当前位置:文档之家› 发酵调控学完整版

发酵调控学完整版

发酵调控学完整版
发酵调控学完整版

发酵调控学

生物工程学院

储炬

课程内容

1 微生物生长分化调节的规律

(1)细胞周期内有关生长的活动,DNA合成与细胞分裂的调节

(2)丝状菌生长分化的调节

2 初级代谢的调节机制

(1)调节的生化基础

(2)代谢调节的方式与内容:诱导、分解代谢物调节、反馈调节

课程内容

3 次级代谢物的生物合成的调节

(1)次级代谢物的概念

(2)生物合成的前体

(3)次级代谢物的生物合成

(4)抗生素生物合成的控制

课程内容

4 发酵过程控制

(1)控制的策略

(2)参数的指导作用

(3)参数相关分析

(4)过程控制的评价

主要参考书

?现代工业发酵调控学,储炬,李友荣,化学工业出版社,北京。2002年1月?Biotechnology, 2nd ed. Vol.1; Biological Fundamentals. Rehm H-JB ?Biotechnology, 3nd ed Vol.3;Bioprocessing.

Rehm H-JB

微生物发酵代谢调控与发酵过程优化技术

?代谢调控是研究内在的调节机制,而过程优化则是外在控制,是建立在相关参数的分析上的,这两个方向相辅相成,前者为后者的基础,而后者是使理论变为现实的手段。

1微生物生长与调节

为了控制菌体的生长,需要了解生长的方式,细胞分裂和调节的规律,测量微生物生长的各种办法,微生物生长繁殖的形式与工业生产的关系,环境变化对微生物生长的影响。因此,研究微生物的生长分化规律无疑是发酵调控原理的一个重要组成部分。

细胞周期

对于个体细胞行为,主要关心

?染色体启动、复制和分离

?新细胞壁材料的合成与插入

?协调染色体复制和细胞分裂的信号

细胞周期

细胞周期(Cell cycle):

细胞的一系列可鉴别的周而复始的生长活动。这些活动的顺序不变, 完成一个活动后才能进行下一个活动。

图1 细胞周期

细胞周期

?典型的真核生物细胞周期如图所示: S, M和G1, G2分别代表DNA 合成, 有丝分裂期和两次间隙。

?若生长速率因养分多寡而改变, S, G2和M 几乎不变, 只有G1改变。

?MTG: mean generation time

细胞周期

?原核生物在低生长速率下的细胞周期, 与真核生物相似。

?其染色体复制期C 相当于S;

?细胞分裂期D相当于G2+M;

?C 和D 不随生长速率变化, 只有G1可变动。细胞周期的各项活动怎样去适应生长速率变化的需要?

染色体复制与细胞分裂的调节

?染色体复制怎样与细胞分裂协调?

在高速生长下, 如细胞周期为30 min, 染色体复制不能在一个周期内完成。

为此,未等前一轮复制结束,后一轮复制又在原点上启动。

可以把C 期的启动和终止,以及细胞分裂看作是不可更改的活动顺序, 称为C+D 周期。

染色体复制与细胞分裂的调节

?若增代时间少于C+D时间, C+D 周期重叠,其重要特征是分配到子细胞的染色体已开始新的一轮复制。这类染色体称为二叉染色体(dichotomous)。

图2大肠杆菌的染色体复制和细胞分裂的时间分配示意图

染色体复制和细胞分裂的调节规律

?染色体复制未完成,细胞就不会分裂。不管生长速率如何,大肠杆菌的细胞分裂总是出现在染色体复制完成之后。

?不管生长速率如何,C 和D 所需时间大致不变。

?C 和D可以依次或同时(指上一轮的D和下一轮的C ) 进行。

思考题

加倍时间最小为多少?C=40,

D=20时,时间如何分配?

染色体复制的启动

染色体复制的启动受启动因子(origin), 一种特异调节性蛋白的正向控制。当启动因子增加到某一临界水平, 启动便开始。在这以后启动因子被毁或稀释。合成启动因子达到有效浓度所需的时间恰好等于培养物增代时间。

染色体复制的启动

大肠杆菌在启动时的启动因子数量与细胞质量之比在各种生长速率下是一样的。这一比例实际上是染色体启动因子的浓度。细胞似乎能检出启动因子的浓度。当它达到一临界值时便启动新一轮的复制。启动的直接后果是启动因子的浓度提高一倍。

染色体复制的启动

启动不会重新发生直到其浓度因生长而降到临界值。这种控制机制构成一种生物钟。它是以细胞体积或其它有关参数为依据。据此,染色体复制的启动频率是DNA 合成速率的控制步骤。染色体复制的启动

O/M=I 启动,启动后,2O/M=I’,

I’>I 不再启动,M增加,M 2M,使I’逐渐下降,2O/2M=O/M=I,

又开始启动。

启动和复制是性质截然不同的两种过程

启动的过程需要蛋白质合成,如蛋白质合成受阻,已启动的DNA合成能完成,但不能启动新一轮DNA合成。

?曾检出其产物负责启动而不负责随后复制的基因;;

?加入利福平或氯霉素抑制RNA或蛋白质合成或除去营养缺陷型所需的氨基酸都能阻止启动,但允许复制继续完成;

?培养物进入稳定生长期后,中止生长的细胞含有完整的染色体。

染色体复制的启动

?启动总是在染色体上的专一位置上进行。此位点称为复制或染色体原点。在大肠杆菌此位点很靠近ilv座位。

?在大肠杆菌和枯草杆菌中复制叉以两个方向沿染色体运行,大约在离原点180度地方相遇。染色体复制的启动

启动的频率取决于细胞量增长的速率,即生长停止,启动也随着停止是预料中的事。

细胞周期的研究方法

1 镜检法

用电子显微镜观察单个细胞的生长,定时拍照。由此发现大肠杆菌在分裂时细胞个子的变化不大。

细胞周期的研究方法

1 镜检法

说明似乎存在一种控制细胞个子大小的因子,即尺寸因子(size factor), 可能是启动细胞质量(initiation mass)。

1 镜检法

缺点:细胞由培养液转移到固体表面,会受到干扰。

细胞年龄变化较大时,细胞大小变化不大。

2 同步培养(Synchrony)法

(1) 密度梯度离心沉降法

按细胞的大小/年龄把在对数生长期的培养物分级。

H2O/D2O密度梯度沉降法:

能应用于任何品种, 不会施加渗透压强的影响。

从某一密度带便可分离出同质的细胞群体,随后培养。

细胞大小的分布频率与蛋白质合成速率的关系

细胞大小的分布频率与蛋白质合成速率的关系

蛋白质合成速率与细胞长度(体积)成正比,从而与细胞年龄成正比。

(2)过滤洗脱法

将细胞粘附在固体支持物,如硝化纤维膜上,然后将其倒置,让生长培养基从上到下通过,新生的细胞便被洗脱到培养基中,呈一种特征性的振荡模式,见图1-23。

过滤洗脱法

(2)过滤洗脱法

在初始冲洗(wash-off)期后从滤膜上洗脱下来的主要是新分裂的细胞。在洗脱曲线高峰下从膜上洗下的细胞是沉积在膜上的新生细胞后代,那些在低峰下的是其沉积时正要分裂细胞后代。

过滤洗脱法

洗脱(wash- off)的振荡模式可以测出细胞周期。

3 同位素示踪法

如亲本培养物沉积在滤膜上之前用氚标记的胸苷使细胞带上标记,则结合到洗脱细胞的标记量与结合到亲本培养物那一年龄细胞的标记量成正比。

细胞周期

细胞周期

其一个洗脱峰(后代)带有比前一代少一倍的放射性标记。

可以分别求得C和D值

3 同位素示踪法

另一种研究细胞周期的方法是通过蔗糖密度梯度离心,使一对数生长的培养物沉淀, 收集最上层的细胞,在含有氚-标记胸苷的生长培养基上生长,测量其DNA合成速率。

3 同位素示踪法

洗脱前在无标记培养基中生长,洗脱时用带标记的培养基,得到的带标记DNA呈阶梯上升状。

细胞周期

4 生长速率与细胞个子大小的关系

生长培养基越丰富,细菌生长速率加快,其细胞的个子也越大。

如在同一种培养基内改变温度也会影响生长速率,但对细胞个子大小几乎没有多大影响。

4 生长速率与细胞个子大小的关系

如一细胞的增代时间为60min,在细胞分裂时染色体复制便开始启动。假设细胞这时具有质量为M (启动细胞量=1/启动因子浓度)。

4 生长速率与细胞个子大小的关系

个体细胞的量在指数地增加,直到2M,细胞便开始分裂。

此时从培养液中检出新生的细胞,置于较丰富的培养基(能使菌快速生长, 增代时间为35 min) 中,并假定细胞迅速调整到新的生长速率。

4 生长速率与细胞个子大小的关系

这样,个体细胞量增长速率往上移动,如C+D规律还适用,下一个细胞分裂的时间不会变动,但细胞个子会增大。

新一轮复制的启动将在细胞分裂前便开始。

4 生长速率与细胞个子大小的关系

换句话说,C+D 周期现在开始重叠。快速生长经一个细胞周期后便达到新的平衡。生长速率越快,细胞个子的差异也越大。

生长速率对细胞个子和染色体复制启动时间的影响

生长速率对细胞个子和染色体复制启动时间的影响

可用式1-27 表示细胞周期t对指数培养物的细胞个子平均大小M 的影响。

M = K2(C+D/t) (1-27)

