型数据库产品。公司的名称Informix便是取自Information 和Unix的结合。Informix第一个真正支持SQL语言的关系数据库产品是Informix SE (StandardEngine)。InformixSE是在当时的微机Unix环境下主要的数据库产品。它也是第一个被移植到Linux上的商业数据库产品。 4.Sybase Sybase公司成立于1984年,公司名称“Sybase”取自“system”和“database”相结合的含义。Sybase公司的创始人之一Bob Epstein 是Ingres 大学版(与System/R同时期的关系数据库模型产品)的主要设计人员。公司的第一个关系数据库产品是1987年5月推出的Sybase SQLServer1.0。Sybase首先提

电子技术发展简史

电子技术发展简史 现在,人们已经掌握了大量的电子技术方面的知识,而且电子技术还在不断的发展着。这些知识是人们长期劳动的结晶。 我国很早就已经发现电和磁的现象,在古籍中曾有“磁石召铁”和“琥珀拾芥”的记载。磁石首先应用于指示方向和校正时间,在《韩非子》和东汉王充著《论衡》两书中提到的“司南”就是指此。以后由于航海事业发展的需要,我国在十一世纪就发明了指南针。在宋代沈括所著的《梦溪笔谈》中有“方家以磁石磨针锋,则能指南,然常微偏东,不全南也”的记载。这不仅说明了指南针的制造,而且已经发现了磁偏角。直到十二世纪,指南针才由阿拉伯人传入欧洲。 在十八世纪末和十九世纪初的这个时期,由于生产发展的需要,在电磁现象方面的研究工作发展的很快。库仑在 1785 年首先从实验室确定了电荷间的相互作用力,电荷的概念开始有了定量的意义。 1820 年,奥斯特从实验时发现了电流对磁针有力的作用,揭开了电学理论的新的一页。同年,安培确定了通有电流的线圈的作用与磁铁相似,这就指出了此现象的本质问题。有名的欧姆定律是欧姆在 1826 年通过实验而得出的。法拉第对电磁现象的研究有特殊贡献,他在 1831 年发现的电磁感应现象是以后电子技术的重要理论基础。在电磁现象的理论与使用问题的研究上,楞次发挥了巨大的作用,他在 1833 年建立确定感应电流方向的定则(楞次定则)。其后,他致力于电机理论的研究,并阐明了电机可逆性的原理。楞次在 1844 年还与英国物理学家焦耳分别独立的确定了电流热效应定律(焦耳 - 楞次定律)。与楞次一道从事电磁现象研究工作的雅可比在 1834 年制造出世界上第一台电动机,从而证明了实际应用电能的可能性。电机工程得以飞跃的发展是与多里沃 - 多勃罗沃尔斯基的工作分不开的。这位杰出的俄罗斯工程师是三相系统的创始者,他发明和制造出三相异步电机和三相变压器,并首先采用了三相输电线。在法拉第的研究工作基础上,麦克斯韦在1864 年至 1873 年提出了电磁波理论。他从理论上推测到电磁波的存在,为无线电技术的发展奠定了理论基础。 1888 年,赫兹通过实验获得电磁波,证实了麦克斯韦的理论。但实际利用电磁波为人类服务的还应归功于马克尼和波波夫。大约在赫兹实验成功七年之后,他们彼此独立的分别在意大利和俄国进行通信试验,为无线电技术的发展开辟了道路。

