当前位置:文档之家› 10kV配电网单相故障电流计算及跨步电压的分析

10kV配电网单相故障电流计算及跨步电压的分析

10kV配电网单相故障电流计算及跨步电压的分析
10kV配电网单相故障电流计算及跨步电压的分析

摘要

10kV配电网主要有中性点不接地、中性点经消弧线圈接地、中性点经小电阻接地等运行方式。不同的配电网中性点接地方式各有其特点和优势。本文详细分析计算了三种主要接地方式下配电网在发生单相短路故障时的零序电压、短路电流和暂态特性;并利用有限元分析软件,详细分析了小电阻接地运行方式下,单相短路故障时的大地电场分布,计算了短路点附近的跨步电压。为配电网接地方式的合理选择及继电保护提供了理论依据。

本文研究内容主要包括以下几个方面:

介绍了10kV配电网的不同接地方式发展概况,详细分析了配电网中接地变压器的结构与工作原理,总结并对比了不同接地方式的优缺点。

针对三种主要接地方式的配电网络,首先分析出了其发生单相短路故障时的稳态等效电路,在此基础上推导出其短路接地电流计算公式,并给出了其电容电流分布图。其次详细推导出其暂态等效电路,同样详细计算了其暂态短路接地电流。最后建立了配电网发生单相接地短路的MATLAB仿真模型,得出了与理论分析结果相符的仿真波形与数据。

阐述了接地电阻、跨步电压和接触电压的概念,详细推导了它们的理论计算公式。开创性地运用有限元分析软件ANSYS来定量仿真发生单相对地短路后的跨步电压,仿真结果与理论计算结果基本吻合。

设计了10kV配电网小电阻接地运行方式下发生单相对地和单相对电线横担的两种常见短路的实验方案,给出了详细实验操作步骤及需要注意的事项,通过实验验证了论文中有关短路时接地电流及跨步电压的计算分析结果。

关键词:10kV配电网;中性点接地方式;短路接地电流;跨步电压;有限元分析

Abstract

Neutral grounding without impedance,neutral grounding through suppression coil and neutral grounding through low resistor are the most common neutral grounding in the l0kV distribution network. There are different characteristics and application advantages with different neutral grounding. When the single phase short-circuit fault occur in the l0kV distribution network, zero sequence voltage, short-circuit current are calculated in detail and transient characteristics are analyzed for the three main neutral grounding in this paper. Then, Electric field distribution and step voltage are also calculated with Finite element analysis software for grounding through low resistor. The study of this paper is helpful to the choice of neutral grounding and power system relay protection for the l0kV distribution network.

The study of this paper focuses on the following aspects:

The development and application trends of neutral grounding in l0kV distribute network are introduced in this thesis, then the structure and work principle of grounding transformer is analyzed in detail. The advantages and disadvantages of three main neutral grounding are summarized and compared with each other.

For the three main neutral grounding distribute network, Firstly, the steady-state equivalent circuit is proposed through careful analysis when the single phase short-circuit fault occur and the short circuit current formula is derived in detail on the basis of the steady-state equivalent circuit. The distribution figure of capacitive current is given. Secondly, the transient-state equivalent circuit is presented through careful analysis and the transient short-circuit current is solved based on the transient-state equivalent circuit. Finally, a single phase short-circuit fault model is established in the MATLAB software, the simulation results and data are consistent with the theoretical analysis results.

The concept of grounding resistance, step voltage and touch voltage are expounded,and the theoretical formula is also deduced. The step voltage when the single phase short-circuit fault occur is calculated quantitatively with the finite

element analysis software ANSYS. The simulation results are consistent with the theoretical calculation results.

Two common short-circuit experimental program are designed and the experimental procedures and some notes are given in detail. It is demonstrated that the theoretical analysis about the short-circuit current and the step voltage in the paper is correct.

Key Words: l0kV distribution network; neutral grounding; short-circuit ground current; step voltage; finite element analysis

第1章绪论

1.1课题研究背景及意义

电力是人类文明生活的原动力,是最重要的二次能源和工商业界主要的动力及照明来源,其需求与经济发展之间有着密不可分的关系。充足、安全和稳定的电力供应是国家经济持续发展的基础。电力供应大致要依次经历生产、变换、输送、分配和使用五个过程[1]。10kV配电网是电力输送中一个非常重要的环节,由用电设备及输电线路按一定的接线方式所组成,它主要从枢纽变电站取得电能,对电能进行交换、输送、分配与保护等,并将电能安全、可靠、经济地送到下一级用电设备,因此它对整个电网的安全和经济运行起着重要的作用[2]。

长期以来,我国的配电网是以架空线路为主的放射型结构电网,特别是

10kV(6kV), 35kV配电网中一般都采用中性点不接地的运行方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地的中性点。当中性点不接地系统发生单相接地故障时,线电压仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。由于该运行方式简单、投资少,所以在我国电网初期阶段一直采用这种运行方式,并起到了很好的作用,积累了一些成功运行经验[3]。

随着电力系统的发展及“城乡电网改造”,我国的配电网络迅速扩大和发展,一方面城市配电网采用环网供电、多电源供电方式,另一方面由于城市电网规模不断地扩建和延伸,受城区规划、环保和场地等条件制约,城市配电网逐渐采用以电缆线为主、架空线为辅的电网结构模式,这样一来,10kV系统单相对地电容电流就大幅度地增加了。不接地系统在发生单相接地时,故障相的接地电流是非故障相对地电容电流之和。当电流超过10A,此时接地电弧不能可靠熄灭,将严重威胁电网设备的绝缘,危及电网的安全运行[4]。

10kV配电网有多种接地方式,它是根据每个地区的具体情况,本着安全可靠和经济实用的原则及因地制宜的方针选择采用的。根据现行电网运行资料统计,配电网的事故约占电网事故的90%,其中相当一部分又是单相接地短路故障。发生单相接地短路故障后,会造成三相系统不平衡,非故障相电压升高,电网电容电流发生变化,短路点可能出现较大的短路电流,同时导入地下的短路电

流可能会在短路点附近的地面产生较大的跨步电压,危及行人的生命安全[5-6]。然而国内外开展的中性点接地方式及其安全研究中,大多只提到短路电流会导致地面产生较大的跨步电压却很少有对短路电流作仔细分析与研究,更没有对短路时产生的跨步电压作定性分析与研究。因此,针对不同的接地方式的10kV配电网在发生单相短路时的短路电流以及由此引起的跨步电压作分析与研究,将具有重要的理论与工程价值。

1.2本文的主要研究内容

在我国电网电压等级逐步统一后,10kV配电网成为我国输配电网络中一个重要的环节,它的可靠运行,直接影响着供给用户的电能质量。10kV配电网的中性点接地方式历来是电力系统的一个研究热点,不同的接地方式,会有着相对更适合于不同线路结构与容量配电网的优点。在发生单相接地短路故障时,会表现出不同的特性。其中以系统供电可靠性、系统过电压水平、在接地电流作用下地面电势升高而引起的人身安全性作为最重要的考评依据。

本文的研究内容主要包括以下几个方面:

第1章绪论首先概述了本文的研究背景及意义。

第2章针对中性点不接地、中性点经消弧线圈接地和中性点经电阻接地三种主要接地方式的配电网,首先分析出了其单相接地稳态等效电路,在此基础上详细推导出其稳态短路接地电流计算公式。最后建立了10kV配电网发生单相接地短路故障时的MATLAB仿真模型,得出了与理论分析结果相符的仿真波形与数据。

第3章阐述了跨步电压的概念,根据电场理论,详细推导了它们的理论计算公式,同时指出其计算局限性。开创性地运用有限元分析软件ANSYS来定量仿真分析配电网发生单相接地短路后的跨步电压,仿真结果与理论计算结果基本吻合。

第4章设计了10kV配电网小电阻接地运行方式下发生单相对地和单相对电线杆横担两种常见短路的实验方案。给出了详细实验操作步骤及需要注意的事项。得出了与理论分析及仿真相符的实验数据,即通过实验验证了论文中10kV 配电网单相短路时接地电流及跨步电压的计算及仿真结果。