曲线的形状将取决于C,D 和K是否变,只有在简单情况下log M与t作曲线才会得一直线。

细菌培养物的生长周期

在一来自静止期细胞的培养物的生长期间,在细胞数目开始增加以前有一相当长的停滞期。细胞量开始增长的滞后现象短一些。

细菌培养物的生长周期

?如达到物态的指数生长,则所有可测的参数也将平行地增长。

?当培养物进入静止期便发生与上述‘相’反的活动顺序。

?因启动速率比细胞分裂早减速C+D分钟。

?细胞量增长下降时,细胞分裂继续指数进行,细胞渐渐变小。

细菌培养物的生长周期

细菌培养物的生长周期

新的一轮DNA复制的启动频率取决于新细胞量的积累速率,则吸光度与细胞数目至少有C+D分钟不平行。

生长速率和DNA浓度

细胞中的DNA%随生长速率的增加而下降,可用式1-28表示:

G/M=[τ/(K C ln2)](1-2-C/τ) (1-28)

式中G是基因组的当量,为每个细胞的DNA 平均值。

生长速率对DNA浓度和平均染色体构型的影响

展示了3种质量倍增时间:

a) 70 min,

b) 40 min,

c) 20 min

生长速率对DNA浓度和平均染色体构型的影响

一个启动细胞量单位含有一个刚开始一轮复制的染色体。用一水平线C 分钟长度表示。它在纵轴上所处高度代表细胞量。假定细胞量的复制时间为70 min,见图1-28a,将出现轮与轮复制的间隙。当细胞量增加到三倍时它将完成4 个复制好的染色体。

生长速率对DNA浓度和平均染色体构型的影响

如在零小时把细胞置于增代时间为40 min的培养基内,见图1-28b,则新一轮复制将紧跟在上一轮复制完成之后开始,轮与轮之间不存在间隙。待细胞量增到3个单位时,第二轮的复制将不会完成。结果得到2条复制了一半的染色体,DNA浓度下降到3/3。

生长速率对DNA浓度和平均染色体构型的影响

如将细胞置于增代时间为20 min的培养基内, 在第一轮复制还未完成前第二轮复制已开始。当细胞量达到3 时, 只有一个带三个复制叉的染色体,见图1-28c,DNA 浓度进一步下降到2.25/3。

生长速率对DNA浓度和平均染色体构型的影响

生长速率影响染色体上不同位置的相对基因拷贝数

?在一随机的指数培养物中,接近原点处的基因,其拷贝数总是居多,靠近两端的较少。?这种相对基因剂量的倾斜度随生长速率的增加而提高。

生长速率影响染色体上不同位置的相对基因拷贝数

DNA的浓度随生长速率的增加而下跌,从而不同程度地影响基因浓度。那些靠近染色体原点的基因浓度没有变化;位于中间的基因平均浓度则只有原点周围的一半左右;处在染色体复制近末端的基因浓度最低。

生长速率影响染色体上不同位置的相对基因拷贝数

在一个细胞周期内,一个基因浓度相对另一个而言,可相差4倍。生长速率对不同作用,提供了一种解释非随机基因次序的理由。

生长速率影响染色体上不同位置的相对基因拷贝数

据此,对生长速率有限制作用的应位于靠近染色体原点处。其实,这是为什么大肠杆菌中有6 个拷贝编码核糖体RNA的基因都聚集在原点的附近的缘故。

生长速率对细胞组分的影响

?每个细胞RNA随生长速率的变化可以达10倍之多。在快速生长的细胞中RNA的含量可以达到细胞重量的30%。

?每个细胞的DNA也随生长速率的提高而增加,但程度低一些。因此,以细胞重量衡量,DNA 含量是减少的。

?细胞的外壳的厚度通常不变,胞壁和质膜在整个细胞中的比例随细胞个子的增大而减小。

丝状菌生长分化的调节

微生物的生长调节

微生物的生长分化受其自身和外界多种因素的调节。这里以真菌为对象,阐述菌丝体形态调节的规律。

丝状菌生长分化的调节

霉菌和放线菌均为丝状微生物。其生长方式是菌丝(hyphae) 末梢伸长、分枝(图1-5) 和交错成网(图1-6),称为菌丝体(mycelium)。一定长度的真菌菌丝,其横切面有间隔膜。真菌属真核生物,为多细胞,且每个细胞含有多个细胞核和各种细胞器。

丝状菌生长分化的调节

细胞一旦形成后便保持其完整性,且与其相邻细胞的菌龄不同,越靠近末梢的菌丝,越年轻。放线菌、链霉菌和诺卡氏菌属均属于放线菌属,为原核生物,革兰氏染色呈阳性。它们无核膜和细胞器,其菌丝直径(约1 μm) 比霉菌(2-10μm) 细,易折断。许多真菌能形成孢子,称为分生孢子。

菌丝顶端生长

(Apical growth of haphae)

菌丝仅在顶端(末梢)生长, 其余部分的菌丝壁加厚,但不扩展。

居间生长(intercalary growth)的细胞的任何部分均能扩展与分裂。

菌丝顶端生长机制

大多数菌丝顶端生长机制都与泡囊(vesicles)在顶端的聚集有关。

一旦生长停止,泡囊在顶端消失,并分布在次顶部生长区。

菌丝顶端生长机制

一种推测的细胞壁单位的生长活动

a) 含有细胞壁溶解酶的泡囊与质膜融合;

b) 细胞壁的网状结构局部拆开,从而取得塑性;

c) 细胞壁由于原生质内部压力而扩展,泡囊与质膜融合,释放出细胞壁合成酶;

d)新细胞壁的合成前体由泡囊提供,细胞壁的合成从质膜向外扩展;

e) 新细胞壁单元被合成。

泡囊是什么?

泡囊是一种由单层膜包裹的细胞器, 可把它看作是溶酶体复合物或内膜复合物的一部分。还含有细胞壁合成酶以及细胞壁的若干前体。它在胞内起运输材料的作用。

泡囊如何在菌丝顶端聚集

内质网系统产生泡囊的区域位于菌丝的次顶部, 藉化学或电化学浓度梯度(推动力)移动的。菌丝顶端全靠发酵维持。因无线粒体,顶部以外的细胞靠线粒体进行正常呼吸。

泡囊如何在菌丝顶端聚集

用细胞松弛素(Cytochalasin)可以完全抑制细胞质的流动,从而阻止泡囊的移动和生长。故细胞质的流动是生长的‘推动力’,使泡囊流向菌丝顶端。

泡囊如何在菌丝顶端聚集

如菌丝顶端同其次顶部区域被隔离, 则生长便缓慢下来;

如切断的地方离开顶端远些, 对生长的影响便小得多。

据此,可测定末稍生长区域的长度。粗糙链孢霉顶端生长的低限长度为10 mm。

两种形式的胞质流动

一种是导向菌丝顶端的快速流动。菌丝顶端失水, 造成顶端与次顶端之间的水势梯度,从而加速这种流动。

另一种形式的胞质流动为双向流动或环流(Cyclosis) , 其流动速率要慢得多。

泡囊的形成

泡囊的形成是由高尔基(Golgi)体或内质网(Endoplasmic reticulum) 的特定区域释放,再输送到生长点,与质膜结合。

泡囊的三种作用

1) 运输各种负责把细胞壁拆开和扩建的酶;

2) 运输新的细胞壁成分, 其前体或预制单位;

