当前位置:文档之家› 高中数学第一章三角函数1.4.3正切函数的性质与图象课时提升作业2

高中数学第一章三角函数1.4.3正切函数的性质与图象课时提升作业2

高中数学第一章三角函数1.4.3正切函数的性质与图象课时提升作业2
高中数学第一章三角函数1.4.3正切函数的性质与图象课时提升作业2

正切函数的性质与图象

一、选择题(每小题3分,共18分)

1.下列说法正确的是( )

A.正切函数在整个定义域内是增函数

B.正切函数在整个定义域内是减函数

C.函数y=3tan的图象关于y轴对称

D.若x是第一象限角,则y=tanx是增函数

【解析】选C.y=3tan=3tan|x|是偶函数,所以图象关于y轴对称.

【误区警示】因为正切函数有无数个单调递增区间,很容易误选A,其实正切函数在整个定义域内不是单调函数.

2.(2014·济宁高一检测)函数y=tan(cosx)的值域是( )

A. B.

C.[-tan1,tan1]

D.以上都不对

【解析】选C.cosx∈[-1,1],正切函数在[-1,1]上是增函数,所以y=tan(cosx)的值域是[-tan1,tan1].

3.与函数y=3tan的图象不相交的一条直线是( )

A.x=

B.x=-

C.x=

D.x=

【解析】选D.当x=时,2x+=,y=3tan无意义,故选D.

4.(2014·阜阳高一检测)函数f(x)=tan与函数g(x)=sin的最小正周期相同,则ω= ( )

A.±1

B.1

C.±2

D.2

【解题指南】先求g(x)的最小正周期,再用正切函数的最小正周期公式求解.

【解析】选A.g(x)的最小正周期为=π,则=π,所以ω=±1.

5.tan与tan的大小关系为( )

A.tanπ>tan

B.tanπ=tan

C.tanπ

D.无法比较

【解析】选 C.tan=tan=tan,又y=tanx在上是增函数,而-<-<<,所以tan

6.(2014·海口高一检测)下列函数中,既为偶函数又在(0,π)上单调递增的是

( ) A.y=tan|x| B.y=cos(-x)

C.y=sin

D.y=

【解析】选C.四个选项中的函数均为偶函数,但只有选项C中的y=sin=-cosx在(0,π)上单调递增.

二、填空题(每小题4分,共12分)

7.(2014·长沙高一检测)函数y=的最小正周期是.

【解析】y=的图象是y=tanx的图象保留x轴上方部分,并将下方的部分翻折到x轴上方得到的,所以其最小正周期也为π.

答案:π

【变式训练】若函数f(x)=2tan的最小正周期T满足1

而k∈N,故k=2或3.

答案:2或3

8.(2014·宁德高一检测)函数y=tan的递增区间是.

【解析】-+kπ<+<+kπ(k∈Z),得-+kπ<<+kπ(k∈Z),即-+

2kπ

答案:(k∈Z)

9.函数y=tan,x∈的值域是.

【解析】x∈,x+∈,

则tan∈,所以值域为.

答案:

三、解答题(每小题10分,共20分)

10.求下列函数的定义域:

(1)y=.

(2)y=.

【解题指南】解答本题(1)可由分母不为零及tanx的定义域求出;(2)可根据被开方数大于等于零,利用对数函数的单调性求出x的取值范围.

【解析】(1)要使函数y=有意义,

须有

所以x≠kπ-,且x≠kπ+(k∈Z),

所以函数的定义域为

.

(2)要使函数y=有意义,

须有lo tanx≥0=lo 1.

又因为函数y=lo x在(0,+∞)上是减少的,

所以0

所以函数y=的定义域为

.

11.作出函数y=tanx+|tanx|的图象,并求其定义域、值域、单调区间及最小正周期.

【解析】y=tanx+|tanx|=

其图象如图所示,

由图象可知,其定义域是(k∈Z);值域是[0,+∞);单调递增区间是

(k∈Z);最小正周期T=π.

【拓展提升】巧求三角函数的定义域

(1)求三角函数的定义域,既要注意一般函数定义域的规律,又要注意三角函数本身的特有属性.

(2)求函数的定义域通常是解不等式组,利用“数形结合”,借助于数轴画线求交集的方法进行.

