当前位置:文档之家› 用牛顿运动定律解决问题(一)习题 (2)

用牛顿运动定律解决问题(一)习题 (2)

用牛顿运动定律解决问题(一)习题 (2)
用牛顿运动定律解决问题(一)习题 (2)

用牛顿定律解决问题(一)

学点1 从受力确定运动情况

基本方法、步骤:

①确定研究对象,对研究对象进行受力分析和运动分析,并画出物体的受力图。 ②根据力的合成与分解的方法,求出物体所受的合外力(包括大小和方向)。 ③根据牛顿第二定律列方程,求出物体的加速度。

④结合给定的物体运动的初始条件,选择运动学公式,求出所需运动参量。

例1 一个滑雪人从静止开始沿山坡滑下,山坡的倾角θ=30°,滑雪板与雪地的动摩擦因数0.04,求10s 内滑下来的路程和10s 末的速度大小。(g 取10m /s 2)

解析 以滑雪人为研究对象,受力情况如图4-6-1所示。

研究对象的运动状态为:垂直于山坡方向,处于平衡;沿山坡方向,做匀加速直线运动。 将重力mg 分解为垂直于山坡方向和沿山坡方向,据牛顿第二定律列方程: F N -mg cos θ=0

mg sin θ-F f =ma

又因为F f =μF N

由①②③可得:a =g (sin θ-μcos θ)

故x =g at 212

12=(sin θ-μcos θ)t 2 =21×10×(21

-0.04×23)×102m =233m

v =at =10×(21

-0.04×23)×10m /s =46.5m /s

答案233m ,46.5m /s 。

方法点拨

物理运算过程中尽量使用代表物理量的字母,必要时再代入已知量。

学后反思

物体的运动情况是由物体所受合外力及物体初始条件决定的,在解决动力学问题过程中应注重受力分析能力的培养和提高。

例2如图4-6-2所示,传送带地面倾角θ=37°,AB之间的长度为L=16m,传送带以速率v=10m/s逆时针转动,在传送带上A端无初速地放一个质量为m=0.5kg的物体,它与传送带之间的动擦系数μ=0.5,求物体从A运动到B需要多少时间?

(g=10m/s2,sin37°=0.6,cos37°=0.8)

解析物体放到传送带上,开始相对于传送带向上运动,所受摩擦力方向沿传送带向下,物体由静止开始做初速为零的匀速直线运动,根据牛顿第二定律:

mg sinθ+μmg cosθ=ma1①

物体速度由零增大到10m/s所用的时间:t1=x1/v②

物体下滑的位移:x1=

2

1

2

1

at

当物体速度等于10m/s时,相对于传送带,物体向下运动,摩擦力方向与原来相反,沿传送带向上,此时有:mg sinθ-μmg cosθ=ma2④

从速度增大到10m/s后滑到B所用时间为t2,根据运动学知识:

L-x1=vt2+

2

2

2

2

1

t

a

联立方程组解得:t1=1s t2=1s 所以从A到B时间为t=t1+t2=2s

答案2s。

方法总结

本题应注意,开始时物体的速度小于传送带速度,相对传送带向上运动,受摩擦力方向沿斜面向下;当物体速度加速到大于传送带速度时,相对传送带向下运动,摩擦力方向沿斜面向上。因此,物块在传送带上运动时,分加速度不同的两个阶段进行研究。

例3一小圆盘静止在桌布上,位于一方桌的水平桌面的中央。桌布的一边与桌的AB边重合,如图4-6-3。已知盘与桌布间的动摩擦因数为μ1,盘与桌面间的动摩擦因数为μ2,现突然以恒定加速度a将桌布抽离桌面,加速度方向是水平的且垂直于AB边。若圆盘最后未从桌面掉下,则加速度a满足的条件是什么?(以g表示重力加速度)

解析设圆盘的质量为m,桌面长为l,在桌布从圆盘下抽出的过程中,盘的加速度为a1,有:μ1ma=ma1①

桌布抽出后,盘在桌面上作匀减速运动,以a2表示加速度的大小,有

μ2ma=ma2②

设盘刚离开桌布时的速度为v1,移动的距离为x1,离开桌布后在桌面上再运动距离x2,

后便停下,有

2

1

v=2a

1

x1③,

2

1

v=2a

2

x2④,

盘没有从桌面上掉下的条件是x2≤

l

2

1

-x1⑤,

设桌布从盘下抽出所经历时间为t,在这段时间内桌布移动的距离为x,有

x=

2

2

1

at

⑥,x1=

2

1

2

1

t a

⑦,而x=

l

2

1

+x1⑧,

由以上①到⑧式解得:a≥

g

1

2

2

1

2

μ

μ

μ

μ+

答案a≥

g

1

2

2

1

2

μ

μ

μ

μ+

感悟技巧

求解比较复杂的动力学问题,可根据动力学规律和运动学规律列出相互独立的物理方程综合求解。

学点2 从运动情况确定受力

解题的基本方法步骤:

①确定研究对象,对研究对象进行受力分析和运动分析,并画出物体的受力图;

②选择合适的运动学公式,求出物体的加速度;

③根据牛顿第二定律列方程,求出物体所受的合外力;

④根据力的合成与分解的方法,由合力求出所需的力。

例4 质量为200t的机车从停车场出发,行驶225m后,速度达到54km/h,此时,司机关闭发动机让机车进站,机车又行驶了125m才停在站上。设运动阻力不变,求机车关闭发动机前所受到的牵引力。

解析 机车关闭发动机前在牵引力和阻力共同作用下向前加速;关闭发动机后,机车只在阻力作用下做减速运动。因加速阶段的初末速度及位移均已知,故可由运动学公式求出加速阶段的加速度,由牛顿第二定律可求出合力;在减速阶段初末速度及位移已知,同理可以求出加速度,由牛顿第二定律可求出阻力,则由两阶段的力可求出牵引力。