3) 运输合成。

菌丝生长过程

对孢子发芽的研究可获得有关顶端生长的有用的信息。

如图所示, 开始孢子吸水膨胀, 这时细胞壁合成材料散布在孢子周围内表面, 随后长出芽管,新材料便聚结在芽管的顶端。

菌丝生长过程

故极性生长并不是一开始就有的特性,而是在非极性(各向同性)生长过后才出现的。在不利条件下有些真菌的极性生长(非各向同性)被无限地推迟。

菌丝生长过程

黑曲霉的孢子在44℃下生长,它继续膨胀,形成巨细胞。如这时再转移到30℃下生长,它会表现得很特殊。从巨细胞中伸出芽管,随后形成孢子,见图1-37。

发酵工程课后思考题答案

一、思考题 1.发酵及发酵工程定义 答:定义:发酵工程是应用微生物学等相关的自然科学以及工程学原理,利用微生物等生物细胞进行酶促转化,将原料转化成产品或提供社会性服务的一门科学。由于它以培养微生物为主,所以又称为微生物工程。 传统发酵是指酵母作用于果汁或发芽的谷物时产生二氧化碳的现象; 生化和生理学意义的发酵指微生物在无氧条件下,分解各种有机物质产生能量的一种方式;或者更严的说发酵是以有机物作为电子受体的氧化还原产能反应。如葡萄糖在无氧条件下被微生物利用产生酒精并放出CO2。 工业上的发酵泛指利用生物细胞制造某些产品或净化环境的过程。 青霉素发酵能成功的原因,主要是解决了两大技术问题:1)通气搅拌解决了液体深层培养时的供氧问题;2)抗杂菌污染的纯种培养技术:无菌空气、培养基灭菌、无污染接种、大型发酵罐的密封与抗污染设计制造。 2.发酵工程基本组成部分 答:从广义上讲,由三部分组成:上游工程、发酵工程、下游工程 3.发酵工业产业化应抓好哪三个环节 答:三个环节:投产试验、规模化生产和市场营销 4.当前发酵工业面临三大问题是什么 答:菌种问题、合适的反应器、基质的选择 菌种问题:纯种、遗传稳定性、安全、周期短、转化率高产率高、抗污染能力强:噬菌体、蛭弧菌 合适的反应器:生产规模化、原料利用量大并且具有一定选择性、节能、结构多样化、操作制动化、节省劳力 基质的选择:价廉、原料利用量大并且具有一定选择性、易被利用、副产物少、满足工艺要求 5.我国发酵工业应该走什么样的产业化道路

答:第一步为技术积累阶段、第二步为产业崛起阶段、第三步为持续发展阶段 二、思考题 1、自然界分离微生物的一般操作步骤 答:标本采集→预处理→富集培养→菌种分离(初筛、复筛)→发酵性能鉴定→菌种保藏目的:高效地获取一株高产目的产物的微生物; 2、从环境中分离目的微生物时,为何一定要进行富集富集 答:富集的目的:让目的微生物在种群中占优势,使筛选变得可能。 富集的基本方法:1、控制营养:如以唯一碳源或氮源作底物;2、控制培养条件:如pH、温度、通气量等;3、抑制不需要的种类 3、什么叫自然选育自然选育在工艺生产中的意义 答:定义:不经人工处理,利用微生物的自然突变进行菌种选育的过程称为自然选育。 意义:自然选育是一种简单易行的方法,可达到纯化菌种、防止菌种退化、稳定生产、提高产量的目的。虽然其突变率很低,但却是工厂保证稳产高产的重要措施 回复突变:高产菌株在传代的过程中,由于自然突变导致高产性状的丢失,生产性能下降,这种情况我们称为回复突变。 4、诱变育种对出发菌株有哪些要求 答:出发菌株定义:出发菌株指用于诱变育种的最初菌株或每代诱变的试验菌株。 要求:★对菌株产量,形态、生理等情况了解;★生长繁殖快,营养要求低,产孢子多且早;★对诱变剂敏感;★菌株要有一定的生产能力;★多出发菌株:一般采用3~4个出发菌株,在逐代处理后,将产量高、特性好的菌株留作继续诱变的出发菌株。 5、诱变选育的流程 答:出发菌株经纯化活化前培养(同步培养)→培养液(离心、洗涤、)→单细胞获单胞子悬液→诱变处理→后培养(中间培养)→平板分离→初筛→复筛→保藏及扩大试验 筛选的关键是选择一定的特征(如菌落特征、生化特征等)去判断所筛选的菌株是我们所需要的突变株。

生物制药工艺学思考题及答案完整版

生物制药工艺学思考题 及答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

抗生素发酵生产工艺 1. 青霉素发酵工艺的建立对抗生素工业有何意义? 青霉素是发现最早,最卓越的一种B-内酰胺类抗生素,它是抗生素工业的首要产品,青霉素是各种半合成抗生素的原料。青霉素的缺点是对酸不稳定,不能口服,排泄快,对革兰氏阴性菌无效。青霉素经过扩环后,形成头孢菌素母核,成为半合成头孢菌素的原料。 2. 如何根据青霉素生产菌特性进行发酵过程控制? 青霉素在深层培养条件下,经历7个不同的时期,每个时期有其菌体形态特性,在规定时间取样,通过显镜检查这些形态变化,用于工程控制。 第一期:分生孢子萌发,形成芽管,原生质未分化,具有小泡。 第二期:菌丝繁殖,原生质体具有嗜碱性,类脂肪小颗粒。 第三期:形成脂肪包含体,积累储蓄物,没有空洞,嗜碱性很强。 第四期:脂肪包含体形成小滴并减少,中小空泡,原生质体嗜碱性减弱,开始产生抗生素。 第五期:形成大空泡,有中性染色大颗粒,菌丝呈桶状。脂肪包含体消失,青霉素产量提高。 第六期:出现个别自溶细胞,细胞内无颗粒,仍然桶状,释放游离氨,pH上升。 第七期:菌丝完全自溶,仅有空细胞壁。一到四期为菌丝生长期,三期的菌体适宜为种子。 四到五期为生产期,生产能力最强,通过工艺措施,延长此期,获得高产。在第六期到来之前发束发酵。 3. 青霉素发酵工程的控制原理及其关键点是什么? 控制原理:发酵过程需连续流加葡萄糖,硫酸铵以及前提物质苯乙酸盐,补糖率是最关键的控制指标,不同时期分段控制。在青霉素的生产中,及时调节各个因素减少对产量的影响,如培养基,补充碳源,氮源,无机盐流加控制,添加前体等;控制适宜的温度和ph,菌体浓度。最后要注意消沫,影响呼吸代谢。 4. 青霉素提炼工艺中采用了哪些单元操作? 青霉素不稳定,发酵液预处理、提取和精制过程要条件温和、快速,防止降解。提炼工艺包括如下单元操作: ①预处理与过滤:在于浓缩青霉素,除去大部分杂质,改变发酵液的流变学特征,便于后续的分离纯化过程。 ②萃取:其原理是青霉素游离酸易溶于有机溶剂,而青霉素易溶于水。 ③脱色:萃取液中添加活性炭,除去色素,热源,过滤,除去活性炭。 ④结晶:青霉素钾盐在乙酸丁酯中溶解度很小,在乙酸丁酯萃取液中加入乙酸钾-乙醇溶液,青霉素钾盐可直接结晶析出。 氨基酸发酵工艺 1. 如何对谷氨酸发酵工艺过程进行调控? 发酵过程流加铵盐、尿素、氨水等氮源,补充NH4+;生物素适量控制在2-5μ g/L;pH控制在中性或微碱性;供氧充足;磷酸盐适量。 2. 氨基酸生产菌有什么特性,为什么

发酵工程试题及答案.

类。 微生物的育种方法主要有三类: 诱变法,细胞融合法,基因工程法。 发酵培养基主要由 碳源,氮源,无机盐,生长因子 组成。 6、利用专门的灭菌设备进行连续灭菌称为 连逍,用高压蒸汽进行空罐灭菌称为 空消。 7、可用于生产酶的微生物有 细菌、真菌、酵母菌。 常用的发酵液的预处理方法有 酸化、加热、加絮凝剂。 8、根据搅拌方式的不同, 好氧发酵设备可分为 机械搅拌式发酵罐 和通风搅拌式发酵罐 两种。 9、 依据培养基在生产中的用途,可将其分成 孢子培养基、种子培养基、发酵培养 10、 现代发酵工程不仅包括菌体生产和代谢产物的发酵生产,还包括微生物机能的利用。 11、发酵工程的主要内容包括 生产菌种的选育、发酵条件的优化与控制、反应器的设计及 产物的分离、提取 与精制。 12、发酵类型有微生物菌体的发酵、微生物酶的发酵、微生物代谢产物的发酵、微生物转 化发酵、生物工程细胞的发酵 。 13、发酵工业生产上常用的微生物主要有 细菌、放线菌、酵母菌、霉菌。 14、当前发酵工业所用的菌种总趋势是从野生菌转向 变异菌,从自然选育转向 代谢调控育种, 从诱发基 因突变转向 基因重组的定向育种。 15、根据操作方式的不同,液体深层发酵主要有 分批发酵、连续发酵、补料分批发酵。 16、分批发酵全过程包括 空罐灭菌、加入灭过菌的培养基、接种、发酵过程、放罐和洗罐, 所需的时间总和为一个发酵周期。 发酵工程 、名词解释 1、 分批发酵:在发酵中,营养物和菌种一次加入进行培养,直到结束放出,中间除了空气 进入和尾气排出外,与外部没有物料交换。 2、 补料分批发酵:又称半连续发酵,是指在微生物分批发酵中,以某种方式向培养系统不 加一定物料的培养技术。 3、 絮凝:在某些高分子絮凝剂的作用下,溶液中的较小胶粒聚合形成较大絮凝团的过程。 二、填空 1、 生物发酵工艺多种多样,但基本上包括 菌种制备、种子培养、发酵和提取精^_等下游 处理几个过程。 2、 根据过滤介质截留的物质颗粒大小的不同, 过滤可分为粗滤、微滤、超滤和反渗透四大 3、 4、 5、青霉素发酵生产中,发酵后的处理包括: 过滤、提炼,脱色,结晶。 基三种。

