当前位置:文档之家› 红外光谱测试报告

红外光谱测试报告

红外光谱测试报告
红外光谱测试报告

中国地质大学

研究生课程论文封面

课程名称傅里叶红外光谱测试技术和宝石学应用教师姓名

研究生姓名

研究生学号

研究生专业宝石学

所在院系珠宝学院

类别: A.博士 B.硕士 C.进修生

日期: 2011年 1月 3日

红外光谱测在宝石学上的应用

摘要:红外光谱分析作为波谱分析这一新鬟学科中最常见的技术之一,近年来在宝石学领域中得到了广泛的应用。在不需要制样、不破坏样品的情况下,红外光谱仪就能够在宝玉石种属的鉴别、优化处理的确定以及天然与合成宝石的区分方面发挥重要作用。能够很快又方便的解决一些常规仪器和传统方法不能解决的问题。本文是在查阅资料的基础上,利用傅里叶红外光谱测试了两块自有样品后,得出了相应的结论。通过对样品的测试和结论的讨论,掌握了利用红外光谱测试宝石技术,并且对其在宝石学上的应用做了简要的探讨,分析了它的优点和不足。

一、红外光谱概述

1.红外光谱基本概念

红外光谱是指物质在红外钱照射下,引起分子的振动能级和转动能级的跃迁而产生的光谱。分子的总能量由平动能量、振动能量、电子能量和转动能量四部分构成,若以连续波长中的红外线照射宝石.那么其间的元素、配位基和铬阴离子团便产生特征的振动和转动能级的跃迁.该能级在跃迁时.往往选择性吸收一定波长的电磁辐射,因而产生特征的吸收光谱。所测得吸收光谱称红外吸收光谱,简称红外光谱。

2.应用光谱区的划分

根据实验技术和应用的不同,通常把红外光谱划分成三个光谱区:近红外光谱区,波长0.8~2.5微米,主要用来研究O-H、c-H及N-N键的倍频吸收;中红外光谱区(基本振动一转动区),波长2.5~25微米,它是宝石学应用研究最多的区域,该区的吸收主要是由分于的振动能级和转动能缎跃迁引起;远红外光谱区(转动区),波长25~1000微米,分子的纯转动能级跃迁及晶体的晶格振动多出现在此区。

3.波长、频率和波数的关系

在红外光谱中,用波长和频率来表示谱带的位置,而更常用的是用波数表示。若波长以微米为单位,波数以cm-1为单位,它们之间的关系是γ(cm-1)=1/λ(cm)=104/λ(微米)。红外光谱属能量在1-0.01ev,波长为0.8-1000微米。相当于波数为12500cm-1至10cm-1的分子振动与转动光谱区。

二、分子振动转动光谱基本理论

1.双原子分子振动光谱

双原子分子的物理模型简单,当分子吸收红外光后,两个原子在连接轴线发生振动,它们之间产生的作用力可以用位移情况可以用胡克定律解释,通过数学计算可以得到关于化学键力常数和频率关系的公式:

γ=1/2 *π(k/m)1/2 (m为分子折合质量,k为化学键力常数)

从上式可知:化学键键强越大,原子折合质量越小,化学键振动频率越大,吸收峰将出现在高波数区。

由量子力学观点知道,分子振动能级是不连续的,而经常发生的是分子吸收能量后从基态到第一激发态的跃迁,与此对应的谱带称为基频吸收谱带,显示比较强的峰;由基态到第二、第三、第四等激发态之间的跃迁则称为泛频吸收谱带,显示弱峰;多原子分子中出现的倍频、组频是指多个基频吸收谱带的重叠或组合。

2.双原子分子转动光谱

当分子围绕某个轴以高频率速度转动,并且产生了偶极矩时,吸收红外光也会在红外谱区

出现吸收峰。转动光谱和转动常数、转动量子数有关。将分子当做刚性的,不计电子质量且原子核看成质点:

I=m

1m

2

/(m

1

+m

2

)re2(m为原子质量,re为原子间距)

E

=h2/8πI2*j(j+1)(j为转动量子数)

ΔE=2Bhc(j+1)(ΔE为分子增加的转动能量)

从上式可知:分子质量越大,分子转动惯量越大,转动常数就越大,转动光谱的谱线波长就越长,落在微波区。

3.双原子分子的振-转光谱

振动能级跃迁时总是伴随转动能级的跃迁发生,当用红外光照射自由分子时,就测不到单纯的分子振动谱线,而是由多根很近的谱线组成的宽吸收谱带。

4.多原子分子的简正振动和转动光谱

组成分子的多原子各自同时振动,以相同频率简谐或非简谐振动,即简正振动。振动形式有伸缩振动、变形振动。原子沿键轴方向伸缩,键长改变、面键角不变的振动称为伸缩振动(V),其又可分为对称振动(Vs)和反对称伸缩振动(Vas),一般情况下同一基团中反对称伸缩振动频率稍高于对称伸缩振动。当键角发生周期变化而键长不变的振动称变形振动(δ),其又可分为面内变形和面外变形振动。

简正振动数目由分子自由度确定,因为分子作为整体有三个平动自由度和三个转动自由度(线性分子两个),根据公式3N-6或3N-5就可以确定分子的基频吸收谱带。然而实际中并没有理论上这么多的基频吸收谱带,主要原因是:没有偶极矩变化的振动不产生红外吸收;相同频率的振动吸收重叠;仪器条件限制,不能区别频率接近的振动或吸收很弱。

由于多原子分子的转动惯量较大,而它们的转动能级间距比较小,所以很难观察到吸收光谱。多原子分子振动光谱的产生也有一定的要求,只有瞬间偶极矩变化的简正振动才能在红外光谱中看到。当分子的对称性很好时,会发生简并振动,导致红外谱峰减弱。与双原子分子一样,其红外谱图中除基频峰外,也有倍频、组频、泛频等峰。

三、傅里叶变换红外光谱仪原理

该仪器是通过对两束相干的光产生干涉,所得干涉图经傅里叶变换数值计算来测定光谱图的。使用连续波长的红外光源测定样品。样品中的分子选择性吸收某些波长的光。没有被吸收的光到达检测器,检测器将检测到的光信号经过模数转换,再经过傅里叶变换,即可得到样品的单光束光谱。为了得到样品的红外光谱,需要从样品的单光束光谱中扣除掉背景的单光束光谱,也就是测试无样品时得到的背景单光束光谱。这样得到的背景单光束光谱中包含了仪器内部各种零件和空气的信息。在测试样品的单光束光谱和测试背景的单光束光谱时,从样品的单光束光谱中扣除掉背景的单光束光谱后就得到样品的红外光谱。表现在红外光谱中,在被吸收的光的波数位置会出现吸收峰。某一波长的光被吸收得越多,透射率就越低,吸收峰就越强。当样品中分子吸收很多种波长的光时,在测得的红外光谱中就会出现许多吸收峰。

四、测试样品描述

本次试验选取黑色电气石原石和广州市场购买的翡翠观音挂件分别进行红外测试。用翡翠做红外透射测试,用电气石制作溴化钾压片透射测试。黑色电气石结晶形态呈复三方柱状,晶面纵纹发育不明显,可呈现一定程度的光滑平面,断口呈贝壳状。翡翠半透明,厚度在2-5mm,浅灰绿色。

