当前位置:文档之家› 混凝土结构综述.doc

混凝土结构综述.doc

混凝土结构综述.doc
混凝土结构综述.doc

混凝土结构综述

。《混凝土结构》复习问题填写问题1。普通钢筋编号为HRB335的钢筋图纸上的符号由表示。

品牌为HPB300的钢筋图纸上的符号表明该钢筋是热轧的(光滑的或带肋的)。

2.任何建筑的设计都必须满足一定的可靠性,包括、

3.对于矩形钢筋混凝土简支梁,计算跨度lo=8m,截面尺寸b×h=200mm×600mm,梁自重标准值为kN/m。

4.在钢筋混凝土轴心受压构件的计算中,钢筋混凝土构件的稳定系数用来考虑长细比对柱承载力的影响。

长细比越大,数值越大。

5、当h w≥梁侧时应设置结构钢筋,其间距不得大于。

6.为确保梁斜截面的抗剪承载力满足要求,梁应具有合理的截面尺寸,并配有适当的腹筋,包括和。

7、雨棚梁截面除了弯矩和剪力作用外,也有一定的作用。

8、根据轴力偏心和配筋情况不同,偏心受压构件正截面破坏形式有:

9、按照钢筋张拉和混凝土浇筑的顺序,可建立预应力法分为和。

10.受弯构件斜截面破坏的三种主要形式。

1

1.对于T形截面梁,当中轴线在法兰内时,则为(一类或二类T

钢筋混凝土结构中的钢筋有哪几种

钢筋的分类和用途 钢筋种类很多,通常按化学成分、生产工艺、轧制外形、供应形式、直径大小,以及在结构中的用途进行分类: 1.按化学成分分 碳素钢钢筋和普通低合金钢筋。碳素钢钢筋按碳量多少,又分为低碳钢钢筋(含碳量低于0.25%,如I级钢筋),中碳钢钢筋(含碳量0.25%~0.7%,如IV级钢筋),高碳钢钢筋(含碳量0.70%~1.4%,如碳素钢丝),碳素钢中除含有铁和碳元素外,还有少量在冶炼过程中带有的硅、锰、磷、硫等杂质。普通低合金钢钢筋是在低碳钢和中碳钢中加入少量合金元素,获得强度高和综合性能好的钢种,在钢筋中常用的合金元素有硅、锰、钒、钛等,普通低合金钢钢筋主要品种有:20MnSi、40Si2MnV、45SiMnTi等。 各种化学成分含量的多少,对钢筋机械性能和可焊性的影响极大。一般建筑用钢筋在正常情况下不作化学成分的检验,但在选用钢筋时,仍需注意钢筋的化学成分。下面介绍钢筋中主要的五种元素对其性能的影响。 碳(C):碳与铁形成化合物渗碳体(Fe3C),材性硬且脆,钢中含碳量增加渗碳体量就大,钢的硬度和强度也提高,而塑性和韧性则下降,材性变脆,其焊接性也随之变差。 锰(Mn):它是炼钢时作为脱氧剂加入钢中的,可使钢的塑性及韧性下降,因此含量要合适,一般含量在1.5%以下。

硅(Si):它也是作为脱氧剂加入钢中的,可使钢的强度和硬度增加。有时特意加入一些使其含量大于0.4%,但不能超过0.6%,因为它含量大时与碳(C)含量大时的作用一样。硫(S):它是一种导致钢热脆性、使钢在焊接时出现热裂纹的有害杂质。它在钢中的存在使钢的塑性和韧性下降。一般要求其含量不得超过0.045%。 磷(P):它也是一种有害物质。磷使钢容易发生冷脆并恶化钢的焊接性能,尤其在200℃时,它可使钢材或焊缝出现冷裂纹。一般要求其含量低于0.045%,即使有些低合金钢也必须控制在0.050%~0.120%之间。 2.按轧制外形分 (1)光面钢筋:I级钢筋(Q235钢钢筋)均轧制为光面圆形截面,供应形式有盘圆,直径不大于10mm,长度为6m~12m。 (2)变形钢筋/带肋钢筋:有螺旋形、人字形和月牙形三种,一般Ⅱ、Ⅲ级钢筋轧制成人字形,Ⅳ级钢筋轧制成螺旋形及月牙形。 3.按直径大小分 钢丝(直径3~5mm)、细钢筋(直径6~10mm)、粗钢筋(直径大于22mm)。 4.按力学性能分 Ⅰ级钢筋(235/370级);Ⅱ级钢筋(335/510级);Ⅲ级钢筋

珍珠岩保温板岩棉板泡沫混凝土建筑节能方案

建筑节能施工方案 一、编制依据 《建筑工程施工质量统一验收标准》 50300-2013 《建筑节能工程施工质量验收规范》50411-2007 《屋面工程技术规范》屋面工程技术规范50345-2012 《外墙外保温工程技术规程》144-2008 《膨胀珍珠岩保温板建筑保温系统技术导则》016-2015 《绝热用挤塑聚苯乙烯泡沫型材料()》1080 《合肥市岩棉板外墙外保温系统应用技术导则》002-2011 《无机保温砂浆墙体保温系统应用技术规程》34T1503-2011 《外墙外保温建筑构造》10J121 《夏热冬冷地区居住建筑节能设计标准》134-2010 《安徽省居住建筑节能设计标准》34/1466-2011 《泡沫混凝土应用技术规程》341-2014 二、工程概况 本工程建设单位为临泉县政府重点投资项目建设管理局兴建的临泉县紫薇苑安置区建设项目工程1#~8#楼与地下车库工程,由中铁合肥建筑市政工程设计研究院有限公司设计,勘察单位是苏州中岩勘察有限公司,施工单位是中城建第四工程局有限公司。监理单位为河南创达建设工程管理有限公司,临泉县紫薇苑安置区建设项目工程1#~8#楼与地下车库工程位于临泉县城关镇东临百姓宅基地,西临交通路、南临幸福路、北临迎宾大道,临泉县紫薇苑安置小区1#~3#楼地上三十二层,46#楼地上27层,