微生物发酵工程思考题

思考题 1 了解发酵工程的发展简史 2微生物代谢调节的特点和方式 3酶合成调节的特点和机制 4酶活性调节的类型 5诱导、阻遏、分解代谢物阻遏、反馈抑制的定义 6代谢控制发酵的定义 7营养缺陷型突变株积累产物的特点。 8抗反馈调节突变株的定义 9谷氨酸、赖氨酸代谢控制发酵的应用举例 10自然界分离微生物的一般操作步骤? 11 从环境中分离目的微生物时,为何一定要进行富集富集? 12 菌种选育分子改造的目的? 13 什么叫自然选育? 14什么是诱变育种?常用的诱变剂有哪些? 15代谢工程的定义和方法 16常用的碳源有哪些?常用的糖类有哪些,各自有何特点? 17什么是生理性酸性物质?什么是生理性碱性物质? 18常用的无机氮源和有机氮源有哪些?有机氮源在发酵培养基中的作用?19无机盐的影响? 20 什么是前体?前体添加的一般方式? 21什么是生长因子?生长因子的来源? 22 什么是产物促进剂?产物促进剂举例? 23柠檬酸发酵的培养基条件 24物料粉碎的力学分析和粉碎原理 25气流输送的原理和方式? 26淀粉糖的酶法制备原理与技术? 27 高温瞬时灭菌的原理? 28 介质过滤除菌的机理是什么 29典型的空气除菌流程(两级冷却两级分离加热流程是重点)? 30 什么是菌体的生长比速?产物的形成比速?基质的消耗比速?维持消耗? 31 什么是初级代谢产物?什么是次级代谢产物? 32什么是连续培养?什么是连续培养的稀释率? 33连续发酵动力学的应用 34温度对微生物生长、产物形成的影响?发酵热的定义, 35 发酵过程的pH控制可以采取哪些措施? 36为何氧容易成为好氧发酵的限制性因素? 37 影响微生物需氧的因素有哪些? 38 发酵液中的体积氧传递方程?其中Kla的物理意义是什么? 39如何调节通气搅拌发酵罐的供氧水平? 40发酵过程中生长速度和菌体浓度的控制方法? 41 发酵中泡沫形成的原因是什么? 42圆筒锥底啤酒发酵罐的主要特点?罐内传质和传热如何实现 43 通风发酵设备的设备要求?通风搅拌发酵罐的主要结构? 44构建基因工程菌中常用宿主系统是什么? 45基因不稳定性的原因? 46工程菌发酵过程中,减少乙酸积累的措施? 47大肠杆菌高密度发酵的策略? 48甲醇营养酵母的主要特点?

(完整版)发酵工程_题库及答案.doc

1、举出几例微生物大规模表达的产品,及其产生菌的特点? A.蛋白酶表达产物一般分泌至胞外,能利用廉价的氮源,生长温度较高, 生长速度快 ,纯化、分离及分析快速;安全性高,得到 FDA的批准的菌种。 B.单细胞蛋白生长迅速,营养要求不高,易培养,能利用廉价的培养基或生 产废物。适合大规模工业化生产,产量高,质量好。安全性高,得到 FDA的批准的菌种。 C.不饱和脂肪酸生长温度较低,安全性高,能利用廉价的碳源,不饱和脂 肪酸含量高, D.抗生素生产性能稳定,产量高,不产色素,,能利用廉价原料 F.氨基酸代谢途径比较清楚,代谢途径比较简单 2、工业化菌种的要求? A能够利用廉价的原料,简单的培养基,大量高效地合成产物 B有关合成产物的途径尽可能地简单,或者说菌种改造的可操作性要强C. 遗传性能要相对稳定 D.不易感染它种微生物或噬菌体 E.产生菌及其产物的毒性必须考虑(在分类学上最好与致病菌无关) F.生产特性要符合工艺要求 4、讨论:微生物(包括动、植物)可以生产我们所需的一切产品,但是涉 及到工业化生产,对于某一种特定的产品,为何只有特定的微生物才具有大量 表达的潜力? 在不同的环境条件下,微生物细胞对遗传信息作选择性的表达,实现代谢 的自动调节。代谢的协调能保证在任何特定时刻、特定的细胞空间,只合成必 要的酶系(参与代谢的多种酶)和刚够用的酶量。一旦特定物质的合成达到足 够的量,与这些物关系支持细胞自身的增殖(生产细胞),不支持(人的)目

的产物的过量生产(生产特定的初级代谢产物)。而工业化生产要求特定表达 某种或某类物质,只有正常代谢被打破,代谢协调失常的微生物才能达到要求 5、自然界分离微生物的一般操作步骤? 样品的采取→预处理→培养→菌落的选择→初筛→复筛→性能的鉴定→菌种保藏 6、从环境中分离目的微生物时,为何一定要进行富集培养? 自然界中目的微生物含量很少,非目的微生物种类繁多,进行富集培养, 使目的微生物在最适的环境下迅速地生长繁殖,数量增加,由原来自然条件下 的劣势种变成人工环境下的优势种,使筛选变得可能。 7、菌种选育分子改造的目的? 防止菌种退化 ; 解决生产实际问题 ; 提高生产能力 ; 提高产品质量 ; 开发新产品 . 8、以目前的研究水平,土壤中能够培养的微生物大概占总数的多少?什么 是 16sRNA同源性分析? 目前能够培养的微生物不到总数的 1%。以 16sRNA为靶基因,设计引物, 建立 pcr 扩增体系,再通过 DNA 测序进行细菌同源性分析。 9、什么叫自然选育?自然选育在工艺生产中的意义? 自然选育就是不经人工处理,利用微生物的自然突变进行菌种选育的过 程。

生物制药工艺学思考题和答案解析

抗生素发酵生产工艺 1. 青霉素发酵工艺的建立对抗生素工业有何意义? 青霉素是发现最早,最卓越的一种B-内酰胺类抗生素,它是抗生素工业的首要产品,青霉素是各种半合成抗生素的原料。青霉素的缺点是对酸不稳定,不能口服,排泄快,对革兰氏阴性菌无效。青霉素经过扩环后,形成头孢菌素母核,成为半合成头孢菌素的原料。2. 如何根据青霉素生产菌特性进行发酵过程控制? 青霉素在深层培养条件下,经历7个不同的时期,每个时期有其菌体形态特性,在规定时间取样,通过显镜检查这些形态变化,用于工程控制。 第一期:分生孢子萌发,形成芽管,原生质未分化,具有小泡。 第二期:菌丝繁殖,原生质体具有嗜碱性,类脂肪小颗粒。 第三期:形成脂肪包含体,积累储蓄物,没有空洞,嗜碱性很强。 第四期:脂肪包含体形成小滴并减少,中小空泡,原生质体嗜碱性减弱,开始产生抗生素。 第五期:形成大空泡,有中性染色大颗粒,菌丝呈桶状。脂肪包含体消失,青霉素产量提高。 第六期:出现个别自溶细胞,细胞内无颗粒,仍然桶状,释放游离氨,pH上升。 第七期:菌丝完全自溶,仅有空细胞壁。一到四期为菌丝生长期,三期的菌体适宜为种子。 四到五期为生产期,生产能力最强,通过工艺措施,延长此期,获得高产。在第六期到来之前发束发酵。 3. 青霉素发酵工程的控制原理及其关键点是什么? 控制原理:发酵过程需连续流加葡萄糖,硫酸铵以及前提物质苯乙酸盐,补糖率是最关键的控制指标,不同时期分段控制。在青霉素的生产中,及时调节各个因素减少对产量的影响,如培养基,补充碳源,氮源,无机盐流加控制,添加前体等;控制适宜的温度和ph,菌体浓度。最后要注意消沫,影响呼吸代谢。 4. 青霉素提炼工艺中采用了哪些单元操作? 青霉素不稳定,发酵液预处理、提取和精制过程要条件温和、快速,防止降解。提炼工艺包括如下单元操作: ①预处理与过滤:在于浓缩青霉素,除去大部分杂质,改变发酵液的流变学特征,便于后续的分离纯化过程。 ②萃取:其原理是青霉素游离酸易溶于有机溶剂,而青霉素易溶于水。 ③脱色:萃取液中添加活性炭,除去色素,热源,过滤,除去活性炭。 ④结晶:青霉素钾盐在乙酸丁酯中溶解度很小,在乙酸丁酯萃取液中加入乙酸钾-乙醇溶液,青霉素钾盐可直接结晶析出。 氨基酸发酵工艺 1. 如何对谷氨酸发酵工艺过程进行调控? 发酵过程流加铵盐、尿素、氨水等氮源,补充NH4+;生物素适量控制在2-5μg/L;pH 控制在中性或微碱性;供氧充足;磷酸盐适量。 2. 氨基酸生产菌有什么特性,为什么? L-谷氨酸发酵微生物的优良菌株多在棒状杆菌属、小短杆菌属、节杆菌属和短杆菌属中。具有下述共同特性:①细胞形态为短杆至棒状;②无鞭毛,不运动;③不形成芽孢;④革兰氏阳性;⑤生物素缺陷型;⑥三羧酸循环、戊糖磷酸途径突变;⑦在通气培养条件下产生大量L-谷氨酸。 3. 生物素在谷氨酸发酵过程中的作用是什么?

