当前位置:文档之家› 超临界CO2流体萃取仪和超临界萃取仪价钱

超临界CO2流体萃取仪和超临界萃取仪价钱

超临界CO2流体萃取仪和超临界萃取仪价钱
超临界CO2流体萃取仪和超临界萃取仪价钱

超临界CO2流体萃取仪和超临界萃取仪价格

主要技术参数:

技术参数:产品型号:SFE 100;SFE

500;SFE 1000;SFE 2000;SFE 5000等

标准配置系列高压二氧化碳泵冷

热交换器电子热交换器高压萃取器

高压阀门背压控制器高压馏分收

集器温度控制模块手动背压控制器

安全设置移动推车,管路,配件和测

试控制系统和软件选配高压夹带剂

泵高压静态混合器质量流量计

循环冷浴应用:中药提取领域:是中药

产业现代化的先进技术和重要手段香精

香料领域:完全保然植物的特殊香味、香气

天然食品添加剂领域:保持了应有的色、

香,味天然色素领域:产品是“纯天然”

的,不残留有机溶剂,农药和重金属残留低

于出口营养补充食品:天然VE、卵磷

脂、天然鱼油、沙棘籽油、小麦胚芽油、玉

米胚、芽油、大蒜素、a-亚麻酸、茶多酚等

的提取油品领域:油品分离和精炼,如

丙烷脱沥青、渣油、鱼油的超临界流体萃取

主要特点:超临界流体萃取(Supercritical

Fluid Extraction)是采用超临界流体作为萃取

剂对物质进行分

超临界流体萃取

第八章超临界流体萃取 8.1概述 8.1.1什么是超临界流体萃取 超临界流体萃取是一个正在发展中的新型分离技术.超临界流体萃取是利用超临界流体作为萃取剂依靠被萃取的物质在不同的蒸汽压力下所具有的不同溶解能力以萃取所需组分。然后采用升温降压或两者兼用和吸收(吸附)等手段将萃取剂与所萃取的组分分离的一种新分离方法。 在有些文献中.它又被称为压力流体萃取、超临界气体萃取、临界溶剂萃取等等。 早在1879年,人们就已认识了超临界萃取这一概念。当时发现超临界流体的密度增大到与液体密度相近时,很多固体化合物会被溶解。如碘化钾可溶解干超临界态的乙醇中,而当压力降低后又可析出、后来人们又认识到地质演变过程中,水对岩石的形成,甲烷对石油的形成和迁移,都与超临界流体的溶解作用有关.直到1942年,苏联科学家才提出,将超临界作为技术应用于石油脱沥青过程,而基础理论和实际应用的研究到50年代后期才开始进行. 但直到60年代,才开始有了工业应用的研究工作.近年来各国都广泛地开展了这方面的研究。现在,超临界流体萃取已形成为一门新的分离枝术.并已被用在食品、石油、医药、香料等等工业部门.与其有关的超临界流体的热力学以及超临界流体萃取的工艺和设备等各项研究工作也正在广泛地开展.世界上已召开了多次专门的学术会议,并已发表了许多这方面的专著。我国也已开展了这方面的研究工作,并已取得了不少科研成见。 8.1.2超临界流体的概念 一.什么是超临界流体? 超临界流体(SCF)是指热力学状态处于临界点(Pc,Tc)之上的流体。SCF是气、液界面刚刚消失的状态点,高于临界温度和临界压力而接近临界点的状态称为超临界状态。此时流体处于气态与液态之间的一种特殊状态,具有十分独特的物理化学性质。不同的物质其临界点所要求的压力和温度各不相同。 复习:任何一种物质都存在三种相态——气相、液相、固相。三相成平衡态共存的点叫三相点。SCF是气、液界面刚刚消失的状态点叫临界点。在临界点时的温度和压力称为临界温度、临界压力。不同的物质其临界点所要求的压力和温度各不相同。 (在这种条件下,流体即使处于很高的压力下,也不会凝缩为液体.) 二.超临界流体的特征 图8.1二氧化碳的p-T相图 表8.1 超临界流体的气体、液体和SCF物理特征比较

超临界萃取的技术原理

一、超临界萃取的技术原理 利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。 超临界CO2是指处于临界温度与临界压力(称为临界点)以上状态的一种可压缩的高密度流体,是通常所说的气、液、固三态以外的第四态,其分子间力很小,类似于气体,而密度却很大,接近于液体,因此具有介于气体和液体之间的气液两重性质,同时具有液体较高的溶解性和气体较高的流动性,比普通液体溶剂传质速率高,并且扩散系数介于液体和气体之间,具有较好的渗透性,而且没有相际效应,因此有助于提高萃取效率,并可大幅度节能。 超临界CO2的物理化学性质与在非临界状态的液体和气体有很大的不同。由于密度是溶解能力、粘度是流体阻力、扩散系数是传质速率高低的主要参数,因此超临界CO2的特殊性质决定了超临界CO2萃取技术具有一系列的重要特点。超临界CO2的粘度是液体的百分之一,自扩散系数是液体的100倍,因而具有良好的传质特性,可大大缩短相平衡所需时间,是高效传质的理想介质;具有比液体快得多的溶解溶质的速率,有比气体大得多的对固体物质的溶解和携带能力;具有不同寻常的巨大压缩性,在临界点附件,压力和温度的微小变化会引起CO2的密度发生很大的变化,所以可通过简单的变化体系的温度或压力来调节CO2 的溶解能力,提高萃取的选择性;通过降低体系的压力来分离CO2和所溶解的产品,省去消除溶剂的工序。 在传统的分离方法中,溶剂萃取是利用溶剂和各溶质间的亲和性(表现在溶解度)的差异来实现分离的;蒸馏是利用溶液中各组分的挥发度(蒸汽压)的不同来实现分离的。而超临界CO2萃取则是通过调节CO2的压力和温度来控制溶解度和蒸汽压这2个参数进行分离的,故超临界CO2萃取综合了溶剂萃取和蒸馏的2种功能和特点,进而决定了超临界CO2萃取具有传统普通流体萃取方法所不具有的优势:通过调节压力和温度而方便地改变溶剂的性质,控制其选择性;适当地选择提取条件和溶剂,能在接近常温下操作,对热敏性物质可适用;因粘度小、扩散系数大,提取速度较快;溶质和溶剂的分离彻底而且容易。从它的特性和完整性来看,相当于一个新的单元操作,因此引起了国内外的广泛关注。二、超临界萃取的特点