第2章不同接地方式的配电网短路电流计算与分析电力系统中性点接地是一个涉及供电可靠性、绝缘水平、继电保护、通讯干扰、电磁兼容及接地装置等多方面的综合性技术问题,其对电网运行的安全可靠性和经济性有着重大影响。目前,我国10kV配电网中性点接地方式分为以下三类:中性点不接地、经消弧线圈接地和经电阻接地,其中消弧线圈接地和小电阻接地这两种方式又应用最广泛。不同的接地方式都有着各自的优缺点,需要根据不同地区的电网线路特点与容量大小选用不同的接地方式。由于在配电网运行过程中发生的故障多为短路故障,且单相接地故障居多,因此本章将详细分析和推导这三种不同中性点接地方式在发生单相接地故障时的运行特性,以便更好地了解并采用不同的接地方式应用于不同性质的配电网,为实际配电网接地方式的选择及短路故障的断电保护提供理论依据。

2.1中性点不接地配电网单相短路接地电流计算及分析

2.1.1稳态电流计算及分析

中性点不接地系统是最简单的电网接地方式,其中性点上不需要加装任何设备,没有任何电气连接,与大地绝缘,这种接地方式常见于农村10kV架空线为主的辐射形或树状形的供电网络。如图2.1所示的简化网络接线中,电源的中性点不接地,由于实际配电网输电线路的电阻率很小和单位长度的电感也很小,同时输电线路对地绝缘电阻又很大,因此在分析单相短路稳态接地电流时均可忽略不计。即去掉了输电线路4个参数中的3个,只有对地电容C。

图2.1中性点不接地系统单相接地示意图

在假定线路参数和电源对称的情况下,母线上的每回出线的三相都有相同的对地电容,如图2.1所示,分别为,其中为电源母线的对地电容,则每相线路的对地总电容为

(2.1) 系统三相线路的对地总电容则为3 。将上图简化以后得到如图2.2所示的单相接地短路稳态等效电路,其中表示短路时的总过渡电阻,它为接地电流沿途的总电阻值,包括导线的电阻,大地的电阻以及故障点的接触电阻。

分别对应电源的三相电势,O为电源的中性点。

图2.2中性点不接地系统单相接地稳态等效电路

针对上图,以大地作为电压参考零点,由电路理论中的结点电压法[7]有

(2.2)又因三相电压源对称,则有

(2.3)联立式(2.2)和式(2.3),解得

(2.4)根据欧姆定律又有

(2.5)进一步解得

(2.6)

为了进一步理解单相短路时的电压及电流分布特点,我们对系统电压和电流作相量分析。三相电力系统正常运行时为三相对称供电,当负荷及线路阻抗也三相对称时,各线路的对地电容相等(均设为C),其各相对地电压也是对称的,中性点对地电压为零,不存在电网零序电压。各相电容电流大小相等且分别超前各相电压90° ,三相电容电流之和等于零。其相量分析图如图2.3所示。所以在正常运行时中性点不接地系统与中性点接地系统效果是一样的。

图2.3正常运行时的电容电流相量图图2.4 A相短路时的相量图

但是当出现单相短路故障时电容电流和电压就会发生变化。假设A相发生单相金属性接地短路(即=0时),在接地点K处A相对地电压为零,对地电容被短接,此时A相电容电流为零,而其他两相的对地电压升高到原来的倍,对地电容电流也相应增大到倍,相量关系如图2.4所示。由于线电压仍然三相对称,因此对三相负荷的供电几乎没有影响。下面只分析对地关系的变化。忽略负载电流和电容电流在线路阻抗上产生的压降,在A相发生金属性接地短路(即& =0时)以后,在故障点K处各相对地的稳态电压为

(2.9)

针对此时的三相不平衡电压,根据对称分量法的原理,由式(2.9)可知系统零序电压为

(2.10)

假设单相线路对地总电容都相等,均为C,则在非故障相中产生的电容电流为

(2.11)因为全系统A相对地的电压均等于零,故A相对地的电容电流

(2.12)即短路时的接地电流是正常运行时的单相电容电流的3倍。

综上可知:当母线上的分支线路1的A相发生单相金属性短路时,同一母线的电网系统均会出现零序电压,其大小为正常相电压的大小,相位与相反。非故障相对地电压变为正常时的倍,因此非故障相对地电容电流也变为正常时的

倍。当母线上有多条出线时,根据以上分析可知,在非故障分支线路2的始端所反映的零序电流为

(2.13)在故障分支线路1的始端所反映的零序电流为

(2.14)根据上述分析结果,可以做出单相接地时的零序电流等效网络。如图2.5所示,

在接地点有一个零序电压,其零序电流的回路是通过各个元件的对地电容构成通路的,其相量关系则如图2.6所示,这与直接接地电网是完全不同的。

图2.5单相接地短路时零序电流的分布图

图2.6单相接地短路时的零序电流向量图

总结以上分析的结果,可以得出中性点不接地系统发生单相接地后零序分量分布有如下特点:

(1)零序网络由同级电压网络中的元件对地的等值电容构成通路,与中性点直接接地系统由接地的中性点构成通路有极大的不同,网络的零序阻抗很大。

(2)在发生单相金属性接地时,相当于在故障点产生了一个其值与故障相故障前相电压大小相等,方向相反的零序电压,从而全系统都将出现零序电压。

(3)在非故障相元件中流过的零序电流,其数值等于本身的对地电容电流;电容性无功功率的实际方向为由母线流向分支线。

(4)在故障相元件中流过的零序电流,其数值为全系统非故障相元件对地电容电流之总和,电容性无功功率的实际方向为由分支线路流向母线。

综上可知,中性点不接地系统发生单相接地故障时,三相系统的线电压不变,三相用电设备工作不会受到很大影响。虽然非故障相电压升高至倍,会对设备绝缘提出更高要求,但在架空线路,尤其是忽略线路对地电容影响时,故障点电流小,能够自动熄灭接地电弧的情况下,电网可允许带故障继续供电一段时间(小于2小时),因此供电可靠性比较高。但为了防止出现非故障相在绝缘状况变差的情况下,进一步发展成为两相或三相短路的更严重故障,应该设法避免单相接地方式下的长期运行。由于流经故障点的电流为所有非故障线路电容性电流的总和,且当电网进行扩容时此电流值还会增加。当接地电流大于10A而小于30A 时,有可能产生不稳定的间歇电弧,且在中性点不接地的电网中出现间歇电弧的概率是很大,从而导致接地点灭弧困难,系统也可能因此出现弧光过电压,应该设法避免。此外,还有间歇性电弧、线路谐振等问题,都是应该考虑的。

2.1.2暂态电流计算及分析

以上所分析的都是系统发生单相短路后的稳态情况,但是实际情况中,系统发生短路时是有一个过渡过程的。以下着重分析短路时的暂态过程。当电力系统中发生单相接地后,故障相对地电压降低,非故障相对地电压升高,因此可以将暂态电容电流看成是如下两个电流之和。

(1)由于故障相电压突然降低而引起的故障相放电电容电流,它通过母线流向故障点,放电电流衰减得很快,其振荡频率高达数千赫兹,振荡频率主要决定于电网中的线路参数,故障点的位置以及过渡电阻的数值。

(2)由非故障相相电压突然升高而引起的非故障相充电电容电流,它通过电源、故障点成回路。由于整个流通回路的电感较大,因此,充电电流衰减较慢,振荡频率也较低,仅为几百赫兹。在过渡过程中,由于输电线路的自身的电阻与电感对短路电流的性质和大小影响较大,所示此时应将线路电阻与电感置于电路图内。即短路时的等效电路如图2.7所示。

图2.7考虑输电线路自阻抗的不接地系统单相短路等效暂态电路

图2.8不接地系统单相短路等效诺顿电路

利用诺顿定理[7] ,可将图2.7等效为图2.8。图2.8是三个独立电流源与四条支路的并联电路。电流源的大小分别为、、。其中

为单相线路的总导纳。假定电源和三相线路参数均对称,则可再将图2.8等效为图2.9,再进一步等效为图2.10。

图2.9不接地系统三相合并后的单相短路等效诺顿电路

图2.10不接地系统三相合并后的单相短路等效戴维南电路最后再将图3.10进一步用零序电压表示后的等效电路则如图3.11所示。

图2.11不接地系统单相短路最终暂态等效电路

图3.11中:为发生短路后系统的零序电压,为一相线路的自电感,为一相线路对地总电容,为一相线路自电阻。根据上图可知,暂态电容电流实际上就是一个、和的串联回路接通零序电压