(完整版)氨基酸发酵工艺学要点

氨基酸发酵工艺学要点 1味精厂的主要生产车间:糖化车间、发酵车间、提取车间、精制车间 2淀粉生产的流程 原料→清理→浸泡→粗碎→胚的分离→磨碎→分离纤维→分离蛋白质→清洗→离心分离→干燥→淀粉3淀粉的液化及糖化定义。 在工业生产上,将淀粉水解为葡萄糖的过程称为淀粉的“糖化”所制的的糖液称为淀粉水解糖 液化是利用液化酶使淀粉糊化,黏度降低,并水解到糊精和低聚糖的程度 4淀粉液化过程使用淀粉酶,水解位置1,4糖苷键,糖化过程使用糖化酶,水解位置1,4糖苷键和1,6糖苷键。 5液化结束后,为何要进行灭酶处理,如何操作? 液化结束后反应快速升温灭酶,高温处理时,通过喷射器快速升温至120~145°,快速升温比逐步升温产生的“不溶性淀粉颗粒”少,所得的液化液既透明又易过滤。淀粉出糖率高,同时由于采取快速升温法,缩短了生产周期 6葡萄糖的复合反应。 7淀粉的糊化、老化定义及影响老化的因素。 (1)糊化 若将淀粉乳加热到一定温度,淀粉颗粒开始膨胀,偏光十字消失。温度继续上升,淀粉颗粒继续膨胀,可达原体积几倍到几十倍。由于颗粒的膨胀,晶体结构消失,体积膨胀大,互相接触,变成糊状液体,虽然停止搅拌淀粉也不会再沉淀,这种现象称为糊化。 (2)老化 分子间氢键已断裂的糊化淀粉又重新排列成为新氢键的过程。 (3)影响老化的因素①淀粉的成分(直链易老化,支链淀粉难老化)②液化程度③酸碱度④温度⑤淀粉糊浓度 8 DE值与DX值的概念. DE值表示淀粉水解程度或糖化程度。也称葡萄糖值 DE=还原糖浓度/(干物质浓度*糖液相对密度)*100% DX值指糖液中葡萄糖含量占干物质的百分率。 DX=葡萄糖浓度/(干物质浓度*糖液相对密度)*100% 9淀粉水解糖的质量要求有哪些? 1糖液透光率>90%(420nm)。2不含糊精、蛋白质(起泡物质)。3转化率>90%。DE值(Dextrose equivalent,葡萄糖当量值)4还原糖浓度:18%左右。5糖液不能变质。6pH4.6-4.8 10 说说酸水解法、酸酶法和酶水解法三种不同水解工艺的优劣? 酸水解法是利用无机酸为催化剂,在高温高压下,将淀粉转化为葡萄糖的方法。该法具有工艺简单,水解时间短,生产效率高,设备周转快的优点。该水解法要求耐腐蚀,耐高温,耐压的设备。 酸酶法是先将淀粉用酸水解成糊精或低聚糖,然后再用糖化酶将其水解为葡糖糖的工艺。采用酸酶法水解淀粉制糖,酸用量少,产品颜色浅,糖液质量高 酶水解法主要是将淀粉乳先用α-淀粉酶液化,过滤除去杂质后,然后用酸水解成葡萄糖的工艺。该工艺适用于大米或粗淀粉原料 11 固定化酶的定义及制备方法有哪几种? 固定化酶(immobilized enzyme):由于水溶性酶的缺点,所以将它与固相载体相连,由固相状态催化反应,称酶的固定化. ①吸附法②偶联法③交联法④包埋法 12生物素对谷氨酸生物合成途径影响。 1.生物素对糖代谢的速率的影响(主要影响糖降解速率)

发酵工程课后题参考答案样本

发酵课后题参考答案 1.试述消毒和灭菌的区别。 答: 消毒是用物理或化学的方法杀死无聊和设备中所有生命无知的过程。 灭菌是用无力或化学的方法杀死空气, 地表以及容器和器具表面的微生物。 消毒和灭菌的区别一方面在于消毒仅仅杀死生物体或非生物体表面的微生物, 而灭菌是杀死所有的生命体。另一方面在于消毒一般只能杀死营养细胞, 而不能杀死细菌芽胞和真菌孢子等, 适合于发酵车间的环境和发酵设备, 器具的无菌处理。 2简述染菌的检验方法及染菌类型的判断。 答: 生产上要求准确, 迅速的方法来检查出污染杂菌的类型及其可能的染菌途径, 当前有一下几种常见的方法。 1.显微镜检查法。一般见简单的染色法或革兰氏染色法, 将菌体染色后镜检。对于霉菌, 酵母发酵, 先用低倍镜观察生产菌的特征, 然后用高倍镜观察有无杂菌的存在。根据生产菌与杂菌的不同特征来判断是否杂菌, 必要时还可用芽胞染色或鞭毛染色。 2.平板划线培养检查法。先将待检样品爱无菌平板上划线, 根据可能的染菌类型分别置于37或27摄氏度下培养, 8个小时后可观察到是否有杂菌污染。对于噬菌体检查, 可采用双层平板培养法。 3.肉汤培养检查法。将待检样品介入无菌的肉汤培养基中, 分别置于37或27摄氏度下进行培养, 随时观察微生物的生长情况, 并取样镜检, 判读是否有杂菌污染及杂菌的类型。 4.发酵过程的异常现象观察法。发酵过程出现的异常现象如溶解氧, PH, 尾气中二氧化碳含量, 发酵液的粘度等的异常变化, 都可能产生染菌的重要信息, 也根据这些异常现象来分析发酵是否染菌。 3 发酵工业用菌种应具备哪些特点? ①能在廉价原料制成的培养基上生长, 且生成的目的产物产量高、易于回收;

氨基酸发酵工艺学要点

氨基酸发酵工艺学要点 味精厂的主要生产车间:糖化车间、发酵车间、提取车间、精制车间 淀粉生产的流程。 淀粉的液化及糖化定义。 淀粉液化过程使用淀粉酶,水解位置1,4糖苷键,糖化过程使用糖化酶,水解位置1,4糖苷键和1,6糖苷键。 液化结束后,为何要进行灭酶处理,如何操作? 葡萄糖的复合反应。 淀粉的糊化、老化定义及影响老化的因素。 DE值与DX值的概念 淀粉水解糖的质量要求有哪些? 说说酸水解法、酸酶法和酶水解法三种不同水解工艺的优劣? 固定化酶的定义及制备方法有哪几种? 生物素对谷氨酸生物合成途径影响。 在谷氨酸发酵中如何控制细胞膜渗透性。 诱变育种概念。 谷氨酸生产菌的育种思路 现有谷氨酸生产菌主要有哪四个菌属。 谷氨酸发酵生产菌的主要生化特点。 日常菌种工作。 菌种扩大培养的概念和任务 谷氨酸发酵一级种子和二级种子的质量要求 影响种子质量的主要因素 氨基酸生产菌菌种的来源有哪些。 工业微生物菌种保藏技术是哪几种? 冷冻保藏的分类 菌种衰退和复壮的概念 代谢控制发酵的定义 谷氨酸发酵培养基包括哪些主要营养成分。 生长因子的概念 影响发酵产率的因素有哪些。 谷氨酸发酵过程调节pH值的方法 谷氨酸发酵不同阶段对PH的要求:前期pH7.3、中期pH7.2 、后期pH7.0 放罐pH6.8 谷氨酸发酵时,出现泡沫过多,一般是什么原因,该怎样处理? 谷氨酸发酵过程,菌体生长缓慢或不长的原因及解决方法? 谷氨酸发酵过程,耗糖快,pH偏低, 产酸低原因及解决方法 谷氨酸生产菌最适生长温度为?,发酵谷氨酸最适发酵温度?,最适合生长pH为?。 发酵过程中CO 2迅速下降,说明污染噬菌体, CO 2 连续上升,说明污染杂菌 消泡方法有哪几种?一次高糖发酵工艺 噬菌体侵染的异常现象染菌的分析