在加速阶段

初速度v 0=0,末速度v 1=54km /h =15m /s 位移x 1=225m

由2t v -20v =2ax 得: 加速度a 1=22521522

121?=x v m /s 2=0.5m /s 2

由牛顿第二定律得

F 引-F 阻=ma 1=2×105×0.5N =1×105N ①

减速阶段:初速度v 1=15m /s ,末速度v 2=0,位移x 2=125m

由得=-ax v v 22

122 加速度a 2=

12521522

221?=--x v m /s 2=-0.9m /s 2,负号表示a 2方向与v 1方向相反 由牛顿第二定律得F 阻=-ma 2=-2×105×(-0.9)N =1.8×105N ②

由①②得机车的牵引力为F 引=2.8×105N

答案 2.8×105N

方法总结

解题前应对问题先作定性和半定量的分析,弄清物理情景,找出解题的关键,以养成良好的思维品质和解题习惯,在求解加速度过程中要注意加速度和速度方向关系,在求a 2时也可不考虑方向,直接求其大小,a 2=0.9m /s 2,然后根据阻力方向得出F

阻=-ma 2=1.8

×105N 的结果。

例5 在水平地面上有两个彼此接触的物体A 和B ,它们的质量分别为m 1和m 2,与地面间的动摩擦因数均为μ,若用水平推力F 作用于A 物体,使A 、B 一起向前运动,如图4-6-4所示,求两物体间的相互作用力为多大?若将F 作用于B 物体,则A 、B 间的相互作用力为多大?

解析 由于两物体是相互接触的,在水平推力F 的作用下做加速度相同的匀加速直线运动,如果把两个物体作为一个整体,用牛顿第二定律去求加速度a 是很简便的。题目中要求A 、B 间的相互作用力,因此必须采用隔离法,对A 或B 进行受力分析,再用牛顿第二定律就可以求出两物体间的作用力。

解法一:设F 作用于A 时,A 、B 的加速度为a 1,A 、B 间相互作用力为F 1。以A 为研究对象,受力图如图4-6-5所示,由牛顿第二定律得

水平方向F -F 1-F 1阻=m 1a 1,

竖直方向F 1弹=m 1g ,F 1阻=μF 1弹

再以B 为研究对象,它受力如图4-6-6所示,由牛顿第二定律有

水平方向F 1-F 2阻=m 2a 1,

竖直方向F 2弹=m 2g ,又F 2阻=μF 2弹

联立以上各式可得A 、B 间相互作用力为F 1=212m m F

m +,

当F 作用B 时,应用同样的方法可求A 、B 间的相互作用力F 2为F 2=211m m F

m +

解法二:以A 、B 为研究对象,其受力如图4-6-7所示,由牛顿第二定律可得 F -μ(m 1+m 2)g =(m 1+m 2)a

所以a =21m m F

+-μg

再以B 为研究对象,其受力如图4-6-6所示,由牛顿第二定律可得

F 1-F 2阻=m 2a

则A 、B 间相互作用力F 1为:F 1=212m m F m +同理可求得F 2=211m m F

m +

答案212m m F m +;211m m F

m +

方法提示

研究系数内部物体间的相互作用力应采用隔离法,研究系统与外办的相互作用采用整体法更简便一些。

规律总结

两个(或两个以上)物体组成的系统,我们称之为连接体。连接体的加速度通常是相同的,但也有不同的情况,如一个静止,一个变速运动。

在连接体内各物体具有相同的加速度时,可先把这个连接体当成一个整体,分析受到的外力及运动情况,利用牛顿第二定律求出加速度,若要求连接体内各种物体相互作用的内力,则把物体隔离,对某个物体单独进行受力分析,再利用牛顿第二定律对该物体列式求解。

拓广延伸

牛顿运动定律是经典力学的基础,它在科学研究和生产技术中有着广泛的应用,本节课就是运用牛顿运动定律解决两类最常见的问题。

受力分析和运动过程分析是解决动力学问题的前提。找到加速度是解题的突破口,因此,解题时应抓住“加速度”这个桥梁不放,确定过渡方向,学习中要通过具体问题的分析,熟练掌握解题思路,提高自己解决实际问题的能力。

例6如图4-6-8所示,ad、bd、cd是竖直面内三根固定的光滑细杆,每根杆上套着一个小滑环(图中未画出),三个滑环分别从a、b、c处释放(初速为0),用t1、t2、t3依次表示滑环到达d所用的时间,则()

A。t1<t2<t3B。t1>t2>t3

C。t3>t1>t2D。t1=t2=t3

解析小滑环下滑过程中受重力和杆的弹力作用,下滑的加速度可认为是由重力沿斜面方向的分力产生的,设轨迹与竖直方向夹角为θ。由牛顿第二定律知:mg cosθ=ma①,设圆心为O,半径为R,由几何关系得,滑环由开始运动到d点的位移

x=2R cosθ②,

由运动学公式得x=

2

2

1

at

③,

由①②③联立解得t=2g

R

说明小圆环下滑的时间与细杆的倾斜情况无关,故t1=t2=t3

答案 D

学后反思

对具体问题不能单凭想当然下结论,应该结合物理规律找出其表达式,然后再作出判断。

例7在光滑的水平轨道上有两上半径都是r的小球和A和B,质量分别为m和2m,当两球心的距离大于l(l比2r大得多)时,两球之间无相互作用力,当两球心间的距离等于或小于l时,两球之间存在相互作用的恒定斥力F,设A球从远离B球处以速度v0沿两球心连线向原来静止的B球运动。如图4-6-9所示。欲使两球不发生接触,v0必须满足什么条件?