在求解三角函数,特别是综合性较强的三角函数的定义域时,我们同样可以利用“数形结合”,在单位圆中画三角函数线,利用各三角不等式解集的扇形区域的交集来完成.

(3)一般地,已知弦函数的取值范围,求角的取值范围用三角函数线简单;已知切函数的取值范围,求角的取值范围用图象比较好.

一、选择题(每小题4分,共16分)

1.函数y=+的定义域是( )

A.

B.

C.

D.

【解析】选C.由

得.

2.要得到y=tan2x的图象,只需把y=tan的图象( )

A.向左平移个单位

B.向右平移个单位

C.向左平移个单位

D.向右平移个单位【解题指南】找出由y=tan2x的图象如何平移得到

y=tan的图象,然后反向移动即可.

【解析】选D.将y=tan2x的图象向左平移个单位可以得到y=tan2即y=tan的图象,所以只需把y=tan的图象向右平移个单位,就可得到y=tan2x的图象.

3.(2014·萍乡高一检测)函数y=是( )

A.奇函数

B.非奇非偶函数

C.既是奇函数又是偶函数

D.偶函数

【解析】选 A.定义域,且y==,

f(-x)===-f(x),所以为奇函数.

4.下列各式正确的是( )

A.tan

B.tan>tan

C.tan=tan

D.大小关系不确定

【解析】选B.因为tan=-tan

=-tan,tan=-tan

=-tan,而tan

所以tan>tan.

【变式训练】比较tan与tan大小.

【解析】tan=-tan=-tan<0,

tan=-tan=tan>0,

所以tan

二、填空题(每小题5分,共10分)

5.(2014·金华高一检测)已知函数y=tanωx在上是减函数,则ω的取值范围是 . 【解析】由题意知ω<0,且周期≥π,所以≤1,即-ω≤1,即-1≤ω<0.

答案:-1≤ω<0

【变式训练】函数y=tan的递增区间是.

【解析】由kπ-<+

答案:(k∈Z)

6.(2014·黄山高一检测)下列三个说法:①函数y=tan(2x+1)的最小正周期是π;②函数y=tanx的图象关

于点(π,0)成中心对称;③函数y=tanx的图象关于点成中心对称.其中正确说法的序号为.

【解析】①T=;②③正确,因为y=tanx的对称中心为,k∈Z.

答案:②③

三、解答题(每小题12分,共24分)

7.(2014·大连高一检测)已知-≤x≤,f(x)=tan2x+2tanx+2,求f(x)的最值及相应的x值.

【解析】因为-≤x≤,所以-≤tanx≤1,而f(x)=tan2x+2tanx+2=(tanx+1)2+1,所以当tanx=-1即x=-时,f(x)有最小值1,当tanx=1即x=时,f(x)有最大值5.

【变式训练】求函数y=tan2+tan3x++1的定义域和值域.

【解析】由3x+≠kπ+,k∈Z,得x≠+(k∈Z),所以函数的定义域为

.设t=tan,则t∈R,y=t2+t+1=+≥,所以原函数的值域是.

8.(2013·揭阳高一检测)已知函数f(x)=2tanωx+(ω>0),y=f(x)的图象与直线y=2的两个相邻交点的距离等于2π,求f(x)的单调递增区间.

【解析】由题意知,函数f(x)的周期为2π,

则=2π,由于ω>0,故ω=,

所以f(x)=2tan.

再由kπ-

得2kπ-

即函数f(x)的单调递增区间为,k∈Z.

三角函数的图像与性质

三角函数的图像与性质 1.三角函数中的值域及最值问题 a .正弦(余弦、正切)型函数在给定区间上的最值问题 (1)(经典题,5分)函数f (x )=sin ????2x -π4在区间????0,π 2上的最小值为( ) A .-1 B .- 22 C.22 D .0 答案:B 解析:∵x ∈????0,π2,∴-π4≤2x -π4≤3π 4,∴函数f (x )=sin ????2x -π4在区间????0,π2上先增后减.∵f (0)=sin ????-π4=-22, f ????π2=sin ????3π4=2 2, f (0)