发酵工程工厂题库(含答案)

2018发酵微生物题库 一、名词解释 1.微生物:一切肉眼看不见或看不清的微小生物的总称。 2.菌落:菌落(colony)由单个细菌(或其他微生物)细胞或一堆同种细胞在适宜固体培养基表面或 内部生长繁殖到一定程度;形成肉眼可见有一定形态结构等特征的子细胞的群落。 3.病毒:是一类核酸合蛋白质等少数集中成分组成的超显微“非细胞生物”。 4.基本培养基:仅能满足微生物野生型菌株生长需要的培养基。 5.最适生长温度:某菌分裂代时最短或生长速率最高时的培养温度。 6.巴氏消毒法:一种利用较低的温度既可杀死病菌又能保持物品中营养物质风味不变的消毒法。 7.温和噬菌体:能引起溶源性的噬菌体。 8.噬菌体:原核生物的病毒。 9.溶原性细菌:温和噬菌体侵入的宿主细胞。 10.噬菌斑生成单位(效价):每毫升试样中所含有的具侵染性的噬菌体粒子数。 二、填空题 1.微生物是一切肉眼看不见或看不清的微小生物的总称,其特点是个体微小、构造简单和进化地位低。 2.微生物主要有三大类群:①原核类的细菌、放线菌、蓝细菌、支原体、衣原体、立克次氏体; ②真核类的真菌、原生动物、显微藻类; ③非细胞类的病毒和亚病毒。 3.微生物的五大共性是体积小,面积大;吸收多,转化快;生长旺,繁殖快;适应强,易变异;分布广,种类多,其中最主要的共性应是体积小,面积大。 4.细菌的形态主要有杆状、球状状和螺旋状三种,此外,还有少数丝状和棱角状等。 5.细菌细胞的一般构造有细胞壁、细胞质、细胞质膜、核区、间体、和各种内含物等,而特殊构造则有糖被、 鞭毛、菌毛、性菌毛和芽孢等。 6.磷壁酸是革兰氏阳性细菌细胞壁上的特有成分,主要成分为甘油磷酸或核糖醇磷酸。 7.芽胞除了可长期休眠外,还是生命世界中抗逆性最强的生命体,例如抗热、抗化学药物和抗辐射等。 8.根据进化水平和形态构造等特征上的明显差别可把微生物分成三大类,即原核类、真核类和非细胞类。 9. 支原体突出的形态特征是无细胞壁,所以对青霉素不敏感。 10.病毒的一步生长曲线包括了三个时期,即潜伏期、裂解期、和平稳期。 11.细菌在固体培养基表面能形成菌落和菌苔。 12.细菌最常见的繁殖方式是裂殖,包括二分裂、三分裂、复分裂三种形式,少数细菌还能进行芽殖。 13. 可以在光学显微镜油镜下看到的细菌特殊结构有鞭毛、芽胞、糖被。 14、病毒的主要组成为核酸和蛋白质。 15、噬菌体的特点是不具有完整的细胞结构,遗传物质多为DNA。 16、病毒的繁殖过程可分为吸附、侵入、增值、成熟、裂解五个步骤。 17、微生物类群的繁殖方式多种多样,病毒以复制方式繁殖;细菌以分裂繁殖为主;而放线菌以分生孢子和 孢囊孢子两种方式形成无性孢子;霉菌较复杂,已有了无性繁殖有性繁殖和两种繁殖方式和半知菌特有的准性生殖。 18、真菌细胞的线粒体是_能量代谢的细胞器。 19、真核微生物包括有:真菌,粘菌,藻类,原生动物. 20、酵母菌的无性繁殖方式中最常见的是芽殖,少数种类具有与细菌相似的裂殖方式。 21、构成丝状真菌营养体的基本单位是:菌丝. 22、真菌菌丝具有的功能是吸收营养物质和进行繁殖。 23、真菌生长在基质内的菌丝叫基内菌丝,其功能主要是吸收营养物质,伸出基质外的菌丝叫气生菌丝,其功能主要是转化成繁殖菌丝产生孢子。 填空题(二) 1、微生物的营养要素有__碳源_、_氮源_、_能源_、_无机盐_、_生长因子__和_水__六大类。 2、营养物质通过渗透方式进入微生物细胞膜的方式有_单纯扩散、促进扩散_、主动运送、基因移位_等四种。 3、化能自养微生物以无机物为能源,以无机碳源为碳源,如硝化细菌属于此类微生物。 4、化能异养微生物的基本碳源是有机碳源,能源是有机物,其代表微生物是__酵母菌__和__乳酸菌_等。 5、固体培养基常用于微生物的科学研究、生产实践、及微生物的固体研究和大规模生产等方面。

发酵工程8-16章思考题

第八章 发酵过程 1,发酵过程的定义 2,为何要研究发酵过程 3,发酵过程的主要控制参数主要分为哪三大类 4,发酵过程中通常测定的参数有哪些 5,发酵过程中参数测定的方法有哪两种 6,简述发酵过程的代谢变化规律。为什么要了解这一规律。 7,分批发酵、补料分批发酵和连续发酵的定义。对这三种发酵方式进行比较。 8,按照产物生成与菌体生长是否同步,可将分批发酵分为哪两种类型,并用公式进行表述。这种分类方法对实际生产有何指导意义 9,代谢变化、代谢曲线 10,温度对发酵过程有何影响? 11,pH 值对发酵过程有何影响? 12,简述发酵过程中引起pH 下降和上升的因素 13,发酵过程中pH 的控制方式。 14,发酵过程中泡沫产生的原因 15,发酵过程中泡沫的产生有何不利的影响 16,在发酵过程中影响泡沫稳定性的因素有哪些 17,发酵过程中泡沫控制的方法。 18,化学消泡的机理。 19,发酵过程中补料控制的目的,所补的物料包括哪些类型,补料的原则及控制策略 20,临界氧浓度 21,请叙述发酵过程中溶解氧的一般变化规律。 22,二氧化碳对发酵的影响及其机理,发酵过程如何控制二氧化碳 23,发酵过程的基本自控系统包括哪些 24,发酵动力学的定义,研究发酵动力学的目的。 25,研究发酵动力学方法有哪两种? 26,简述Monod 方程与米氏方程的区别与联系。根据实验结果计算Monod 方程的参数 27,恒化器和恒浊器的定义。 28,在连续培养过程中,其实际结果为何会和理论推导的结果发生偏差 29,宏观产率系数 30,理论代谢产物产率的计算 31,分批发酵、补料分批发酵和连续发酵动力学方程的推导 32,研究连续培养动力学有何用途 第九章 厌氧发酵设备 1、酒精发酵设备的基本要求 2、酒精发酵罐的冷却装置有哪三种形式? 3、微生物在厌氧发酵过程中总的发酵热 4、酒精发酵罐罐数的计算 5、啤酒圆筒体锥底发酵罐的优缺点 第十章 通风发酵设备 1,常用的通风发酵罐有哪几种类型 2,机械搅拌发酵罐的基本要求 3,机械搅拌发酵罐的搅拌器的作用和种类 4,挡板的作用 5,全挡板条件 6,消泡器的作用和种类 7,发酵罐上常用的轴 封有哪两种,比较其优缺点 8,机械搅拌发酵罐的冷却装置有哪三种?各适用于什么场合?比较其优缺点? 9,自吸式发酵罐的充气原理 10,气升式发酵罐的工作(充气)原理11,搅拌器的轴功率 12,影响搅拌器输入搅拌液体的功率的因素13,功率准数 14,根据功率准数所表征的意义推导下式 15,机械搅拌发酵罐主要由哪三个部分组成及各自的作用 16,根据产品的年产量计算所需发酵罐的数量,并计算发酵罐的结构尺寸 17,了解机械搅拌发酵罐的结构 18,空气中的氧进入到细胞中要经过哪些步骤 19,根据氧的传质方程,请叙述影响氧传递的因素。 第十一章 发酵染菌的防治 1,何谓“杂菌”? 2,不同染菌途径对发酵的影响 3,染菌是如何影响产物提取和产品质量的4,无菌试验的目的 5,杂菌的检查方法有哪几种?各种检查方法的比较? 6,总染菌率 7,试从不同染菌规模分析各自引起染菌的原因 8,试从染菌分析染菌的可能原因有哪几种? 9,种子带菌的原因可能有哪几种 10,无菌室的基本要求及其所要求的无菌程度 11,造成设备泄漏可能有哪些原因 12,盘管试漏方法有哪两种? 13,发酵罐管路的连接方式有哪三种,并对这三种连接方式进行比较 14,何谓死角 15,发酵工厂的管路采用法兰连接时,如安装或操作不当有可能会形成哪些死角 16,请问下图中的管道连接方式有何不合理之处,为什么?请画出正确的连接方式 17,预防噬菌体感染的措施有哪些 18,在实际生产过程中,如何从过程检查结果分析判断染菌的原因,并提出解决的措施。 第十二章 1, 下游加工过程的定义 2, 发酵下游加工过程的特点 3, 对一具体发酵产品,在确定其下游加工工艺时应考 虑哪些因素 4, 发酵产品的下游加工工艺过程可分为哪四个阶段 5, 发酵液凝聚和絮凝的机理 6, 影响絮凝因素有哪些 7, 在发酵工业中,常用的固液分离设备有哪几种类型 8, 错流过滤 9, 微生物细胞破碎的技术有哪些 10,如何选择细胞破碎的方法 11,盐析的定义及其机理和优缺点 12,有机溶剂沉淀的原理和优缺点 13,等电沉淀的原理和优缺点 14,吸附法的原理、优缺点,吸附的类型 15,影响吸附过程的因素有哪些 16,离子交换作用,以及影响离子交换速度的因素 17,膜分离技术的优点 18,常用的膜分离设备包括哪四种类型 19,浓差极化、凝胶层 5 30 D N P P N ρ=