解析两球不相接触的条件是速度相同时两球心间的距离d>2r。

对两球运动进行分析:当球心距离小于l后,A球受到斥力而做匀减速直线运动,B球受到斥力而做初速为零的匀加速运动,从而产生A追B的情形。开始阶段A球的速度大于B球速度,球间距离在减小,当B球速度大于A球速度时两球间的距离就会增大,所以两球的速度相等时两球间的距离达到最小。不相撞的条件是这个最小距离要大于2r,如图4-6-10所示。

两球从相互作用开始,A的位移为x A,B的位移为x B,d=x B+l-x A>2r。

解法一:利用牛顿定律和运动学公式分析知,两球间距离最小时,

有v 1=v 2

设相互作用过程中,A 、B 两球的位移分别为x A 和x B ,则距离关系为

l +x B -x A >2r ,由牛顿第二定律得,两球加速度分别为

a A =m F ,a B =m F

2,由运动学公式知,两球速度分别为

v A =v 0-a A t ,v B =a B t ,v A =v B ,

由运动学公式知,两球位移分别为

x A =v 0t -221t a A ,x B =2

21t a B

联立以上各式解得v 0<m r l F )

-(23

解法二:利用极值法求解:

当A 、B 间距离等于l 时,开始时

A 球位移x A =v 0t -221t a A ,

B 球位移x B =2

21t a B

据牛顿第二定律得a A =m F ,a B =m F

2,球心间距离d =x B +l -x A =21(a A +a B )t 2-

v 0t +l ,当t =-a b

2=B A a a v +0时,d 有最小值。

此时a A t +a B t =v 0 即a B t =v 0-a A t

因此v A =v 0-a A t ,v B =a B t ,所以 v A =v B

d min =21(a A +a B )2

0???? ??B A a a v +-v 0·l F mv l a a v l a a v B A B A +=-++-++320200 两球不相遇,d min >2r ,所以-F mv 320

+l >2r

即v 0<m r l F )

-(23。

解法三:利用图象法求解

作出A 、B 两球的速度图象,如图4-6-11所示。交点C 处,v A =v B ,此时t =t 0,两球相距最近为d ,要求不撞,则

d =x B +l -s A >2r ①

有x A -x B <l -2r

由图象知,x A -x B 即△v 0OC 的面积

则=x A -x B =t v 021 ②

v A =v B ,即v 0-m F ·t 0=m F

2·t 0 ③

解①②③,得v 0<m r l F )

-(23

答案 v 0<m r l F )

-(23

规律总结

求解此题的关键是对题目的物理过程进行分析,找出两球不相撞的临界条件。此题是动力学的综合题目,从不同的角度、不同的物理观点出发得到几种不同的解法,但各种解法中都应用了追及问题中当物体速度相等时。两物体间距最小这一基本条件。

此题中l 比2r 大得多,但r 不能忽略,即小球不能看成质点。

本题考查应用牛顿定律与运动学公式进行分析和解决问题的能力,弄清物理过程,找出不接触的临界条件:v 相同时,l +x B -x A >2r 是解题的关键。

例8 风洞实验室中可产生水平方向的、大小可调节的风力,现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径,如图4-6-12所示。

(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上做匀速运动,这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数。

(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球静止出发

在细杆上滑下距离x 所需时间为多少?(sin37°=0.6,cos37°=0.8)

解析 杆水平时,小球在杆上做匀速运动,则风力和摩擦力等大反向;当杆与水平方向夹角为37°时,对小球受力分析如图4-6-13所示,把风力F 和重力mg 沿杆方向和垂直杆方向进行正交分解,列方程求解加速度,从而求出时间。

(1)设小球所受的风力为F ,小球为m ,由小球水平匀速运动可知

F =μmg ,μ=mg mg mg

F 5.0==0.5 (2)设杆对小球的支持力为F N ,摩擦力为F ′,则沿杆方向

F cos θ+mg sin θ-F ′=ma

垂直杆方向:F N 十F sin θ-mg cos θ=0,F ′=μF N

可解得a =

???? ??'g m F g m F mg F 22sin cos +=-+θθsin θ=g 43,又x =221at 解得下滑x 所用时间t =g x a

x 382= 答案(1)0.5 (2)g x

38

感悟技巧

本题是以加速度方向建立正交坐标系的(图中没有直接画出),这样只需分解力,而不需分解加速度。有些情况下,只需分解加速度而不分解力,也有时需要同时分解。总之,在建立坐标系时,应尽量减少矢量的分解。

牛顿运动定律练习题经典习题汇总.

一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3,则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩 擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) A .物体处于超重状态时,其重力增加了 B .物体处于完全失重状态时,其重力为零 C .物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了 D .物体处于超重或失重状态时,其质量及受到的重力都没有变化 11.如图所示,一个物体静止放在倾斜为θ的木板上,在木板倾角逐渐增大到某一角 t/s 0 2 2 1 3 -2 v/ms -1 第 5 题 F 第 6 题

高考物理牛顿运动定律的应用(一)解题方法和技巧及练习题

高考物理牛顿运动定律的应用(一)解题方法和技巧及练习题 一、高中物理精讲专题测试牛顿运动定律的应用 1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求 (1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度; (3)木板右端离墙壁的最终距离. 【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】 (1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s = 木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m s g s μ-= 解得20.4μ= 木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212 x vt at =+ 带入可得21/a m s = 木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ= (2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214 /3 a m s = 对滑块,则有加速度2 24/a m s = 滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =- =末速度18 /3 v m s =

最新高考物理牛顿运动定律练习题

最新高考物理牛顿运动定律练习题 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可 视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求: (1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ? 【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】 (1)滑块与小车动量守恒0()mv m M v =+可得1m/s v = (2)木板静止后,滑块匀减速运动,根据动能定理有:2102 mgs mv μ-=- 解得0.25m s = (3)从滑块滑上木板到共速时,由能量守恒得:220111 ()22 mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+= 2.如图,光滑固定斜面上有一楔形物体A 。A 的上表面水平,A 上放置一物块B 。已知斜面足够长、倾角为θ,A 的质量为M ,B 的质量为m ,A 、B 间动摩擦因数为μ(μ<), 最大静擦力等于滑动摩擦力,重力加速度为g 。现对A 施加一水平推力。求: (1)物体A 、B 保持静止时,水平推力的大小F 1; (2)水平推力大小为F 2时,物体A 、B 一起沿斜面向上运动,运动距离x 后撒去推力,A 、B 一起沿斜面上滑,整个过程中物体上滑的最大距离L ; (3)为使A 、B 在推力作用下能一起沿斜面上滑,推力F 应满足的条件。 【答案】(1) (2) (3)