7#楼地上4层,8#楼地上两、四层,地下车库 29759 ㎡。临泉县紫薇苑安置区建设项目工程总建筑面积 127576.07 m2,1#~3#楼均为剪力墙结构,建筑总高度 93.4 米,46#楼均为剪力墙结构,建筑总高度 78.9 米。 本工程的建筑节能概况如下: 1#住宅楼屋顶保温材料为80厚膨胀珍珠岩保温板,外墙40厚膨胀珍珠岩保温板; 2#住宅楼屋顶保温材料为80厚膨胀珍珠岩保温板,外墙40厚膨胀珍珠岩保温板; 3#住宅楼屋顶保温材料为80厚膨胀珍珠岩保温板,外墙40厚膨胀珍珠岩保温板; 4#住宅楼屋顶保温材料为80厚膨胀珍珠岩保温板,外墙40厚膨胀珍珠岩保温板; 5#住宅楼屋顶保温材料为160厚膨胀珍珠岩保温板,外墙50厚膨胀珍珠岩保温板; 5#住宅商业楼屋顶保温材料为80厚憎水型半硬质岩棉板,外墙50厚憎水型半硬质岩棉板; 6#住宅楼屋顶保温材料为100厚膨胀珍珠岩保温板,外墙40厚膨胀珍珠岩保温板 7#、8#楼屋面保温材料为硅酸盐水泥无机发泡板75.0厚,外墙为无机轻集料保温砂浆内外保温,外35厚,内20厚; 门窗采用塑钢普通中空玻璃窗(5+95)和铝合金低辐射中空玻璃窗(6+126遮阳型)。 三、施工部署 1、建筑节能工程施工管理体系 为了贯彻国家建筑节能的政策,加强建筑节能工程的施工管理。现场指挥部成立了以项目经理为组长;项目技术负责人为副组长的建筑节能工程施工领导小组,其机构组成、人员编制与责任分工如下: 组长:项目经理——负责组织协调工作

石墨行业现状

石墨行业现状 石墨是碳元素的结晶矿物之一,具有耐高、抗腐蚀、抗热震、强度大、韧性好、自润滑强度高、导热、导电、可塑性、涂敷性性能等特有的物理化学性能,广泛应用于冶金、机械、电子、化工、轻工、军工、国防、航天及耐火材料等行业,是当今高新技术发展必不可少的非金属材料。石墨分为人造石墨和天然石墨,其中天然石墨根据结晶形态不同的石墨矿物,具有不同的工业价值和用途,将天然石墨分为三类:致密结晶状石墨、晶质(鳞片)石墨和隐晶质(土状)石墨。 一、石墨的特性及用途 1、石墨特殊性质 1)耐高温性:石墨熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 2)导电、导热性:石墨导电性比一般非金属矿高一百倍。导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。 3)润滑性:石墨润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。 4)化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。 5)可塑性:石墨的韧性好,可碾成很薄的薄片。 6)抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。 7)高传导透明性:碳原子构成的单层片状结构二维晶体--石墨烯,导电导热透明,无与伦比。 2、石墨的主要用途 1)、耐火材料:石墨及其制品具有耐高温、高强度的性质,冶金工业上主要用来制造石墨坩埚,炼钢上常用石墨作钢锭之保护剂,冶金炉的内衬。

钢筋混凝土结构发展综述

钢筋混凝土结构发展综述 摘要:本文主要从钢筋混凝土这种建筑材料的发明过程谈起,详细阐述了钢筋混凝土框架结构、框架-剪力墙结构、剪力墙结构和筒体结构的发展过程和特点。关键词:钢筋混凝土;材料发展;结构形式 正文: 人类早期的建筑物主要使用木材、泥土和石料等天然材料建造,但随着社会生产力水平的提高,人们对建筑物的要求也日益多样和复杂,在钢筋混凝土材料被发明之后,建筑的规模、高度和结构体系都有了划时代的发展。1钢筋混凝土建筑材料的发展工业革命以来,西方开始探索新的建筑材料,因为新类型的建筑,比如庞大的工厂建筑和公共建筑需要大量廉价,强度足够的材料,而传统建筑材料显然不可能满足这些要求。1774年,英国人在艾地斯东这个地方采用石灰,粘土,砂和铁渣混合,研制出初期的混凝土,并利用这种材料来建造灯塔,成本低廉并且结构非常牢固,取得初步成功。直到1824年,研究出胶性水泥的方法,根据采用的石灰石在波特兰岛,而起名为“波特兰水泥”,发明者是英国人约瑟夫-阿斯帕丁。波特兰水泥的廉价,高度可塑性和其高强度,都使之立即成为建筑行业最喜欢的新材料。 1850年前后,有个法国园丁约瑟夫-蒙涅采用波特兰水泥和铁丝网组合来制作花盆,这个实验的成功启发了法国建筑家日后在大型公共建筑的穹顶部分采用这种方法。世界上的一个采用钢筋混凝土建造的大型建筑是由拉布鲁斯特设计的巴黎圣日内维夫图书馆的拱顶,完成于1850年。 1890年前后,在欧洲和美国都开始广泛采用钢筋混凝土建造房屋,成为20世纪建筑的主要手段,终于取代了传统的材料和建筑方法,使建筑能够在物质基础上,在材料基础上,在建筑方法和手段上有很大发展。 人们使用钢铁的年代和使用混凝土的一样久远,但是同样,直到19世纪末人们使用钢铁仍旧只是局限于装饰性质,真正地将钢铁应用于承重结构是在20世纪初。 钢筋混凝土结构形式的发展随着城市人口的集中和城市规模的扩大,建设高层集合住宅的意义正在提升。一般在高地价用地内,要想增加建筑面积和住户数量,提高容积率,就只有追求高密度化。对此,高层化作为有效的手段和方法而被采用的场合居多。 根据使用要求,高层建筑形状的多样化,复杂化可说是近年来发展一个特点,从而对建筑结构提出了更高的要求,有不少高层建筑采用弧形框架结构,S型框架结构,斜高剪力墙结构等形式。我国的高层建筑主要采用钢筋混凝土材料,所用结构形式有框架结构,框架-剪力墙结构,剪力墙结构,筒体结构等。 早期的建筑,由于层数少,多采用框架结构。该结构平面布置灵活,能形成大空间且能适应较多功能的要求;但侧向刚度小,在风荷载或地震荷载作用下,