超临界流体萃取装置操作规范

超临界流体萃取装置使用指南 (一). 超临界流体定义 任何一种物质都存在三种相态-气相、液相、固相。三相成平衡态共存的点叫三相点。液、气两相成平衡状态的点叫临界点。在临界点时的温度和压力称为临界压力。不同的物质其临界点所要求的压力和温度各不相同。 超临界流体(Supercritical fluid,SCF)技术中的SCF是指温度和压力均高于临界点的流体,如二氧化碳、氨、乙烯、丙烷、丙烯、水等。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常相近,以至无法分别,所以称之为SCF。 目前研究较多的超临界流体是二氧化碳,因其具有无毒、不燃烧、对大部分物质不反应、价廉等优点,最为常用。在超临界状态下,CO2流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和物质良好的溶解能力。其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内成比例,所以可通过控制温度和压力改变物质的溶解度。 (二). 超临界流体萃取的基本原理 超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。当气体处于超临界状态时, 成为性质介于液体和气体之间的单一相态, 具有和液体相近的密度, 粘度虽高于气体但明显低于液体, 扩散系数为液体的10~100倍; 因此对物料有较好的渗透性和较强的溶解能力, 能够将物料中某些成分提取出来。 在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子量大小的成分萃取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加, 极性增大, 利用程序升压可将不同极性的成分进行分步提取。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离两过程合为一体,这就是超临界流体萃取分离的基本原理。 (三)超临界CO2的溶解能力 超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说由一下规律: 1.亲脂性、低沸点成分可在低压萃取(104Pa), 如挥发油、烃、酯等。 2.化合物的极性基团越多,就越难萃取。 3.化合物的分子量越高,越难萃取。 超临界CO2成为目前最常用的萃取剂,它具有以下特点: 1.CO2临界温度为31.1℃,临界压力为7.2MPa,临界条件容易达到。 2.CO2化学性质不活波,无色无味无毒,安全性好。 3.价格便宜,纯度高,容易获得。 因此,CO2特别适合天然产物有效成分的提取。 (四)超临界萃取装置原理及概况 超临界萃取技术是现代化工分离中出现的最新学科,是目前国际上兴起的一种先进的分离工艺。超临界萃取即高压下、合适温度下在萃取缸中溶剂与被萃取物接触,溶质扩散到溶剂中,再在分离器中改变操作条件,使溶解物质析出以达到分离目的[2] 。近几年来,超临界苯取技术的国内外得到迅猛发展,先后在啤酒花、香料、中草药、油脂、石油化工、食品

超临界二氧化碳萃取技术

摘要:介绍了超临界二氧化碳萃取技术的基本原理和特点,简单说明了该技术在香料、医药、食品等工业上的应用。 关键词:超临界二氧化碳萃取分离技术基本原理 前言 超临界流体萃取,又称超临界萃取、压力流体萃取、超临界气体萃取。它是以高压、高密度的超临界状态流体为溶剂,从液体或固体中萃取所需要的组分,然后采用升温、降压或二者兼用和吸收(吸附)等手段将溶剂与所萃取的组分分离。 早在1897年,人们就已经认识到了超临界萃取这一概念。当时发现超临界状态的压缩气体对于固体具有特殊的溶解作用。例如再高于临界点的条件下,金属卤化物可以溶解再在乙醇或四氯化碳中,当压力降低后又可以析出。但直到20世纪60年代,才开始了其工业应用的研究。目前超临界二氧化碳萃取已成为一种新型萃取分离技术,被广泛应用于食品、医药、化工、能源、香精香料的工业的生产部门。 1 超临界萃取的原理 当液体的温度和压力处于它的临界状态。 如图1是纯流体的典型压力—温度图。图中, AT表示气—固平衡的升华曲线,BT表示液— 固平衡的熔融曲线,CT表示气-液平衡的饱 和液体的蒸汽压曲线,点T是气-液-固三相 共存的三相点。按照相率,当纯物的气-液- 固三相共存时,确定系统状态的自由度为零, 即每个纯物质都有自己确定的三相点。将纯物 质沿气-液饱和线升温,当达到图中的C时, 气-液的分界面消失,体系的性质变得均一, 不再分为气体和液体,称点C为临界点。与该点相对应的临界温度和压力分别称 为临界温度T 0和临界压力P 。图中高于临界温度和临界压力的有影阴的区域属 于超临界流体状态。 在这种状态下,它既不完全与一般气相相同,又不是液相,故称为超临界流体。超临界流体有气、液相的特点,它既有与气体相当的高渗透力和低粘度,又兼有液体相近的密度和对物质优良的溶解能力。这种溶解能力能随体系参数的变化而连续的改变,因而可以通过改变体系的温度和压力,方便的调节组分的溶解度和萃取的选择性。利用上述特点,超临界二氧化碳萃取技术主要分为两大类原理流程即恒温降压流程和恒压升温流程。前者萃取相经减压,后者萃取相经升温。

实验室建设仪器设备的管理与维护

实验室建设仪器设备的管理与维护 为了解决实验室设备管理中存在的使用人员对设备疏于养护,重使用、轻保养、缺维修档案的问题,今天的内容主要对检验机构实验室仪器设备从采购到使用维护等方 面的内容进行介绍,希望能对检测实验室设备管理提供一些参考建议。 试验设备是开展质量检测的物质基础之一。本文从设备采购期间的选型论证,到设备使用期间的养护维修两方面的角度,介绍了实验室仪器设备的管理与维护。 【检测试验设备的特点】 1、科技含量高,结构复杂 随着国家对产品质量要求的不断提高,检测技术也飞速发展,先进的仪器设备不断涌现,老设备不断升级、换代;同时,现代试验技术正在向着多学科交叉渗透、多学 科智能密集型方向发展。许多大型精密仪器设备是化学、机械、电子、光学、生物、 计算机等多学科智能的集中体现,如气质联用仪、原子吸收光谱仪等。。。 2、品种多、数量大 如,各种超声振荡仪、真空干燥箱、紫外可见分光光度计、光学显微镜、天平等。。。这类仪器单价低、品种多、数量大,适合基础检测任务,频繁使用导致老化,会给维修人员带来很大的工作量,难以及时修复,从而,影响检测。专业检测设备和 大型精密仪器设备台数少,但品种多,单价高,使用者需参加仪器厂商培训及检测操 作上岗培训,发生故障,只依靠本单位内的维修力量难以修复,必须联系厂家进行处理,这样势必造成维修周期长,维修价格高,延误检测任务的完成。。。 【主要存在的问题】