(完整版)牛顿运动定律解题方法总结(教师版),推荐文档

牛顿运动定律解题方法总结(教师版) 1、正交分解法:把矢量(F ,a )分解在两个互相垂直的坐标轴上的方法。 例1、如图4-45所示,一自动电梯与水平面之间的夹角θ=30°,当电梯加 速向上运动时,人对梯面的压力是其重力的6/5,试求人与梯面之间的摩擦力是其重力的多少倍?解析:在动力学的两类基本问题中,本题应属于已知物体的运动状态求解 物体的受力情况。 人受力如图4-46所示,建立直角坐标系,将a 分解在x 轴和y 轴上, 由牛顿第二定律得:f =macosθ,N -mg =masinθ,N =6mg/5联立解得f =√3mg/5 说明:可见,当研究对象所受的力都是互相垂直时,通常采用分解加速度的方法,可以使解题过程更为简化。 2、整体法和隔离法:主要对连接体问题要用整体法和隔离法。 例2、如图4-47所示,固定在水平地面上的斜面倾角为θ,斜面上放一个带有支架的木块,木块与斜面间的动摩擦因数为μ,如果木块可以沿斜面加速下滑,则这一过程中,悬挂在支架上的小球悬线和竖直方向的夹角α为多大时小球可以相对于支架静止? 解析:要使小球可以相对于支架静止,说明二者具有相同的加速度。 视小球、木块为一整体,其具有的加速度为a ,由牛顿第二定律得: a =gsinθ-μgcosθ,对小球受力分析如图4-48所示,建立水平竖直方向坐标系,由牛顿第二定律得:Tsinα=macosθmg -Tcosα=masinα消去T ,得:tanα=acosθ/(g -asinα) 将a 代入得:tanα=(sinθ-μcosθ)/(cosθ+μsinθ) 3、瞬时分析法:主要求某个力突然变化时物体的加速度时用此法。 例3、质量为m 的箱子C ,顶部悬挂质量为m 的小球B ,小球B 的下方通过一轻弹簧与质量为m 的小球A 相连,箱子C 用轻绳OO ′悬于天花 板上处于平衡状态,如图4-49所示,现剪断OO ′,在轻绳被剪断的瞬 间,小球A 、B 和箱子C 的加速度分别是多少?B 、C 间绳子的拉力T 为多少? 解析:细绳剪断瞬间,拉力消失,A 、B 间弹簧弹力未变,B 、C 间绳子 拉力发生突变,所以A 仍受重力mg 和弹簧拉力F =mg 作用而平衡, 故a A =0。 剪断OO ′时,B 、C 间拉力也要突变,但B 、C 将同步下落,所以: a B =a C =3mg/2m =1.5g 。 对C 由牛顿第二定律得:T +mg =ma C ,∴T =0.5mg 。 4、程序法:按时间先后顺序对题目给出的物体运动过程(或不同状态)进行分析计算的解 题方法叫做程序法。 图4- 图4- 图4-图 4-图4-

【物理】物理牛顿运动定律练习题及答案及解析

【物理】物理牛顿运动定律练习题及答案及解析 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。求: (1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。 【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】 (1)设释放后,滑块会相对于平板向下滑动, 对滑块m :由牛顿第二定律有:0 11sin 37mg f ma -= 其中0 1cos37N F mg =,111N f F μ= 解得:002 11sin 37cos374/a g g m s μ=-= 对薄平板M ,由牛顿第二定律有:0 122sin 37Mg f f Ma +-= 其中00 2cos37cos37N F mg Mg =+,222N f F μ= 解得:2 21m/s a = 12a a >,假设成立,即滑块会相对于平板向下滑动。 设滑块滑离时间为t ,由运动学公式,有:21112x a t =,2221 2 x a t =,12x x L -= 解得:1s t = 2.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求: (1)小环的质量m ;

高一牛顿运动定律练习题及答案

第三章牛顿运动定律 【知识要点提示】 1.牛顿第一定律:一切物体总保持状态或状态,直到有外力迫使它改变这种状态为止。 2.惯性:物体保持原来的的性质叫惯性。所以牛顿第一定律也称为。惯性是物体本身的,与物体运动情况无关,与受力情况无关。是物体惯性大小的量度。 3.物体运动状态的改变是指它的发生了变化,物体运动状态变化的快慢用来描述。 4.保持物体质量不变,测量物体在不同的力作用下的加速度,可得出与成正比;保持物体所受的力不变,测量不同质量的物体在该力作用下的加速度,可得出与成反比。 5.牛顿第二定律的内容:物体加速度的大小跟所受的合外力成,跟物体的质量成;加速度的方向跟的方向相同。数学表达式 6.牛顿第二定律的说明 ①矢量性:等号不仅表示左右两边,也表示,即物体加速度方向与 方向相同。力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定。 ②瞬时性:当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大 小和方向也要同时发生;当合外力为零时,加速度同时,加速度与合外力同时产生、同时变化、同时消失。牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应。 ③相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时 将,这样的坐标系叫惯性参照系。地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只在中才成立。 7.在国际单位制中,力的单位,符号,它是根据定义的,使质量为的物体产生的加速度的力叫1N。 8.F=ma是一个矢量方程,应用时应先,凡与正方向相同的力或加速度均取,反之取,通常取的方向为正方向。根据力的独立作用原理,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物体所受各力,在两个互相垂直的方向上分别应用牛顿第二定律的分量形式:F x=ma x,F y=ma y列方程。 9.在物理学中,我们选定几个物理量的单位作为;根据物理公式,推导出其它物理量的单位,叫。基本单位和导出单位一起组成单位制。例如国际单位制。10.在力学中三个基本物理量分别为、、,在国际单位制中对应的三个基本单位为、、。 11.牛顿第三定律的内容:两个物体之间的作用力和反作用力总是 。 12.物体之间的作用总是相互的,所以施力物体同时也一定是物体,物体间相互作用的一对力叫做,其性质一定相同。 13.我们常用牛顿运动定律解决两类问题:一类是已知要求确定;另一类是已知要求确定,首先求解加速度是解决问题的关键。 14.超重现象:物体对支持物的压力(或对悬挂物的拉力)物体所受重力的现象,产生超重现象的条件:是物体具有的加速度,与物体速度的大小和方向无关。15.失重现象:物体对支持物的压力(或对悬挂物的拉力)物体所受重力的现象,产