五、实验步骤

本次试验测试仪器为Nicolet-550型傅立叶变换红外光谱仪,分辨率为4cm -1

,扫描范围

为400-4000cm -1

,扫描信号累加次数为16次。 1.翡翠的透射测试

将翡翠用夹板夹住并对准较薄部位,直接放到样品测试台开始测试,记录光谱。 2.电气石粉末压片测试

压片的制作:首先在实验前将溴化钾粉末置于40摄氏度的烘箱中烘烤5个小时以除去其中的水分。然后按照样品粉末和溴化钾晶体质量比1:100的比例,用锉刀刮取电气石粉末少量,称溴化钾112.5mg 。将样品和溴化钾一起置于玛瑙研钵中,一边研磨一边转动玛瑙研钵,使样品和溴化钾充分混合均匀。研磨时间4-5分钟,以避免因为研磨时间短导致的颗粒太粗或时间过长导致溴化钾吸水生。研磨到颗粒尺寸小于2.5μm 以下,以避免引起中红外光的散射。压片模具在使用前要用棉签蘸乙醇将压片模具里面擦洗干净。研磨好以后,用不锈钢小扁铲将混合物倒入模具并铺平。接着用手指的力量一面旋转压片模具的压杆,一方面稍加向下的压力使混合物更加平整。使用压片机给压片模具施加压力,通常情况下要施加20个压力并保持10分钟。最后用压片模具附带的开口圆筒在压片机上将压好的样品圆片顶下来。 把压好的溴化钾压片用橡胶泥固定于样品夹中,放于样品室中,使用透射红外光进行测试,记录光谱。

六、测试结果与分析 1.翡翠红外图谱如下:

2385.9

2497.5

2702.8

2845.6

2917.0

3547.8

3619.4

Tue Jan 04 15:00:40 2011

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

4.0 4.5

5.0 5.5

6.0

%T

1000

2000

3000

4000

Wavenumbers (cm-1)

⑴ 天然翡翠以3500cm -1

为中心有宽的吸收带,吸收带有宽有窄,而透过峰右部程度不同地有吸收现象,是矿物H0、XOH 吸收峰分布区。翡翠是硬玉为主的多晶质矿物集合体。硬玉本身不含水,但其伴生组分角闪石、层状硅酸盐矿物、沸石等都是含水(H0、OH)矿物,此外还有吸附水、气液包体水等都有OH 基团,水峰是它们的特征反映。故认为本次测试翡翠样品

在3619cm -1和3547.8cm -1

处的吸收峰是水峰。

⑵ 3200-2800cm -1吸收带是CH 吸收带,这是判断有机质存在的特征标志。以3000cm -1

界,>3000cm -1是不饱和烃基化合物炔类(3300cm -1)、烯烃(3095-3010cm -1

)和芳烃

(3100-3000cm -1)吸收峰分布区;<3000cm -1

则是饱和脂肪族化合物(烷烃)的甲基(CH)、亚甲

基(CH)基团吸收峰分布区,频率分别是(2960—2915cm -1)和(2875—2845cm -1

),透过峰内左部

呈双尖峰状。测试翡翠在2917cm -1和2845cm -1

处有很弱的吸收峰,故认为样品含微量的有机质。但是样品采用的是非常薄的一面,透过率很低的话不能证明它就是充蜡或胶的翡翠,需要进别的测试辅助鉴定。

⑶ 2800—2500cm -1吸收带是NH 和SH 基团吸收峰分布区。NH 基团频率在2750-2450cm -1

是一

组宽、强且尖锐的处于透过峰顶部吸收峰;SH 基团较弱,频率在2600—2500cm -1

间。本样

品在2702cm -1

处有一吸收峰,推测为NH 基团所致,

⑷ 2500-2200cm -1

吸收带可能有三个来源:其一是有机物C ≡N(包括脂肪族和芳香族的氰化

物)频率分别在2252-2245cm -1和2245-2230cm -1和P-H 吸收峰分布区(频率2460—2270cm -1

);

其二是硅酸盐矿物Si-O 的倍频峰;其三是光路中的CO 2,频率是(2390—2280cm -1

)。本样品

在2385cm -1处有峰,推测是CO 2所致。2497.5cm -1

可能为Si-O 的倍频峰。 笔者分析后认为该翡翠挂件为天然翡翠,但是含有微量的有机质存在。 2.电气石红外图谱如下:

420.8

502.8

714.8

778.3

986.2

1261.8

1352.1

1638.7

1735.9

2285.2

2342.8

2926.0

2976.5

3437.7

3563.3

Tue Jan 04 16:43:45 2011

-2 0 2 4 6 8 10

12 14

16 18 20%T

1000

2000

3000

4000

Wavenumbers (cm-1)

⑴ 通常3400-3600cm -1

和1630cm -1

等峰是电气石中羟基和水的振动吸附的特征谱带。本样品

在3563cm -1、3437cm -1宽缓的吸收峰为羟基吸收峰,1638.7cm -1

附近宽缓的吸收峰应该为吸附水所致。

⑵ BO 3原子团振动:电气石中B 和三个O 组成平面三角形络阴离子,硼阴离子呈孤岛状,其

红外吸收只是对硅酸盐阴离子吸收的简单迭加。通常BO 3的伸缩振动在1200cm -1-1300cm -1

间。本样品在1261.8cm -1

处的吸收峰可能为该基团的伸缩振动引起。

⑶ M-O 八面体阳离子振动:连接复杂硅酸盐阴离子的阳离子键的振动大多数在400cm -1

附近

出现,如[MgO 6]在470cm -1,[FeO 6]在400cm -1。本样品在420.8cm -1

处的细小锐锋推测为M-O 八面体阳离子振动。

⑷ [SiO 4]离子团振动:电气石中硅氧四面体组成复三方环,[SiO 3]6复三方环由六个[SiO 3]四面体连接而成,每个硅形成两个Si-0b -Si 型键和两个Si —O t 型键。环状络阴离子振动模式可分为:V s Si-O-Si(对称伸缩振动),V as Si-O-Si(不对称伸缩振动),V s O-Si-O(对称伸缩振动),V as 0-Si-0(不对称伸缩振动)和δSi-O 弯曲振动。一般强的Si-O 四面体伸缩振动谱在

1200cm-1-800cm-1之间。在510cm-1附近,存在δSi-O弯曲振动谱。在550—750cm-1区域内存在V s Si-O-Si的吸收谱带。本样品在714.8cm-1处为V s Si-O-Si振动谱,502.8cm-1为δSi-O 弯曲振动谱,986cm-1宽缓的峰为强的Si-O四面体伸缩振动谱。

笔者通过对比样品吸收峰与镁电气石、锂电气石吸收峰后认为该样品为含铁电气石。

七、红外光谱在宝石学上的应用

宝石学界利用红外光谱已经不是新鲜事情,在国内各大质检机构都可以看到傅里叶红外光谱仪的身影。它主要有以下优点:

①扫描速度快。即使做粉末压片,在准备工作做好情况下一般在30分钟内完成。

②灵敏度高。光通量高,可以检测出10-8g数量级的样品。

③信噪比高,能够测定弱的光谱。

④波数测定准确。

⑤分辨率高,可达0.1-0.005cm-1。

⑥其他优点,比如计算机控制,受干扰小等。

此外,红外光谱在宝石学中可以完成常规仪器不能解决的问题:1)区分天然与合成宝石,如将天然祖母绿与合成祖母绿区分开;2)检测某些经人工优化处理的宝石,如鉴定A、B 货翡翠,天然绿松石和注塑绿松石;3)区分一些相似的宝石种和外观相似的宝石仿制品,如紫色方柱石和紫晶、夕线石猫眼和柱晶石猫眼等。正是这些特点使红外广泛应用于宝石学。然而,在采用红外技术时也应该注意一些问题:确定宝石种属时,更为有效的方法是采用镜面反射法获得谱线,主要是采集指纹区的数据,再做粉末压片辅助鉴定效果比较好。在检测SiO2系列宝石时,应该注意采用合适的方法,不同方法所得谱线有差异,沿不同方向透射红外光时也产生相异的谱线。