钢筋混凝土结构中的钢筋有哪几种

钢筋的分类和用途钢筋种类很多,通常按化学成分、生产工艺、 轧制外形、供应形式、直径大小,以及在结构中的用途进行分类:1.按化学成分分碳素钢钢筋和普通低合金钢筋。碳素钢钢筋按碳量多少,又分为低碳钢钢筋(含碳量低于0.25%,如I 级钢筋),中碳钢钢筋(含碳量0.25%?0.7%,如IV级钢筋),高碳钢钢筋(含碳量0.70%?1.4%,如碳素钢丝),碳素钢中除含有铁和碳元素外,还有少量在冶炼过程中带有的硅、锰、磷、硫等杂质。普通低合金钢钢筋是在低碳钢和中碳钢中加入少量合金元素,获得强度高和综合性能好的钢种,在钢筋中常用的合金元素有硅、锰、钒、钛等,普通低合金钢钢筋主要品种有: 20MnSi、40Si2MnV 、4 5SiMnTi 等。各种化学成分含量的多少,对钢筋机械性能和可焊性的影响极大。一般建筑用钢筋在正常情况下不作化学成分的检验,但在选用钢筋时,仍需注意钢筋的化学成分。下面介绍钢筋中主要的五种元素对其性能的影响。碳(C):碳与铁形成化合物渗碳体(Fe3C),材性硬且脆,钢中含碳量增加渗碳体量就大,钢的硬度和强度也提高,而塑性和韧性则下降,材性变脆,其焊接性也随之变差。 锰(Mn):它是炼钢时作为脱氧剂加入钢中的,可使钢的塑性及 韧性下降,因此含量要合适,一般含量在1.5%以下。 硅(Si):它也是作为脱氧剂加入钢中的,可使钢的强度和硬 度增加。有时特意加入一些使其含量大于0.4%,但不能超 过0.6%,因为它含量大时与碳(C)含量大时的作用一样。硫

(S):它是一种导致钢热脆性、使钢在焊接时出现热裂纹的有害杂质。它在钢中的存在使钢的塑性和韧性下降。一般要求其含量不得超过0.045%。 磷(P):它也是一种有害物质。磷使钢容易发生冷脆并恶化钢的焊接性能,尤其在200 C时,它可使钢材或焊缝出现冷 裂纹。一般要求其含量低于0.045%,即使有些低合金钢也 必须控制在0.050%?0.120%之间。 2.按轧制外形分 (1 )光面钢筋:I 级钢筋(Q235 钢钢筋)均轧制为光面圆形截面,供应形式有盘圆,直径不大于10mm ,长度为6m~12m 。 (2)变形钢筋/带肋钢筋:有螺旋形、人字形和月牙形三种,一般□、川级钢筋轧制成人字形,W级钢筋轧制成螺旋形及月牙形。 3.按直径大小分 钢丝(直径3~5mm )、细钢筋(直径6?10mm )、粗钢筋(直径大于22mm)。 4.按力学性能分 I级钢筋(235/370级);H级钢筋(335/510级);川级钢筋

泡沫混凝土发展现状和市场前景

泡沫混凝土发展现状与市场前景的 可行性分析报告 1.研究背景 由于建筑能耗占到全国总能耗的30%左右,住宅节能已是一项基本国策,但是国内绝大多数采暖地区围护结构的热工性能都比气候相近的发达国家差许多。我国从2005年开始推行建筑保温节能工程,要求新建建筑必须实行50%的节能目标(部分重要城市的目标为节能65%),该项工程加快了保温隔热材料的发展,但也暴露了许多问题,北京央视大火和上海2010年“11.15”重大火灾等事件,让人们对保温隔热材料的防火性能的重要性有了重新认识。 图1 我国社会总耗能分布 在国家建筑节能与墙体改革政策的推动下,泡沫混凝土作为一种阻燃、利废、环保、节能、价格低、性能好的新型保温隔热建筑材料,得到了全社会越来越广泛的认知、重视和大量应用,泡沫混凝土产业也因此得到了快速发展,泡沫混凝土凭借其轻质、保温、隔热、耐火及隔音的优良险能在各个领域得到了大量应用。 资料统计显示,2009年我国泡沫混凝土的年产量由2008年的500万m3增加到600万m3,2010年我国应用泡沫混凝土浇筑的建筑保温层面积超过1亿m2。 2.泡沫混凝土的性能特点

2.1 泡沫混凝土的概念 所谓泡沫混凝土是指用物理方法将发泡剂溶液制成泡沫,再将泡沫添加到水泥、掺合料、骨料、水和外加剂等制成的浆体中,混合搅拌均匀并浇筑成型,经自然或蒸汽养护而制成的内部含有大量密闭气孔的多孔混凝土。 泡沫混凝土中的气泡具有独立、封闭的特点,直径在0.05mm~1.25mm 范围内;泡沫混凝土的密度很小,一般在200kg/ m3~1600kg m3,最近美国亦出现密度低至50kg/ m3的超低密度泡沫混凝土;泡沫混凝土强度范围在0.6MPa~12MPa, 图2 泡沫混凝土的微观结构图3泡沫混凝土墙体的阻燃性图4泡沫混凝土自重轻经研究1600kg/ m3容重的陶粒泡沫混凝土强度可达到40MPa 左右;导热系数为0.08W/(m·K)~0.214W/(m·K),干缩值0.6mm/m 以内,吸水率可低至20%。 2.2 泡沫混凝土的发展历程 5000 年前,泡沫混凝土即初现雏形,古埃及人通过混合某些天然物质而产生了气泡,从而制成了多孔材料。2000 多年前,古罗马人通过混合石灰、砂子、砾石等材料创造了最原始的混凝土。后来人们发现将动物血液加入混凝土,经过搅拌混合后,就会产生持久的气泡,并可固化为一种稳定的多孔混凝土。至今,动物血液等动物蛋白水解物发泡剂仍是泡沫混凝土发泡剂的一种重要类型。 十九世纪初期,由于天气寒冷,人们对高效保温材料需求迫切,欧洲人在前人的研究基础上对泡沫混凝土进行了基础性研究,并首次提出了将预制气泡和水泥砂浆混合搅拌从而生产多孔混凝土的方法。真正意义上的泡沫混凝土在1923年被瑞典人研制成功。 现在,在工业发达国家,泡沫混凝土被广泛使用。泡沫混凝土不需蒸汽养护,可现场浇注,施工简便,操作简单安全,且投资少、成本低,因而被广泛使用在各种工程项目中,并取得了良好的效果。 我国泡沫混凝土发展并不晚,在上世纪五十年代发展迅速,研制出性能优越的蒸压加气泡沫混凝土制品,并被使用在建筑保温等实际工程中,但由于历史原因其发展受到阻碍。 近年来,泡沫混凝土在我国重新获得兴盛发展,再加上欧洲泡沫混凝土现浇技术的传入,泡沫混凝土被广泛使用在保温现浇两大应用领域,在建筑节能、建筑工程回填及岩土工程等各个方面运用广泛,成效显著。 目前,我国泡沫混凝土年生产总量已突破600万m3,其中,现浇类约占生产总量的80%以上,其他约20%。然而,相较于西方发达国家,我国泡沫混凝土发展还比较落后,仍有很大的发展空间。 2.3 泡沫混凝土与加气混凝土的区别 泡沫混凝土与普通混凝土对比而言,由于其内部为固相与气相相互交织的多