知识讲解_三角函数的图象和性质_基础

正弦、余弦的图象和性质 编稿:李霞 审稿:孙永钊 【考纲要求】 1、会用“五点法”画出正弦函数、余弦函数的简图;熟悉基本三角函数的图象、定义域、值域、奇偶性、单调性及其最值;理解周期函数和最小正周期的意义. 2、理解正弦函数、余弦函数在区间[0,2]π的性质(如单调性、最大和最小值、与x 轴交点等),理解正切函数在区间(,)22 ππ -的单调性. 【知识网络】 【考点梳理】 考点一、“五点法”作图 在确定正弦函数sin y x =在[0,2]π上的图象形状时,最其关键作用的五个点是(0,0),( ,1)2 π , (,0)π,3( ,-1)2 π ,(2,0)π 考点二、三角函数的图象和性质 名称 sin y x = cos y x = tan y x = 定义域 x R ∈ x R ∈ {|,} 2 x x k k Z π π≠+ ∈ 值 域 [1,1]- [1,1]- (,)-∞+∞ 图象 奇偶性 奇函数 偶函数 奇函数 单调增区间: 单调增区间: 单调增区间: 应用 三角函数的图象与性质 正弦函数的图象与性质 余弦函数的 图象与性质 正切函数的 图象与性质

要点诠释: ①三角函数性质包括定义域、值域、奇偶性、单调性、周期性、最大值和最小值、对称性等,要结合图象记忆性质,反过来,再利用性质巩固图象.三角函数的性质的讨论仍要遵循定义域优先的原则,研究函数的奇偶性、单调性及周期性都要考虑函数的定义域. ②研究三角函数的图象和性质,应重视从数和形两个角度认识,注意用数形结合的思想方法去分析问题、解决问题. 考点三、周期 一般地,对于函数()f x ,如果存在一个不为0的常数T ,使得当x 取定义域内的每一个值时,都有 (+)=()f x T f x ,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的 最小正数,叫做最小正周期(函数的周期一般指最小正周期). 要点诠释: 应掌握一些简单函数的周期: ①函数sin()y A x ω?=+或cos()y A x ω?=+的周期2T π ω = ; ②函数tan()y A x ω?=+的周期T πω = ; ③函数sin y x =的周期=T π;

三角函数图象性质一览表

三角函数图象性质一览表 正弦定理、余弦定理及应用 设ABC △的外接圆的半径是R ,内切圆的半径是r ,()c b a p ++=2 1 是半周长。 1、正弦定理: R C c B b A a 2sin sin sin ===,或 C B A c b a sin :sin :sin ::= 变式:A R a sin 2=;B R b sin 2=;C R c sin 2= R a A 2sin = ;R b B 2sin =;R c C 2sin = 2、余弦定理: A bc c b a cos 2222-+=; B ac c a b cos 2222-+=; C ab b a c cos 2222-+= 推论:bc a c b A 2cos 222-+=;ac b c a B 2cos 222-+=;ab c b a C 2cos 2 22-+= 3、面积公式:B ac A bc C ab S A B C sin 2 1 sin 21sin 21=== △ 变式:⑴C B A R abc R S A B C sin sin sin 241 2== △ ⑵()()()c p b p a p p S A B C ---=△(海伦秦九韶公式) 4、常用结论: ⑴B A B A b a sin sin >?>?> ⑵b a B A B A =?=?=sin sin ⑶若B A 2sin 2sin =,则B A B A =?=22或2 22π π=+?=+B A B A ⑷和诱导公式有关的变式: 2cos 2sin C B A =+;2cos 2sin B C A =+;2 cos 2sin A C B =+; 2sin 2cos C B A =+;2sin 2cos B C A =+;2sin 2cos A C B =+ ()C B A sin sin =+;()B C A sin sin =+;()A C B sin sin =+; ()C B A cos cos -=+;()B C A cos cos -=+;()A C B cos cos -=+ ⑸B c C b a cos cos +=;A c C a b cos cos +=;A b B a c cos cos += 5、注意两角和与差公式、二倍角公式和半角公式、辅助角公式的应用。 6、注意函数()?ω+=x A y sin 的知识在三角形中的应用: 比如求()??? ??+ =82 1sin 2πA x f ,?? ? ??∈4,0πA 的最大值。

三角函数的图像和性质(1)