牛顿运动定律-经典习题汇总

牛顿运动定律经典练习题 一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3, 则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与 水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) 第 5 题 第 6 题

高中物理牛顿运动定律的应用解题技巧及练习题(1)

高中物理牛顿运动定律的应用解题技巧及练习题(1) 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图甲所示,长为L =4.5 m 的木板M 放在水平地而上,质量为m =l kg 的小物块(可视为质点)放在木板的左端,开始时两者静止.现用一水平向左的力F 作用在木板M 上,通过传感器测m 、M 两物体的加速度与外力F 的变化关系如图乙所示.已知两物体与地面之间的动摩擦因数相同,且最大静摩擦力等于滑动摩擦力,g = 10m /s 2.求: (1)m 、M 之间的动摩擦因数; (2)M 的质量及它与水平地面之间的动摩擦因数; (3)若开始时对M 施加水平向左的恒力F =29 N ,且给m 一水平向右的初速度v o =4 m /s ,求t =2 s 时m 到M 右端的距离. 【答案】(1)0.4(2)4kg ,0.1(3)8.125m 【解析】 【分析】 【详解】 (1)由乙图知,m 、M 一起运动的最大外力F m =25N , 当F >25N 时,m 与M 相对滑动,对m 由牛顿第二定律有: 11mg ma μ= 由乙图知 214m /s a = 解得 10.4μ= (2)对M 由牛顿第二定律有 122()F mg M m g Ma μμ--+= 即 12122()()F mg M m g mg M m g F a M M M μμμμ--+--+= =+ 乙图知 11 4 M = 12()9 4 mg M m g M μμ--+=- 解得 M = 4 kg μ2=0. 1

(3)给m 一水平向右的初速度04m /s v =时,m 运动的加速度大小为a 1 = 4 m/s 2,方向水平向左, 设m 运动t 1时间速度减为零,则 11 1s v t a = = 位移 2101111 2m 2 x v t a t =-= M 的加速度大小 2122()5m /s F mg M m g a M μμ--+= = 方向向左, M 的位移大小 2 2211 2.5m 2 x a t = = 此时M 的速度 2215m /s v a t == 由于12x x L +=,即此时m 运动到M 的右端,当M 继续运动时,m 从M 的右端竖直掉落, 设m 从M 上掉下来后M 的加速度天小为3a ,对M 由生顿第二定律 23F Mg Ma μ-= 可得 2325 m /s 4 a = 在t =2s 时m 与M 右端的距离 2321311 ()()8.125m 2 x v t t a t t =-+-=. 2.某智能分拣装置如图所示,A 为包裹箱,BC 为传送带.传送带保持静止,包裹P 以初速度v 0滑上传送带,当P 滑至传送带底端时,该包裹经系统扫描检测,发现不应由A 收纳,则被拦停在B 处,且系统启动传送带轮转动,将包裹送回C 处.已知v 0=3m/s ,包裹P 与传送带间的动摩擦因数μ=0.8,传送带与水平方向夹角θ=37o,传送带BC 长度L =10m ,重力加速度g =10m/s 2,sin37o=0.6,cos37o=0.8,求:

牛顿运动定律测试题

《牛顿运动定律》测试题 一、选择题(每小题给出的四个选项中至少有一项是正确的,将正确选项填入括号内,每题4分,共48分。) 1、关于物体运动状态的改变,下列说法中正确的是() A、物体运动的速率不变,其运动状态就不变 B、物体运动的加速度不变,其运动状态就不变 C、物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D、物体的运动速度不变,我们就说它的运动状态不变 2、关于惯性的大小,下列说法中正确的是() A、质量相同的物体,在阻力相同情况下,速度大的不容易停下来,所以速度大的物体惯性大 B、上面两个物体既然质量相同,那么惯性就一定相同 C、推动地面上静止的物体比维持这个物体做匀速运动所需的力大,所以静止的物体惯性大 D、在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小 3、关于物体运动状态与所受外力的关系,下列说法中正确的是() A、物体受到恒定外力作用时,它的运动状态一定不变 B、物体受到的合力不为零时,一定做变速运动 C、物体受到的合外力为零时,一定处于静止状态 D、物体的运动方向就是物体受到的合外力的方向 4、物体静止于水平桌面上,则下列说法中正确的是() A、桌面对物体的支持力的大小等于物体的重力,这两个力是一对平衡力 B、物体所受的重力和桌面对它的支持力是一对作用力与反作用力 C、物体对桌面的压力就是物体的重力,这两个力是同一种性质的力 D、物体对桌面的压力和桌面对物体的支持力是一对平衡的力 5、下列说法正确的是() A、体操运动员双手握住单杠吊在空中不动时处于失重状态 B、蹦床运动员在空中上升和下落过程中都处于失重状态 C、举重运动员在举起杠铃后不动的那段时间内处于超重状态 D、游泳运动员仰卧在水面静止不动时处于失重状态 6、设雨滴从很高处竖直下落,所受空气阻力f和速度v成正比.则雨滴的运动情况() A、先加速后减速,最后静止 B、先加速后匀速 C、先加速后减速直至匀速 D、加速度逐渐减小到零 1,g为重力加速度。人对电梯7、一质量为m的人站在电梯中,电梯加速上升,加速大小为g 3

牛顿运动定律典型例题分析报告

牛顿运动定律典型例题分析 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点: (1)运动是物体的一种属性,物体的运动不需要力来维持; (2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性; (4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律; (5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点: (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础; (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度; (3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,

F x=ma x,F y=ma y,F z=ma z; (4)牛顿第二定律F=ma定义了力的基本单位——牛顿(定义使质量为1kg的物体产生1m/s2的加速度的作用力为1N,即1N=1kg.m/s2. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。对牛顿第三定律的理解要点: (1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提; (2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力; (3)作用力和反作用力是同一性质的力; (4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序: (1)确定研究对象; (2)采用隔离法分析其他物体对研究对象的作用力; (3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力; (4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重: (1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F(或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;