新型混凝土现状及发展趋势研究综述

新型混凝土现状及发展趋势研究综述 作者:余纪方 来源:《理论与创新》2020年第17期 【摘; 要】基于对新型混凝土现状及发展趋势的探讨研究,文章首先从新型混凝土的应用现状入手,然后与自密实混凝土、泡沫混凝土、高聚合物混凝土以及再生混凝土这四点内容相结合,对新型混凝土的未来发展趋势进行研究,希望能为有关人士提供帮助。 【关键词】新型混凝土;混凝土应用;现状与发展 引言 作为社会发展、工程建设、人们生活中不可或缺的重要材料,混凝土自研发应用至今至少已有一百年的时间,且由于我国近年来发展速度极快,在工业化与城市化进程愈发深入的大背景下,混凝土用量也在逐年提升。但随着社会对工程建设综合水平要求的不断提高,很多时候普通混凝土已无法完全满足工程的实际要求,在其自重高、易裂缝等缺点的影响下,工程质量甚至都很难得到保证。因此,针对新型混凝土现状及发展趋势展开深入研究是非常必要的,这也是新型混凝土在工程中发挥更好作用的关键基础。 1.新型混凝土的应用现状 1.1自密实混凝土 自密实混凝土源于上世纪中后期的日本,其主要特征就是自重高,所以流动、密实等变化通常都能由其自行完成,且在均质性相对较高的情况下,自密实混凝土是无需附加振动的。在制作自密实混凝土的过程中,粗骨料体积的适量减少,以及细骨料最大粒径的严格控制,都是技术人员必须考虑的重点问题,这样最终制成的自密实混凝土,才能具备相比较普通混凝土而言的高流动性与高抗离析性能。 另外,在业内学者的模拟建模中也可看出,结合具体情况科学降低粗骨料的使用比例,并适当提高细骨料的配合比,能在很大程度上增强自密实混凝土的稳定性,并尽可能降低离析现象出现的机率。我国著名混凝土研究专家张军,也曾分别对四种混凝土展开过基本力学性能研究,证明轻骨料的自密实混凝土强度确实远高于普通混凝土。站在环境保护的角度上来看,自密实混凝土无需振捣的优势,也非常有利于减少施工现场的噪声。 1.2泡沫混凝土

钢筋混凝土结构复习资料

★在普通钢筋混凝土结构中,采用高强度钢筋是否合理?为什么?不合理。强度太高,在正常使用时受拉钢筋应力太大,造成裂缝开展过宽;用作受压钢筋则破坏时混凝土最大压应变只能达到0.002,超过此值混凝土已压坏了,因此钢筋最大压应力只能达到0.002Es,约为400N/mm2。若钢筋的屈服强度超过400N/mm2,在受压时就不能充分发挥作用。★正常配筋的钢筋混凝土梁从加载到破坏的三个阶段及其特点和与计算的联系?①第Ⅰ阶段即未裂阶段,初始荷载很小时,截面上混凝土应力和钢筋应力都不大,两者的变形基本是弹性的,且应力与应变之间保持线性关系,当荷载持续加大到该阶段末尾时,混凝土受拉区的应力达到了其抗拉强度,出现了很大的塑性变形。若是荷载再增大则受拉区就会出现裂缝,而受压区的压应力远小于混凝土的抗压强度,还处于弹性阶段。受弯构件正常实用阶段抗裂验算即以此应以状态为依据。②当弯矩继续增加,进入第Ⅱ应力阶段即裂缝阶段。受拉区产生裂缝,裂缝所在截面的受拉区混凝土几乎完全脱离工作,拉力由钢筋单独承担。裂缝宽度随荷载的增大而增大并向上发展,受压区也有一定的塑性变形发展,应力图形呈平缓的曲线形。正常使用阶段变形和裂缝宽度的验算即以此应力阶段为依据。③第Ⅲ阶段——“破坏阶段”。荷载继续增加,钢筋应力达到屈服强度fy,即认为梁已进入此时钢筋应力不增加而应变迅速增大,促使裂缝急剧开展并向上延伸,混凝土受压区面积减小,混凝土的压应力增大。在边缘纤维受压应变达到极限值时,受压混凝土发生纵向水平裂缝而被压碎,梁就随之破坏。计算正截面承载力时即以此应力阶段为依据。 ★受弯构件正截面有哪几种破坏形态?破坏特点有何区别?在设计时如何防止发生这几种破坏?①适筋破坏,受拉钢筋的应力首先到达屈服强度,有一根或几根裂缝迅速扩展并向上延伸,受压区面积大大减小,迫使混凝土边缘应变达到极限压应变εcu而被压碎,构件即告破坏。破坏前,构件有明显的裂缝开展和挠度,属于延性破坏。②超筋梁,加载后受拉钢筋应力尚未达到屈服强度前,受压混凝土却已先达到极限压应变而被压坏,这种破坏属于脆性突然破坏。超筋梁承载力控制由于混凝土截面受压区,受拉钢筋未能发挥其应有的作用,裂缝条数多但宽度细小,挠度也小属脆性破坏。③少筋梁,受拉区混凝土一出现裂缝,裂缝截面的钢筋应力很快达到屈服强度,并可能经过流幅段而进入强化阶段。这种少筋梁在破坏时往往只出现一条裂缝,但是裂缝开展极宽,挠度也增长极大,少筋构件的破坏基本上属于脆性破坏,而且构件的承载力又很低,所以在设计中也应避免采用。为防止超筋破坏,应使截面破坏时受压区的计算高度x不致过大,即应使x≤α1ξb?0。为防止少筋破坏,应使受拉纵筋配筋率ρ≥ρmin。 ★影响梁斜截面承载力的因素有哪些?①剪跨比:剪跨比是集中荷载作用下影响梁斜截面承载力的主要因素,随着剪跨比的增加,斜截面受剪承载力降低。②混凝土强度等级:从斜截面破坏的几种主要形态可知,斜拉破坏主要取决于混凝土的抗拉强度,剪压破坏和斜压破坏与混凝土的抗压强度有关,因此,在剪跨比和其他条件相同时,斜截面受剪承载力随混凝土强度的提高而增大,试验表明二者大致呈线性关系。③腹筋数量及其强度:试验表明,在配箍量适当的情况下,梁的受剪承载力随腹筋数量增多、腹筋强度的提高而有较大幅度的增长。④纵筋配筋率:在其他条件相同时,纵向钢筋配筋率越大,斜截面承载力也越大,试验表明,二者大致呈线性关系。 ★什么叫偏心受压构件的界限破坏?常用钢筋是否都有明显的屈服极限?设计时它们取什么强度作为设计的依据?为什么?常用钢筋都有明显的屈服极限。设计时取它们的屈服强度fy作为设计的依据。因为钢筋达到fy后进入屈服阶段,应力不加大而应变大大增加,当进入强化阶段时应变已远远超出允许范围。所以钢筋的受拉设计强度以fy为依据。强化阶段超过fy的强度只作为安全储备,设计时不予考虑。 ★什么是连续梁的内力包络图?将恒载在各截面上产生的内力叠加上各相应截面最不利活荷载所产生的内力,便得出各截面的弯矩图和剪力图,最后将各种活荷载不利布置的