参考文献

[1]李雯雯,吴瑞华,董颖. 2008.电气石红外光谱和红外辐射特性的研究

[2]江富建.2002.钙镁电气石检测特征探析

[3]亓利剑.1994.红外光谱在宝石学中的应用

[4]李建军,田亮光,程佑法.2008.红外光谱仪在宝石鉴定中的常规化应用及须注意的问题--与KBr压片法比较

[5]陈美华.1998.红外光谱技术在宝石学中的应用及前景

[6]翁诗甫.2009.傅里叶变换红外光谱分析

[7]高媛.2008.红外光谱在翡翠研究中的应用

[8]高岩.2002.红外光谱直接透射测试技术的原理与应用

[9]吴淑琪,郭立鹤.1997.傅里叶红外光光谱技术在翡翠研究中的应用

[10]王茜,叶晓琴,俞雷.2006.红外光谱法检测、鉴定翡翠

地物光谱反射率的野外测定

实验一 地物光谱反射率的野外测定 一、实验目的 1、学习地物光谱的测定方法 2、认识地物光谱反射率的规律 3、掌握绘制地物反射光谱曲线的方法 二、原理及方法 地物光谱反射率的野外测定原理主要是利用电磁辐射和各地物光谱特征进行测定(参照课本)。 实验采用垂直测量方法,计算公式为: ()()()() λρλλλρs Vs V ?= 式中, ()λρ为被测物体的反射率,()λρs 为标准板的反射率,()λV ,()λVs 分别为测量 物体和标准板的仪器测量值。 三、实验仪器 1、可见光-近红外光谱辐射计,波长范围0.4—2.5μm(有0.4—1.1μm 或1.3—2.5μm 二种仪器),仪器性能稳定,携带方便,数据提取容易。表1.1列出了目前常用的光谱仪。 2、标准参考板(白板或灰板)。 表1.1常见的光谱辐射仪

四、实验步骤 1、测量目标和条件的选择 环境:无严重大气污染,光照稳定,无卷云或浓积云,风力小于3级,避开阴影和强反射体的影响(测量者不穿白色服装)。 时间:地方时9:30—14:30。 取样:选择物体自然状态的表面作为观测面,取样面积大于地物自然表面起伏和不均匀的尺度,被测目标面要充满视场。 标准板:标准板表面与被测地物的宏观表面相平行,与观测仪器等距,并充满仪器视场,保证板面清洁。 2、记录测量目标基本信息 主要内容如下: 土壤:土类、土属、土种;地貌类型、成土母质、侵蚀状况;干湿度、粗糙度等。 植被:植物名称、所属类别、覆盖率、生长状况、叶色、高度等。 水体:水体名称、水体状况、水色、水温、透明度、泥沙含量、叶绿素含量、污染状况等。 人工目标:目标名称、内容描述、估算面积、几何特征、表面颜色、坡度、坡面等。 岩矿:岩矿名称、所属类别、植被覆盖及名称、土壤覆盖及名称、岩矿露头面积、所属构造、地质年代、风化状况等。 3、记录环境参数 主要内容如表1.2,内容由教学教师定,制成表格填写。见附表。 4、安装仪器开始测试 ①对准标准板,读取数据为Vs。 ②移开标准板对准地物,读取数据Vg。 ③重复步骤①②,测量5—9次,记录数据,计算平均值。 ④更换目标,做好信息记录,重复①—③步骤。 ⑤整理数据,根据上述公式计算反射率 ()λ ρg ,标准 ()λ ρs 为已知值。 仪器安装注意事项: 测量高度:仪器保持水平架设,离被测地物表面距离不小于1m。 几何关系:仪器轴线与天顶的倾斜角<±2°,标准面水平放置。

拉曼光谱解读

激光拉曼光谱 [实验目的] 1、学习使用光谱测量中常用的仪器设备; 2、测量4CCl (液体)的拉曼光谱; 3、学习简单而常用的光谱处理方法,并对4CCl 的拉曼光谱进行处理,求出4CCl 的主要拉曼线的拉曼位移。 [拉曼光谱基本原理] 1、 现象 频率0v 的单色辐射入射到透明气体、液体或光学上完整透明的固体上时,大部分辐射无改变地透过,还有一部分受到散射。其中将出现频率为0m v v ±的辐射对。这种辐射频率发生改变的散射成为拉曼(Raman )散射;还有辐射频率不发生改变的散射称为瑞利散射。一般把瑞利散射和拉曼散射合起来所形成的光谱称为拉曼光谱,即0v 和0m v v ±合起来构成拉曼光谱。0v 称为瑞利线,0m v v ±称为拉曼线,m v 称为拉曼位移。且频率为0m v v -的拉曼线称为斯托克斯线,频率为0m v v +的拉曼线称为反斯托克斯线。瑞利散射的强度通常约为入射辐射强度的310-,强的拉曼散射的强度一般约为瑞利散射强度的310-, 2、 解释 对拉曼散射的完整理论解释是非常复杂的,限于篇幅这里不作介绍,请大家参看附后的有关参考书。下面用一个简单模型——散射系统与入射辐射之间的能量交换模型对其加以解释。 设散射系统有两个能级1E 、2E ,且有21E E >,210E E hv ->。由于入射辐射的相互作用,系统可以从低能级1E 跃迁到高能级2E ,这是必须要从入射辐射中获得所需能量21E E E ?=-。这个过程可以认为是系统吸收一个能量为0hv 的入射光子,从1E 能级跃迁到某一更高能级(通常散射系统并没有这样一个能级,所

以称其为虚能级),然后,放出一个能量为0hv E -?的散射光子而跃迁到2E 能级。此时,散射光子的频率可表述为: 000m hv E E v v v v h h -??= =-=- 另一方面,如果散射系统处于激发能级2E ,由于相互作用的存在,它可以从高能级2E 跃迁到低能级1E 。此时系统必须把能量21E E E ?=-交给入射辐射。同样这一过程可认为是系统吸收一个能量为0hv 的入射光子。从2E 能级跃迁到某一高的虚能级,然后以放出一个能量为0hv E +?的散射光子而跃迁到1E 能级。此时,散射光子的频率可表述为: 000m hv E E v v v v h h +??==+=+ 以上的描述可用图1来直观表示。 拉曼散射所涉及到得能级1E 、2E ,一般为散射系统的振动、转动能级(对于分子系统而言),或为晶格振动能级(对于晶体而言)。即拉曼位移m v 通常对应系统的振动、转动频率或晶体振动频率。