1、设备疏于养护 大多数化学检测设备都属于精密仪器,不但要求试验操作人员会使用,还要了解仪器的基本原理、使用注意事项、仪器的存放环境,这样仪器的故障率才会减少[1],例如,纺织实验室常见的单纱强力机、做剥离顶破试验使用的万能材料试验机,机械部 分的丝杠需经常上油保养,但在实际使用中,往往因为使用频率不高,疏于保养,还 有大量使用的光学仪器紫外-可见分光光度计属于光学精密仪器,光学镜片定位精准,存放环境要防尘防震防潮,对环境的要求保持室温15℃~35℃,无直射光,无强烈的震动或连续不断的微震动,无强磁场,相对湿度40%~80%,无腐蚀性气体,无引起紫外吸收的有机、无机气体,少灰尘。如果光学仪器存放在一般实验室,在潮湿的环 境下,镜面受潮而霉变。在有的实验室,存在将光学分析仪器靠近离心机或振荡器等 设备,以便操作人员在离心程序后,样品即可进行光学分析,但是光学分析仪器长期 在高速运转的仪器旁,镜片可能会被震掉或震碎。在维修过程中,发现诸如此类问题 较多,仪器管理稍不重视[2],对检测试验带来较大的影响,加大了维修人员的工作量及维修经费。 2、仪器缺维修档案 试验仪器在购置、安装、验收后进行正常使用,都要将相关材料归类进档,建立仪器档案。档案主要包括合同、使用说明书等技术资料,设备到达相应的院系后即应有 相应的仪器使用记录、保养记录、维修记录,但是,有时会形成“重购置,轻维修; 重使用,轻管理”,对于使用保养和维修记录不够重视。例如,超声振荡仪器在实验 室用得较多,在维修中发现,由于保养不当,操作者在使用后,未及时擦干溅出的水 或化学药物,腐蚀仪器的电路板,从而造成整个电路板更换,既延长了维修时间,又 耽误了使用,增加了费用。很多仪器维修过,因为维修时间紧,任务又多,往往疏于 对维修进行记录,既不利于统计使用率,也不便于新入职的维修人员故障查询和零部 件的更换,影响重复性故障或相关故障的维修效率。 3、老旧设备不能满足能力验证的要求 CNAS实验室的能力认证计划几乎每年都有不同的项目,通过实验室间比对检验本 单位的实力,通常情况下,实验室大型仪器因价格昂贵,通常在维护方面是重点对象,

实验室仪器设备管理办法

实验室仪器设备管理办法 1.0 目的 实验室的仪器设备是保证科研工作正常进行的物质条件。为做好本公司实验室仪器设备管理,特制定本办法。 2.0 适用范围 本制度适用于公司所属各部门。 3.0 职责 3.1 实验室仪器设备,实行“统一领导,分级管理”:技术部负责实验室仪器设备的管理工作,须指定专人管理本实验室的仪器设备。 3.2 实验室仪器设备管理工作的主要任务是:在仪器设备的立项、论证、采购、安装、验收、使用、维护直至报废的全过程中,要加强计划管理、技术管理和经济管理,做好日常管理,使仪器设备在整个寿命周期中充分发挥效益,保证科研工作的需要。 4.0 具体内容 4.1 总则 实验室仪器设备的管理,必须贯彻勤俭节约的方针,实行共享,减少不必要的重复,避免浪费,挖掘现有仪器设备的潜力,重视功能开发工作,不断提高仪器设备的使用能力。 4.2 设备的划分标准 4.2.1 能独立使用且使用年限在一年以上、使用过程中基本保持原有形态、单价在500 元以上的一般仪器设备及单价在800元以上的专用仪器设备列入固定资产管理范围。

4.2.2 单价在200元以上500 元以下的一般仪器设备及单价在200元以上800 元以下的专有仪器设备列入地低值仪器设备管理范围。 4.2.3 专用设备是指各种具有专门性能和专门用于的设备,包括各种各样仪器和机械设备等。 4.2.4 调拨、捐赠的仪器设备,符合上述规定的亦列入固定资产管理。 4.2.5 自制设备属固定资产的,应按需要的材料、配件成本和加工费计价,经技术部验收合格,按固定资产管理。 4.3 仪器设备的计划审批程序 4.3.1 经费预算,技术部在年度末根据科研、生产等实际需要,提前做出下一年度所需经费预算,报采购部汇总后统一向财务部递交仪器设备经费预算,最后由公司根据财力情况确定设备经费预算后,技术部开始编制下一年度设备计划。 4.3.2 仪器设备计划,设备预算计划经技术部审核通过并签字盖章后上交采购部,经总经理审核通过后,由采购部进行采购。 4.3.3 实验室大型精密贵重仪器设备在购置前必须进行可行性论证。实验室提出的申请计划中必须包括购置理由、效益预测、选型论证、公司内相同仪器设备台套数、安装和使用条件等。 4.3.4 仪器设备进入采购环节必须同时具备下列条件: (1)经过公司采购批准立项。 (2)设备经费、安装配套经费已全部落实。 (3)设备负责人明确。 (4)大型精密贵重仪器设备,必须做出可行性论证结论,填写统一规定的文件、表格,并经领导批准。 (5)自制设备,订购非标准设备,必须具备经过讨论且领导批准的正规的设 计图纸和完整的技术文件资料。