牛顿运动定律经典例题(含解析)

7.14作业一牛顿第一定律、牛顿第三定律 看书:《大一轮》第一讲 基础热身 1.2012·模拟用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如图K12-1所示,下列说确的是( ) B.F2的反作用力是F3 C.F3的施力物体是地球 D.F4的反作用力是F1 2.2011·模拟关于惯性,下列说法中正确的是( ) A.在月球上物体的重力只有在地面上的1 6 ,但是惯性没有变化 B.卫星的仪器由于完全失重,惯性消失了 C.铁饼运动员在掷出铁饼前快速旋转可增大铁饼惯性,使其飞得更远 D.磁悬浮列车能高速行驶是因为列车浮起后惯性小了 3.2011·模拟跳高运动员蹬地后上跳,在起跳过程中( ) A.运动员蹬地的作用力大小大于地面对他的支持力大小 B.运动员蹬地的作用力大小等于地面对他的支持力大小 C.运动员所受的支持力和重力相平衡 D.运动员所受的支持力小于重力 4.2011·海淀模拟物体同时受到F1、F2、F3三个力的作用而保持平衡状态,则以下说确的是( ) A.F1与F2的合力一定与F3大小相等,方向相反 B.F1、F2、F3在某一方向的分量之和可能不为零 C.F1、F2、F3中的任何一个力变大,则物体必然做加速运动 D.若突然撤去F3,则物体一定沿着F3的反方向做匀变速直线运动 技能强化 5.就一些实际生活中的现象,某同学试图从惯性角度加以解释,其中正确的是( ) A.采用了大功率的发动机后,某些赛车的速度甚至能超过某些老式螺旋桨飞机的速度,这表明可以通过科学进步使小质量的物体获得大惯性 B.射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不透,这表明它的惯性小了 C.货运列车运行到不同的车站时,经常要摘下或加挂一些车厢,这会改变它的惯性 D.摩托车转弯时,车手一方面要控制速度适当,另一方面要将身体稍微向里倾斜,通过调控人和车的惯性达到急转弯的目的 6.2011·模拟计算机已经应用于各个领域.如图K12-2所示是利用计算机记录的某作用力和反作用力变化图线,根据图线可以得出的结论是( ) 图K12-2 A.作用力大时,反作用力小 B.作用力和反作用力的方向总是相反的 C.作用力和反作用力是作用在同一个物体上的 D.牛顿第三定律在物体处于非平衡状态时不再适用 7.我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,这是因

高一物理牛顿运动定律的解题技巧

高一物理牛顿运动定律的解题技巧 Revised on November 25, 2020

牛顿运动定律的综合应用 一、临界问题 在运用牛顿运动定律解动力学问题时,常常讨论相互作用的物体是否会发生相对滑动,相互接触的物体是否会发生分离等等,这类问题就是临界问题。 解决临界问题的基本思路 1.分析临界状态 一般采用极端分析法,即把问题中的物理量推向极值,就会暴露出物理过程,常见的有A.发生相对滑动;B.绳子绷直;C.与接触面脱离。 所谓临界状态一般是即将要发生质变时的状态,也是未发生质变时的状态。此时物体所处的运动状态常见的有:A.平衡状态;B.匀变速运动;C.圆周运动等。 2.找出临界条件 (1)相对滑动与相对静止的临界条件是静摩擦力达最大值; (2)绳子松弛的临界条件是绳中拉力为零; (3)相互接触的两个物体将要脱离的临界条件是相互作用的弹力为零。 3.列出状态方程 将临界条件代到状态方程中,得出临界条件下的状态方程。 4.联立方程求解 有些临界问题单独临界条件下的状态方程不能解决问题,则需结合其他规律联立方程求解。 1、如图所示,质量为m=1kg的物块放在倾角为θ=37的斜面体上,斜面质量为 M=1kg,斜面与物块间的动摩擦因数为μ= ,地面光滑,现对斜 面体施一水平推力F,要使物体m相对斜面静止,试确定推力F 的取值范围。(g取10m/s2)

2、一斜面放在水平地面上,倾角为θ=53°,一个质量为 kg的小球用细绳吊在斜面顶端,如图所示.斜面静止时,球紧靠在斜面上,绳与斜面平行.不计斜面与水平面间的摩擦,当斜面以10 m/s2的加速度向右运动时,求细绳的拉力及斜面对小球的弹力。(g取10 m/s2) 3、如图所示,两个质量都为m的滑块A和B,紧挨着并排放在水平桌面上,A、B间的接触面垂直于图中纸面与水平面成θ角,所有接触面都光滑无摩擦,现用一个水平推力作用于滑块A,使A、B一起向右做加速运动。求: (1)要使A、B间不发生相对滑动,它们共同向右运动的最大加速度是多大 (2)要使A、B间不发生相对滑动,水平推力的大小应在什么 范围内 二、滑块-木板模型的动力学分析 1、如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。变式1.若拉力F作用在A上呢如图2所示。 变式2.在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。 3、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6 kg,m B=2 kg,A、B之间的动摩擦因数μ=,开始时F=10 N,此后逐渐增加,在增大到45 N的过程中,则( ) A.当拉力F<12N时,两物体均保持静止状态 B.两物体开始没有相对运动,当拉力超过12N时,开始相对滑动 C.两物体间从受力开始就有相对运动 D.两物体间始终没有相对运动