石墨烯产业发展现状分析及未来发展建议

石墨烯产业发展现状分析及未来发展建议 一、石墨烯的发展现状 石墨烯是一种具有优异的力学、热学和电学性能的新型碳材料。石墨烯材料的研发涉及国家高新技术材料的产业基础,产业关联涉及新材料、能源、环境、航空航天、国防等领域,对国家的发展起着重要作用,因此,各国政府积极支持石墨烯研发:欧洲联盟2013年启动10亿欧元石墨烯旗舰计划;韩国和英国分别投入3.5亿美元、5000万英镑进行商业化计划;中国已将石墨烯写进《新材料产业“十三五”发展规化》中。 济宁利特纳米技术有限责任公司生产的石墨烯采用改良的HUMMERS法制备,产品测试结果如下: 厚度:0.7-4nm,粒径0.2-50μm,单层率≥99%,纯度≥99%,电导率≥200S/m,比表面积为200-1000m2/g 石墨烯原材料的规模化制备是构筑石墨烯产业链的基础,对开发下游产品有着根本性的作用,对石墨烯的产业化发展起着承上启下的作用。石墨烯行业近两年呈井喷式发展态势,企业和产品已经雨后春笋般大量出现。其中涉足石墨烯下游应用的企业逐渐增多,包括电子领域的高性能芯片、LED、柔性显示屏;能源领域的静电喷漆系统、高性能电池、超级电容器、太阳能电池;航空航天、海洋领域的防护涂料、复合材料、电磁屏蔽材料、隐型材料;环境领域的污水处理、海水淡化、大气污染治理;高强度橡胶、塑料,医药领域的药物输送、临床检测等。 截至2012年石墨烯获得诺贝尔物理学奖后已有2年时间,石墨烯规模化制备的技术瓶颈已逐渐突破,限制石墨烯行业发展的不再是石墨烯的规模性制备,而是如何让制备的石墨烯满足不同应用领域的需求,如何使石墨烯的高性能如高导电性、高导热性、高透光性在应用领域充分发挥。这是目前从事石墨烯材料的研究机构和企业共同面临一个关键性技术问题,同时也是石墨烯行业未来2-3年内需要突破的关键性瓶颈。 目前,国内各石墨烯相关企业纷纷在自身技术优势的基础上,开展石墨烯的下游应用,涉及的领域主要集中在锂离子电池、超级电容器、柔性显示屏、防护涂料、污水处理等几个方面。在这些应用领域中,水污染处理、功能性涂料、锂离子电池三方面的研究最多,也是目前石墨烯应用中较为成熟的。 (一)水污染处理 中国600多个城市都不同程度面临着水源地突发污染事件的威胁,存在水源地安全隐患。近期不断发生的重金属污染突发事件,如2005年珠江支流北江镉污染事故、2006年湖南岳阳砷污染事件、2010年福建紫金矿业重大污染事件、2011年匈牙利铝厂毒泥浆对多瑙

20170801 技术规范 现浇混凝土

技术规范 现浇混凝土 日期:2017年8月1日 现浇混凝土 CAST-IN- 第1部分综述 1.01 本章包括 A. 混凝土建筑框架构件。 B. 高架混凝土板。 C. 楼板及建筑地坪。 D. 混凝土剪力墙、电梯井道墙壁和地下混凝土墙。 E. 其它混凝土构件,包括设备垫块、灯杆底座、旗杆底座、斜撑块和检修孔。 F. 混凝土养护。 1.02 参考标准 A. GB175-2007通用硅酸盐水泥 B. JGJ55-2011普通混凝土配合比设计规程 C. GB8076-2008混凝土外加剂 D. GB/T50107-2010混凝土强度检验评定标准 E. GB/T17431.1-2010轻骨料及其试验方法第1部分:轻骨料 F. GB/T17431.2-2010轻骨料及其试验方法第2部分:轻骨料试验方法 G. JGJ 52-2006 普通混凝土用砂、石质量及检验方法标准 H. GB/T1596-2005用于水泥和混凝土中的粉煤灰 I. GB/T27690-2011砂浆和混凝土用硅灰 J. JC474-2008砂浆、混凝土防水剂 K. JGJ63-2006混凝土用水标准 L. JC901-2002水泥混凝土养护剂 M. GB/T14902-2003预拌混凝土 N. GB/T50080-2002普通混凝土拌合物性能试验方法标准 O. GB/T50081-2002普通混凝土力学性能试验方法标准 P. GB50204-2002(2011版)混凝土结构工程施工质量验收规范 Q. JGJ51-2002轻骨料混凝土技术规程 R. JC/T539-1994混凝土和砂浆用颜料及其试验方法 S. GB50666-2011混凝土结构工程施工规范 T. JC/T986-2005水泥基灌浆材料 U. JC/T188-2010混凝土节水保湿养护膜 V. GB506666-2011混凝土结构工程施工规范 W.GB50164-2011混凝土质量控制标准 X. GB50119-2003混凝土外加剂应用技术规范 Y. GBT21120-2007水泥混凝土和砂浆用合成纤维 Z. GB50108-2008地下工程防水技术规范 AA.GB18445-2001水泥基渗透结晶型防水材料