世界生物学发展史

世界生物学发展史 生物学的发展经历了萌芽期、古代生物学时期、近代生物学时期和现代生物学时期。 生物学发展的萌芽时期是指人类产生(约300万年前)到阶级社会出现(约4000年)之间的一段时期。这时人类处于石器时代,原始人开始了栽培植物、饲养动物并有了原始的医术,这一切为生物学发展奠定了基础。 到了奴隶社会(约4000年前开始)和封建社会后期,人类进入了铁器时代。随着生产的发展,出现了原始的农业、牧业和医药业,有了生物知识的积累,植物学、动物学和解剖学还停留在搜集事实的阶段。但在搜集的同时也进行了整理,并被后人叫做所谓的古代生物学。古代的生物学在欧洲以古希腊为中心,著名的学者有亚里士多德研究(形态学和分类学)和古罗马的盖仑(研究解11剖学和生理学),他们的学说在生物学领域内整整统治了1000年。中国的古代生物学,则侧重研究农学和医药学。 从15世纪下半叶到18世纪末是近代生物学的第一阶段,这一时期,在生物学研究中,主要的有维萨里等人的解剖学,哈维的生理学,林耐的分类学以及从18世纪末并继续到19世纪初的拉马克等人的进化学说。 19世纪的自然科学,进入了全面繁荣的时代。近代生物学的主要领域在19世纪都获得重大进展。如细胞的发现,达尔文生物进化论的创立,孟德尔遗传学的提出。巴斯德和科赫等人奠定了微生物学的科学基础,并在工农业和医学上产生了巨大影响。17世纪建立起来的动物(包括人体)生理学到19世纪有了明显的进展,著名学者有弥勒、杜布瓦·雷蒙、谢切诺夫和巴甫洛夫等人。由于萨克斯、普费弗和季米里亚捷夫的努力,使植物生理学在理论上达到了系统化。 20世纪的生物学即属于现代生物学的范畴,始于1900年孟德尔学说的重新

数据库技术发展简史

数据库技术发展简史 数据库技术从诞生到现在,在不到半个世纪的时间里,形成了坚实的理论基础、成熟的商业产品和广泛的应用领域,吸引越来越多的研究者加入。数据库的诞生和发展给计算机信息管理带来了一场巨大的革命。三十多年来,国内外已经开发建设了成千上万个数据库,它已成为企业、部门乃至个人日常工作、生产和生活的基础设施。同时,随着应用的扩展与深入,数据库的数量和规模越来越大,数据库的研究领域也已经大大地拓广和深化了。 30年间数据库领域获得了三次计算机图灵奖(C.W. Bachman,E.F.Codd, J.Gray),更加充分地说明了数据库是一个充满活力和创新精神的领域。就让我们沿着历史的轨迹,追溯一下数据库的发展历程。 数据库发展简史 1. 数据管理的诞生 数据库的历史可以追溯到五十年前,那时的数据管理非常简单。通过大量的分类、比较和表格绘制的机器运行数百万穿孔卡片来进行数据的处理,其运行结果在纸上打印出来或者制成新的穿孔卡片。而数据管理就是对所有这些穿孔卡片进行物理的储存和处理。然而,1 9 5 1 年雷明顿兰德公司(Remington Rand Inc.)的一种叫做Univac I 的计算机推出了一种一秒钟可以输入数百条记录的磁带驱动器,从而引发了数据管理的革命。1956 年IBM生产出第一个磁盘驱动器——the Model305 RAMAC。此驱动器有50 个盘片,每个盘片直径是2 英尺,可以储存5MB的数据。使用磁盘最大的好处是可以随机地存取数据,而穿孔卡片和磁带只能顺序存取数据。数据库系统的萌芽出现于60 年代。当时计算机开始广泛地应用于数据管理,对数据的共享提出了越来越高的要求。传统的文件系统已经不能满足人们的需要。能够统一管理和共享数据的数据库管理