实验室仪器设备管理办法

实验室仪器设备管理办法 实验室中有很多的精密的仪器,这些设备需要统一管理,但是很多人对实验室设备管理并不是很熟悉,本文就来带大家一起来了解一些关于实验室设备管理的小常识。 一、仪器设备的购置 需要购置仪器首先提出申请,报有关领导批准。调查供应商的资质、信誉、质量保证能力,了解产品的技术性能指标和使用情况,并建立供应商档案。 二、仪器设备的验收 按订货合同核对所到货物正确无误,仪器设备的合格证、使用说明书、维修保养手册、系统软件和备件清单齐全。根据仪器性能指标说明书制定相应的方法,按标准操作规程进行单机或系统进行实验,证明该仪器设备各项技术参数能达到规定要求。并保留测试的原始记录。 三.仪器设备的建档 仪器设备档案的基本内容如下:①仪器设备登记表,包括仪器的名称、制造商的名称、仪器型号、出厂编号、存放地点、生产日期、实验室使用日期;②随机技术文件,包括合格证、说明书、装箱单;③验收记录、仪器设备检定/校准合格证书、使用记录,维护保养记录,损坏、故障及维修情况和报废单等。 四、仪器设备的状态标识 仪器设备应有明显的标识表明其“检定/校准”状态,使仪器的状态一目了然,便于管理。

状态标识一般分为以下几种:①绿色标识,表明仪器设备具有正式计量检定合格证书和校准合格报告,处于正常使用状态。②黄色标识,表明仪器设备某些功能已经丧失,但检测工作所用功能正常,且经校准合格,处于使用状态。③红色标识,表明仪器设备已经损坏或经校准不合格,处于停用状态。 五.仪器设备的量值溯源 凡是属于强制检定范围的仪器设备,都应由指定的检定/校准机构进行检定,检定/校准合格后方可使用。 对于易变动、漂移率大,环境要求较为严格或使用较为频聚的仪器设备需考虑进行期间核查,通过期间核查,一旦发现产生偏离,要及时采取维修维护等措施,以保证检测数据的准确性。 期间核查的方法,一般可利用考核盲样、标准物质验证或加标回收的方法进行。对数据进行分析和评价,达到要求便可使用。 期间核查的时间,在两个周期检定日中间和出现可疑数据情况时进行期间核查,以确定仪器设备状态是否正常,核查人员应做好详细记录。 经过期间核查证明仪器设备有问题的必须进一步分析,如确定其性能不合格,仪器出现故障,应贴上停用标识,尽快对仪器进行维修,以免延误仪器的正常使用。 六.仪器设备的日常使用 大型精密仪器设备的操作者,必须经过适当的理论操作培训,培训合格后方可上岗,不经过培训的人员不准随意使用。

超临界二氧化碳萃取地过程及设备

3.2 超临界流体萃取过程的设计与开发 除了在一些食品提取工业中实现超临界流体萃取的工业化外,其在高附加值产品分离中也展现出新的活力,特别是在制药工业中,其重要性也日显增加。尤其是随着有关毒性物质排放越来越受到严格限制,SCFE的使用范围也会日渐扩大。但是SCFE的使用可行性是与过程的规模、产品的价值、是否需用无毒溶剂的一些因素有关。因此,只有进行周密的设计后,才能定量权衡上面提出的种种因素。一旦得出具有可行性的设计,便会吸引到企业界和研究者的重视和关注。 当前,不仅仅是国外的一些学者和专家作了扼要而实用的综述[1],而且在国内召开的“超临界流体技术学术及应用研讨会”上有多篇论文专门讨论了SCFE 的工艺与设备设计。早八十年代就出现了SCFE过程设计和开发的报告,近30 年间,有关SCFE的设计研究还在不断进展,逐渐完善。有些产品,如真菌脂质的提取,不仅要作SCFE的过程设计,而且还要作其他单元操作,如对液液萃取的设计进行比较,从经济上确定何种过程有优势,从而便于在进一步的投资中作出判断。可以说,目前SCFE已如其他比较成熟的单元操作一样,设计、仿真和优化(design,simulation and optimization)的工作已全面开展,这也从-个侧面表明SCFE的实用性正在受到越来越多的科技工作者的关注。 3.2.1 超临界流体萃取工业装置的开发步骤 图3-16示出了任一扩散分离过程科学开发的流程示意图。在步骤2中确定所涉及物料的特征后,一般情况下,若选用传统的分离单元操作,如蒸馏、液液萃取等,往往是凭设计者的经验来选定,较少采用预设计的方法。在开发过程中直接进行实验研究。但SCFE是新技术,对其了解不多。为了能和其他分离过程作出比较,必须在此前作出预设计或过程仿真、优化,其流程如图3-16所描述。按照科学开发的原则,不管采用何种分离过程,理应先进行仿真,再作实验验证,有利于省时省力。随着计算机的快速发展,图3-16的开发流程,更为开发研究者乐于采用。Lira[2]指出,图3-16中的步骤4和6是决定最终SCFE是否成功的关键。但是没有步骤3和5,更多的优化工作要在实验验证(步骤7)后进行,这就延缓开发进程和花费更多的人力、物力。

实验用超临界CO2萃取仪

一般来说,实验经常用到的超临界CO2萃取仪,一直都得到业内人士的欢迎,在很多行业都起到了很大的作用。那么,接下来就有必要给大家介绍下相关的信息,来看看到底是一款怎么样的设备机器吧。 一、设备特点 CO2专用计量泵:具有专利的低温泵头和填料,密封设计独特,保证无泄漏。 萃取釜快开结构:放完CO2气体即可打开萃取釜,密封材料不溶胀,可重复使用,节省了换料时间,提高了设备的使用率。 设有辅助剂入口,加入不同的辅助剂,配合干燥器、净化器可以使萃取物质和CO2彻底分离,可按照用户需求增加色谱分析和配置温度、压力、流量以及其它数据采集系统。 可配置能加热或冷却的第三分离釜,增加了萃取分离的适应多样性,具有CO2回收功能,提高气体利用率,所有加热、冷却部件都配置保温措施,做到节能环保。