第2章第3节 三角函数的图像和性质(1) 主备人: 审核人: . 班级 姓名 . 【教学目标】 ① 了解三角函数的周期性. ② 能画出y =sinx ,y =cosx ,y =tanx 的图象,并能根据图象理解正弦函数、余弦函数在[0,2π], 正切函数在? ?? ??-π2,π2上的性质. ③ 了解三角函数 y =Asin (ωx+φ)的实际意义及其参数A 、ω、φ对函数图象变化的影响. 【重点难点】 1.重点:能画出y =sinx ,y =cosx ,y =tanx 的图象,并能根据图象理解正弦函数、余弦函数在[0, 2π],正切函数在? ?? ??-π2,π2上的性质. 2.难点:y =sinx ,y =cosx ,y =tanx 性质的熟练运用。 【教学过程】 一. 基础自测: 1. 函数13sin()24y x π=+ 的最小正周期为______________; 2.函数21sin -= x y 的定义域为 . 3.函数)4cos(2π +=x y 的单调减区间为 . 三.典型例题 例1.求下列函数的定义域: (1)tan 4y x π??=- ??? ; (2)y =

例2.求下列函数的值域 (1)2()sin 2,[ ,]63f x x x ππ=∈; (2)2()64sin cos f x x x =--; (3)2sin 1sin 2x y x += -; (4)sin cos 2sin cos 2,y x x x x x R =+++∈ 例3.已知函数sin(2)3y x π =+,求(1)周期; (2)当x 分别为何值时函数取得最大值,最小值;(3)单调增区间,单调减区间;(4)对称轴、对称中心. 例4.设函数的最小正周期为. (Ⅰ)求的值.(Ⅱ)若函数的图像是由的图像向右平移 个单位长度得到,求的单调增区间. 22()(sin cos )2cos (0)f x x x x ωωωω=++>23 πω()y g x =()y f x =2 π()y g x =

高三数学三角函数经典练习题及复习资料精析

1.将函数()2sin 2x f x =的图象向右移动02π???? << ?? ? 个单位长度, 所得的部分图象如右图所示,则?的值为( ) A .6 π B .3 π C .12 π D .23 π 2.已知函数()sin 23f x x π??=+ ?? ? ,为了得到()sin 2g x x =的图象,则 只需将()f x 的图象( ) A .向右平移3π个长度单位 B .向右平移6 π个长度单位 C .向左平移6π个长度单位 D .向左平移3 π 个长度单位 3.若113sin cos αα +=sin cos αα=( ) A .13- B .13 C .13-或1 D .13或-1 4.2014cos()3 π的值为( ) A .12 B . 3 2 C .12- D .32 - 5.记cos(80),tan 80k -?=?那么= ( ). A 2 1k -.2 1k - C 2 1k -.2 1k k -- 6.若sin a = -45 ,a 是第三象限的角,则sin()4 a π +=( ) (A )-7210 (B ) 7210 (C )2 - 10 (D ) 210

7 .若 55 2) 4 sin(2cos -=+ π αα,且)2 ,4(ππα∈,则α2tan 的值为( ) A .3 4- B .4 3- C .4 3 D .3 4 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是 ( ) A .)(x f 的周期为π B .)(x f 在)0,2 (π-上单调递减 C .)(x f 的最大值为2 D .)(x f 的图象关于直线π=x 对称 9.如图是函数2(ωφ),φ<2 π的图象,那么 A.ω=11 10,φ=6 π B.ω=10 11,φ6π C.ω=2,φ=6 π D.ω =2,φ6 π 10.要得到函数sin(4)3 y x π=-的图象,只需要将函数sin 4y x =的 图象( ) A .向左平移3 π个单位 B .向右平移3 π 个单位 C .向左平移12π个单位 D .向右平移12 π个单位 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象