时的过渡过程电流。由上图不难写出下

面的微分方程式

(2.15)根据高等数学中微分方程的求解办法[8]可推知:当时,回路电流的暂态过程具有周期性的振荡及衰减特性;当时,回路电流的暂态过程具有非周期性的振荡衰减特性,并逐渐趋于稳定状态。通常线路的波阻抗为250-500?,同时故障点的接地电阻较小,一般都满足的条件,所以电容电流具有周期性的振荡及衰减特性。此时特征方程的根为

(2.16)式中:为自由振荡分量的衰减系数,为暂态自由振荡分量的角频

率。

因为暂态电容电流是由暂态自由振荡分量和稳态工频分量两部

分组成,利用t=0时这一初始条件,对电容电流支路(二阶电路),经过拉氏变换等运算后可得

(2.17)式中,为电容电流的幅值。

理论分析表明,暂态电容电流的幅值较大,但暂态电容电流自由振荡频率一般为300-3000Hz,且衰减很快,一般持续0.5-1个工频周期。当故障发生在电压峰值( )接地时,暂态电容电流的自由振荡分量的振幅将有最大值,反之当故障相在零值()接地时,暂态电容电流的自由振荡分量的振幅将有最小值,且线路越长,自由振荡频率越低,暂态电容电流的自由振荡分量的幅值也越低。代入实际数据后,式(3.18)的电容电流就是一个时间t的函数。电容电流的大小随时间t的变化而变化。电容电流波形大致如图3.12所示。

图2.12单相短路故障暂态电容电流波形示意图

2.1.3 MATLAB仿真结果与分析

MATLAB提供的SIMULINK是个功能比较齐全的软件包,其主要是用来对动态系统进行建模、仿真和分析的。支持线性和非线性系统,在连续时间域和离散时间域或者混合时间域里都能够进行建模。SIMULINK环境下的电力系统PSB(Power System Block)工具箱里面含有丰富的电力系统元件模型,包括电源、电机、电力电子、控制和测量以及三相元件库等,再借助于其他模块库或工具箱提供的基本模块和扩展模块来进行系统仿真。在SIMULINK环境下,可以进行电力系统的仿真,尤其可以实现复杂的控制方法仿真[9-10]。实际电力系统中的l0kV配电网有着复杂的连线与结构,l0kV母线上有很多回分支线路。各条分支线路上也会带有不同的负载。在不影响分析结果的情况下,在建立配电网短路故障MATLAB仿真模型时,可以简化网络。

图2.12不接地系统单相短路故障仿真模型

如图2.12所示,系统仿真参数设置如下:系统电源为110kV三相电源,经过一个110/10kV的Y/A接线电力变压器后,系统母线上电压降为10kV。根据某变电站10kV输电线路的实际线路参数计算可得:单相线路总等效自电阻

R0=3.74Ω、总等效自电感L0=5.685mH、总等效对地电容。根据电力电缆的参数

正序参数为:R1=0.031Ω/km L1=0.096mH/km ,C1=0.338μf/km 零序参数为:R0=0.234Ω/km L0=0.355 mH/km, C0=0.265μf/ km

可计算得出所有线路总长约为16公里,设下端线路1总长为11公里,上端线路2设为5公里。分别经过三相电压电流测量模块后,在线路的末端带上负荷。在下端线路1的中间设置短路模块,在短路模块之前测量短路接地电流和电压。仿真结果如下几图所示。

图2.14单相短路接地电流波形

图2.15单相短路故障线路零序电流波形

由图3.14可知,短路点接地电流稳态峰值约为32A,分别代入式(3.8),解得的数据也约为32A,与仿真结果基本相等。对比图3.14和图3.15的波形可知,短路点接地电流与故障线路零序电流不完全相等,短路电流大于故障线路零序电流。在短路开始的前两个工频周期内,短路电流有明显的振荡,振荡频率非常高。

图2.16母线零序电压和故障相电压

图2.17单相短路母线三相电压波形

由图3.16可以清晰地看出母线零序电压正好与故障前的A相(故障相)电压大小相等,峰值约为8100V,相位相反。图3.17则说明发生短路后,故障相电压电压变为零,另外两相电压升高到原来的倍。以上仿真结果均与前面的理论分析吻合。

2.2消弧线圈接地配电网单相短路接地电流计算及分析

2.2.1稳态电流计算及分析

根据中性点不接地系统发生单相接地故障时的分析可知,当中性点不接地系统中发生单相接地时,在接地点要流过全系统的对地电容电流。如果此电流比较大,就会在接地点燃起电弧,引起弧光过电压,从而使非故障相的对地电压进一步升高,使绝缘损坏,形成两点或多点接地短路,造成停电事故。由于目前配电网中电缆的广泛使用,以及电力系统的扩容,使线路的电容电流不断增大,在中性点不接地系统中,若发生单相接地故障,流过接地点电流也将随之增大。当接地电流在10A至30A左右时,有可能产生不稳定的间歇电弧。当接地电流较大(30A 以上时),则将产生稳定的电弧,形成持续性的电弧接地。因此需要减小接地电流,一般可以采用中性点经消弧线圈接地方式,因为消弧线圈是一种补偿装置,故通常又称之为补偿系统,经消弧线圈接地的电力系统,也可称为谐振接地系统,其单相接地示意图如图3.18所示。

图2.18消弧线圈接地系统单相接地示意图

与不接地系统分析的原理一样,在假定线路参数和电源对称的情况下并去掉可以忽略的线路其它参数外,同样可得简化的稳态等效电路如下

图2.19消弧线圈接地系统单相短路稳态等效电路

同样的道理,针对上图,根据电路理论中结点电压法有

(2.18)又因三相电压源对称有

(2.19)

联立式(3.19)和式(3.20),可解得

(2.20)对于发生短路的支路,根据欧姆定律又可得接地电流

(2.21)

进一步解得

(2.22)

以上五式中,L为消弧线圈的电感值,其余各项均与上一节表示的一样。

从式(3.20)和式(3.22)中,可以看出短路接地电流为系统零序电压分别在消弧线圈与对地总电容上的电流之和。零序电压和短路电流同样均与过渡电阻、消弧线圈的电感L、输电线路对地的总电容有关,同时也与三相输电系统的电源电压成正比。当过渡电阻越小,则系统零序电压越大。对式(3.21)

取趋于零的极值,则有

(2.23)

即系统发生金属性接地短路,此时系统的零序电压达到最大值- ,同理对式

(3.23)取趋于零的极值,则有

(2.24)即系统发生金属性接地短路,此时系统的短路接地电流达到最大值

(2.25)

式(3.25)中:为消弧线圈上流过的电流,为电网单相接地时的三相总电容电流,即短路电流为经过消弧线圈的感性电流与输电线路对地的总电容电流的叠加。显然,由于消弧线圈产生的电感电流对电容电流产生了补偿作用,相接地电流将大大降低,相接地电弧将不能维持,在接地电流过零时自动媳灭,不致

接触电压测量

接触电压测量 接触电压擦了系列产品可分为:DF9000大型地网变频大电流接地特性测量系统,DF910K大型地网变频大电流接地阻抗测量系统,DF902K变频抗干扰接地阻抗测量仪。1、DF9000大型地网变频大电流接地特性测量系统:系统输出功率大(2-20KW),电压高(0-1000V),输出电流大(0-50A)。精确测量接地阻抗,接地电抗,接地电阻,接触电压,跨步电位差,场区地表电位梯度,接触电压,接触电位差,跨步电压,转移电位,导通电阻,土壤电阻率等参数,可全面测量大型地网的各项特性参数,完全满足新版DL/T475-2006《接地装置特性参数测量导则》的要求。2、DF910K大型地网变频大电流接地阻抗测量系统:系统输出功率大(5-20KW),输出电压(0-1000V),输出电流(0-50A)。精确测量接地阻抗,接地电阻,接触电位差,接地电抗,导通电阻,土壤电阻率等参数。3、DF902K变频抗干扰接地阻抗测量仪:系统输出功率2kW,输出电压(0-200-400V).测试输出电流(0-10A)。精确测量接地阻抗,接地电阻,接地电抗,导通电阻,土壤电阻率等参数。可满常规接地网的测量。 主要用于 1.精确测量大型接地网接地阻抗、接地电阻、接地电抗; 2.精确测量大型接地网场区地表电位梯度; 3.精确测量大型接地网接触电位差、接触电压、跨步电位差、跨步电压; 4.精确测量大型接地网转移电位; 5.测量接地引下线导通电阻; 6.测量土壤电阻率变频抗干扰接地阻抗测试:也称大地网接地电阻测试仪,变频大电流接地阻抗测试仪,大型接地网接地阻抗测试系统、接地装