二、设备优点 与溶剂萃取法相较,这样的萃取方式不会有任何的溶剂残留。 二氧化碳提取物通常比蒸馏的精油气味较厚,经常闻到更接近天然草的香味。二氧化碳提取物已被据说含有比从相同的工厂采用水蒸气蒸馏法提取的附加成分。这似乎是有道理的,因为二氧化碳提取物通常是较厚的油,往往似乎有一个更全面的香气。 这种方法是专业性很强的一种提取方法,由于溶剂挥发,所以,精油里面不含溶剂杂质,分离比较彻底。提取的分子可大于蒸馏法提的的类别。这里有个情况需要说明,蒸馏法是通过蒸汽带出芳香分子,但是较大的分子是提取不出来的,比如快乐鼠尾草中的二萜烯分子,这已经是极限了,也就是说20个碳原子的萜烯类用蒸馏法提取已经是很少看见了。 综上所述,就是实验用超临界CO2萃取仪的一些信息介绍,也是我们需要了解的,希望大家可以多多参考。 德帕姆(杭州)泵业科技有限公司成立于2003年,地处国家级经济技术开发区,注册资金5400万元,占地面积:3.5万平方米,是一家集研发、生产、销售于一体的高新技术企业,主要产品有计量泵、高压往复泵、高压过程隔膜泵、气动隔膜泵、石油化工泵、成套化学加药装置、水处理设备、水汽取样装置、超临界流体设备等。更多详情请拨打联系电话或登录德帕姆(杭州)泵业科技有限公司官网咨询。

超临界流体萃取装置使用说明

超临界流体萃取装置使用说明 一、开机前的准备工作 ⑴首先检查电源、三相四线是否完好无缺。冷冻机及贮罐的冷却水源是否畅通。 ⑵CO2气瓶压力保证在5-6MPa的气压。 ⑶检查管路接头以及各连接部位是否牢靠。 ⑷将各热箱内加入冷水,去氯离子水,不宜太满,离箱盖2公分左右。每次开机前都要检查水位。 ⑸萃取原料装入料简,不应装太满;将料筒装入萃取缸,装上料筒〇型圈,再放入通气环,盖好压环及上堵头。 二、开机操作顺序 1、先送空气开关,如三相电源指示灯都亮,则说明电源已接通,再起动电源的(绿色)按钮。 2.接通制冷开关,将冷箱温度控制器调在0℃左右,同时接通水循环开关,搅拌冷却水和冷却CO2泵头。 3、开始加温,先将萃取缸、分离I、分离II的加热升关接通,将各自控温仪调整到各自所需温度。 4、在冷冻机温度降到0-5℃左右,且萃取、分离I、分离n温度接近设定的要求后,进行下列操作。 5、开始制冷的同时将CO2气瓶通过阀门2进入净化器、冷盘管和贮罐,CO2 进行液化,液化CO2通过泵、混合器、净化器进入萃取缸,等压力平衡后,打开萃取缸放仝阀门3,慢慢放掉残留空气后,降低部分压力后,关闭放空阀。

6、加压力:先将电极点拨到需要的压力,启动泵I绿色按钮,再手按数位操器中的绿色触摸开关“RUN”.当压为加到接近设定压力,开始打开萃取缸后面的节流阀门,根据流程操作如下: 从阀门4进萃取缸,阀门5、6进入分离I,阀门7、8进入分离Ⅱ,阀门10、1回路循环。调节阀门6控制萃取缸压力,调节阀门8控制分离 I压力,调节阀门10控制分离Ⅱ压力。 7、中途停泵时,只需按数位操作上的“STOP”键。 8、萃取完成后,关闭冷冻机、泵各种加热循环开关,再关闭总电源开关,萃取缸内压力放入后面分离器,待萃取缸内压力和后面平衡后,再关闭阀门4、阀门5,打开放空阀3发巧门a1,待萃取缸没有压力后,打开萃取缸盖,取出料筒为止,整个萃取过程结束。 9、分离出来的物质分别在阀门b1、阀门b2处取出。

超临界流体萃取原理及其特点

超临界流体萃取技术 超临界流体概念 任何物质,随着温度、压力的变化,都会相应的呈现为固态、液态和气态这三种状态,称为物质的三态。三态之间互相转化的温度和压力值叫做三相点,每种分子量不太大的稳定的物质都具有一个固有的临界点,严格意义上,临界点由临界温度、临界压力、临界密度构成。在临界温度以上,无论怎样加压,气态物质绝不会被液化。当温度和压力超过了临界点时,该物质就进入了超临界状态,超临界状态下的物质既非气体又非液体的状态,叫做超临界流体[11],SCF是气体和液体状态以外的第三流体。 超临界流体萃取原理及其特点 所谓超临界流体萃取[12],是指利用超临界条件下的流体作为萃取剂,从液体或固体中萃取出特定成分,以达到某种分离目的。SCF的密度对温度和压力的变化很敏感,而其溶解能力在一定压力范围内与其密度成比例,因此可以通过控制温度和压力来改变物质在SCF中的溶解度,特别是在临界点附近,温度和压力的微小变化可导致溶质溶解度发生几个数量级的突变,这就是SFE的依据。 与其它常规分离方法相比,SFE具有以下特点[13]: 1) 通过调节温度和压力可全部或选择性地提取有效成分或脱除有害物质; 可在较低温度和无氧环境下操作,分离、精制热敏 2)选择适宜的溶剂如CO 2 性物质和易氧化物质; 3)临界流体具有良好的渗透性和溶解性,能从固体或粘稠的原料中快速提 取有效成分; 4)降低超临界相的密度,很容易使溶剂从产品中分离,无溶剂污染,且回 收溶剂无相变过程,能耗低; 5)兼有蒸馏和萃取双重功能,可用于有机物的分离、精制。 SFE存在的不足有[14]: 1) 高压下萃取,相平衡较复杂,物性数据缺乏; 2) 高压装置与高压操作,投资费用高,安全要求亦高; 3) 超临界流体中溶质浓度相对还是较低,故需大量溶剂循环; 4) 超临界流体萃取过程固体物料居多,连续化生产较困难。 超临界流体的选择