三角函数的图象与性质

三角函数的图象与性质 ——正弦函数、余弦函数的性质 【教学目标】 1.理解正、余弦函数的定义域、值域、最值、周期性、奇偶性的意义; 2.会求简单函数的定义域、值域、最小正周期和单调区间; 3.掌握正弦函数的周期及求法。(n )si y A x ω?=+ 【教学重点】 正、余弦函数的性质。 【教学难点】 正、余弦函数性质的理解与应用。 【教学过程】 一、讲解新课: (1)定义域: 正弦函数、余弦函数的定义域都是实数集[或], R (,)-∞+∞分别记作: sin y x x ∈R =,cos ,y x x =∈R (2)值域 ,1sin 1x ≤≤--1cos 1 x ≤≤也就是说,正弦函数、余弦函数的值域都是。[ ]-1,1其中正弦函数,sin y x =x ∈R (1)当且仅当,时,取得最大值1。 x 2k 2π π=+k ∈Z (2)当且仅当,时,取得最小值。 x 2k 2π π=+k ∈Z 1-

而余弦函数,cos y x =x ∈R 当且仅当,时,取得最大值1,时,取得最小值。 2x k π=k ∈Z (21)x k π=+k ∈Z 1-(3)周期性 由,()知: sin(2)sin x k x π+=cos(2)cos x k x π+=k ∈Z 正弦函数值、余弦函数值是按照一定规律不断重复地取得的。 一般地,对于函数,如果存在一个非零常数,使得当取定义域内的每一个值()f x T x 时,都有,那么函数f(x)就叫做周期函数,非零常数叫做这个函数的周()()f x T f x +=T 期。 由此可知,,,…,,,…(且)都是这两个函数的周期。2π4π2π-4π-2k πk ∈Z 0k ≠对于一个周期函数 ,如果在它所有的周期中存在一个最小的正数,那么这个最小正()f x 数就叫做 的最小正周期。()f x 注意: 1.周期函数定义域,则必有,且若则定义域无上界;则定义域x ∈M x T M +∈0T >0T <无下界; 2.“每一个值”只要有一个反例,则就不为周期函数(如) ()f x ()()001f x t f x +3.往往是多值的(如,,,…,,,…都是周期)周期中最T sin y x =2π4π2π-4π-T 小的正数叫做的最小正周期(有些周期函数没有最小正周期) ()f x 根据上述定义,可知:正弦函数、余弦函数都是周期函数,(且)都是它的2k πk ∈Z 0k ≠周期,最小正周期是2π (4)奇偶性 由sin()sin x x -=-可知:为奇函数 ()cos x cosx -=sin y x =为偶函数 cos y x =∴正弦曲线关于原点O 对称,余弦曲线关于y 轴对称

高中数学教案三角函数的图象与性质

高中数学教案三角函数的图象及性质 精编习题 三角函数的图象及性质 一、知识网络 二、高考考点 (一)三角函数的性质 1、三角函数的定义域,值域或最值问题; 2、三角函数的奇偶性及单调性问题;常见题型为:三角函数为奇 函数(或偶函数)的充要条件的应用;寻求三角函数的单调区间;比较大小的判断等. 3、三角函数的周期性;寻求型三角函数的周期以及 难度较高的含有绝对值的三角函数的周期. (二)三角函数的图象 1、基本三角函数图象的变换; 2、型三角函数的图象问题;重点是“五点法”作草

图的逆用:由给出的一段函数图象求函数解析式; 3、三角函数图象的对称轴或对称中心:寻求或应用; 4、利用函数图象解决应用问题. (三)化归能力以及关于三角函数的认知变换水平. 三、知识要点 (一)三角函数的性质 1、定义域及值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y=sinx,y=tanx;偶函数:y=cosx. (2)型三角函数的奇偶性 (ⅰ)g(x)=(x∈R) g(x)为偶函数 由此得; 同理,为奇函数 . (ⅱ) 为偶函数;为奇函 数 . 3、周期性 (1)基本公式

(ⅰ)基本三角函数的周期y=sinx,y=cosx的周期为;y=tanx,y=cotx的周期为 . (ⅱ)型三角函数的周期 的周期为; 的周期为 . (2)认知 (ⅰ)型函数的周期 的周期为; 的周期为 . (ⅱ)的周期 的周期为; 的周期为 . 均同它们不加绝对值时的周期相同,即对y=的解析式施加绝对值后,该函数的周期不变.注意这一点及(ⅰ)的区别. (ⅱ)若函数为型两位函数之和,则探求周期适于“最小公倍数法”. (ⅲ)探求其它“杂”三角函数的周期,基本策略是试验――猜想――证明. (3)特殊情形研究