植物反射波谱特征

健康的绿色植被的光谱反射特征 地面植物具有明显的光谱反射特征,不同于土壤、水体与其她的典型地物,植被对电磁波的响应就是由其化学特征与形态学特征决定的,这种特征与植被的发育、健康状况以及生长条件密切相关。 在可见光波段内,各种色素就是支配植物光谱响应的主要因素,其中叶绿素所起的作用最为重要。健康的绿色植被,其光谱反射曲线几乎总就是呈现“峰与谷”的图形,可见光谱内的谷就是由植物叶子内的色素引起的。 例如叶绿素强烈吸收波谱段中心约0、45um与0、67um(常称这个谱带为叶绿素吸收带)的能量。植物叶子强烈吸收蓝区与红区的能量,而强烈反射绿区能量,因此肉眼觉得健康的植被呈绿色。除此之外,叶红素与叶黄素在0、45um(蓝色)附近有一个吸收带,但就是由于叶绿素的吸收带也在这个区域内,所以这两种黄色色素光谱响应模式中起主导作用。 如果植物受到某种形式的抑制而中断了正常的生长发育,它会减少甚至停止叶绿素的产生。这将导致叶绿素的蓝区与红区吸收带减弱,常使红波段反射率增强,以至于我们可以瞧到植物变黄(绿色与红色合成)。 从可见光区到大约0、7um的近红外光谱区,可瞧到健康植被的反射率急剧上升。在0、7-1、3um区间,植物的反射率主要来自植物叶子内部结构。 健康绿色植物在0、7-1、3um间,的光谱特征的反射率高达(45%-50%),透过率高达(45%-50%),吸收率低至(<5%)。植物叶子一般可反射入射能量的 40%-50%,其余能量大部分透射过去,因为在这一光谱区植物叶子对入射能量的吸收最少(一般少于5%)。 在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。在可见光波段与近红外波段之间,即大约0、76um附近,反射率急剧上升,形成“红边”现象,这就是植物曲线的最为明显的特征,就是研究的重点光谱区域。 许多种类的植物在可见光波段差异小,但近红外波段的反射率差异明显。同时,与单片叶子相比,多片叶子能够在光谱的近红外波段产生更高的反射率(高达85%),这就是因为附加反射率的原因,因为辐射能量透过最上层的叶子后,将被第二层的叶子反射,结果在形式上增强了第一层叶子的反射能量。

激光拉曼光谱实验报告

激光拉曼光谱实验报告 摘要:本实验研究了用半导体激光器泵浦的3Nd + :4YVO 晶体并倍频后得到的532nm 激 光作为激发光源照射液体样品的4CCL 分子而得到的拉曼光谱,谱线很好地吻合了理论分析的4CCL 分子4种振动模式,且频率的实验值与标准值比误差低于2%。又利用偏振片及半波片获得与入射光偏振方向垂直及平行的出射光,确定了各振动的退偏度,分别为、、、,和标准值0和比较偏大。 关键词:拉曼散射、分子振动、退偏 一, 引言 1928年,印度物理学家拉曼()和克利希南()实验发现,当光穿过液体苯时被分子散射的光发生频率变化,这种现象称为拉曼散射。几乎与此同时,苏联物理学家兰斯别而格()和曼杰尔斯达姆()也在晶体石英样品中发现了类似现象。在散射光谱中,频率与入射光频率0υ相同的成分称为瑞利散射,频率对称分布在0υ两侧的谱线或谱带01υυ±即为拉曼光谱,其中频率较小的成分01υυ-又称为斯托克斯线,频率较大的成分01υυ+又称为反斯托克斯线。这种新的散射谱线与散射体中分子的震动和转动,或晶格的振动等有关。 拉曼效应是单色光与分子或晶体物质作用时产生的一种非弹性散射现象。拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 20世纪60年代激光的问世促进了拉曼光谱学的发展。由于激光极高的单色亮度,它很快被用到拉曼光谱中作为激发光源。而且基于新激光技术在拉曼光谱学中的使用,发展了共振拉曼、受激拉曼散射和番斯托克斯拉曼散射等新的实验技术和手段。 拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源于分子的振动和转动。它提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。拉曼光谱的分析方向有定性分析、结构分析和定量分析。

不同积雪及雪被地物光谱反射率特征与光谱拟合_张佳华

专题二地表反照率 不同积雪及雪被地物光谱反射率特征与光谱拟合 张佳华1* 周正明1王培娟1沙依然2许云1孟倩文1 (1. 中国气象科学研究院,北京100081;2. 新疆气候中心,乌鲁木齐,830002) 摘要:积雪覆盖是影响全球气候、水循环的重要特征参数,准确测量和分析积雪光谱特征是提高遥感反演积雪特征的重要途径。本文在试验场基于野外光谱辐射仪测定了北京地区多种地表积雪和雪被地物的光谱,并对测得光谱数据进行分析。结果表明,对于纯雪光谱,反射率的峰值明显集中在从可见光波段到800n m 波段位置,积雪光谱具有反射率稳定较高的特点;在1030nm附近,光谱出现了一个明显的吸收谷。由于水的强吸收,积雪光谱在1500nm和2000nm附近的反射率几乎降到了0;在300-1300nm、1700-1800nm、2200-2300nm处,老雪和融化的雪反射峰比起新雪有不同程度的下降,最低为压实冻结的冰雪。对积雪和植被混合象元的光谱特性分析表明:雪被地物(包括覆有积雪的松叶和有积雪背景的松叶),由于受积雪的影响下,在350-1300nm光谱的反射率有所增加,但主要的植被光谱特性仍然保留得比较完整。最后,本文依据积雪、植被和混合光谱的定量分析,建立了混合光谱的拟合方程,结果显示模拟的混合光谱与实测光谱有较好的相关性(复相关系数R2=0.952)。 关键词:积雪; 光谱特征; 光谱拟合; ASD野外光谱仪 Spectrum reflectance characteristics of different snow and snow –covered land surface objects and mixed spectrum fitting ZHANG Jia-hua1*,ZHOU Zheng-ming1 , WANG Pei-juan1, SHA Yi-ran2, XUN Yun1, MENG Qian-wen1 (1. Chinese Academy of Meteorological Sciences, Beijing 100081,China; 2. Xinjiang Climate Center of, Urumqi,830002, China ) *通讯作者简介:张佳华 联系方式:zhangjh@https://www.doczj.com/doc/9110377196.html, 33

激光拉曼光谱仪实验报告

实验六 激光拉曼光谱仪 【目的要求】 1.学习和了解拉曼散射的基本原理; 2.学习使用激光拉曼光谱仪测量CCL 4的谱线; 【仪器用具】 LRS-3型激光拉曼光谱仪、CCL 4、计算机、打印机 【原 理】 1. 拉曼散射 当平行光投射于气体、液体或透明晶体的样品上,大部分按原来的方向透射 而过,小部分按照不同的角度散射开来,这种现象称为光的散射。散射是光子与物质分子相互碰撞的结果。由于碰撞方式不同,光子和分子之间会有多种散射形式。 ⑴ 弹性碰撞 弹性碰撞是光子和分子之间没有能量交换,只是改变了光子的运动方向,使得散射光的频率与入射光的频率基本相同,频率变化小于3×105HZ ,在光谱上称为瑞利散射。瑞利散射在光谱上给出了一条与入射光的频率相同的很强的散射谱线,就是瑞利线。 ⑵ 非弹性碰撞 光子和分子之间在碰撞时发生了能量交换,这不仅使光子改变了其运动方向,也改变了其能量,使散射光频率与入射光频率不同,这种散射在光谱上称为拉曼散射,强度很弱,大约只有入射线的10-6。 由于散射线的强度很低,所以为了排除入射光的干扰,拉曼散射一般在入射线的垂直方向检测。散射谱线的排列方式是围绕瑞利线而对称的。在拉曼散射中散射光频率小于入射光频率的散射线被称为斯托克斯线;而散射光频率大于入射光频率的散射线被称为反斯托克斯线。斯托克斯线和反斯托克斯线是如何形成的呢?在非弹性碰撞过程中,光子与分子有能量交换, 光子转移一部分能量给分子, 或者从分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值21E E E -=?。在光子与分子发生非弹性碰撞过程中,光子把一部分能量交给分子时,光子则以较小的频率散射出去,称为频率较低的光(即斯托克斯线),散射分子接受的能量转变成为分子的振动或转动能