置特性参数测试系统、大地网接地阻抗测试仪,接地阻抗测试仪等。 DF9000变频大电流多功能地网接地特性测量系统: 一、概述 DF9000变频大电流多功能地网接地特性测量系统是上海大帆电气有限公司和上海交通大学联合研制的最新成果,主要用于精确测量大型接地网特性参数的软硬件系统,系统主要功能:精确测量接地阻抗,接地电阻、接地电抗,场区地表电位梯度,接触电压,跨步电压,土壤电阻率,地网电流分布情况等参数。DF9000变频大电流多功能地网接地特性测量系统通过对接地网注入一个异于工频的电流,有效地避免了50Hz及其它干扰信号引起的测量误差,可精确、经济、安全的测量接地网接地阻抗,接触电压,跨步电压,场区地表电位梯度等参数,同时使得测量过程变得方便而安全。DF9000变频大电流多功能地网接地特性测量系统主要包括:大功率变频信号源、耦合变压器、高精度多功能选频万用表、Rogowski线圈及其它附件等组成。 二、系统主要技术特点 ☆采用军用电子对抗数字滤波技术,抗干扰能力极强。(关键性能) 选频特性尖锐,通频带±0.3Hz。实测200V的干扰在±1Hz偏频测量引起的误差低于0.1mV,干扰抑制能力达到万分之一以上,远胜于部分进口仪器百分之几的抗干扰能力,保证了测试精度。系统还单独增加设计有50Hz陷波器,可完全滤除50Hz工频干扰。 ☆系统输出功率大(2-20KW),电压高(0-1000V),输出电流大(0-50A)彻底解决了同类设备输出功率和电压偏小,现场难以升流的问题。目前的地网测量设备大多功率偏小,如较常见的设备输出为100V/5A

10kV配电线路故障原因分析及防范措施示范文本_1

10kV配电线路故障原因分析及防范措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

10kV配电线路故障原因分析及防范措 施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 引言 随着我国经济发展不断加快,产业结构不断优化,我 市的经济业已步入发展的快车道,综合实力明显增强。近 年来供电量每年都保持着10%以上的增长,这对城配网的 安全可靠运行要求越来越高。10kV线路和设备发生故障不 但给供电企业造成经济损失、影响广大居民的正常生产和 生活用电,而且在很大程度上也反映出我们的优质服务水 平。根据我公司配电网络的实际运行状况,对近几年间所 发生的10kV配电运行事故进行分类统计分析,并结合其他 单位配电运行事故,找出存在的薄弱点,积极探索防范措 施,这对于提高配电网管理水平具有重要意义。

1城配网常见故障类型 1.1外破造成的故障因l0kV线路面向用户端,线路通道远比输电网复杂,交跨各类线路、道路、建筑物、构筑物、堆积物等较多,极易引发线路故障的,具体以下几个方面:①城区大部分线路架设在公路边,经济发展所带来的交通繁忙,以及少数驾驶员的违章驾驶,引起的车辆撞到电杆,造成倒杆、断杆等事故发生。②城市建设步伐加快,旧城改造进程中,有大量的市政施工,在社会固定资产投资增幅明显的背景下,所带来的建设项目快速增长。基建、市政施工时,对配网造成破坏,主要表现在两个方面:一是基面开挖伤及地下敷设电缆;二是施工机械、物料超高超长碰触带电部位或破坏杆塔。③市区规模日趋扩大,原来处于空旷地带中的高压输电线路正逐步被扩大的城市建筑物延伸包围。虽然线路建设在先,但仍然出现部分违章建筑物,直接威胁了线路的安全运行。这样,要么

防雷接地计算书

工程设计计算书 110kV变电站工程施工图设计阶段 工程代号: B1481S 专业:电气计算项目:防雷接地计算书 主任工程师: 组长: 主要设计人: 校核: 计算: 防雷计算

一. 避雷针的保护半径计算 单支避雷针的保护范围 当5h .0h x <时, P )2h 5h .1(r x x -= 式中: x r —避雷在 水平面上的保护半径 h —避雷针高度 x h —被保护物的高度m P —高度影响系数, 1;P 30m,h =≤ 当h m ≥120>30m 时,h p 5.5= ; #1,#2,#5独立避雷针高度为24米,站内#3架构避雷针高度为26米,站内#4架构避雷针高度为26米(此避雷针为二期),全站取被保护物高度为10米。 (1) 对于#1,#2避雷针,当10h x =m 时,5h .0h x < P )2h 5h .1(r x x -= 1)102245.1(??-?= 16m = (2)对于#3避雷针,当10h x =m 时,5h .0h x < P )2h 5h .1(r x x -= 1)102625.1(??-?= =19m (3)对于#5避雷针,当5h x =m 时,5h .0h x < P )2h 5h .1(r x x -= 1)52425.1(??-?= =26m

二. 两支避雷针的保护范围 1 两支等高避雷针的保护范围: (1) 两针外侧的保护范围按单支避雷针计算: (2) 两针间的保护最低点高度O h 按下式计算: 7P D h h o - = 式中:O h —两针间保护范围上部边缘最低点高度,m ; D —两避雷针间的距离,m ; (3) 两针间x h 水平面上保护范围的一侧最小宽度x b 按下式计算: 当o x h 2 1 h ≥ 时, )h h (b x o x -= 当o x h 2 1h < x o x h 2h 5.1b -= 2 两支不等高避雷针的保护范围 (1)两针外侧的保护范围分别按单支避雷针的计算方法确定。 (2)不等高化成等高避雷针间距离: 当P h h D D h h )(21 21'12--=≥时, 三 避雷针的具体保护范围计算 两避雷针间的距离按图纸上实际数据计算 (1)#1—#2针联合保护范围(等高), D=40.2 m ,10m h x = 7P D h h o -=1 740.2 24?- ==18.3m , o x h 2 1h ≥ )h h (b x o x -==3.8103.18=-m (2)#2—#3针联合保护范围(不等高), D=34.8m ,10m h x =

跨步电压

跨步电压 一、所谓跨步电压 就是指电气设备发生接地故障时,在接地电流入地点周围电位分布区行走的人,其两脚之间的电压。 1.电气设备碰壳或电力系统一相接地短路时,电流从接地极四散流出,在地面上形成不同的电位分布,人在走近短路地点时,两脚之间的电位差叫跨步电压。 2.定义 当架空线路的一根带电导线断落在地上时,落地点与带电导线的电势相同,电流就会从导线的落地点向大地流散,于是地面上以导线落地点为中心,形成了一个电势分布区域,离落地点越远,电流越分散,地面电势也越低。如果人或牲畜站在距离电线落地点8~10米以内。就可能发生触电 3.跨步电压事故,这种触电叫做跨步电压触电。 人受到跨步电压时,电流虽然是沿着人的下身,从脚经腿、胯部又到脚与大地形成通路,没有经过人体的重要器官,好像比较安全。但是实际并非如此!因为人受到较高的跨步电压作用时,双脚会抽筋,使身体倒在地上。这不仅使作用于身体上的电流增加,而且使电流经过人体的路径改变,完全可能流经人体重要器官,如从头到手或脚。经验证明,人倒地后电流在体内持续作用2秒钟,这种触电就会致命。 二.试验结果证明 脉冲电压幅值为0.6~30千伏时,跨步电压和接触电压对牛的内部肌体没有任何损伤。 如跨步电压的幅值提高到40~70千伏,而接触电压的幅值提 1. 跨步电压的演示图 高到42~56千伏时,牛的中枢神经系统和血液循环机能受到影响。这是暂时性影响,经过休息后可以完全恢复,没有生命危险。 2.如跨步电压的幅值提高到96千伏,接触电压的幅值提高到74千伏时,牛的呼吸失常,心脏活动机能损伤,产生不可逆过程,有生命危险。 一旦误入跨步电压区,应迈小步,双脚不要同时落地,最好一只脚跳走,朝接地点相反的地区走,逐步离开跨步电压区。 3.人站在接地短路回路上,两脚距离为0.8米,人身所承受的电压,称为跨步电压。 三.危害 当跨步电压达到40~50V时,将使人有触电危险,特别是跨步电压会使人摔倒进而加大人体的触电电压,甚至会使人发生触电死亡。 四.增设接地极改变跨步电压 增设垂直接地极对于降低接触电压和跨步电压具有非常显著的作用,一是垂直极的引入,降低了地电位升(GPR),而接触及跨步电压均与GPR有着直接的关系。二是因为增设垂直极后,大部分故障电流通过垂直极流入大地,相应减少了水平导体的散流量,因此地表面的水平方向电流密度大大减少,造成水平方向电场强度大大降低。