三角函数的图像与性质

第三节三角函数的图象与性质[备考方向要明了] 考什么怎么考 1.能画出y=sin x,y=cos x,y=tan x的图象, 了解三角函数的周期性. 2.理解正弦函数、余弦函数在区间[0,2π]上的 性质(如单调性、最大值和最小值以及与x轴 的交点等),理解正切函数在区间???? - π 2, π 2内 的单调性. 1.以选择题或填空题的形式考查三角函数的 单调性、周期性及对称性.如2012年新课标 全国T9等. 2.以选择题或填空题的形式考查三角函数的 值域或最值问题.如2012年湖南T6等. 3.与三角恒等变换相结合出现在解答题中.如 2012年北京T15等. [归纳·知识整合] 正弦函数、余弦函数、正切函数的图象和性质 函数y=sin x y=cos x y=tan x 图象 定义域R R? ? ? x??x≠ π 2+kπ,k ∈Z} 值域[-1,1][-1,1]R 单调性 递增区间: ? ? ? ? 2kπ- π 2,2kπ+ π 2(k∈Z) 递减区间: ? ? ? ? 2kπ+ π 2,2kπ+ 3 2 π(k∈Z) 递增区间:[2kπ-π,2kπ] (k∈Z) 递减区间:[2kπ,2kπ+π] (k∈Z) 递增区间: ? ? ? ? kπ- π 2,kπ+ π 2(k∈ Z)

[探究] 1.正切函数y =tan x 在定义域内是增函数吗? 提示:不是.正切函数y =tan x 在每一个区间????k π-π2,k π+π 2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数. 2.当函数y =A sin(ωx +φ)分别为奇函数和偶函数时,φ的取值是什么?对于函数y =A cos(ωx +φ)呢? 提示:函数y =A sin(ωx +φ),当φ=k π(k ∈Z )时是奇函数,当φ=k π+π 2(k ∈Z )时是偶函 数;函数y =A cos(ωx +φ),当φ=k π(k ∈Z )时是偶函数,当φ=k π+π 2 (k ∈Z )时是奇函数. [自测·牛刀小试] 1.(教材习题改编)设函数f (x )=sin ????2x -π 2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π 2的奇函数 D .最小正周期为π 2 的偶函数 解析:选B ∵f (x )=sin(2x -π 2)=-cos 2x , ∴f (x )是最小正周期为π的偶函数. 2.(教材习题改编)函数y =4sin x ,x ∈[-π,π]的单调性是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数

广州艺术生高考数学复习资料3三角函数性质与图像

三角函数性质与图像 知识清单: .......... 函数s i n ()y A x ω?=+的图像和性质以函数sin y x =为基础,通过图像变换来把握.如①sin y x =????→图例变化为 ②sin()y A x ω?=+(A >0,ω>0)相应地, ①的单调增区间2,22 2 k k ππππ??-++?? ? ? ??? →变为 222 2 k x k π π πω?π- +++≤≤ 的解集是②的增区间. 注:⑴)sin(?ω+=x y 或cos()y x ω?=+(0≠ω )的周期ω π 2= T ; ⑵sin()y x ω?=+的对称轴方程是2 x k π π=+ (Z k ∈),对称中心(,0)k π; cos()y x ω?=+的对称轴方程是x k π=(Z k ∈) ,对称中心1(,0) 2 k ππ+; )tan(?ω+=x y 的对称中心( 0,2πk ). 课前预习 1.函数sin cos y x x =-的最小正周期是 2π . 2. 函数1 π2sin()23 y x =+ 的最小正周期T = 4π . 3.函数sin 2 x y =的最小正周期是2π