激光拉曼光谱试验

拉曼散射是印度科学家Raman在1928年发现的,拉曼光谱因之得名。光和媒质分子相互作用时引起每个分子作受迫振动从而产生散射光,散射光的频率一般和入射光的频率相同,这种散射叫做瑞利散射,由英国科学家瑞利于1899年进行了研究。但当拉曼在他的实验室里用一个大透镜将太阳光聚焦到一瓶苯的溶液中,经过滤光的阳光呈蓝色,但是当光束进入溶液之后,除了入射的蓝光之外,拉曼还观察到了很微弱的绿光。拉曼认为这是光与分子相互作用而产生的一种新频率的光谱带。因这一重大发现,拉曼于1930年获诺贝尔奖。 激光拉曼光谱是激光光谱学中的一个重要分支,应用十分广泛。如在化学方面应用于有机和无机分析化学、生物化学、石油化工、高分子化学、催化和环境科学、分子鉴定、分子结构等研究;在物理学方面应用于发展新型激光器、产生超短脉冲、分子瞬态寿命研究等,此外在相干时间、固体能谱方面也有广泛的应用。 实验目的:1、掌握拉曼光谱仪的原理和使用方法; 2、测四氯化碳的拉曼光谱,计算拉曼频移。 实验重点:拉曼现象的产生原理及拉曼频移的计算 实验难点:光路的调节 实验原理:[仪器结构及原理] 1、仪器的结构 LRS-II激光拉曼/荧光光谱仪的总体结构如图12-4-1所示。 2、单色仪 单色仪的光学结构如图12-4-2所示。S1为入射狭缝,M1为准直镜,G为平面衍射光栅,衍射光束经成像物镜M2汇聚,经平面镜M3反射直接照射到出射狭缝S2上,在S2外侧有一光电倍增管PMT,当光谱仪的光栅转动时,光谱信号通过光电倍增管转换成相应的电脉冲,并由光子计数器放大、计数,进入计算机处理,在显示器的荧光屏上得到光谱的分布曲线。 3、激光器 本实验采用50mW半导体激光器,该激光器输出的激光为偏振光。其操作步骤参照半导体激光器

激光拉曼光谱仪实验报告记录

激光拉曼光谱仪实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验六 激光拉曼光谱仪 【目的要求】 1.学习和了解拉曼散射的基本原理; 2.学习使用激光拉曼光谱仪测量CCL 4的谱线; 【仪器用具】 LRS-3型激光拉曼光谱仪、CCL 4、计算机、打印机 【原 理】 1. 拉曼散射 当平行光投射于气体、液体或透明晶体的样品上,大部分按原来的方向透射 而过,小部分按照不同的角度散射开来,这种现象称为光的散射。散射是光子与物质分子相互碰撞的结果。由于碰撞方式不同,光子和分子之间会有多种散射形式。 ⑴ 弹性碰撞 弹性碰撞是光子和分子之间没有能量交换,只是改变了光子的运动方向,使得散射光的频率与入射光的频率基本相同,频率变化小于3×105HZ ,在光谱上称为瑞利散射。瑞利散射在光谱上给出了一条与入射光的频率相同的很强的散射谱线,就是瑞利线。 ⑵ 非弹性碰撞 光子和分子之间在碰撞时发生了能量交换,这不仅使光子改变了其运动方向,也改变了其能量,使散射光频率与入射光频率不同,这种散射在光谱上称为拉曼散射,强度很弱,大约只有入射线的10-6。 由于散射线的强度很低,所以为了排除入射光的干扰,拉曼散射一般在入射线的垂直方向检测。散射谱线的排列方式是围绕瑞利线而对称的。在拉曼散射中散射光频率小于入射光频率的散射线被称为斯托克斯线;而散射光频率大于入射光频率的散射线被称为反斯托克斯线。斯托克斯线和反斯托克斯线是如何形成的呢?在非弹性碰撞过程中,光子与分子有能量交换, 光子转移一部分能量给分子, 或者从分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值21E E E -=?。在光子与分子发生非弹性碰撞过程中,光子把一部分能量交给分子时,光子则以较小的频率散射出去,称为频

激光拉曼光谱的原理和应用及拉曼问答总结(整理完毕)

激光拉曼光谱的原理和应用 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会暗原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究 推荐激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。 激光拉曼光谱法的原理是拉曼散射效应。 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不公改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。 对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。 这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学 拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物 拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。电活性聚合物如聚毗咯、聚噻吩等的研究常利用拉曼光谱为工具,在高聚物的工业生产方面,如对受挤压线性聚乙烯的形态、高强度纤维中紧束分子的观测,以及聚乙烯磨损碎片结晶度的测量等研究中都彩了拉曼光谱。 生物 拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。拉曼光谱在蛋白质

几个典型颜色的光谱反射率曲线

bc=380:10:730; data=[5.37 8.44 11.44 12.37 12.43 12.30 12.19 12.04 11.86 11.58 11.24 10.94 10.61 10.26 9.93 9.84 10.13 10.86 12.30 14.79 21.49 32.18 39.65 42.77 43.76 43.86 43.76 43.56 43.46 43.07 42.72 42.43 42.25 42.02 41.72 41.55 3.33 4.94 6.25 6.90 7.27 7.69 8.33 9.31 10.93 14.02 18.84 23.89 28.42 32.50 34.83 33.53 29.91 2 5.14 20.04 15.65 11.93 8.74 6.10 4.38 3.49 3.05 2.79 2.58 2.47 2.48 2.63 2.88 3.17 3.38 3.33 3.24 5.02 9.73 17.92 24.85 28.13 31.79 37.19 42.99 48.73 54.68 57.69 57.36 53.72 47.53 39.61 31.37 24.20 18.07 13.06 9.70 7.69 6.54 5.64 5.00 4.70 4.57 4.53 4.66 4.95 5.12 5.03 4.78 4.45 4.20 4.41 5.19 1.42 1.65 1.76 1.83 1.82 1.86 1.93 2.03 2.11 2.21 2.34 2.58 3.21 5.90 12.10 18.07 21.00 22.29 23.49 2 4.86 2 5.59 25.78 25.65 25.41 25.17 24.92 24.72 24.54 24.44 24.20 24.00 23.82 23.73 23.62 23.48 23.39 ]; hold on plot(bc,data(1,:),'-',... bc,data(2,:),'*-',... bc,data(3,:),':',...