超临界流体萃取实验报告

超临界流体萃取 一、实验目的 1. 通过实际操作进一步加深和巩固超临界萃取的原理。 2. 了解掌握超临界仪器的使用及使用过程中的注意事项。 3. 练习超临界CO2萃取桂花实验操作。 二、实验原理 超临界萃取技术是现代化工分离中出现的最新学科,是目前国际上兴起的一种先进的分离工艺。超临界流体是指热力学状态处于临界点(Pc、Tc)之上的流体,临界点是气、液界面刚刚消失的状态点,超临界流体具有十分独特的物理化学性,它的密度接近于液体,粘度接近于气体,而扩散系数大、粘度小、介电常数大等特点,使其分离效果较好,是很好的溶剂。超临界萃取即高压下、合适温度下在萃取缸中溶剂与被萃取物接触,溶质扩散到溶剂中,再在分离器中改变操作条件,使溶解物质析出以达到分离目的。 超临界萃取装置的特点:⑴操作范围广,便于调节。⑵选择性好,可通过控制压力和温度,有针对性地萃取所需成份。⑶操作温度低,在接近室温条件下进行萃取,这对于热敏性成份尤其适宜。萃取过程中排除了氧化和见光反应的可能性,萃取物能够保持其自然风味。⑷从萃取到分离一步完成,萃取后的CO2挥发掉而不会残留在萃取物上。⑸萃取速度快,耗时短。⑹CO2无毒、无味、不燃、廉价易得且可循环使用,绿色环保。 三、实验步骤 1. 了解超临界萃取装置的主要构成; 2. 开机前的准备工作; ⑴首先检查电源、三相四线是否完好无缺; ⑵冷冻机及贮罐的冷却水源是否畅通,冷箱内为30%乙二醇+70%水溶液; ⑶CO2气瓶压力保证在56MPa的气压,且食品级净重≥22kg; ⑷检查管路接头以及各连接部位是否牢靠; ⑸检查需要关的阀门是否关好,气路是否畅通。

3. 实验操作顺序; ⑴接通电源,打开空气压缩机、循环水冷却仪,并按下循环水冷却仪前面的三个按纽; ⑵确定各气阀的关闭状态。打开保温箱和加压泵,并对保温箱预热; ⑶用台秤称量萃取物质,如桂花(本次实验为2.0g),记录好数据。称量好后,将其装入萃取釜中并旋紧,放入保温箱内,将气路接好; ⑷设置所需温度,待其升到设置的温度之后(需要时同时要加入夹带剂),再打开CO2气瓶阀门,调节加压泵的旋纽,将其加到所需的压力; ⑸萃取时间完成后,先关闭CO2气瓶阀门,打开排气阀用溶剂收集萃取的目标物,再卸压。待萃取缸内压力和外界平衡后,取下萃取釜,倒出萃取残物,整个萃取过程结束; ⑹依次关闭加压泵、保温箱、循环水和总电源,排尽压缩机内的空气。关好水、电、门、窗离开实验室; 四、实验注意事项 1. 使用的温度不能过高,要在仪器的使用范围之内;美国Applied公司的超临界萃取仪最高压力70Mpa,最高温度240℃。 2. 在装样的过程中,要在萃取斧的两端放玻璃棉以防造成气路堵塞。尽量做到平稳操作以免损坏仪器。 3. 此装置为高压流动装置,非熟悉本系统流程者不得操作,高压运转时不得离开岗位,如发生异常情况要立即停机关闭总电源检查。

超临界流体萃取实验报告

实验报告 创建报告时间:2020-04-23 14:53:15 学号:5120184380 姓名: 实验名称:模块一:超临界二氧化碳流体萃取沉香中的精油 分数:99.0 实验结束时间: 2020-04-18 11:17:48 实验记录: 2020-04-18 11:09:15: 第1大步:沉香木的预处理,第1小步:点击沉香木,选取合适的沉香木,因闪光提示扣0.9分; 2020-04-18 11:09:15: 第1大步:沉香木的预处理,第1小步:点击沉香木,选取合适的沉香木,因文字提示扣0.1分; 实验原理:超临界萃取技术是现代化学分离领域的最新研究课题,是目前国际上兴起的一种先进的分离技术。超临界流体是指热力学状态在临界点(PC, TC)以上的流体。临界点是气液界面消失的状态点。超临界流体具有独特的物理化学性质。其密度接近液体,其粘度接近气体,而其扩散系数很大,其粘度很小,和它的介电常数大,使其分离效果更好,这是一个很好的溶剂超临界萃取意味着在高压力下和适当的温度下,溶剂接触的提取提取圆柱体,溶质扩散到溶剂,然后改变分离器的操作条件来分离溶质,达到分离的目的。 超临界萃取装置的特点:(1)操作范围广,调节方便。(2)选择性好。它可以通过控制压力和温度来提取所需的成分。(3)操作温度低,萃取接近室温,特别适用于热敏元件。在提取过程中,排除了氧化和光反应的可能性,保留了提取液的天然风味。(4)从萃取到分离,萃取后的CO2挥发,不残留在萃取物上。(5)萃取速度快,时间短。(6) CO2无毒、无味、不可燃、廉价、易获取、可回收、环保。 实验内容: (一)实验目的: 1.通过实际操作,进一步深化和巩固超临界萃取原理。 2.了解和掌握超临界仪器的使用及使用过程中的注意事项。 3.实践熟悉超临界CO2萃取沉香操作 (二)实验材料与仪器设备: 超临界二氧化碳流体萃取仪(含主机、高压泵、低温恒温槽、气泵空压机、二氧化碳钢瓶、萃取柱、接收瓶) 陈翔木料、粉碎机、200目筛子、锥形瓶、电子天平