电子元器件发展史

电子元器件发展史 电子元器件发展史其实就是一部浓缩的电子发展史。电子技术是十九世纪末、二十世纪初开始发展起来的新兴技术,二十世纪发展最迅速,应用最广泛,成为近代科学技术发展的一个重要标志。第一代电子产品以电子管为核心。四十年代末世界上诞生了第一只半导体三极管,它以小巧、轻便、省电、寿命长等特点,很快地被各国应用起来,在很大范围内取代了电子管。五十年代末期,世界上出现了第一块集成电路,它把许多晶体管等电子元件集成在一块硅芯片上,使电子产品向更小型化发展。集成电路从小规模集成电路迅速发展到大规模集成电路和超 大规模集成电路,从而使电子产品向着高效能低消耗、高精度、高稳定、智能化的方向发展。由于,电子计算机发展经历的四个阶段恰好能够充分说明电子技术 发展的四个阶段的特性,所以下面就从电子计算机发展的四个时代来说明电子技术发展的四个阶段的特点。 在20世纪出现并得到飞速发展的电子元器件工业使整个世界和人们的工 作、生活习惯发生了翻天覆地的变化。电子元器件的发展历史实际上就是电子工业的发展历史。190年6 ,李·德福雷斯特发明了真空三极管,用来放大电话的声 音电流。此后,人们强烈地期待着能够诞生一种固体器件,用来作为质量轻、价廉和寿命长的放大器和电子开关。194年7 ,点接触型锗晶体管的诞生,在电子 器件的发展史上翻开了新的一页。但是,这种点接触型晶体管在构造上存在着接 触点不稳定的致命弱点。在点接触型晶体管开发成功的同时,结型晶体管论就已 经提出,但是直至人们能够制备超高纯度的单晶以及能够任意控制晶体的导电类型以后,结型晶体管材真正得以出现。195年0 ,具有使用价值的最早的锗合金 型晶体管诞生。195年4 ,结型硅晶体管诞生。此后,人们提出了场效应晶体管 的构想。随着无缺陷结晶和缺陷控制等材料技术、晶体外诞生长技术和扩散掺杂技术、耐压氧化膜的制备技术、腐蚀和光刻技术的出现和发展,各种性能优良的电子器件相继出现,电子元器件逐步从真空管时代进入晶体管时代和大规模、超大规模集成电路时代。主播形成作为高技术产业代表的半导体工业。 由于社会发展的需要,电子装置变的越来越复杂,这就要求了电子装

微生物学发展简史

1、史前期(约8000 年前一1676 ) ,各国劳动人民,①未见细菌等微生物的个体;②凭 实践经验利用微生物是有益活进行酿酒、发面、制酱、娘醋、沤肥、轮作、治病等)。 在17世纪下半叶,荷兰学者吕文虎克用自制的简易显微镜亲眼观察到细菌个体之前,对于一门学科来说尚没形成。这个时期称为微生物学史前时期。在这个时期,实际上人们在生产与日常生活中积累了不少关于微生物作用的经验规律,并且应用这些规律,创造财富,减少和消灭病害。民间早已广泛应用的酿酒、制醋、发面、腌制酸菜泡菜、盐渍、蜜饯等等。古埃及人也早已掌握制作面包和配制果酒技术。这些都是人类在食品工艺中控制和应用微生物活动规律的典型例子。积肥、沤粪、翻土压青、豆类作物与其它作物的间作轮作,是人类在农业生产实践中控制和应用微生物生命活动规律的生产技术。种痘预防天花是人类控制和应用微生物生命活动规律在预防疾病保护健康方面的宝贵实践。尽管这些还没有上升为微生物学理论,但都是控制和应用微生物生命活动规律的实践活动。 2、初创期(1676 一1861 年),列文虎克,①自制单式显微镜,观察到细菌等微生物的个 体;②出于个人爱好对一些微生物进行形态描述。微生物的形态观察是从安东·列文虎克(Antony Van Leeuwenhock 1632-1732)发明的显微镜开始的,它是真正看见并描述微生物的第一人,他的显微镜在当时被认为是最精巧、最优良的单式显微镜,他利用能放大50~300倍的显微镜,清楚地看见了细菌和原生动物,而且还把观察结果报告给英国皇家学会,其中有详细的描述,并配有准确的插图。1695年,安东·列文虎克把自己积累的大量结果汇集在《安东·列文虎克所发现的自然界秘密》一书里。他的发现和描述首次揭示了一个崭新的生物世界——微生物世界。这在微生物学的发展史上具有划时代的意义。这是首次对微生物形态和个体的观察和记载。随后,其他研究者凭借显微镜对于其它微生物类群进行的观察和记载,充实和扩大了人类对微生物类群形态的视野。但是在其后相当长的时间内,对于微生物作用的规律仍一无所知。这个时期也称为微生物学的创始时期。 3、奠基期(1861 一1897 年),巴斯德,①微生物学开始建立;②创立了一整套独特的微生物学基本研究方法;③开始运用“实践―理论―实践”的思想方法开展研究; ④建立了许多应用性分支学科;⑤进入寻找人类动物病原菌的黄金时期。继列文虎克发现微生物世界以后的200年间,微生物学的研究基本上停留在形态描述和分门别类阶段。直到19世纪中期,以法国的巴斯德和德国的柯赫为代表的科学家才将微生物的研究从形态描述推进到生理学研究阶段,揭露了微生物是造成腐败发酵和人畜疾病的原因,