各种物质漫反射光谱的测定

093858 张亚辉 应化 实验三:各种物质漫反射光谱的测定 一.实验目的 通过各种样品的紫外-可见漫反射光谱测定,掌握紫外-可见漫反射原理,熟悉InstantSpec BWS003的使用。 二.实验原理 光是一种电磁辐射,具有波粒二相性。太阳光是全色光,人眼只能看到380-750nm 的光,称为可见光。 紫外-可见漫反射光谱与紫外-可见吸收光谱相比,所测样品的局限性要小很多。后者符合朗伯-比尔定律,对透射光进行分析,溶液必须是稀溶液才能测量,否则将破坏吸光度与浓度之间的线性关系。而前者,紫外-可见漫反射光谱则可以浑浊溶液、悬浊溶液及固体和固体粉末等,试样产生的漫反射符合Kublka —Munk 方程式 式中K -吸收系数 S -为散射系数 R∞ 表示无限厚样品的反射系数R 的极限值,其数值为一个常数。 实际上,反射系数R 通常是采用与一已知的高反射系数的标准物质(本实验采用PTFE ,其反射系数在紫外可见光区高达98%左右)比较来测量,测定R∞(样品)/ R∞(标准物质)比值,将此比值对波长作图,构成一定波长范围内该物质的反射光谱。 积分球是漫反射测量中的常用附件之一.其内表面的漫反射物质反射系数高达98%,使得光在积分球内部的损失接近零。漫反射光是指从光源发出的光进入样品内部,经过多次反射、折射、散射及吸收后返回样品表面的光。这些光在积分球内经过多次漫反射后到达检测器. 2(1)/2/R R K S ∞∞ -=

三.实验仪器和试剂 1.InstantSpec BWS003 紫外可见漫反射光谱仪; 2.有颜色的纸张;

3.不同颜色的树叶; 4.手臂上的某处皮肤(测试者自己选择)。 四.实验步骤 1.双击打开软件,从菜单栏中选择“Option”-“Enable Reference Material File”-“Set”。 2. 设置“Integration Time”为800。 3. 点击“Open FlashLight”。 4. Dark scan (1)将port reducer装在取样口,拧紧螺丝; (2)将light trap罩在取样口上。 (3)点击软件上的“dark scan”。 5. Reference scan] (1) 将Spectralon Reference Standard(参比)放置在样品口 (2)点击“Reference Scan”。 6. Sample scan (1)取下参比,将样品放置在取样口,点击“Acquire one Spectrum”; (2)选择“%T/R”得到漫反射光谱曲线。 (3)换另一个样品,点击“Acquire Overlay”得到该样品的漫反射光谱曲线。 五.数据处理 以λ为横坐标,R%为纵坐标作所测样品的反射光谱图。 1)下面为红、黄、蓝三种纸片的漫反射光谱图 从图中可看出红黄蓝分别在其对应波长处的反射率最大,并且各种颜色对应的最

激光拉曼光谱仪实验报告

实验六激光拉曼光谱仪 【目的要求】 1.学习和了解拉曼散射的基本原理; 2.学习使用激光拉曼光谱仪测量CCL的谱线; 【仪器用具】 LRS-3型激光拉曼光谱仪、CCL、计算机、打印机 【原理】 1.拉曼散射 当平行光投射于气体、液体或透明晶体的样品上,大部分按原来的方向透射而过,小部分按照不同的角度散射开来,这种现象称为光的散射。散射是光子与物质分子相互碰撞的结果。由于碰撞方式不同,光子和分子之间会有多种散射形式。 (1)弹性碰撞 弹性碰撞是光子和分子之间没有能量交换,只是改变了光子的运动方向,使得散射光的频率与入射光的频率基本相同,频率变化小于3X 105HZ在光谱上称为瑞利散射。瑞利散射在光谱上给出了一条与入射光的频率相同的很强的散射谱线,就是瑞利线。 ⑵非弹性碰撞 光子和分子之间在碰撞时发生了能量交换,这不仅使光子改变了其运动方向,也改变了其能量,使散射光频率与入射光频率不同,这种散射在光谱上称为拉曼散射,强度很弱,大约只有入射线的10-6。 由于散射线的强度很低,所以为了排除入射光的干扰,拉曼散射一般在入射线的垂直方向检测。散射谱线的排列方式是围绕瑞利线而对称的。在拉曼散射中散射光频率小于入射光频率的散射线被称为斯托克斯线;而散射光频率大于入射光频率的散射线被称为反斯托克斯线。斯托克斯线和反斯托克斯线是如何形成的呢?在非弹性碰撞过程中,光子与分子有能量交换,光子转移一部分能量给分子或者从分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值=E - E2。在光子与分子发生非弹性碰撞 过程中,光子把一部分能量交给分子时,光子则以较小的频率散射出去,称为频率较低的光(即斯托克斯线),散射分子接受的能量转变成为分子的振动或转动能 量,从而处于激发态Ei,这时的光子的频率为、-- ■'■:■■-(入射光的频率为\ 0);

地物光谱反射率分析

实习报告 实习题目:地物光谱测定 实习时间,地点:天山堂前面空地贺兰堂地信专业机房 实习目的:认识地物光谱反射率的规律,分析典型地物的光谱特征 使用仪器:地物光谱分析仪 测量目标的基本信息:草地,裸地,水泥路,红灌丛,绿灌丛 环境参数表:气温:18度 实习内容,实习步骤:1. 用ASD软件打开外业测量地物光谱数据,去除十条曲线中明显异常曲线 打开ASD软件→file→open→选中测得的十条曲线→打开→选择加载的十条数据→view→graph data→在空白处右击→customization dialog→axis→min/max(设置max为1),根据图形删除其中一条或多条异常曲线(在目录中直接删除) 2.对符合条件的地物光谱曲线进行处理(导出每种地物的JPG、tab和平均值.mn数据) ①加载符合条件的曲线(方法与步骤1相同)→export→分别

选择jpg,设置输出路径和文件名,点击export即可 ②求每种地物的平均值曲线 Process→statistics→选择mean→设置输出路径和文件名即可 对于上述导出的平均值曲线,点击export→分别选择text格式,设置输出路径和文件名,点击export即可导出.dat文件 3.处理数据 ①对每种地物的jpg文件,只需要分析其曲线特征(联系地物实际特性来分析其在可见光(380-760nm)和近红外(760-1500nm)之间的光谱特征) ②将上述的dat文件(五个)分别用excel打开,并且计算红、绿、蓝波段的平均值,蓝光101-171,绿光171-251,红光281-341,将计算好的五组数据放入新的excel表中,并绘制折线图 ③将步骤2中的各种地物平均值数据在ASD中打开,方法如步骤1所示,并将其按照jpg格式导出,并对其进行分析。 反射率曲线及分析:

Renishaw显微共焦激光拉曼光谱仪操作说明

Renishaw显微共焦激光拉曼光谱仪操作说明 一、开机顺序 1、打开主机电源; 2、计算机电源 3、将使用的激光器电源 1)、514nm:打开激光器后面的总电源开关->打开激光器上的钥匙; 2)、785nm:直接打开激光器电源开关。 二、自检 1、用鼠标双击WiRE2.0 图标,进入仪器工作软件环境; 2、系统自检画面出现,选择Reference All Motors 并确定(OK)。系统将检验所有的电机。 3、从主菜单Measurement -> New -> New Acquisition 设置实验条件。静态取谱(Static),中心520 Raman Shift cm-1, Advanced -> Pinhole 设为in。 4、使用硅片,用50 倍物镜,1 秒曝光时间,100%激光功率取谱。使用曲线拟合(Curve fit)命令检查峰位。 三、实验 1、实验条件设置 1)、点击设置按钮(或者菜单中Measurement-->Setup Measurement),(设置)下列参数 2)、OK:采用当前设置条件,并关闭设置窗口;Apply:应用当前设置条件,不关闭窗口; 2、采谱:执行Measurement -> Run 命令。 四、关机 1、关闭计算机 1)、关闭WiRE2.0 软件; 2)、Start-->Shut Down-->Turn off computer。计算机将自动关闭电源。 2、关闭主机电源; 3、关闭激光器 1)、关闭钥匙; 2)、514 激光器散热风扇会继续运转,此时不要关闭主电源开关。等风扇自动停转后再关闭主电源开关; 五、注意事项 1、开机顺序:主机在前,计算机在后。 2、关机顺序:计算机在前,主机在后。514nm 激光器要充分冷却后才能关闭主电源。 3、自检:一定要等自检完成再做其他动作。不能取消(Cancel)。 4、硅片:514nm,自然解理线与横向成45 度时信号最强。780nm,(633nm,325nm)自然解理线与横向基本平行时信号最强。