氨基酸生产工艺

氨基酸生产工艺 主讲人:韩北忠 刘萍 氨基酸是构成蛋白成分 目前世界上可用发酵法生产氨基酸有20多种。 氨基酸 α 碳原子分别以共价键连接氢原子、羧基和氨基及侧链。侧链不同,氨基酸的性质不同。 氨基酸的用途 1. 食品工业: 强化食品(赖氨酸,苏氨酸,色氨酸于小麦中) 增鲜剂:谷氨酸单钠和天冬氨酸 苯丙氨酸与天冬氨酸可用于制造低热量二肽甜味剂(α-天冬酰苯丙氨酸甲酯),此产品1981年获FDA批准,现在每年产量已达数万吨。 2. 饲料工业: 甲硫氨酸等必需氨基酸可用于制造动物饲料 3. 医药工业: 多种复合氨基酸制剂可通过输液治疗营养或代谢失调 苯丙氨酸与氮芥子气合成的苯丙氨酸氮芥子气对骨髓肿瘤治疗有效,且副作用低。 4. 化学工业:谷氨基钠作洗涤剂,丙氨酸制造丙氨酸纤维。 氨基酸的生产方法 发酵法: 直接发酵法:野生菌株发酵、营养缺陷型突变发酵、抗氨基酸结构类似物突变株发酵、抗氨基酸结构类似物突变株的营养缺陷型菌株发酵和营养缺陷型回复突变株发酵。 添加前体法 酶法:利用微生物细胞或微生物产生的酶来制造氨基酸。 提取法:蛋白质水解,从水解液中提取。胱氨酸、半胱氨酸和酪氨酸 合成法:DL-蛋氨酸、丙氨酸、甘氨酸、苯丙氨酸。 传统的提取法、酶法和化学合成法由于前体物的成本高,工艺复杂,难以达到工业化生产的目的。 生产氨基酸的大国为日本和德国。 日本的味之素、协和发酵及德国的德固沙是世界氨基酸生产的三巨头。它们能生产高品质的氨基酸,可直接用于输液制剂的生产。 日本在美国、法国等建立了合资的氨基酸生产厂家,生产氨基酸和天冬甜精等衍生物。 国内生产氨基酸的厂家主要是天津氨基酸公司,湖北八峰氨基酸公司,但目前无论生产规模及产品质量还难于与国外抗衡。 在80年代中后期,我国从日本的味之素、协和发酵以技贸合作的方式引进输液制剂的制造技术和仿造产品, 1991年销售量为二千万瓶,1996年达六千万瓶,主要厂家有无锡华瑞,北京费森尤斯,昆明康普莱特,但生产原

发酵工程思考题(含答案)教学文案

发酵工程课后思考题 第一章绪论 1、发酵及发酵工程定义? 答:它是应用微生物学等相关的自然科学以及工程学原理,利用微生物等生物细胞进行酶促转化,将原料转化成产品或提供社会性服务的一门科学。由于它以培养微生物为主,所以又称为微生物工程。 2、发酵工程基本组成部分? 答:从广义上讲分为三部分:上游工程、发酵工程、下游工程 3、发酵工业产业化应抓好哪三个环节? 答:发酵工程产业化就是将有关应用微生物的科学研究成果转化为发酵产品,并投向市场的过程。 三个环节:投产试验、规模化生产和市场营销。 ①投产试验:涉及到”上、中、下三游”工作,即研究成果的验证、小试、中试和扩大试验。 ②规模化生产:值得注意的是产品质量问题,其检测必须符合相应产品标准。 ③市场营销:市场开拓对技术本身影响不大,但参与市场竞争却是产业化成败的决定因素。 4、当前发酵工业面临三大问题是什么? 答:菌种问题 纯种,遗传稳定性,安全,周期短、转化率高产率高抗污染能力强:噬菌体、蛭弧菌; 合适的反应器 生产规模化原料利用量大,并且具有一定选择性,节能,结构多样化、操作制动化,节劳力。 基质的选择 价廉原料利用量大,并且具有一定选择性易被利用、副产物少,满足工艺要求。 5、我国发酵工业应该走什么样的产业化道路?发酵过程的组成部分? 答第一步为技术积累阶段、第二步为产业崛起阶段、第三步为持续发展阶段 典型的发酵过程可划分成六个基本组成部分: (1)繁殖种子和发酵生产所用的培养基组份设定; (2)培养基、发酵罐及其附属设备的灭菌; (3)培养出有活性、适量的纯种,接种入生产容器中; (4)微生物在最适合于产物生长的条件下,在发酵罐中生长; (5)产物分离和精制; (6)过程中排出的废弃物的处理。 第二章菌种的来源(1) 1、自然界分离微生物的一般操作步骤? 答:标本采集,预处理,富集培养,菌种分离(初筛,复筛),发酵性能鉴定,菌种保藏 2、从环境中分离目的微生物时,为何一定要进行富集? 答:让目的微生物在种群中占优势,使筛选变得可能。 3、什么叫自然选育?自然选育在工艺生产中的意义? 答:不经人工处理,利用微生物的自然突变进行菌种选育的过程称为自然选育。 意义:自然选育是一种简单易行的方法,可达到纯化菌种、防止菌种退化、稳定生产、提高产量的目的。虽然其突变率很低,但却是工厂保证稳产高产的重要措施。 4、诱变育种对出发菌株有哪些要求?

《现代工业发酵调控学》课后习题

《现代工业发酵调控学》课后习题 《第一章》 1,不同学科对微生物生长的定义的着重点有何不同?什么是分化? 2,有些霉菌,如产黄青霉在培养液中生长过程,其菌丝会形成菌团,有哪些因素影响菌球的松紧? 3,微生物生长可以分为几期?停滞期的长短由哪些因素决定? 4,生物量的测定为什么对次级代谢产物的生产尤为重要?对谷氨酸,青霉素发酵菌浓的测定,您倾向于用什么方法,说出你的理由 5,流动式细胞光度计是怎样的仪器,简述其作用和原理 6,试比较各种间接估算菌浓的方法和优缺点 7,您认为哪一种在线测量菌浓的方法最有前途 8,有哪些因素会影响微生物的生长 9,温度对微生物的生长影响表现在哪些方面 10,水的活度用什么表示?它对微生物比生长速率有何影响?