计算机软件发展历史(简史)

计算机软件发展历史(简史) 来源:互联网 计算机软件技术发展很快。50年前,计算机只能被高素质的专家使用,今天,计算机的使用非常普遍,甚至没有上学的小孩都可以灵活操作;40年前,文件不能方便地在两台计算机之间进行交换,甚至在同一台计算机的两个不同的应用程序之间进行交换也很困难,今天,网络在两个平台和应用程序之间提供了无损的文件传输;30年前,多个应用程序不能方便地共享相同的数据,今天,数据库技术使得多个用户、多个应用程序可以互相覆盖地共享数据。了解计算机软件的进化过程,对理解计算机软件在计算机系统中的作用至关重要。 第一代软件(1946-1953) 第一代软件是用机器语言编写的,机器语言是内置在计算机电路中的指令,由0和1组成。例如计算2+6在某种计算机上的机器语言指令如下:10110000 00000110 00000100 00000010 10100010 01010000 第一条指令表示将“6”送到寄存器AL中,第二条指令表示将“2”与寄存器AL 中的内容相加,结果仍在寄存器AL中,第三条指令表示将AL中的内容送到地址为5的单元中。 不同的计算机使用不同的机器语言,程序员必须记住每条及其语言指令的二进制数字组合,因此,只有少数专业人员能够为计算机编写程序,这就大大限制了计算机的推广和使用。用机器语言进行程序设计不仅枯燥费时,而且容易出错。想一想如何在一页全是0和1的纸上找一个打错的字符! 在这个时代的末期出现了汇编语言,它使用助记符(一种辅助记忆方法,采用字母的缩写来表示指令)表示每条机器语言指令,例如ADD表示加,SUB表示减,MOV表示移动数据。相对于机器语言,用汇编语言编写程序就容易多了。例如计算2+6的汇编语言指令如下: MOV AL,6 ADD AL,2 MOV #5,AL 由于程序最终在计算机上执行时采用的都是机器语言,所以需要用一种称为汇编器的翻译程序,把用汇编语言编写的程序翻译成机器代码。编写汇编器的程序员简化了他人的程序设计,是最初的系统程序员。

高中生物学史总结

1、虎克:英国人,细胞的发现者和命名者。1665年,他用显微镜观察植物的木栓组织,发现由许多规则的小室组成,并把“小室”称为cell——细胞。 2、列文虎克:荷兰人,他用自制的显微镜进行观察,对红细胞和动物精子进行了精确的描述。 3、19世纪30年代,德国植物学家施莱登(M.J.Sehleiden,18o4—1881)和动物学家施旺(T.Schwann,1810— 1882)提出了细胞学说,指出细胞是一切动植物结构的基本单位。 4、维尔肖(R.L.C.Virchow):德国人,他在前人研究成果的基础上,总结出“细胞通过分裂产生新细胞”。 生物膜流动镶嵌模型涉及的科学家 5、欧文顿(E.Overton):1895年他曾用500多种化学物质对植物细胞的通透性进行地上万次的试验,发现细胞膜对不同物质的通透性不一样:凡是可以溶于脂质的物质,比不能溶于脂质的物质更容易通过细胞膜进入细胞。于是他提出了膜由脂质组成的假说。 6、罗伯特森(J. D. Robertson):1959年他在电镜下看到了细胞膜清晰的暗-亮-暗的三层结构,结合其他科学家的工作,提出了生物膜结构的“单位膜”模型。 7、桑格(S. J. Singer )和尼克森:在“单位膜”模型的基础上提出“流动镶嵌模型”。强调膜的流动性和膜蛋白分布的不对称性。为多数人所接受。 与酶的发现有关的科学家 8、斯帕兰札尼:意大利人,生理学家。1783年他通过实验证实胃液具有化学性消化作用。巴斯德:法国人,微生物学家,化学家,提出酿酒中的发酵是由于酵母菌的存在,没有活细胞的参与,糖类是不可能变成酒精的。 9、李比希:德国人,化学家。认为引起发酵的是酵母细胞中的某些物质,但这些物质只有在酵母细胞死亡并裂解后才能发挥作用。 10、毕希纳:德国人,化学家。他从酵母细胞中获得了含有酶的提取液,并用这种提取液成功地进行了酒精发酵。 11、萨姆纳:美国人,化学家。1926年,他从刀豆种子中提取到脲酶的结晶,并用多种方法证明脲酶是蛋白质。荣获1946年诺贝尔化学奖。 12、20世纪80年代,美国科学家切赫和奥特曼发现少数RNA也有生物催化作用。 光合作用的发现涉及的科学家 13、1771年,英国科学家普里斯特利,通过实验发现植物可以更新空气。 14、1864年,德国科学家萨克斯,通过实验证明光合作用产生了淀粉。 15、1880年,美国科学家恩格尔曼,通过实验证明叶绿体是植物进行光合作用的场所。 16、20世纪30年代,美国科学家鲁宾(S.Ruben)和卡门(M.Kamen)用同位素标记法证明光合作用中释放的氧全部来自水。 17、卡尔文(M.Calvin,1911~):美国人,生物化学家,植物生理学家。在20世纪40年代,他及其合作者开始利用放射性同位素标记法研究光合作用,经9年左右的研究,最终探明了CO2中的碳在光合作用中转化成有机物中的碳的途径,这一途径称为卡尔文循环。