拉曼光谱常见问题汇总

拉曼光谱问题汇总 问题目录 一、测试了一些样品,得到的是Ramanshift,但是文献是wavenumber,不知道它们之间的转换公式是怎么样的?激光波长632.8nm。 二、如何用拉曼光谱仪测透明的有机物液体,测试时放到了玻璃片上测出来的结果是玻璃的光谱。 三、我们这里有做生物样品的拉曼光谱的,在获得的图里面有很强的荧光,有的说,如果拉曼得不到就用其荧光谱。可我想问一下,在拉曼谱里面得到的荧光背景,是真正的荧光特征谱吗?这和荧光光谱仪里面的荧光图有什么区别? 四、什么是共焦显微拉曼光谱仪? 五、请问,测固体粉末的拉曼图谱时,对于荧光很强的物质,应该如何处理?特别是当荧光将拉曼峰湮灭时,应该怎么办?增加照射时间的方法,我试过,连续照射了4小时,结果还是有很强的荧光。我只有一台532nm的激光器,所以更换激光波长的方法目前我不能用。想问问各位,还有别的方法吗? 六、请问用激光拉曼仪能测量薄膜的厚度、折射率及应力吗?它能对薄膜进行那些方面的测量呢? 七、拉曼做金属氧化物含量的下限是多少? 我有一几种氧化物的混合物,其中MoO3含量只有5%,XRD检测不到,拉曼可以吗? 八、小弟是刚涉足拉曼这个领域,主打生物医学方面。实验中,发现温度不同时,拉曼好像也不一样。不知到哪位能帮忙解释一下这个现象 九、文献上说,拉曼的峰强与物质的浓度是成正比关系,那么比如我配置1mol/L的某溶液,和0.5mol/L的溶液,其峰强度是正好一半的关系吗?应用拉曼,是否能采用峰积分,或者用近红外那样的多元统计的办法来定量吗?准确度怎么样? 十、拉曼峰1640对应的是什么东西啊?无机的 十一、1 红外分析气体需要多高的分辨率? 2 拉曼光谱仪是否可分析纯金属? 3 红外与拉曼联用,BRUKER和NICOLET哪个好些? 十二、我想请问一下这里的高手测定过渡金属络合物水溶液中金属与有机物中的某个原子是否成键可以用拉曼光谱分析吗? 十三、金红石和锐钛矿对紫外Raman的响应差别大不大?同样条件下的金红石和锐钛矿的Raman峰会不会差很多? 十四、什么是3CCD? 十五、请教我所作的实验是用柠檬酸金属盐溶胶拉制成纤维,想做一下拉曼光谱来证明是否有线性分子的存在,可以吗 十六、在测量拉曼光谱仪的灵敏度参数时,有人提出,单晶硅的三阶拉曼峰的强度跟硅分子的取向(什么111,100之类)的有关,使用不同取向的硅使用与其相匹配的激光照射时,其强度严重不一样,是这样吗?不知道大家测量激光拉曼光谱仪的灵敏度时都是怎么测量的 十七、请问如何进行拉曼光谱数据处理? 十八、拉曼系统自检具体是检测哪些硬件?是个什么过程? 十九、请教作激光拉曼测试,样品如何预处理? 二十、请问激光拉曼光谱是什么意思? 二十一、请教喇曼谱实验时,如何选择激发波长,1064nm?还是785nm或633nm? 二十二、拉曼信号对入射角和出射角的响应又是什么样?我的样品是有衬底支持的薄膜样品(膜厚几百纳米--几微米),怎样扣除衬底的影响? 二十三、微区拉曼和普通拉曼有区别吗,尤其在图谱上?多晶,单晶和非晶拉曼有何区别? 二十四、我是做复合材料的研究的,主要是想研究纤维增强复合材料的界面性能? 二十五、学校有一套天津港东的拉曼光谱仪,计划给学生开一个测量固体(或粉末)拉曼光谱的实验。试了几种材料都不明显,各位高人能推荐几种容易找到的象四氯化碳拉曼光谱那么明显的固体,晶体,或者粉末吗? 二十六、我们研究小组新近涉及碳纳米管的领域。由于纳米管的Raman信号很弱,就是要重复不断的测试才能在1600cm-1的附近得到峰。请问具体操作条件应该怎么选。如laser的功率,解析度,扫描数scannumber等等,我们用的Raman仪器是(Brucker, RFS-100/S)。 二十七、激光拉曼光谱仪应该可以实现快速的定量分析,但经过前段时间一些咨询,使我对其是否可进行快速分析颇存疑问,尤其是气体分析。请问,一般来说分析一次样品(气体或固体)的时间是多长

你看得懂颜色的光谱反射率曲线吗(干货)

你看得懂颜色的光谱反射率曲线吗?(干货) 这周主要介绍光谱反射率曲线。今天先介绍如何根据光谱反射率曲线判断颜色。而颜色又分为彩色和非彩色,以下逐一分析: 1、彩色与非彩色的概念 2、非彩色的特征 3、彩色的三种判断方法:峰值法、补色法、混合法 1彩色与非彩色的概念 我们知道人眼能感知到的光的平均波长,只有380nm到750nm,称为「可见光」。这些仅仅是光这偌大范围中的一小部分。相比之下,这个部分似乎很小,但仅仅这一部分,已经足够为我们的视觉和思维提供一幅奇幻的空间。 我们可以辨别出可见光谱中的一千万种区别。当我们看见了全部范围的可见光,或者说各个波长的可见光比例都一样,眼睛就会读出「白色」或者说「非彩色」。当某些光波消失时,眼睛就会读出「彩色」(根据补色原理,我们看到消失光波颜色的补色)。2非彩色 没有色相的白色,灰色,黑色物体的光谱反射率曲线都是比较平缓的曲线,反射出来的各个波长的光都一样,反射比例高就是白色,反射比例低成为黑色,反射比例居中,就是灰色。如下图所示。

▲白色 ▲灰色 ▲黑色3彩色 有色相的彩色物体的光谱反射率曲线可以看到明显的高低 起伏。因为某些波长的光被物体吸收掉,物体能反射该波长的光的比例就小。而没有被物体吸收掉的光大部分被反射出来,比例就大。 (1)峰值法——最容易理解,有特征峰。峰值就是占最大比例的波长,显示出来的颜色当然是该峰值所在的波长的颜色。 ▲蓝色 ▲绿色 (2)补色法——也很容易理解,被吸收的补色,看特征谷。被吸收的波长少,而反射出来的波长种类多时,可以采用这种方法——反射出来的光的颜色就是被吸收的波长的补色。例如:红色,是因为物体吸收了蓝和绿光,即青色。▲红色黄色,是因为物体吸收了蓝光。 ▲黄色 而橙色是由红黄的混合而来,特征居于红黄之间。▲橙色(3)混色法:一般只针对红紫色。因为由于红紫色(purple)是非光谱色,也就是说没有代表该颜色的波长的光。但是色环的定义是每个颜色都跟该颜色相邻的颜色相近,而且色环