石墨烯产业发展现状调研

Acer 宏碁AS4750G-2454G75Mnkk 石墨烯产业发展调研报告 石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元,就是石墨的单层薄片。它是人类已知强度最高、韧性最好、重量最轻、透光率最高、导电性最佳的材料。美国麻省理工学院(MIT)的《技术评论》曾将石墨烯列为2008年10大新兴技术之一。在2009年12月18日出版的《科学》杂志中,“石墨烯研究取得新进展”被列为2009年10大科技进展之一。2010年10月5日,英国曼彻斯特大学教授安德烈·海姆和康斯坦丁·诺沃肖洛夫因在石墨烯(graphene)研究方面的杰出成就而荣获2010年诺贝尔物理学奖。 1.1石墨烯结构及性质 石墨烯的问世引起了全世界的研究热潮。作为单质,它在室温下传递电子的速度比已知导体都快。石墨烯在原子尺度上结构非常特殊,必须用相对论量子物理学(relativistic quantum

physics)才能描绘。石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。这种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。 石墨烯是目前已知的最薄的一种材料,单层的石墨烯只有一个碳原子的厚度,这种厚度的石墨烯拥有了许多石墨所不具备的特性。 (1)导电性极强:石墨烯中的电子没有质量,电子的运动速度超过了在其他金属单体或是半导体中的运动速度,能够达到光速的 1/300,正因如此,石墨烯拥有超强的导电性。 (2)超高强度:石墨是矿物质中最软的,其莫氏硬度只有1-2级,但被分离成一个碳原子厚度的石墨烯后,性能则发生突变,其硬度将比莫氏硬度10级的金刚石还高,却又拥有很好的韧性,且可以弯曲。 (3)超大比表面积:由于石墨烯的厚度只有一个碳原子厚,

多层混凝土框架结构设计文献综述

多层混凝土框架结构设计 1.前言 随着社会的发展,钢筋混凝土框架结构的建筑物越来越普遍.由于钢筋混凝土结构与砌体结构相比较具有承载力大、结构自重轻、抗震性能好、建造的工业化程度高等优点;与钢结构相比又具有造价低、材料来源广泛、耐火性好、结构刚度大、使用维修费用低等优点。因此,在我国钢筋混凝土结构是多层框架最常用的结构型式。近年来,世界各地的钢筋混凝土多层框架结构的发展很快,应用很多。 一般框架结构是由楼板、梁、柱及基础4种承重构件组成的,由主梁、柱与基础构成平面框架,各平面框架再由连续梁连接起来而形成的空间结构体系。文献[1]认为,在合理的高度和层数的情况下,框架结构能够提供较大的建筑空间,其平面布置比较的灵活,可适合多种工艺与使用功能的要求。 多层钢筋混凝土框架结构设计可以分为四个阶段:一是方案设计,二是结构分析,三是构件设计,四是绘施工图。结构分析和构件设计是结构设计中的计算阶段,在现代,已由电子计算机承担这一工作,常采用PKPM建模计算。但是,结构的计算并不能代替结构的设计。文献[2]中认为:良好的结构设计的重要前提,应该是合理组织与综合解决结构的传力系统、传力方式,良好的结构方案是良好结构设计的重要前提。2.关于框架结构设计文献回顾 2.1框架结构的优缺点 框架结构体系是由横梁与柱子连接而成.梁柱连接处(称为节点)一般为刚性连接,有时为便于施工和其他构造要求,也可以将部分节点做成铰接或者半铰接.柱支座一般为固定支座,必要时也可以设计成铰支座.框架结构可以分为现浇整体式,装配式,现浇装配式. 文献[3]中提到:框架结构的布置灵活,容易满足建筑功能和生工艺的多种要求.同时,经过合理设计,框架结构可以具有较好的延性和抗震性能.但是,框架结构承受水平力(如风荷载和水平地震作用)的能力较小.当层树较多或水平力较大时,水平位移较大,在强烈地震作用下往往由于变形过大而引起非结构构件(如填充墙)的破坏.因此,为了满足承载力和侧向刚度的要求,柱子的截面往往较大,既耗费建筑材料,又减少使用面积.这就使框架结构的建筑高度受到一定的限制.目前,框架结构一般用于多层建筑和不考虑抗震设防,层数较少的的高层建筑(比如,层数为10层或高度为30米以下) 2.3框架结构的布置 多层框架结构的平面布置形式非常的灵活,文献[4]中将框架结构按照承重方式的不同分为以下三类:(1)横向框架承重方案,以框架横梁作为楼盖的主梁,楼面荷载主要由横向框架承担.由于横向框架数往往较少,主梁沿横向布置有利于增强房屋的横向刚度.同时,主梁沿横向布置还有利于建筑物的通风和采光.但由于主梁截面尺寸较大,当房屋需要大空间时,净空较小,且不利于布置纵向管道. (2)纵向框架承重方案以框架纵梁作为楼盖的主梁,楼面荷载由框架纵梁承担.由于横梁截面尺寸较小,有

钢筋混凝土框架结构文献综述

前言 随着社会的发展,钢筋混凝土框架结构的建筑物越来越普遍。由于钢筋混凝土结构与砌体结构相比较具有承载力大、结构自重轻、抗震性能好、建造的工业化程度高等优点;与钢结构相比又具有造价低、材料来源广泛、耐火性好、结构刚度大、使用维修费用低等优点。因此,在我国钢筋混凝土结构是多层框架最常用的结构型式。近年来,世界各地的钢筋混凝土多层框架结构的发展很快,应用很多。一般框架结构是由楼板、梁、柱及基础4种承重构件组成的,由主梁、柱与基础构成平面框架,各平面框架再由连续梁连接起来而形成的空间结构体系。在合理的高度和层数的情况下,框架结构能够提供较大的建筑空间,其平面布置比较的灵活,可适合多种工艺与使用功能的要求。下面介绍下框架结构的基本信息及一些常见的问题[1]。 1.文献综述正文 钢筋混凝土框架结构是由楼板、梁、柱及基础四种承重构件组成的。由主梁、柱与基础构成平面框架,各平面框架再由连续梁连接起来形成空间结构体系。高层建筑采用框架结构体系时,框架梁应纵横向布置,形成双向抗侧力构件,使之具有较强的空间整体性,以承受任意方向的侧向力。框架结构具有建筑平面布置灵活、造型活泼等优点,可以形成较大的使用空间,易于满足多功能的使用要求。在结构受力性能方面,框架结构属于柔性结构,自振周期较长,地震反应较小,经过合理的结构设计,可以具有较好的延性性能[2]。其缺点就是整体侧向刚度较小,在强烈地震作用下侧向变形较大,容易使填充墙产生裂缝,并引起建筑装修、玻璃幕墙等非结构构件的破坏。不仅地震中危及人身安全和财产损失,而且震后的修复工作和费用也很大[3]。同时当建筑层数较多或荷载较大时,要求框架柱截面尺寸较大,既减少了建筑使用面积,又会给室内办公用品或家具的布置带来不便,因此这种结构一般用于非地震区或层数较少的低烈度高层建筑。另外框架结构的承载力较低,它的受力特点类似于竖向悬臂剪切梁,楼层越高,水平位移越慢,高层框架在纵横两个方向都承受很大的水平力,这时,现浇楼面也作为梁共同工作的构件,装配整体式楼面的作用则不考虑,框架结构的墙体是填充墙,起围护和分隔作用。