2021新版10KV配电线路故障原因分析及防范措施

2021新版10KV配电线路故障原因分析及防范措施 Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0337

2021新版10KV配电线路故障原因分析及 防范措施 【内容摘要】:配电线路发生故障的原因多样,线路故障率较高,预防线路故障是长期、艰巨的任务,必须通过理论和实践的结合;不断总结、不断提高,才能减少或避免线路故障的发生。本文对配网线路故障的原因进行分析,并提出防范措施。 【关键词】:10KV线路、故障、措施 【前言】:随着我县经济的快速发展,人民群众的生活水平提高,对供电质量及供电可靠性提出更高的要求。根据10kV配电线路在运行过程中产生的故障进行分类统计分析,找出存在的薄弱点,提出防范措施,提高配电网的供电可靠性,降低线损,为用户提供优质电能。 一、10KV配电线路常见故障类型 线路故障是配电线路在运行过程中由于各种原因导致配电线

路、设备设施功能失效,并造成停运的事件。据统计,我所在的供电所截止2012年底10kV配电线路8条,线路总长78.174km,l0kV 配电线路在当年共发生故障共12次,达到了6.5145次/km·年。因此对故障进行分类,找出故障的一些客观规律,制定有效的防范措施,降低配电线路及设备故障造成的供电成本损失是很有必要的。我所在的供电所地处山区配电线路及设备点多、面广、线长,路径复杂,设备质量参差不齐,受气候和环境影响较大,供用电情况复杂,这些情况都直接或间接影响着配电线路的安全运行,故障原因也较为复杂,归纳总结我认为有以下几种类型: 1、外力破坏造成线路故障 因10KV线路面向用户端,配电线路通道远比输电网复杂,交叉跨域各类线路、道路、建筑物、堆积物等较多,极易引发线路故障。具体表现在以下几方面:一是经济发展带来的交通繁忙,造成道路拥挤,致使政府一再扩宽道路,使很多电杆处于有效路面上,增加了汽车撞杆事故的时有发生。二是“新农村”建设项目、“4.20”灾后项目的实施,很多施工单位在施工时往往给线路设备带来一定的

接地计算

修改码:0 表GD118 计算书首页 工程名称湖南华润鲤鱼江发电B厂设计阶段施工图 计算书名称全厂接地装置的接地电阻、接触电位和跨步电位计算 批准: 审核: 校核: 设计: 计算日期年月日

1.总述: 本计算书为湖南华润鲤鱼江发电B厂500kV开关站防雷接地计算。计算目的是为了校验升压站接地网布置的合理性,以及接地网表面最大接触电压和跨步电压应小于允许值。计算依据为中华人民共和国电力行业标准DL/T621-1997《交流电气装置的接地》(备案号:684-1997)。 2.入地短路电流计算: 2.1 鲤鱼江发电B厂远景主结线示意图: 鲤鱼江发电A厂远景规划4?300MW机组,每两台机组以发电机-变压器组扩大单元接线形式接入发电B厂500kV开关站。由于A厂资料暂缺,暂按两台300MW机组相当于一台600MW机组等效考虑计算。 短路点发生在500kV母线上,取S d=1000MVA,U d=525kV,则: 短路电流基准值I d=S d/3U d=1000/(3?525)=1099.71A 系统零序电抗X0=0.1161(以上均为归算在统一基准值下的电抗标幺值)。 主变零序电抗标幺值X T1*=0.15?1000÷720=0.2083 启备变零序电抗标幺值X T0*=0.20?1000÷50=4 由于启备变零序电抗远远大于主变零序电抗及系统阻抗,故在零序网络图中启备变分支可忽略不计。

X 0∑= X 0//( X T1*/6) =0.1161//(0.2083/6)=0.0267 单相接地短路电流I k =28.613 kA(短路电流数据见图F2351C-D-06) 流经变压器中性点电流: I n = I k ? X 0/{ X 0+ X T1*/6} =28.613?0.1161/{0.1161+0.0347} =22.03kA 3 全厂接地网的接地电阻及接触电压与跨步电压计算: 2005年07月初,本院勘测队在鲤鱼江发电B 厂厂区内,实测93个测量点, 测量时天气晴朗,地表干燥。从测量结果看,各点的电阻率偏高,属于高土壤电 阻率地区,现取平均值1797.05Ω·m ,季节系数ψ取1.2,则ρ=ψρ0=2156.46 Ω·m 。 全厂接地网基本是以水平接地体为主,且边缘闭合的复合接地网,水平 接地体采用—60×6镀锌扁铁,接地网长度L 1=810m ,宽度L 2=405m ,接地网外 缘边线总长度L 0=2780m ,水平接地极的总长度L=21400m ,接地网面积S=328050m 2。接地网沿长方向布置的均压带根数n 1=16,沿宽方向布置的均压带 根数n 2=21。 全厂接地网接地电阻R g ≈0.5ρ/ S =0.5×2156.46÷328050 =1.88Ω 全厂接地网均压带可近似认为等间距,均压带等效根数由下式计算: n=2(L/L 0)(L 0/4S )1/2 =2?21400÷2780?(2780/4328050)1/2 =16.95≈17 (B8) 均压带直径d=0.03m 2.3 入地短路电流及接触电压和跨步电压计算: 发电厂内发生接地短路,流经接地装置电流: I=(I k -I n )(1-ke 1) =(28.613-22.03)(1-0.5) (B1) =3.29kA 发电厂外发生接地短路,流经接地装置电流: I=I n (1-ke 2) =22.03? (1-0.1) (B2) =19.83kA 入地短路电流取上述两式中较大值,I=19.83kA 本厂属于有效接地系统,按接地规程规定,全厂接地装置的接地电阻应 R ≤I 2000=198302000 =0.10Ω。 接地装置电位U g =IR g

接触电压和跨步电压

接触电压和跨步电压? 在配电变压器低压侧中性点不接地的系统中,发生单相接地故障时,接地电流通过接地装置和大地是以接地点为中心向周围的大地扩散,此时,大地表面便形成了一个电位分布区,该分布区内的不同地点便具有不同的电位。电气设备如开关等若发生接地故障,这时人手接触接地故障的设备外壳(或构架等)时,人体的手与两脚之间便产生一个电位差,这个电位差便称为接触电压。 人体直接接触带电体的一相时,就形成带电体、人体、大地构成的回路,这样造成的触电称为单相触电。

单相触电 人体的两个不同部位同时接触两相电源带电体而引起的触电称为两相触电。 两相触电 架空导线断线落地,发生单相接地故障时,人若在接地点周围(电位分布区内)行走,两脚便处于不同电位的地面上,这时两脚之间的电位差称跨步电压。接触电压的大小与发生接地故障设备离开地下接地体的远近有关;若离开接地体愈近,接触电压就愈小;反之,接触电压则愈大。 跨步电压的大小与人离接地体(点)的远近也有关;人站立处离接地体(点)愈近,跨步电压就愈大缺;反之便愈小。