数据库的发展历史分为哪几个阶段

1.3 习题 1. 数据库的发展历史分为哪几个阶段?各有什么特点? 答:从数据管理的角度看,数据库技术到目前共经历了人工管理阶段、文件系统阶段和数据库系统阶段。 人工管理阶段数据管理特点:数据不保存,没有对数据进行管理的软件系统,没有文件的概念,数据不具有独立性。 文件系统阶段数据管理特点:数据可以长期保存,由文件系统管理数据,文件的形式已经多样化,数据具有一定的独立性。 数据库系统阶段数据管理特点:采用复杂的结构化的数据模型,较高的数据独立性,最低的冗余度,数据控制功能。 2. 简述数据、数据库、数据库管理系统、数据库系统的概念。 答:数据是指描述事物的符号记录。人们通过数据来认识世界,交流信息。 数据库是存储在一起的相关数据的集合,这些数据是结构化的,无有害的或不必要的冗余,并为多种应用服务;数据的存储独立于使用它的程序;对数据库插入新数据,修改和检索原有数据均能按一种公用的和可控制的方式进行。 数据库管理系统(DataBase Management System,简称DBMS)是专门用于管理数据库的计算机系统软件。数据库管理系统能够为数据库提供数据的定义、建立、维护、查询和统计等操作功能,并完成对数据完整性、安全性进行控制的功能,它位于用户和操作系统之间,是一层数据管理软件。 数据库系统(DataBase System,简称DBS)是指在计算机系统中引入了数据库后的系统,由计算机硬件、数据库、数据库管理系统、应用程序和用户构成,即由计算机硬件、软件和使用人员构成。 3. 使用数据库系统有什么好处? 答:简化管理,提高效率,提供安全。 4. 试述数据库系统的三级模式结构和二级映象的特点。 答:从数据库管理系统的角度看,数据库系统通常采用三级模式结构:外模式、模式和内模式。数据库系统的三级模式是对数据的三个抽象级别,它把数据的具体组织留给DBMS 管理,使用户能逻辑地、抽象地处理数据。 为了实现这三个层次上的联系和转换,数据库系统在这三级模式中提供了两层映象:外模式/模式的映象和模式/内模式的映象。 5. 什么是数据与程序的逻辑独立性?什么是数据与程序的物理独立性? 答:对于每一个外模式,数据库都有一个外模式/模式的映象,它定义并保证了外模式与数据模式之间的对应关系。当模式改变时,外模式/模式的映象要作相应的改变以保证外模式保持不变。应用程序是根据数据的外模式编写的,从而应用程序不必修改,保证了数据与程序的逻辑独立性,即数据的逻辑独立性。 数据库的内模式依赖于它的全局逻辑结构,即模式。它定义并保证了数据的逻辑模式与内模式之间的对应关系。当数据库的存储结构改变了,模式/内模式的映象也必须作相应的修