新型CO2超临界萃取装置

HA221-40-11型新型超临界流体萃取装置 、概述: 超临界萃取是现代化工分析和食品提纯中出现的最新学科,是目前国际上新兴的一种先进的分离工艺。所谓超临界流体是指热力学状态处于临界点(Pc、Tc)之上的流体,临界点是气、液界面刚刚消失的状态点,超临界流体具有十分独特的物理、化学性质,它的密度接近于液体,粘度接近于气体,而扩散系数大、粘度小、介电常数大等特点,使其分离效果较好,是很好的溶剂。超临界萃取则是在模拟合适的压力、温度条件下,在萃取缸中使溶剂与萃取物充分接触、置换,溶质扩散到溶剂中,通过改变分离器中的操作模拟环境,使溶解物质析出,达到分离的最终目的。该设备广泛应用于生物、制药、食品等领域。 二、超临界CO2 萃取特点: 1、临界温度低,适用于热敏性化合物的提取和纯化。 2、可提供惰环境,避免产物氧化,不影响萃取物的有效成份。 3、萃取速度快,无毒、不易燃,使用安全,不污染环境。 4、无溶剂残留,无硝酸盐和重金属离子。 三、超临界CO2萃取装置构成: 该装置主要由萃取釜、分离釜、精镏柱、CO2高压泵、副泵、制冷系统、CO2贮罐、换热系统、净化系统、流量计、温度、压力控制(保护)系统等组成。超临界CO2萃取装置的基本流程 1、CO2→萃取釜→分离Ⅰ→分离Ⅱ→回路; 2、CO2→萃取釜→分离Ⅰ→分离Ⅱ→精镏柱→回路; 3、CO2→萃取釜→精镏柱→分离Ⅰ→分离Ⅱ→回路; 4、CO2→萃取釜→分离Ⅰ→精镏柱→分离Ⅱ→回路。 四、超临界CO2萃取装置的组合形式: 一萃一分式、一萃二分式、一萃二分一柱式 二萃二分式、二萃二分一柱式、 四萃二分式、四萃二分一柱式 注:可根据用户特殊组合流程 五、超临界CO2萃取装置的可利用资源: 沙棘籽油、小麦胚芽油、枸杞籽油、葡萄籽油、灵芝孢子粉油、猕猴桃籽油、薏米仁油、核桃油、林蛙籽油、鱼油、松花粉油、菜花粉油月见草油、当归油、川芎油、丁香油、苍术油、莪术油、白芷油、红花油、白果粉油、肉豆蔻油、薄荷油、五味子油、车前子油、柴胡油、霍香油、紫苏叶油、紫草素、

超临界流体萃取原理及其特点

第二章 文献综述 2.1超临界流体萃取技术 2.1.1超临界流体概念 任何物质,随着温度、压力的变化,都会相应的呈现为固态、液态和气态这三种状态,称为物质的三态。三态之间互相转化的温度和压力值叫做三相点,每种分子量不太大的稳定的物质都具有一个固有的临界点,严格意义上,临界点由临界温度、临界压力、临界密度构成。在临界温度以上,无论怎样加压,气态物质绝不会被液化。当温度和压力超过了临界点时,该物质就进入了超临界状态,超临界状态下的物质既非气体又非液体的状态,叫做超临界流体[11],SCF是气体和液体状态以外的第三流体。 2.1.2 超临界流体萃取原理及其特点 所谓超临界流体萃取[12],是指利用超临界条件下的流体作为萃取剂,从液体或固体中萃取出特定成分,以达到某种分离目的。SCF的密度对温度和压力的变化很敏感,而其溶解能力在一定压力范围内与其密度成比例,因此可以通过控制温度和压力来改变物质在SCF中的溶解度,特别是在临界点附近,温度和压力的微小变化可导致溶质溶解度发生几个数量级的突变,这就是SFE的依据。 与其它常规分离方法相比,SFE具有以下特点[13]: 1) 通过调节温度和压力可全部或选择性地提取有效成分或脱除有害物质; 2) 选择适宜的溶剂如CO2可在较低温度和无氧环境下操作,分 离、精制热敏性物质和易氧化物质; 3) 临界流体具有良好的渗透性和溶解性,能从固体或粘稠的原料 中快速提取有效成分;

4) 降低超临界相的密度,很容易使溶剂从产品中分离,无溶剂污 染,且回收溶剂无相变过程,能耗低; 5) 兼有蒸馏和萃取双重功能,可用于有机物的分离、精制。 SFE存在的不足有[14]: 1) 高压下萃取,相平衡较复杂,物性数据缺乏; 2) 高压装置与高压操作,投资费用高,安全要求亦高; 3) 超临界流体中溶质浓度相对还是较低,故需大量溶剂循环; 4) 超临界流体萃取过程固体物料居多,连续化生产较困难。 2.1.3 超临界流体的选择 可用作SFE的溶剂很多,不同的溶剂其临界性质各不相同,而不同的萃取过程要求采用不同的溶剂。可用作超临界萃取剂的流体主要有乙烷、乙烯、丙稀、二氧化碳等。采用SFE技术提取天然物质,CO2是人们首选的溶剂,因为CO2作为一种溶剂,具有如下的主要优点[15]: 1) CO2与大多数的有机化合物具有良好的互溶性,而CO2液体与萃出 物相比,具有更大的挥发度,从而使萃取剂与萃出物的分离更容 易; 2) 选择性好,超临界CO2对低分子量的脂肪烃,低极性的亲脂性化合 物,如酯、醚、内脂等表现出优异的溶解性能; 3) 临界温度(31.1℃)低,汽化焓低,更适合于工业化生产; 4) 临界压力(7.38MPa)低,较易达到; 5) 化学惰性,无燃烧爆炸危险,无毒性,无腐蚀性,对设备不构 成侵蚀,不会对产品及环境造成污染;且价格便宜,较高纯度 的CO2容易获得; 6) 在萃取体系中,高浓度的CO2对产品具有杀菌、防氧化的作 用。 2.1.4 超临界CO2萃取技术的国外研究进展 早在100多年前英国的Thomas Andrews[16]就发现超临界现象。1879年Hannay[17]等人发现了SCF与液体一样,可以用来溶解高沸点的固体物