跨步电压触电

怎样防止跨步电压的危害? 高压线路断线后,落在地面上,或者低压线绝缘破损触碰在电杆的拉线上,电流就会从落地点向四面八方流入地内。如果一旦误入断线附近,产生的跨步电压就会对性命直接造成威胁。跨步电压是断线落地点或带电拉线入地点周围地面上任何两点间的电压,两点间距离愈大电压愈高。当人走进这个地区时,前脚着地点的电压,高于后脚落地点的电压,两脚间就存在电压差,因而就有电压加在人身上。人与电线落地点越近,跨步的步用越大,跨步电压就越高,触电后果就越严重。如果遇到高压线断落,自己又在跨步电压范围内,这个范围一般离电线落地点20m以内,这时,应迈小步,双脚不要同时落地,最好一只脚跳走,朝接地点相反的地区走,逐步离开跨步电压区。

10kV配电线路故障原因分析及防范措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan. 10kV配电线路故障原因分析及防范措施正式版

10kV配电线路故障原因分析及防范措 施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成 的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度 与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 0 引言 随着我国经济发展不断加快,产业结构不断优化,我市的经济业已步入发展的快车道,综合实力明显增强。近年来供电量每年都保持着10%以上的增长,这对城配网的安全可靠运行要求越来越高。10kV线路和设备发生故障不但给供电企业造成经济损失、影响广大居民的正常生产和生活用电,而且在很大程度上也反映出我们的优质服务水平。根据我公司配电网络的实际运行状况,对近几年间所发生的10kV配电运行事故进行分类统计分析,并结合其

他单位配电运行事故,找出存在的薄弱点,积极探索防范措施,这对于提高配电网管理水平具有重要意义。 1 城配网常见故障类型 1.1 外破造成的故障因l0kV线路面向用户端,线路通道远比输电网复杂,交跨各类线路、道路、建筑物、构筑物、堆积物等较多,极易引发线路故障的,具体以下几个方面:①城区大部分线路架设在公路边,经济发展所带来的交通繁忙,以及少数驾驶员的违章驾驶,引起的车辆撞到电杆,造成倒杆、断杆等事故发生。②城市建设步伐加快,旧城改造进程中,有大量的市政施工,在社会固定资产投资增幅明显的背景下,所带来的建设项目快速增

地网跨步电压、接触电压测量方法

地网跨步电压、接触电压测量方法 一、概述 当发生接地故障时,若出现过高的接触电压或跨步电压,可能发生危及人身安全的事故。一般将距接地设备水平0.8m处,以及与沿该设备金属外壳(或构架)垂直于地面的距离为1.8m出的两处之间电压,称为接触电压。人体接触该两处时就要承受接触电压。当电流流经接地装置时,在其周围形成不同的电位分布,人的跨步约为0.8m,在接地体径向的地面上,水平距离0.8m的两点间电压,称为跨步电压。人体两脚接触该两处时就要承受跨步电压。 1、电站地网对角线长度约:1000m。 2、电站单相接地故障电流取设计部门提供的15kA。 二、测量方法 一般可利用电流、电压三极法测量接地电阻的试验线路和电源来进行接触电压、跨步电压的测试。 1、测量接触电压 按接线图,加上电压后,读取电流和电压表的指示值,其电压值表示当接地体流过测量电流为I时的接触电压,流过短路接地电流Imax时的实际接触电压:Uc=U* Imax/I=KU Uc—接地体流过短路接地电流Imax时的实际接触电压(V) U—接地体流过电流I时实际的接触电压(V) K—X系数,其值等于Imax/I 2、测量跨步电压 按接线图,加上电压后,使接入接地体的电流为I,将电压极插入离接地体0.8,1.8,2.4,3.2,4.0,4.8,5,6m,以后增大到每5m移动一点,直到接地网的边缘,测量各点对接地体的电位。这一方向完成后,再在另一方向按上面的方法完成测量。 对地网两点之间最大电位差Umax,应乘以系数K,求出接地体流过电流Imax 的实际电位差。在地网设计上,一般要求这个值不大于2000V。 在电位分布图上可得到任意相距0.8m两点间的跨步电压:Ua= K(Un–Un-1) Ua—任意相距两点间的实际跨步电压(V) Un–Un-1—任意相距0.8m两点间测量的电压差(V) K—X系数,其值等于Imax/I

论述10kV配电线路故障原因分析及防范措施

论述10kV配电线路故障原因分析及防范措施 摘要:文章分析了当前10 kV配电线路运行中存在的问题,从配电线路运行故障 常见的问题入手,对电力线路运行的安全问题相应措施分析,以期促进电力事业 的发展,并进一步对如何提高10 kV配电线路故障的排除措施进行了具体的阐述。文章结合10kV配电线路运行的实际情况,分析了配电运行的故障以及薄弱点, 提出了相应的防范措施,以保障10 kV配电网的运行安全。 关键词:10 kV配电线路;运行故障;防范措施 1.前言 我国的电力产业结构随着经济技术的发展而不断变化,综合实力也逐渐增强。近年来,每年的供电量增长速度几乎都是10%,所以,对配电网的要求也越来越高。如果10kV配电网的设备或线路发生故障不仅会导致供电企业经济效益减少,而且会影响居民正常的生活与生产,探讨其产生的原因及解决措施是至关重要的。10kV配电网做为电力系统非常重要的组成部分,其不仅包括城市中的供电线路, 同时还包括乡村中的供电线路,10kV配电线路将电网与用户很好的连接在一起, 直接为用户输送电能,在电网中是其他线路所无法取代的,所以10kV配电线路 运行的稳定性和安全性直接关系着客户的用电安全和可靠。10kV配电线路由于分 布的范围较为广泛,线路较为复杂,而且长期处于露天环境中,受到气候条件、 地理条件及外部条件的影响较大,所以很容易发生故障,此线路节点较多,进行 排查存在较大的困难,所以一旦10kV配电线路发生故障,则会导致无法估量的 损失。近年来,电网的不断改造,使10kV配电线路的运行的质量和性能都有了 较大的提升,但运行过程中还存在着一些问题需要我们去重视和解决,从而使线 路的安全得以保证 2.10kV配电线路故障原因分析 2.1受到自然因素的影响 自然灾害影响最主要的因素在于雷击现象,由于10kV配电线路在设计过程中依据架空形式,如附近没有较高的建筑物或构筑物予以遮挡,会遭受到雷击,导 致配电线路故障,这是因为绝缘水平较低、导线接触不良、避雷装置不够合理及 接地电阻不达标等原因。除此之外,随着绿化程度不断提高,为城市市容建设提 供帮助的同时,对10 kV配电线路造成了一定的不良后果。绿化建设过程中,树 木生长对配电线路造成一定的干扰,一旦遇到雷雨天气、大风天气时,大风会刮 断树木到导线上,导致断线事故,还有一部分线路松弛,大风吹动造成距离不够 导致导线被烧断,此时就会造成配电线路负载增加的现象,如果不予以及时处理,便会引发配电事故,对人们安全用电及人身安全造成一定的影响及威胁。 2.2受到人为因素的影响 输电线路发生损坏,人为因素是不可或缺的,在对于配电线路进行管理的时 候离不开人的管理,所以相关的管理人员没有足够的安全意识,对于配电线路的 管理工作缺乏足够的认识,这样就会导致很多人为的破坏的产生。特别是由于来 往车辆非常多导致的线路故障的发生。由于配电线路很多是架空在一些空旷的区 域或者是路边的,这样如果道路宽度不够,就会影响往来车辆的行驶,在行驶过 程中可能会撞到电线杆,从而导致配电线路出现短路的现象。此外伴随着社会的 不断发展,城市化进程不断加快,为了满足社会发展的需要,一些市政工作的建 设力度在逐渐增大,由于一个工程在具体的施工过程中由于工程需要会进行施工 挖掘,如果在挖掘过程中触碰到埋在地下的电缆就会引发线路发生故障,还有人