牛顿运动定律试题及答案

高一物理牛顿运动定律测试 一、选择题:(每题5分,共50分)每小题有一个或几个正确选项。 1.下列说法正确的是 A.力是物体运动的原因B.力是维持物体运动的原因 C.力是物体产生加速度的原因D.力是使物体惯性改变的原因 2.下列说法正确的是 A.加速行驶的汽车比它减速行驶时的惯性小 B.静止的火车启动时速度变化缓慢,是因为火车静止时惯性大 C.已知月球上的重力加速度是地球上的1/6,故一个物体从地球移到月球惯性减小为1/6 D.为了减小机器运转时振动,采用螺钉将其固定在地面上,这是为了增大惯性 3.在国际单位制中,力学的三个基本单位是 A.kg 、m 、m / s2 B.kg 、 m / s 、 N C.kg 、m 、 s D.kg、 m / s2 、N 4.下列对牛顿第二定律表达式F=ma及其变形公式的理解,正确的是()A.由F=ma可知,物体所受的合外力与物体的质量成正比,与物体的加速度成正比 B.由m=F/a可知,物体的质量与其所受合外力成正比,与其运动加速度成反比 C.由a=F/m可知,物体的加速度与其所受合外力成正比,与其质量成反比 D.由m=F/a可知,物体的质量可以通过测量它的加速度和它受到的合外力而求得 5.大小分别为1N和7N的两个力作用在一个质量为1kg的物体上,物体能获得的最小加速度和最大加速度分别是 A.1 m / s2和7 m / s2 B.5m / s2和8m / s2 C.6 m / s2和8 m / s2 D.0 m / s2和8m / s2 6.弹簧秤的秤钩上挂一个物体,在下列情况下,弹簧秤的读数大于物体重力的是A.以一定的加速度竖直加速上升B.以一定的加速度竖直减速上升 C.以一定的加速度竖直加速下降D.以一定的加速度竖直减速下降 7.一物体以 7 m/ s2的加速度竖直下落时,物体受到的空气阻力大小是 ( g取10 m/ s2 ) A.是物体重力的0.3倍 B.是物体重力的0.7倍 C.是物体重力的1.7倍 D.物体质量未知,无法判断

牛顿运动定律经典例题(含解析)

7.14作业一 牛顿第一定律、牛顿第三定律 看书 :《大一轮》 第一讲 基础热身 1.2012·厦门模拟用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如图K12-1所示, 下列说法正确的是( ) B .F 2的反作用力是F 3 C .F 3的施力物体是地球 D .F 4的反作用力是F 1 2.2011·芜湖模拟关于惯性,下列说法中正确的是( ) A .在月球上物体的重力只有在地面上的16 ,但是惯性没有变化 B .卫星内的仪器由于完全失重,惯性消失了 C .铁饼运动员在掷出铁饼前快速旋转可增大铁饼惯性,使其飞得更远 D .磁悬浮列车能高速行驶是因为列车浮起后惯性小了 3.2011·金华模拟跳高运动员蹬地后上跳,在起跳过程中( ) A .运动员蹬地的作用力大小大于地面对他的支持力大小 B .运动员蹬地的作用力大小等于地面对他的支持力大小 C .运动员所受的支持力和重力相平衡 D .运动员所受的支持力小于重力 4.2011·海淀模拟物体同时受到F 1、F 2、F 3三个力的作用而保持平衡状态,则以下说法正确的是( ) A .F 1与F 2的合力一定与F 3大小相等,方向相反 B .F 1、F 2、F 3在某一方向的分量之和可能不为零 C .F 1、F 2、F 3中的任何一个力变大,则物体必然做加速运动 D .若突然撤去F 3,则物体一定沿着F 3的反方向做匀变速直线运动 技能强化 5.就一些实际生活中的现象,某同学试图从惯性角度加以解释,其中正确的是( ) A .采用了大功率的发动机后,某些赛车的速度甚至能超过某些老式螺旋桨飞机的速度,这表明可以通过科学进步使小质量的物体获得大惯性 B .射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不透,这表明它的惯性小了 C .货运列车运行到不同的车站时,经常要摘下或加挂一些车厢,这会改变它的惯性 D .摩托车转弯时,车手一方面要控制速度适当,另一方面要将身体稍微向里倾斜,通过调控人和车的惯性达到急转弯的目的 6.2011·台州模拟计算机已经应用于各个领域.如图K12-2所示是利用计算机记录的某作用力和反作用力变化图线,根据图线可以得出的结论是( ) 图K12-2 A .作用力大时,反作用力小 B .作用力和反作用力的方向总是相反的 C .作用力和反作用力是作用在同一个物体上的 D .牛顿第三定律在物体处于非平衡状态时不再适用 7.我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,这是因

应用牛顿运动定律解题的方法和步骤

应用牛顿运动定律解题 的方法和步骤 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

§3.4应用牛顿运动定律解题的方法和步骤 应用牛顿运动定律的基本方法是隔离法,再配合正交坐标运用分量形式求解。 解题的基本步骤如下: (1)选取隔离体,即确定研究对象 一般在求某力时,就以此力的受力体为研究对象,在求某物体的运动情况时,就以此物体为研究对象。有几个物体相互作用,要求它们之间的相互作用力,则必须将相互作用的物体隔离开来,取其中一物体作研究对象。有时,某些力不能直接用受力体作研究对象求出,这时可以考虑选取施力物体作为研究对象,如求人在变速运动的升降机内地板的压力,因为地板受力较为复杂,故采用人作为研究对象为好。 在选取隔离体时,采用整体法还是隔离法要灵活运用。如图3-4-1要求质量分别为M 和m 的两物体组成的系统的加速度a ,有两种方法,一种是 将两物体隔离,得方程为 另—种方法是将整个系统作为研究对象,得方程为 显然,如果只求系统的加速度,则第二种方法好;如果 还要求绳的张力,则需采用前一种方法。 (2)分析物体受力情况:分析物体受力是解动力学问题的一个关键,必须牢牢掌握。 ①一般顺序:在一般情况下,分析物体受力的顺序是先场力,如重力、电场力等,再弹力,如压力、张力等,然后是摩擦力。并配合作物体的受力示意图。 大小和方向不受其它力和物体运动状态影响的力叫主动力,如重力、库仑力;大小和主向与主动力和物体运动状态有密切联系的力叫被动力或约束力,如支持力、摩擦力。这m 图3-4-1