激光拉曼光谱技术

激光拉曼光谱技术 摘要:论文综述了激光拉曼光谱的发展历史,拉曼光谱原理,其中有自发拉曼散射,相干反射托克斯拉曼散射光谱和受 激拉曼散射。 关键词:激光拉曼光谱原理自发反斯托克斯受激 正文 1.拉曼光谱的发展历史 印度物理学家拉曼于1928年用水银灯照射苯液体,发 现了新的辐射谱线:在入射光频率ω0的两边出现呈对称分 布的,频率为ω0-ω和ω0+ω的明锐边带,这是属于一种 新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。拉曼因发现这一新的分子辐射和所取得的许多光散射研究 成果而获得了1930年诺贝尔物理奖。与此同时,前苏联兰 茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的现象, 即由光学声子引起的拉曼散射,称之谓并合散射。 法国罗卡特、卡本斯以及美国伍德证实了拉曼的观察 研究的结果。然而到1940年,拉曼光谱的地位一落千丈。 主要是因为拉曼效应太弱(约为入射光强的10-6),人们难以 观测研究较弱的拉曼散射信号,更谈不上测量研究二级以上 的高阶拉曼散射效应。并要求被测样品的体积必须足够大、无色、无尘埃、无荧光等等。所以到40年代中期,红外技 术的进步和商品化更使拉曼光谱的应用一度衰落。1960年 以后,红宝石激光器的出现,使得拉曼散射的研究进入了一 个全新的时期。由于激光器的单色性好,方向性强,功率密 度高,用它作为激发光源,大大提高了激发效率。成为拉曼 光谱的理想光源。随探测技术的改进和对被测样品要求的 降低,目前在物理、化学、医药、工业等各个领域拉曼光谱

得到了广泛的应用,越来越受研究者的重视。 70年代中期,激光拉曼探针的出现,给微区分析注人活力。80年代以来,美国Spex公司和英国Rr i ns how公司 相继推出,位曼探针共焦激光拉曼光谱仪,由于采用了凹陷 滤波器(notch filter)来过滤掉激发光,使杂散光得到抑制,因而不在需要采用双联单色器甚至三联单色器,而只需要采用单一单色器,使光源的效率大大提高,这样入射光的功率 可以很低,灵敏度得到很大的提高。Di l o公司推出了多测点在线工业用拉曼系统,采用的光纤可达200m,从而使拉曼 光谱的应用范围更加广阔。 2拉曼光谱的原理 2.1自发拉曼散射 泵浦光注入光纤后,其部分能量转为拉曼散射光,当 泵浦光的强度小于阈值时,这时光纤分子的热平衡没有被 破坏,这种拉曼散射叫自发拉曼散射。拉曼散射的产生原 因是光子与分子之间发生了能量交换改变了光子的能量。2.2拉曼散射的产生 光子和样品分子之间的作用可以从能级之间的跃迁来 分析。样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。这样,样品分子吸收光子后到达一种准激发状态,又称为虚能态。样品分子在准激发态时是不稳定的,它将回到电子能级的基态。若分子回到电子能级基态中的振动能级基态,则光子的能量未发生改变,发生瑞 利散射。如果样品分子回到电子能级基态中的较高振动能 级即某些振动激发态,则散射的光子能量小于入射光子的能量,其波长大于入射光。这时散射光谱的瑞利散射谱线较低频率侧将出现一根拉曼散射光的谱线,称为St okes线。如果样品分子在与入射光子作用前的瞬间不是处于电子能级 基态的最低振动能级,而是处于电子能级基态中的某个振动能级激发态,则入射光光子作用使之跃迁到准激发态后,该 分子退激回到电子能级基态的振动能级基态,这样散射光能量大于入射光子能量,其谱线位于瑞利谱线的高频侧,称为

地物光谱反射率的测定

地物光谱反射率的测定 山西师范大学实验报告 时间:2011年9月20日 学院:城环学院班级:0904班姓名:任红霞实验名称:地物光谱反射率的测定气压:常压温度:15? 实验目的: 1(学习地物光谱反射率的测定方法; 2(认识地物光谱反射率的规律。 实验仪器: 1(便携式地物波谱仪 2(标准参考板 实验步骤: (光谱仪、计算机充电。 1 2(连接电池、网线、探头电源、光纤,准备好白板。 3(打开光谱仪电源,然后打开计算机电源,并启动RS3软件。 4(在软件上调整光谱平均、暗电流平均和白板采集平均次数。 5(在软件中选择或填写需要存储数据的路径、名称和其他内容。 6(开始测量: (1)打开探头电源,探头放在白板上面,点击OPT优化; (2)探头仍然对准白板,点击WR采集参比光谱。此时,软件自动进入反射率测量状态。 (3)探头移向被测目标的测量位置,按空格键存储采集到的目标反射光谱。 7(先关闭计算机再关闭仪器。 8(分析实测结果:

(1)准确绘出地物光谱反射率曲线; 玄武岩反射率曲线 页岩反射率曲线 (2)根据地物光谱反射率曲线,比较地物光谱曲线特征; 页岩和玄武岩光谱曲线比较 玄武岩 页岩10000 8000 6000 DN4000 2000

350-2000 444wavelength538 632 通过图片可以明显看出,玄武岩和页岩在不同波段有相同的变化规律,而726 820玄武岩的反射率在各波段普遍低于页岩. 914 1008 1102 1196 1290 1384 1478 1572 1666 1760 1854 1948 2042 2136 2230 2324 2418 (3)分析实习过程中可能引起误差的因素。 在波长为1000纳米及1850纳米附近,曲线有较大的跳跃,造成这样现象的原因,可能是由于预热时间不充足,电压不稳定,也有可能是由于不同波段的光纤出现交叉.

《激光拉曼光谱》.(DOC)

激光拉曼光谱实验讲义 引言 一 实验目的 1、了解拉曼散射的基本原理 2、学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 二 实验原理 当波束为0ν的单色光入射到介质上时,除了被介质吸收、反射和透射外,总会有一部分被散射。按散射光相对于入射光 波数的改变情况,可将散射光分为三类:第一类,其波数基本不变或变化小于5110cm --,这类散射称为瑞利散射;第二类, 其波数变化大约为10.1cm -,称为布利源散射;第三类是波数变化大于11cm -的散射,称为拉曼散射;从散射光的强度看, 瑞利散射最强,拉曼散射最弱。 在经典理论中,拉曼散射可以看作入射光的电磁波使原子或分子电极化以后所产生的,因为原子和分子都是可以极化的,因而产生瑞利散射,因为极化率又随着分子内部的运动(转动、振动等)而变化,所以产生拉曼散射。 在量子理论中,把拉曼散射看作光量子与分子相碰撞时产生的非弹性碰撞过程。当入射的光量子与分子相碰撞时,可以是弹性碰撞的散射也可以是非弹性碰撞的散射。在弹性碰撞过程中,光量子与分子均没有能量交换,于是它的频率保持恒定,这叫瑞利散射,如图(1a );在非弹性碰撞过程中光量子与分子有能量交换,光量子转移一部分能量给散射分子,或者从散射分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值12E E E ?=-,当光量子把一部分能量交给分子时,光量子则以较小的频率散射出去,称为频率较低的光(斯托克斯线),散射分 子接受的能量转变成为分子的振动或转动能量,从而处于激发态 1E ,如图(1b ),这时的光量子的频率为0ννν'=-?;当分子已经处于振动或转动的激发态1E 时,光量子则从散射分子中取得 了能量E ?(振动或转动能量),以较大的频率散射,称为频率较 高的光(反斯托克斯线),这时的光量子的频率为 0ννν'=+?。如果考虑到更多的能级上分子的散射,则可产生更多的 斯托克斯线和反斯托克斯线。

相关主题
文本预览
相关文档 最新文档