实验一 超临界萃取设备汇总

实验一超临界萃取设备 一、概述 超临界流体萃取(Supercritical fluid extraction,简称SFE或者SCFE)是用超临界条件下的流体作为萃取剂,由液体或固体中萃取出所需成分(或有害成分)的一种分离方法。超临界流体(Supercritical fluid,简称SCF)是指操作温度超过临界温度和压力超过监界压力状态的流体。在此状态下的流体,具有接近于液体的密度和类似于液体的溶解能力,同时还具有类似于气体的高扩散性、低粘度、低表面张力等特性。因此SCF具有良好的溶剂特性,很多固体或液体物质都能被其溶解。常用的SCF有二氧化碳、乙烯、乙烷、丙烯、丙烷和氨等。其中以二氧化碳最为常用。由于SCF在溶解能力、传递能力和溶剂回收等方面具有特殊的优点。而且所用溶剂多为无毒气体。避免了常用有机溶剂的污染问题。 早在100多年前,人们就观察到临界流体的特殊溶解性能,但在相当长时间内局限于实验室研究及石油化工方面的小型应用。直到20世纪70年代以后才真正进入发展高潮。1978年召开了首届专题讨论会,1979年首台工业装置投入运行,标志着超临界萃取技术开始进入工业应用。 超临界萃取之所以受到青睐,是由于它与传统额液-液萃取或浸取相比,有以下优点:①萃取率高;②产品质量高;③萃取剂易于回收;④选择性好。 2.超临界流体萃取的特点 2.1 萃取和分离合二为一。当饱含溶解物的二氧化碳超临界流体流经分离器 与萃取物迅速成为两相(气液分离)而立即分开,不存时,由于压力下降使得CO 2 在物料的相变过程,不需回收溶剂,操作方便;不仅萃取效率高,而且能耗较少,节约成本。 2 .2 压力和温度都可以成为调节萃取过程的参数。临界点附近,温度压力 密度显著变化,从而引起待萃物的溶解度发生变化。的微小变化。都会引起CO 2 可通过控制温度或压力的方法达到萃取目的。压力固定,改变温度可将物质分离;反之温度固定,降低压力使萃取物分离;因此工艺流程短、耗时少。对环境无污染,萃取流体可循环使用,真正实现生产过程绿色化。 的临界温度为31.16℃。临界压力为7.38MPa,可以有 2.3 萃取温度低。CO 2 效地防止热敏性成分的氧化和逸散,完整保留生物活性,而且能把高沸点、低挥

超临界萃取的技术原理及应用

所谓超临界流体,是指物体处于其临界温度和临界压力以上时的状态。这种流体兼有液体和气体的优点,密度大,粘稠度低,表面张力小,有极高的溶解能力,能深入到提取材料的基质中,发挥非常有效的萃取功能。而且这种溶解能力随着压力的升高而急剧增大。这些特性使得超临界流体成为一种好的萃取剂。而超临界流体萃取,就是利用超临界流体的这一强溶解能力特性,从动、植物中提取各种有效成份,再通过减压将其释放出来的过程。 超临界流体萃取法是一种物理分离和纯化方法,它是以CO2为萃取剂,在超临界状态下,加压后使其溶解度增大。将物质溶解出来,然后通过减压又将其释放出来。该过程中CO2循环使用。在压力为8--40MPa时的超临界CO2足以溶解任何非极性、中极性化合物,在加入改性剂后则可溶解极化物。 一、超临界萃取的技术原理 利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。 超临界CO2是指处于临界温度与临界压力(称为临界点)以上状态的一种可压缩的高密度流体,是通常所说的气、液、固三态以外的第四态,其分子间力很小,类似于气体,而密度却很大,接近于液体,因此具有介于气体和液体之间的气液两重性质,同时具有液体较高的溶解性和气体较高的流动性,比普通液体溶剂传质速率高,并且扩散系数介于液体和气体之间,具有较好的渗透性,而且没有相际效应,因此有助于提高萃取效率,并可大幅度节能。 超临界CO2的物理化学性质与在非临界状态的液体和气体有很大的不同。由于密度是溶解能力、粘度是流体阻力、扩散系数是传质速率高低的主要参数,因此超临界CO2的特殊性质决定了超临界CO2萃取技术具有一系列的重要特点。超临界CO2的粘度是液体的百分之一,自扩散系数是液体的100倍,因而具有良好的传质特性,可大大缩短相平衡所需时间,是高效传质的理想介质;具有比液体快得多的溶解溶质的速率,有比气体大得多的对固体物质的溶解和携带能力;具有不同寻常的巨大压缩性,在临界点附件,压力和温度的微小变化会引起CO2的密度发生很大的变化,所以可通过简单的变化体系的温度或压力来调节CO2的溶解能力,提高萃取的选择性;通过降低体系的压力来分离CO2和所溶解的产品,省去消除溶剂的工序。在传统的分离方法中,溶剂萃取是利用溶剂和各溶质间的亲和性(表现在溶解度)的差异来实现分离的;蒸馏是利用溶液中各组分的挥发度(蒸汽压)的不同来实现分离的。而超临界CO2萃取则是通过调节CO2的压力和温度来控制溶解度和蒸汽压这2个参数进行分离的,故超临界CO2萃取综合了溶剂萃取和蒸馏的2种功能和特点,进而决定了超临界CO2萃取具有传统普通流体萃取方法所不具有的优势:通过调节压力和温度而方便地改变溶剂的性质,控制其选择性;适当地选择提取条件和溶剂,能在接近常温下操作,对热敏性物质可适用;因粘度小、扩散系数大,提取速度较快;溶质和溶剂的分离彻底而且容易。从它的特性和完整性来看,相当于一个新的单元操作,因此引起了国内外的广泛关注。 二、超临界萃取的特点 1、超临界萃取可以在接近室温(35~40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的有效成分,而且能把高沸点、低挥发性、易热解的物质在远低于其沸点温度下萃取出来; 2、使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留的溶剂物质,从而防止了提取过程中对人体有害物的存在和对环境的污染,保证了100%的纯天然性; 3、萃取和分离合二为一,当饱和的溶解物的CO2流体进入分离器时,由于压力的下降或温度的变化,使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取的效率高而且能耗较少,提高了生产效率也降低了费用成本; 4、CO2是一种不活泼的气体,萃取过程中不发生化学反应,且属于不燃性气体,无味、无臭、无毒、安全性非常好; 5、CO2气体价格便宜,纯度高,容易制取,且在生产中可以重复循环使用,从而有效地降低了成本; 6、压力和温度都可以成为调节萃取过程的参数,通过改变温度和压力达到萃取的目的,压力固定通过改变温度也同样可以将物质分离开来;反之,将温度固定,通过降低压力使萃取物分离,因此工艺简单容易掌握,而且萃取的速度快。 4、在化学工业中,混合物的分离。许多碳氢高分子化合物不溶于CO2,只能采用非均相聚合(如分散聚合、沉淀聚合、乳化聚合等);而无定型的碳氟高聚物和硅酮高聚物能溶解于CO2,则可采用均相聚合。在液体或超临界CO2体系中进行高分子材料的合成与加工,其优点在于:不使用有机溶剂避免了对环境的污染;省去了脱溶及回收溶剂的工艺;可改进高分子材料的机械性能及加工性能;可按分子量的大小对产品进行分离;可回收未进行反应的单体并可去除次反应物及过反应物杂质;

相关主题
文本预览
相关文档 最新文档