11,细胞周期指的是什么?真核生物和原核生物的细胞周期有何不同 12,简述大肠杆菌染色体复制和细胞分裂的调节规律 13,生长速率对细胞大小和 DNA 包内含量有何影响 14,生长得率是什么意思,有哪些表示方法,比较他们的优缺点 15,生长得率取决于哪些因素/ 16,P/O 商是指什么,用来表征什么,如何测定,它的大小对生长得率有什么影响 17,描述菌丝顶端的生长机制 18,什么是菌丝生长单位,受哪些环境因素的影响 19,未分化菌丝生长的调节包括哪三种机制 《第二章》 1,微生物按能量来源,C 的来源,按 H 的给体类型可以分为哪些类型的 2,从热力学观点来看,一个反应能否进行由什么决定 3,在 PH7.0,30℃下,谷氨酸与氨反应生成谷氨酰胺的平衡常数 K+1.2*103 此反应由两个

分立的反应组成 1,谷氨酸+NH3------谷氨酰胺+H2O,2,ATP+H2O-----ADP+Pi,反应 2 的平衡常数为 3.13*10-3,求反应的标准自由能变化 4,生化反应中常需的能量载体主要有哪几类 5,糖的分解代谢主要通过哪些途径,由葡萄糖分解为 CO 2和 H 2 O 可以得到多少 ATP 6,提供细胞所需的 ATP 有哪些途径 7,乙醛酸循环在代谢中起什么作用,它由哪些酶反应构成 8,有些微生物能生在在 2C 化合物作为唯一 C 源的无机盐培养基中,它是怎么取的 5-C 和 6C 化合物的 9,自然界中的 C 和 N 是通过什么途径循环的 10,微生物是如何利用淀粉和纤维素的 11,氨的同化方式有哪些 12,合成一分子谷氨酸的能量代价是 28 分子的 ATP,这是怎么计算出来的,合成一分子天冬氨酸的能量代价是多少 13,莽草酸途径是用来做什么的,其终产物是怎样合成的,其中间体是哪些初级代谢物的次级代谢物

发酵工程与设备习题答案

第一章 1.简述发酵工程的概念及其主要内容。 发酵工程就是生物技术的重要组成部分,就是生物技术产业化的重要环节。它就是应用生物学、化学与工程技术学的原理,大规模(工厂化)培养动植物与微生物细胞,生产生物量或产物的科学。发酵工程可分为上游工程、中游工程与下游工程。 生产微生物细胞(或生物量); 生产微生物的酶;●生产微生物的代谢产物;?生产基因重组产物;?将一个化合物经过发酵改造其化学结构——生物转化。 2、什么叫次级代谢产物?次级代谢产物就是微生物在哪些生长时期形成的?其与初级代谢产物有什么关系? 以初级代谢产物为原料通过次级代谢合成的,对自身无明确生理作用的代谢产物叫次级代谢产物。关系:先产生初级代谢产物,后产生次级代谢产物;初级代谢就是次级代谢的基础;次级代谢就是初级代谢在特定前提下的继续与发展。 3、发酵过程有哪些组成部分? 用于菌种扩大培养与发酵生产用的培养基配方; 培养基、发酵罐与辅助设备的灭菌;●足量的高活性、纯培养的接种物;?在适宜条件的发酵罐中培养菌体生产产物;?产物的提取与纯化;?生产过程的废物的处理。 第二章 1、发酵工程菌株的选育方法有哪些?各有何特点? 自然选育:自发突变率低,变异程度较轻微,变异过程十分缓慢;自发突变不定向,负向变异可能性大,正向变异可能性小 诱变育种:方法简单,快速,收效显著。 原生质体融合:打破种属间的界限,提高重组频率,扩大重组幅度。 杂交育种:使不同菌株的优良性状集中在重组体中,扩大变异范围,具有更强的方向性与目的性。 基因工程育种:按人们的愿望使生物体的遗传性状发生定向变异。 2、发酵工程对菌种有何要求?菌种的分离与筛选基本流程就是怎样的? 要求:能大量高效合成产物;发酵培养基原料廉价;培养条件容易控制;易于液中提取产物;不易污染其它杂菌与噬菌体;无毒无害;性能稳定,不易退化

发酵考试的复习思考题2

发酵考试的复习思考题 1,发酵p1及发酵工程的定义发酵:微生物工程(Microbial engineering )是利用微生物的特定性状和功能,通过现代化工程技术生产有用物质或直接应用于工业化生产的技术体系;是将传统发酵与现代DNA 重组、细胞融合、分子修饰和改造等新技术结合并发展起来的现代发酵技术。 2,发酵工程的特点p5 3,发酵的分类 1、根据微生物对氧的需求:1)好氧性发酵2)厌气性发酵 2、按发酵培养基物理状态分1)固体发酵2)液体发酵 4,发酵产品的类型p4 5,微生物代谢产物的类型及其之间的关系p4 6,发酵过程的组成典型的发酵过程可以划分成六个基本组成部分: (1)繁殖种子和发酵生产所用的培养基组份设定; (2)培养基、发酵罐及其附属设备的灭菌; (3)培养出有活性、适量的纯种,接种入生产的容器中; (4)微生物在最适合于产物生长的条件下,在发酵罐中生长; (5)产物萃取和精制; (6)过程中排出的废弃物的处理。 7,发酵生产成立的条件 (1)某种适宜的微生物 (2)保证或控制微生物进行代谢的各种条件(培养基组成,温度,溶氧pH等) (3)进行微生物发酵的设备 (4)提取菌体或代谢产物,精制成产品的方法和设备 8,发酵工业发展的阶段及大致年代p6ppt 9,和国际先进水平相比较,我国发酵工业的不足之处主要表现在哪些方面 1, 微生物代谢调节和微生物代谢调控的概念代谢调节是指在代谢途径水平上酶活性和酶合成的调节。微生物代谢调控:根据代谢调节理论,通过改变发酵工艺条件(温度、PH、风量、培养基组成)和菌种遗传特性,达到改变菌体内的代谢平衡,过量产生所需产物的目的 2,为何要进行微生物的代谢调控改变菌体内的代谢平衡,过量产生所需产物的目的。 3,微生物代谢调节的方式方式:反馈抑制、反馈阻遏、酶的诱导调节、酶的共价修饰。 4,从本质上来说,微生物的代谢是通过哪两种方式来进行的分解代谢和合成代谢 5,酶合成调节的方式及其定义、机制.方式:诱导`、阻遏定义:通过调节酶的合成量进而调节代谢速率的调节机制,是基因水平上的调节,属于粗放的调节,间接而缓慢。机制:用操纵子理论解释酶合成的调节有两种机制:一种是负调控机制,由调节基因的产物——阻遏蛋白起着阻止结构基因转录的作用,不能合成相应的酶。另一种是正调控机制,由调节基因的产物——激活蛋白促进RNA聚合酶的结合,从而增加mRNA的合成。 6,酶活性调节的定义、方式通过改变酶的催化活性来调节代谢速率的调节方式,称为酶活性调节。方式:浓度调节、生理··、共价修饰..、抑制剂··、反馈··、 7,有分支代谢途径的调节方式有哪些协同反馈抑制合作反馈抑制、累积反馈抑制顺序反馈抑制同功酶调节

发酵动力学

第八章发酵动力学 发酵动力学是研究各种环境因素与微生物代谢活动之间的相互作用随时间变化的规律的科学。 fermentation kinetics 生化反应工程的基础内容之一,以研究发酵过程的反应速率和环境因素对速率的影响为主要内容。通过发酵动力学的研究,可进一步了解微生物的生理特征,菌体生长和产物形成的合适条件,以及各种发酵参数之间的关系,为发酵过程的工艺控制、发酵罐的设计放大和用计算机对发酵过程的控 发酵动力学 制创造条件。 研究发酵过程中菌的生长速率、培养基的消耗速率和产品形成速率的相互作用和随时间变化的规律。 发酵动力学包括化学热力学(研究反应的方向)和化学动力学(研究反应的速度)并涉及酶反应动力学和细胞生长动力学。 它为发酵过程的控制、小罐试验数据的放大以及从分批发酵过渡到半连续发酵和连续发酵提供了理论基础。 发酵动力学也是计算机模拟发酵过程研究及发酵过程计算机在线控制的基础。 在发酵中同时存在着菌体生长和产物形成两个过程,它们都需要消耗培养基中的基质,

发酵动力学 因此有各自的动力学表达式,但它们之间是有相互联系的,都是以菌体生长动力学为基础的。所谓菌体生长动力学是以研究菌体浓度、限制性基质(培养基中含量最少的基质,其他组分都是过量的)浓度、抑制剂浓度、温度和pH等对菌体生长速率的影响为内容的。在分批发酵中,菌体浓度X,产物浓度P和限制性基质浓度S均随时间t变化 菌体生长可分迟滞、对数、减速、静止、衰退等五个时期。其中菌体的主要生长期是对数期,它的特点是: 随着基质浓度继续下降,菌体的衰老死亡逐步与生长平衡以至超过生长,也即进入静止和衰退期。 发酵动力学 J.莫诺于1949年提出了一个μ与S间的经验关联式,此式被称莫诺方程式: μm为最大比生长速率, 即不因基质浓度变化而改变的最大μ值;Ks为饱和常数,即在数量上相当于μ=0.5μm时的S值。Ks值愈小,说明在低基质浓度范围中,S对μ愈为敏感,而保持μm的临界S值愈低。在一般情况下,当S>10Ks时,μ=μm 当时,μ=(μm/Ks)S。产物的形成常与菌体的生长或浓度有关.α、β为常数 ;qP为比产物形成速率。在限制性基质的消耗和菌体生长间常用下式表示:

相关主题
文本预览
相关文档 最新文档