就决定了分析受力的顺序。如物体在地球附近不论是静止还是加速运动,它受的重力总是不变的;放在水平桌面上的物体对桌面的压力就与它们在竖直方向上有无加速度有关,而滑动摩擦力总是与压力成正比。 ②关于合力与分力:分析物体受力时,只在合力或两个分力中取其一,不能同时取而说它受到三个力的作用。一般情况下选取合力,如物体在斜面上 受到重力,一般不说它受到下滑力和垂直面的两个力。在—些特 殊情况下,物体其合力不能先确定,则可用两分力来代替它,如 图3-4-2横杆左端所接铰链对它的力方向不能明确之前,可用水 平和竖直方向上的两个分力来表示,最后再求出这两个分力的合 力来。 ③关于内力与外力:在运用牛顿第二定律时,内力是不可能对整个物体产生加速度的,选取几个物体的组合为研究对象时,这几个物体之间的相互作用力不能列入方程中。要求它们之间的相互作用,必须将它们隔离分析才行,此时内力转化成外力。 ④关于作用力与反作用力:物体之间的相互作用力总是成对出现,我们要分清受力体与施力体。在列方程解题时,对一对相互作用力一般采用同一字线表示。在不考虑绳的质量时,由同一根绳拉两个物体的力经常作为一对相互作用力处理,经过不计摩擦的定滑轮改变了方向后,我们一般仍将绳对两个物体的拉力当作一对相互作用力处理。 (3)分析物体运动状态及其变化 ①运用牛顿定律解题主要是分析物体运动的加速度a ,加速度是运动学和动力学联系的纽带,经常遇到的问题是已知物体运动情况通过求a 而求物体所受的力。 图3-4-2

牛顿运动定律试题

牛顿运动定律试题文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

2017-2018学年度3E试题4-1 分卷I 一、单选题 1.有关超重和失重,以下说法中正确的是( ) A.物体处于超重状态时,所受重力增大,处于失重状态时,所受重力减小 B.若空气阻力忽略不计,竖直上抛的木箱中的物体处于完全失重状态 C.在沿竖直方向运动的升降机中出现失重现象时,升降机必定处于下降过程 D.站在月球表面的人处于失重状态 2.如图所示,光滑水平面上放置质量分别为m、2m 和3m的三个木块,其中质量为2m和3m的木块间用一不可伸长的轻绳相连,轻绳能承受的最大拉力为T.现用水平拉力F拉其中一个质量为3m的木块,使三个木块以同一加速度运动,则以下说法正确的是( ) A.质量为2m的木块受到四个力的作用B.当F逐渐增大到T时,轻绳刚好被拉断C.当F逐渐增大到时,轻绳还不会被拉断D.轻绳刚要被拉断时,质量为m和2m的木块间的摩擦力为 3.竖直上抛一小铁球,小铁球上升到最高点后自由下落,穿过湖水并陷入湖底的淤泥中.不计空气阻力,取向上为正方向,在下列图象中最能反映小铁球运动情况的是( )A. B. C. D. 4.某跳水运动员在3 m长的踏板上起跳,我们通过录像观察到踏板和运动员要经历如图所示的状态,其中A为无人时踏板静止点,B 为人站在踏板上静止时的平衡点,C为人在起跳过程中人和踏板运动的最低点,则下列说法中正确的是( ) A.人和踏板由C到B过程中,人向上做匀加速运动 B.人和踏板由C到A的过程中,人处于超重状态 C.人和踏板由C到A的过程中,先超重后失重 D.人在C点具有最大速度 5.为了节省能量,某商场安装了智能化的电动扶梯.无人乘行时,扶梯运转得很慢;有人站上扶梯时,它会先慢慢加速,再匀速运转.一顾客乘扶梯上楼,恰好经历了这两个过程,如图所示.那么下列说法中正确的是( ) A.顾客始终受到三个力的作用 B.顾客始终处于超重状态 C.顾客对扶梯作用力的方向先指向左下方,再竖直向下

高一物理牛顿运动定律练习及答案

相关习题:(牛顿运动定律) 一、牛顿第一定律练习题 一、选择题 1.下面几个说法中正确的是[ ] A.静止或作匀速直线运动的物体,一定不受外力的作用 B.当物体的速度等于零时,物体一定处于平衡状态 C.当物体的运动状态发生变化时,物体一定受到外力作用 D.物体的运动方向一定是物体所受合外力的方向 2.关于惯性的下列说法中正确的是[ ] A.物体能够保持原有运动状态的性质叫惯性 B.物体不受外力作用时才有惯性 C.物体静止时有惯性,一开始运动,不再保持原有的运动状态,也就失去了惯性 D.物体静止时没有惯性,只有始终保持运动状态才有惯性 3.关于惯性的大小,下列说法中哪个是正确的[ ] A.高速运动的物体不容易让它停下来,所以物体运动速度越大,惯性越大 B.用相同的水平力分别推放在地面上的两个材料不同的物体,则难以推动的物体惯性大 C.两个物体只要质量相同,那么惯性就一定相同 D.在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小 4.火车在长直的轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到原处,这是因为[ ] A.人跳起后,车厢内空气给他以向前的力,带着他随火车一起向前运动 B.人跳起的瞬间,车厢的地板给人一个向前的力,推动他随火车一起运动 C.人跳起后,车继续前进,所以人落下必然偏后一些,只是由于时间很短,偏后的距离不易观察出来 D.人跳起后直到落地,在水平方向上人和车具有相同的速度 5.下面的实例属于惯性表现的是[ ] A.滑冰运动员停止用力后,仍能在冰上滑行一段距离 B.人在水平路面上骑自行车,为维持匀速直线运动,必须用力蹬自行车的脚踏板 C.奔跑的人脚被障碍物绊住就会摔倒 D.从枪口射出的子弹在空中运动 6.关于物体的惯性定律的关系,下列说法中正确的是[ ] A.惯性就是惯性定律 B.惯性和惯性定律不同,惯性是物体本身的固有属性,是无条件的,而惯性定律是在一定条件下物体运动所遵循的规律 C.物体运动遵循牛顿第一定律,是因为物体有惯性 D.惯性定律不但指明了物体有惯性,还指明了力是改变物体运动状态的原因,而不是维持物体运动状态的原因

相关主题
文本预览
相关文档 最新文档