有限元分析在钢筋混凝土结构中的应用

论文题目:钢筋混凝土有限元分析技术在结构工程中的应用 学生姓名:刘畅 学号:2014105110 学院:建筑与工程学院 2015年06月30日

有限元分析在钢筋混凝土结构中的应用【摘要】在国内外的土木工程中,钢筋混凝土结构因具有普遍性、可靠性良好、操作简单等优点,而得到了广泛的应用。钢筋混凝土结构是钢筋与混凝土两种性质截然不同的材料组合而成,由于其组合材料的性质较为复杂,同时存在非线性与几何线形的特征,应用传统的解析方法进行材料的分析与描述在受力复杂、外形复杂等情况下较为困难,往往不能得到准确的数据,给工程安全带来隐患。而有限元分析方法则充分利用现代电子计算机技术,借助有限元模型有效解决了各种实际问题。 【关键词】有限元分析;钢筋混凝土结构;应用 随着计算机在工程设计领域中的广泛应用,以及非线性有限元理论研究的不断深入,有限元作为一个具有较强能力的专业数据分析工具,在钢筋混凝土结构中得到了广泛的应用。在现代建筑钢筋混凝土结构的分析中,有限元分析方法展现了较强的可行性、实用性与精确性。例如:在计算机上应用有限元分析法,对形状复杂、柱网复杂的基础筏板,转换厚板,体型复杂高层建筑侧向构件、楼盖,钢-混凝土组合构件等进行应力,应变分析,使设计人员更准确的掌握构件各部分内力与变形,进而进行设计,有效解决传统分析方法的不足,满足当前建筑体型日益复杂,工程材料多样化的实际情况。但是在有限元分析方法的应用中,必须结合钢筋混凝土结构工程的实际情况,选取作为合理的有限元模型,才能保证模拟与分析结果的真实性、精确性与可靠性。 在钢筋混凝土结构工程中,非线性有限元分析的基本理论可以概括为:1)通过分离钢筋混凝土结构中的钢筋、混凝土,使其成为有限单位、二维三角形单元,钢箍离散为一维杆单元,以利于分析模型的构建;2)为了合理模拟钢筋、混凝土之间的粘结滑移关系,以及

《钢筋混凝土结构》 参考答案

《钢筋混凝土结构》 专科 试卷一 一、填空题 1、混凝土抗压试验时加载速度对立方体抗压强度也有影响,加载速度越快,测得的强度越高。 2、混凝土的抗拉强度f tk比抗压强度低得多,一般只有抗压强度的1/20~1/10 。 3、混凝土在荷载保持不变的情况下随时间而增长的变形称为徐变,;混凝土在空气中结硬时体积减小的现象称为收缩。 4、结构功能的极限状态分为半概率极限状态设计法和概率极限状态设计法.两类 5、结构可靠性是指结构在规定的时间内,在规定的条件下,完成预定功能的概率。 6、抗剪钢筋也称作腹筋,腹筋的形式可以采用 箍筋 和__弯起钢筋 。 7、剪跨比对无腹筋梁破坏形态的影响表现在:一般λ>3常为斜拉破坏;当λ≤1时,可能发生斜压破坏;当1<λ≤3时,一般是剪压破坏。 8、试验表明,若构件中同时有剪力和扭矩作用,剪力的存在,会降低构件的抗 扭承载力;同样,由于扭矩的存在,也会引起构件抗剪承载力的降低。这便是剪力和扭矩的相关性。 9、两类偏心受压破坏的本质区别就在于破坏时受拉钢筋能否达到屈服。 10、在偏心受压构件的正截面承载力计算中,应考虑轴向压力在偏心方向存在的附加偏心距e a,其值取和偏心方向截面尺寸的两者中的较大者。 二、选择题 1、双筋矩形截面承载力计算,受压钢筋设计强度不超过400N/mm2,因为( A )

(A) 受压混凝土强度不足 (B) 混凝土受压边缘混凝土已达到极限应变 (C) 需要保证截面具有足够的延性 2、在进行受弯构件斜截面受剪承载力计算时,若所配箍筋不能满足抗剪要求(V>V cs)时,采取哪种解决办法较好( C ) (A) 将纵向钢筋弯起为斜筋或加焊斜筋 (B) 将箍筋加密或加粗 (C) 增大构件截面尺寸 (D) 提高混凝土强度等级 3、钢筋混凝土大偏心受压构件的破坏特征是( A ) (A) 远离轴向力一侧的钢筋拉屈,随后另一侧钢筋压屈,混凝土被压碎 (B) 远离轴向力一侧的钢筋应力不定,而另一侧钢筋压区,混凝土被压碎 (C) 靠近轴向力一侧的钢筋和混凝土应力不定,而另一侧受拉钢筋受拉屈服 4、指的是混凝土的( A ) (A)弹性模量 (B) 割线模量 (C) 切线模量 (D) 原点切线模量 5、普通钢筋混凝土结构不能充分发挥高强钢筋的作用,主要原因是( C ) (A) 受压混凝土先破坏 (B) 未配置高强混凝土 (C) 不易满足正常使用极限状态 三、简答题 1、如何确定混凝土的立方体抗压强度标准值?它与试块尺寸的关系如何? 答:按标准方法制作、养护的边长为150mm的立方体在28天龄期用标准试验方法测得的具有95%保证率的抗压强度。试件尺寸越小,抗压强度值越高。 2、荷载设计值与荷载标准值有什么关系? 答:荷载代表值乘以荷载分项系数后的值,称为荷载设计值。设计过程中,只是在按承载力极限状态计算荷载效应组合设计值的公式中引用了