10kv配电线路常见故障原因分析及防范措施

10kv配电线路典型故障原因分析及防范措施

摘要 10kV架空配电线路由于长期处于露天运行,又具有点多、线长、面广,结线方式复杂多变等特点,因此运行中的10kV架空线路经常容易发生故障。这不但影响广大市民的正常生产、生活用电,而且还给供电企业造成了经济损失。近年来,经过大规模的配电网基建改造,高低压配电线路网络结构有了明显的改观。但从近几年来实际运行看,仍然存在许多的问题。文章就10kV架空配电线路常见故障及防范措施方面进行以下探讨。本文对10kV配电运行事故进行分类统计分析,并结合其他单位配电运行事故,找出存在的薄弱点,积极探索防范措施,这对于提高配电网管理水平具有重要意义。 关键词:10kV架空配电线路;故障分析;防范措施

目录 摘要 ........................................................... - 1 -引言 (1) 1.城配网常见故障类型 (2) 1.1外破造成的故障 (2) 1.2自然灾害造成的故障 (2) 1.3 树木造成的故障 (2) 1.4 用户产权设施造成的故障 (3) 1.5 配电设备方面的因素 (3) 1.6 管理方面的因素 (3) 1.7一般故障分析 (4) 1.71配电线路故障月度统计 (4) 1.72配电线路故障年度统计 (4) 1.73配电线路故障类别统计 (4) 1.74配电线路故障原因分析 (5) 1.8常见故障及其原因 (7) 1.81季节性故障 (7) 1.82外力破坏 (8) 1.83线路施工质量与技术方面存在问题 (8) 1.84运行维护经验不足,巡视检查不能到位 (9) 1.85设备陈旧、使用年限长 (9) 2.10KV配网故障的防范措施 (10) 2.1针对天气因素采取的反事故措施 (10) 2.2针对外破采取的反事故措施 (10) 2.3加强配电线路的维护、运行管理工作 (11) 2.4针对环境采取的措施 (11) 2.5采取的其他措施 (12) 2.51.强化运行管理 (12) 2.52.加强线路防外力破坏工作 (12) 2.53.加强检修力度 (13) 2.54.加强线路改造 (13) 2.6反事故措施 (13) 2.61.做好六防工作,即风、汛、雷、树、寒、暑 (13) 2.62.防外力破坏措施 (13) 2.63.施工及运行维护管理措施 (14) 2.7应用新技术新设备 (14) 结束语 (15) 致谢 ............................................... 错误!未定义书签。参考文献 ........................................... 错误!未定义书签。

跨步电压的危害及预防措施

跨步电压的危害及预防措施 一、概述 当的一根带电导线断落在地上时,落地点与带电导线的相同,电流就会从导线的落地点向大地流散,于是地面上以导线落地点为中心,形成了一个电势分布区域,离落地点越远,电流越分散,地面电势也越低。如果人或牲畜站在距离电线落地点8~10米以内。就可能发生事故,这种触电叫做。 人受到跨步电压时,电流虽然是沿着人的下身,从脚经腿、胯部又到脚与大地形成通路,没有经过人体的重要器官,好像比较安全。但是实际并非如此,因为人受到较高的跨步电压作用时,双脚会抽筋,使身体倒在地上。这不仅使作用于身体上的电流增加,而且使电流经过人体的路径改变,完全可能流经人体重要器官,如从头到手或脚。经验证明,人倒地后电流在体内持续作用2秒钟,这种触电就会致命。 脉冲电压幅值为~30千伏时,跨步电压和对牛的内部肌体没有任何损伤。 跨步电压示意图 如跨步电压的幅值提高到40~70千伏,而接触电压的幅值提高到42~56千伏时,牛的和血液循环机能受到影响。这是暂时性影响,经过休息后可以完全恢复,没有生命危险。 如跨步电压的幅值提高到96千伏,接触电压的幅值提高到74千伏时,牛的呼吸失常,心脏活动机能损伤,产生不可逆过程,有生命危险。 一旦误入跨步电压区,应迈小步,双脚不要同时落地,最好一只脚跳走,朝接地点相反的地区走,逐步离开跨步电压区。 二、危害

当跨步电压达到40~50V时,将使人有触电危险,特别是跨步电压会使人摔倒进而加大人体的触电电压,甚至会使人发生触电死亡。 当电气设备发生接地故障,接地电流通过接地体向大地流散,在地面上形成分布电位。这时若人们在接地短路点周围行走,其两脚之间.(人的跨步一般按米来考虑)的电位差,就是跨步电压。由跨步电压引起的人体触电,称为跨步电压触电。人体受到跨步电压作用时,人体虽然没有直接与带电导体接触,也没有放弧现象,但电流是沿着人的下身;从一只脚经胯部到另一只脚,与大地形成通路。触电时先是感觉脚发麻,后是跌倒。当触到较高的跨步电压时,双脚会抽筋而倒在地上。跌倒后,由于头脚之间的距离大,故作用于身体上的电压增高,触电电流相应增大,而且也有可能使电流经过人体的路径改变为经过人体的重要器官,如从头到脚或从头到手。因而增加触电的危害性。人体倒地后,电压持续2秒钟,人就会有致命危险。跨步电压的大小决定于人体离接地点的距离,距离越远,跨步电压数值越小,在远离接地点20米以外处,电位近似于零越接近接地点,跨步电压越高。 三、预防措施 1利用多种形式,各种宣传媒介,如黑板报、村广播、村民大会、放电影、田间地头、中小学生课堂等进行安全用电常识的宣传工作,讲跨步电压触电的危害及后果。 2村电工负责每年对本村供电区内的全部电力设备进行春检和秋检,落实安全措施,堵塞漏洞,预防事故的发生。 3架空线和接户线要经常维护,定期进行全面巡视检查,遇有大风、雨、雪、雾、冰雹、洪水等恶劣天气和用电高峰季节,要增加巡视检查次数和夜巡次数,对危及用电安全的设备、线路及时处理或采取暂停供电的应急措施。

10KV配电线路故障原因分析及防范措施(最新版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 10KV配电线路故障原因分析及 防范措施(最新版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

10KV配电线路故障原因分析及防范措施 (最新版) 【内容摘要】:配电线路发生故障的原因多样,线路故障率较高,预防线路故障是长期、艰巨的任务,必须通过理论和实践的结合;不断总结、不断提高,才能减少或避免线路故障的发生。本文对配网线路故障的原因进行分析,并提出防范措施。 【关键词】:10KV线路、故障、措施 【前言】:随着我县经济的快速发展,人民群众的生活水平提高,对供电质量及供电可靠性提出更高的要求。根据10kV配电线路在运行过程中产生的故障进行分类统计分析,找出存在的薄弱点,提出防范措施,提高配电网的供电可靠性,降低线损,为用户提供优质电能。 一、10KV配电线路常见故障类型 线路故障是配电线路在运行过程中由于各种原因导致配电线

路、设备设施功能失效,并造成停运的事件。据统计,我所在的供电所截止2012年底10kV配电线路8条,线路总长78.174km,l0kV 配电线路在当年共发生故障共12次,达到了6.5145次/km·年。因此对故障进行分类,找出故障的一些客观规律,制定有效的防范措施,降低配电线路及设备故障造成的供电成本损失是很有必要的。我所在的供电所地处山区配电线路及设备点多、面广、线长,路径复杂,设备质量参差不齐,受气候和环境影响较大,供用电情况复杂,这些情况都直接或间接影响着配电线路的安全运行,故障原因也较为复杂,归纳总结我认为有以下几种类型: 1、外力破坏造成线路故障 因10KV线路面向用户端,配电线路通道远比输电网复杂,交叉跨域各类线路、道路、建筑物、堆积物等较多,极易引发线路故障。具体表现在以下几方面:一是经济发展带来的交通繁忙,造成道路拥挤,致使政府一再扩宽道路,使很多电杆处于有效路面上,增加了汽车撞杆事故的时有发生。二是“新农村”建设项目、“4.20”灾后项目的实施,很多施工单位在施工时往往给线路设备带来一定的