电力电子技术的发展史

电力电子技术的发展史 电子技术是根据电子学的原理,运用电子器件设计和制造某种特定功能的电路以解决实际问题的科学,包括信息电子技术和电力电子技术两大分支。信息电子技术包括 Analog (模拟) 电子技术和 Digital (数字) 电子技术。电子技术是对电子信号进行处理的技术,处理的方式主要有:信号的发生、放大、滤波、转换。 目录 电力电子技术 现代电力电子技术 高频开关电源的发展趋势 半导体器件基础 电路发展 1.电力电子技术发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 整流器时代 大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。 逆变器时代 七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。 变频器时代 进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能

数据库发展史的启示

数据库发展史的启示 摘要:数据库技术从诞生到现在,在不到半个世纪的时间里,形成了坚实的理论基础、成熟的商业产品和广泛的应用领域,吸引越来越多的研究者加入。数据库的诞生和发展给计算机信息管理带来了一场巨大的革命。三十多年来,国内外已经开发建设了成千上万个数据库,它已成为企业、部门乃至个人日常工作、生产和生活的基础设施。同时,随着应用的扩展与深入,数据库的数量和规模越来越大,数据库的研究领域也已经大大地拓广和深化了。30年间数据库领域获得了三次计算机图灵奖(C.W. Bachman,E.F.Codd, J.Gray),更加充分地说明了数据库是一个充满活力和创新精神的领域。就让我们沿着历史的轨迹,试图从数据库50 多年发展历程中寻找对大数据管理的一些启示。 关键词:数据库发展大数据 数据库发展简史: 1、数据独立性 20 世纪60 年代数据库领域的主要成就是IDS 系统和DBTG 报告。其中,IDS 系统是由数据库领域的第一位图灵奖获得者美国科学家Charles W. Bachman 研制的,第一次将数据独立于应用系统存在。在此基础上形成的DBTG 报告,更进一步提出了数据库系统的三级模式结构。这个三级模式结构直到今天还是数据库应用开发的基本体系框架, 它让我们深刻理解了数据独立性的价值。所谓数据独立性是指数据库应用和数据库的逻辑结构和物理结构存在一定的分离。这样当应用发生变化时,无须变更数据库,反之亦然。这样做的好处是可以强化数据库系统的稳定性,为数据的独立存在提供了可能。数据独立性是通过支持三级模式结构来实施的,目前所有的关系数据库都支持三级模式结构。大数据从本质上讲是强调数据独立存在的。在一些应用中,大数据是伴随业务系统运行而产生的,例如电商企业的交易记录等。在其他一些场合下,甚至我们还不知道大数据有什么用,就已经开始大数据的采集和保存了。因此,是“先有数据后有应用”。这就要求我们在考虑大数据系统时,要更多地关注数据本身,深刻理解数据之间的关系,实现有效的数据存储、访问和利用。数据独立性对于大数据而言,已经不再是要不要的问题,而是必然的结果。因此,大数据时代要特别重视大数据本身,重视对数据治理的研究。数据治理是一个管理学的概念,是指要对数据的获取、处理、使用进行监管,具体包括数据质量、数据集成与清洗、数据隐私与安全等方面。 2、关系数据库 Edgar F. Codd 博士在20 世纪70 年代提供了关系数据模型及相关的论文,而且花了近10 年时间实现了System R 系统,证明了系统的性能可以通过优化技术来提升。关系数据库的优点有很多,最突出的是简单的数学模型和非过程化的SQL 语言。关系模型的好处是简洁,全部的概念就是“关系”,用户数据、系统数据都用关系表示。SQL 语言的好处包括非过程性、统一性、标准性、简单易用性等。非过程性对于数据库的推广和普及起到了很大的作用,特别是对于提高应用系统的生产效率功不可没;统一性是指SQL 包括了多种类型的数据操作,包括查询、修改、安

相关主题
文本预览
相关文档 最新文档