土木工程毕业设计文献综述钢筋混凝土框架结构

文献综述 钢筋混凝土框架结构 1.前言 随着经济的发展、科技进步、建筑要求的提升,钢筋混凝土结构在建筑行业得到了迅速发展。随着建筑造型和建筑功能要求日趋多样化,无论是工业建筑还是民用建筑,在结构设计中遇到的各种难题日益增多,钢筋混凝土结构以其界面高度小自重轻,刚度大,承载能力强、延性好好等优点,被广泛应用于各国工程中,特别是桥梁结构、高层建筑及大跨度结构等领域,已取得了良好的经济效益和社会效益。而框架结构具有建筑平面布置灵活、自重轻等优点,可以形成较大的使用空间,易于满足多功能的使用要求,因此,框架结构在结构设计中应用甚广。为了增强结构的抗震能力,框架结构在设计时应遵循以下原则:“强柱弱梁、强剪弱弯、强节点强锚固”。 2.现行主要研究 2.1预应力装配框架结构 后浇整体节点与现浇节点具有相同的抗震能力;钢纤维混凝土对减少节点区箍筋用量有益,但对节点强度、延性和耗能的提高作用不明显。与现浇混凝土节点相比,预应力装配节点在大变形后强度和刚度的衰减及残余变形都小;节点恢复能力强;预制混凝土无粘结预应力拼接节点耗能较小,损伤、强度损失和残余变形也较小。装配节点力学性能受具体构造影响很大,过去进行的研究也较少,一般说,焊接节点整体性好,强度、耗能、延性等方面均可达到现浇节点水平;螺栓连接节点刚度弱,变形能力大,整体性较差。因此,这一类节点连接如应用于抗震区,需做专门抗震设计。 2.2地震破坏 钢筋混凝土在地震破坏过程中瞬态震动周期逐步延长,地震动的低频成分是加剧结构破坏的主要因素,峰值和持时也是非常重要的原因。瞬态振型的变化与结构的破坏部位直接相关。结构破坏过程中,瞬态振型参与系数变化不大。结构瞬态振动周期

钢筋混凝土结构发展综述

《混凝土结构设计原理》过程考核第一次 《钢筋混凝土结构发展综述》专题报告 姓名:许新 学号: 0901014028 专业班级: 09土木4班 成绩: 教师评语: 年月日

“钢筋混凝土结构发展综述”专题报告 摘要: 关键词:(3~5个)钢筋,混凝土,发展,波特兰水泥,抗拉强度 1 钢筋混凝土结构的发展阶段 1.1 什么是混凝土 1.2钢筋混凝土结构发展的四个重要阶段 2 钢筋混凝土结构的发展 2.1混凝土结构发展史 2.2 混凝土结构在我国的发展 3 体会(或总结)

1 钢筋混凝土结构的发展阶段 1.1什么是混凝土 混凝土的名词定义:以混凝土为主要材料建造的工程结构。包括素混凝土结构、钢筋混凝土结构、预应力混凝土结构等。混凝土是由水泥、砂子、石子和水按一定的比例拌和而成。凝固后坚硬如石,受压能力好,但受拉能力差,容易因受拉而断裂(图a)。为了解决这个矛盾,充分发挥混凝土的受压能力,常在混凝土受拉区域内或相应部位加入一定数量的钢筋,使两种材料粘结成一个整体,共同承受外力。这种配有钢筋的混凝土,称为钢筋混凝土(图b)。钢筋混凝土粘结锚固能力可以由四种途径得到:①钢筋与混凝土接触面上化学吸附作用力,也称胶结力。②混凝土收缩,将钢筋紧紧握固而产生摩擦力。③钢筋表面凹凸不平与混凝土之间产生的机械咬合作用,也称咬合力。④钢筋端部加弯钩、弯折或在锚固区焊短钢筋、焊角钢来提供锚固能力。 1.2钢筋混凝土结构发展的四个重要阶段 第一阶段为钢筋混凝土小构件的应用,设计计算依据弹性理论方法。1801年考格涅特发表了有关建筑原理的论著,指出了混凝土这种材料抗拉性能较差,到1850年法国的兰博特首先建造了一艘小型水泥船,并于1855年在巴黎博览会上展出。接着法国的花匠莫尼尔在1867年制作了以金属骨架作配筋的混凝土花盆并以此获得专利。后来康纳于1886年发表了第一篇关于混凝土结构的理论与设计手稿。1872年美国人沃德建造了第一幢钢筋混凝土构件的房屋。1906年特纳研制了第一个无梁平板。从此钢筋混凝土小构件已进入工程实用阶段。 第二阶段为钢筋混凝土结构与预应力混凝土结构的大量应用,设计计算依据材料的破损阶段方法。1922年英国人狄森提出了受弯构件按破损阶段的计算方法。1928年法国工程师弗来西奈发明了预应力混凝土。其后钢筋混凝土与预应力混凝土在分析、设计与施工等方面的工艺与科研迅速发展,出现了许多独特的建筑物,如美国波士顿市的Kresge大会堂,英国的1951节日穹顶,美国芝加哥市的Marina摩天大楼,湖滨大楼等建筑物。1950年苏联根据极限平衡理论制定了“塑性内力重分布计算规程”。1955年颁布了极限状态设计法,从而结束了按破损阶段的设计计算方法。 第三阶段为工业化生产构件与施工,结构体系应用范围扩大,设计计算按极限状态方法。由于二战后许多大城市百废待兴,重建任务繁重。工程中大量应用预制构件和机械化施工以加快建造速度。继苏联提出的极限状态设计法之后,1970年英国,联邦德国,加拿大,波兰相继采用此方法。并在欧洲混凝土委员会与国际预应力混凝土协会(CEB-FIP)第六届国际会议上提出了混凝土结构设计与施工建议,形成了设计思想上的国际化统一准则。 第四阶段,由于近代钢筋混凝土力学这一新的学科的科学分支逐渐形成,以统计教学为基础的结构可靠性理论已逐渐进入工程实用阶段。电算的迅速发展使复杂的数学运算成为可能。设计计算依据概率极限状态设计法。概括为计算理论趋于完善,材料强度不断提高,施工机械化程度越来越高,建筑物向大跨高层发展。

相关主题
文本预览
相关文档 最新文档