ETAP接地网计算

接地网计算培训讲稿 一、关于接地网的基本知识。 在电力系统中,为了保护设备和人身的安全,接地现象是非常常见的。将电气装置、设施该接地部分经接地装置与大地做良好的电气连接称为接地。接地根据用途可以分为工作接地、保护接地、防雷接地和防静电接地。接地装置由接地体和接地线两部分组成。 埋入地中并且与大地直接接触的金属导体称为接地体;把电气装设施该接地部分经接地体连接起来的金属导体称为接地线。接地体又分为人工接地体和自然接地体。兼作接地体用的直接与大地接触的各种金属构件、非可燃气体或液体的金属管道、建筑物中的钢筋、电缆外皮、电杆基础上的避雷线和中性线等都是自然接地体;为满足接地装置接地电阻要求而专门埋设的接地体称为人工接地体。我们所研究的接地网就是一种人工接地体,接地网由由水平接地体和垂直接地体,接地网的材料一般有钢管、角钢、圆钢、扁钢和铜带,接地网祈祷的作用有泻放电流和均压作用。 不同形状接地体周围土壤电位分布演示。 电流经接地体流入大地,在大地表面形成分布电位。接地体和大地零电位点间的电压称为接地装置的对地电压(或对地电位)。接地线电阻和接地体的对地电阻(电流自接地体向外散流所遇到的电阻,又称散流电阻或扩散电阻)之和成为接地装置的接地电阻。接地线电阻基本上很小,所以可以认为接地电阻就等于扩散电阻。接地电阻数值上等于对地电位与从接地体流入大地电流的比值。按流过接地体的电流是工频电流求得的电阻称为工频接地电阻;按流过接地体的电流是冲击电流求得的电阻称为冲击接地电阻。接地电阻和土壤电阻率、接地体规格有关。所以改变接触电阻的主要手段就是改变土壤电阻率和改变接地体敷设。土壤的电阻率大小主要取决于土壤中导电离子的浓度和水分含量。干燥的土壤是不导电的,有时候为了降低土壤电阻率还会采用降阻济。 评估接地网是否满足要求的指标除了接地电阻和对地电位外,还有接触电压和跨步电压。人站在地面上里设备水平距离0.8米处手触到设备外壳、构架离地面1.8米处,加于人手与脚之间的电压称为接触电压;人在分布电位区域中沿散流方向行走,步距为 0.8米时两脚间的电压称为跨步电压。在大接地短路电流系统中接触电压和跨步电压应 满足: ;

10kV配电线路故障原因分析及防范措施(2021版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 10kV配电线路故障原因分析及防 范措施(2021版)

10kV配电线路故障原因分析及防范措施 (2021版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 0引言 随着我国经济发展不断加快,产业结构不断优化,我市的经济业已步入发展的快车道,综合实力明显增强。近年来供电量每年都保持着10%以上的增长,这对城配网的安全可靠运行要求越来越高。10kV 线路和设备发生故障不但给供电企业造成经济损失、影响广大居民的正常生产和生活用电,而且在很大程度上也反映出我们的优质服务水平。根据我公司配电网络的实际运行状况,对近几年间所发生的10kV 配电运行事故进行分类统计分析,并结合其他单位配电运行事故,找出存在的薄弱点,积极探索防范措施,这对于提高配电网管理水平具有重要意义。 1城配网常见故障类型 1.1外破造成的故障因l0kV线路面向用户端,线路通道远比输电网复杂,交跨各类线路、道路、建筑物、构筑物、堆积物等较多,极

跨步电压触电是么回事

跨步电压触电是么回事

————————————————————————————————作者:————————————————————————————————日期:

跨步电压触电是怎么回事 实际上跨步电压触电也是属于间接触电形式。当两脚跨在为接地电流所确定的各种电位的地面上,且其跨距为 0.8m时,两脚间的电位差,称为跨步电压,由跨步电压造成的触电称为跨步电压触电。如图所示。

图接地电流由单根接地体向四周流散的情况 1—接地导线;2—接地体;3—流散电流 Ue—对地电压;Ie—接地电流;QF—油断路器 在图中,跨步电压为Us=φ1-φ2 式中 Us———跨步电压,V; φ1———人左脚所站处的电位,V; φ2———人右脚所站处的电位,V。接触电压则是指在接地电流回路上,一人同时触及的两点之间的电位差。接触电压通常以水平方向为0.8m,垂直方向1.8m 计算。图中的 Uc 表示人接触到油断路器 QF 时的接触电压,等于油断路器 QF 的电位φ3 和脚所站地方的电位φ之差,即 Uc=φ3-φ 接地电流是指由于绝缘损坏而发生的经故障点流入地中的电流,亦称

故障接地电流。在图中。接地电流经油断路器QF的外壳、接地导线、钢管接地体而散流入地中。下列情况和部位可能发生跨步电压触电。 ① 带电导体特别是高压导体故障接地或接地装置流过故障电流时,流散电流在附近地面各点产生的电位差,可造成跨步电压触电。 ② 正常时有较大工作电流流过的接地装置附近,流散电流在地面各点产生的电位差,可造成跨步电压触电。 ③ 防雷装置遭受雷击,或高大设施、高大树木遭受雷击时,极大的流散电流在其接地装置或接地点附近地面产生的电位差,可造成跨步电压触电跨步电压的大小受接地电流大小、人体所穿的鞋和地面特征、两脚之间的跨距、两脚的方位以及离接地点的远近等因素的影响。人的跨距一般按 0.8m 考虑。由于跨步电压受很多因素的影响,以及由于地面电位分布的复杂性,几个人在同一地带(如在同一棵大树下,或在同一故障接地点附近)遭到跨步电压触电完全可能出现截然不同的后果。人体受到跨步电压触电时,电流是沿着人的下身,从脚到脚与大地形成回路,使双脚发麻或抽筋并很快倒地。跌倒后由于头脚之间的距离大,使作用于人身体上的电压增高,电流相应增大,并有可能使电流通过人体内部重要器官而出现致命的危险。

接触电势及跨步电压计算书

接触电势及跨步电压计算书工程名称:#####姚湖变电所 接地网材质:铜接地网 1.接地网面积(单位:m2) S = 31550m2 2.接地体的总体长度(单位:m) L = 6334 m 接地网外边缘线总长度(单位:m) L' = 748.2 m 3.接地短路时最大接地短路电流 220kV I max220= 49.61 kA 110kV I max110= 18.39 kA 4.水平接地体参数 (1)设备接地引下线截面积(单位:mm2) s1= I max220×1000 210×0.6 s1= 182.989mm2 设备接地引下线选用182.99mm2截面积的铜接地网(2)水平接地体截面(单位:mm2) s2= s2×0.75 s2= 137.242mm2 水平接地体选用137.24mm2截面积的铜接地网 所埋深度h = 0.8 m 截面积s = 137.242mm2 等效直径d = 2 × s π d = 0.013 mm 5.根据部颁标准DL/T 621—1997附录B公式B1 避雷线的工频分流系数Kel = 0.5

计算220kV 单项短路入地电流(单位:kA) I 1 = I 220×(1-Kel) I 1 = 24.805 kA 计算110kV 单项短路入地电流(单位:kA) I 2 = I 110×(1-Kel) I 2 = 9.195 kA 6.土壤电阻率(单位:Ω*m) ρ = 50 Ω*m 7. 根据部颁标准DL/T 621—1997附录A 公式A3,计算接地电阻(单位:Ω): B = 11+4.6×h S r = (3×ln( L'S -0.2)×S L'×[ρ2×π×L ×(ln(S 9×h×d )-5×B)+0.213×ρS ×(1+B)] r = 0.126 Ω 8.根据部颁标准DL/T 621—1997附录B 公式B3.计算接地装置的电位(单位:V): 220kV 接地装置的电位: E W1 = I 1×r×103 E W1 = 3,113 V 110kV 接地装置的电位: E W2 = I 2×r×103 E W2 = 1,154 V 9.根据部颁标准DL/T 621—1997附录B 公式B5,计算接地网的最大接触电势(单位:V ) K d = 0.841-0.225×lg(d) K L = 1.0 n = 2×L L'×L'4×S K n = 0.076+0.776n K s = 0.234+0.414lg(S) K j = K d ×K L ×K n ×K s K j = 0.178 220kV 接地装置接触电势:E jm1 = K j ×E W1 E jm1 = 553.228 V 110kV 接地装置接触电势:E jm2 = K j ×E W2 E jm2 = 205.077 V 10.根据部颁标准DL/T 621—1997附录B 公式B8,计算接地网的最大跨步电压(单位:V ) 取跨步距离: T = 0.8 m

相关主题
文本预览
相关文档 最新文档