4.函数]),0[)(26 sin( 2ππ ∈-=x x y 为增函数的区间是]6 5, 3 [ ππ 5.函数22cos()( )3 6 3 y x x π π π=- ≤≤的最小值是1 6.为了得到函数)6 2sin(π-=x y 的图象,可以将函数x y 2cos =的图象向左平移3 π 个单位长度 7.将函数sin y x =的图象上各点的横坐标扩大为原来的2倍,纵坐标不变,再把所得图象上所有点向左平移 3 π 个单位,所得图象的解析式是y=sin( 2 1x+ 6 π ). 8. 函数sin y x x =+ 在区间[0, 2 π ]的最小值为___1___. 9.已知f (x )=5sin x cos x -35cos 2 x + 3 2 5(x ∈R ) ⑴求f (x )的最小正周期;y=5sin(2x-3π ) T=π ⑵求f (x )单调区间;[k 12 π π- ,k π+ 12 5π], [k 12 5ππ+ ,k π+ 12 11π]k Z ∈ ⑶求f (x )图象的对称轴,对称中心。x=1252ππ+k ,( 0,6 2π π+ k ) k Z ∈ 典型例题 例1、三角函数图像变换 将函数1 2cos()3 2 y x π=+的图像作怎样的变换可以得到函数cos y x =的图像? 变式1:将函数cos y x =的图像作怎样的变换可以得到函数2cos(2)4 y x π =-的图像? 例2、已知简谐运动π π()2sin 32f x x ????? ?=+< ? ???? ?的图象经过点(01),,则该简谐运动的最 小正周期T 和初相?分别为6T =,π6 = 例3、三角函数性质 求函数34sin(2)2 3 y x ππ= + 的最大、最小值以及达到最大(小)值时x 的值的集合.; 变式1:函数y =2sin x 的单调增区间是[2k π-2 π ,2k π+ 2 π ](k ∈Z ) 变式2、下列函数中,既是(0, 2 π)上的增函数,又是以π为周期的偶函数是( B) (A)y =lg x 2 (B)y =|sin x | (C)y =cos x (D)y=x 2sin 2 变式3、已知? ? ???? ∈2, 0πx ,求函数)12 5cos( )12 cos( x x y +--=ππ 的值域y=2sin (x+ 6 π )?? ? ??2,22 变式4、已知函数12 ()log (sin cos )f x x x =- y=log 2 1()4 sin(2π -x ) ⑴求它的定义域和值域;(2k 4 52,4 πππ π+ + k ) k ∈Z ?? ? ?? ?+∞- ,21

三角函数的图象与性质

三角函数的图象与性质 一、选择题 1.在函数①y =cos|2x |,②y =|cos x |,③y =cos ? ? ???2x +π6,④y = tan ? ? ???2x -π4中,最小正周期为π的所有函数为( ) A.①②③ B.①③④ C.②④ D.①③ 解析 ①y =cos|2x |=cos 2x ,最小正周期为π; ②由图象知y =|cos x |的最小正周期为π; ③y =cos ? ? ???2x +π6的最小正周期T =2π2=π; ④y =tan ? ? ???2x -π4的最小正周期T =π2,因此选A. 答案 A 2.(2017·石家庄模拟)函数f (x )=tan ? ? ???2x -π3的单调递增区间是( ) A.?????? k π2-π12,k π2+5π12(k ∈Z) B.? ???? k π2-π12,k π2+5π12(k ∈Z) C.? ?? ???k π-π12,k π+ 5π12(k ∈Z) D.? ? ???k π+π6,k π+ 2π3(k ∈Z) 解析 由k π-π2<2x -π3<k π+π2(k ∈Z),解得k π2-π12<x <k π2+ 5π 12(k ∈Z),所以函数y =tan ? ????2x -π3的单调递增区间是? ???? k π2-π12,k π2+5π12(k ∈Z),故选B. 答案 B 3.(2017·成都诊断)函数y =cos 2x -2sin x 的最大值与最小值分别为( ) A.3,-1 B.3,-2 C.2,-1 D.2,-2 解析 y =cos 2x -2sin x =1-sin 2x -2sin x =-sin 2x -2sin x +1, 令t =sin x ,则t ∈[-1,1],y =-t 2-2t +1=-(t +1)2+2,

三角函数图象和性质(总结的很全面_不看后悔)

三角函数专题辅导 课程安排 制作者:程国辉

专题辅导一 三角函数的基本性质及解题思路 课时:4-5学时 学习目标: 1. 掌握常用公式的变换。 2. 明确一般三角函数化简求值的思路。 第一部分 三角函数公式 1、两角和与差的三角函数: cos(α+β)=cos α·cos β-sin α·sin β cos(α-β)=cos α·cos β+sin α·sin β sin(α±β)=sin α·cos β±cos α·sin β tan(α+β)=(tan α+tan β)/(1-tan α·tan β) tan(α-β)=(tan α-tan β)/(1+tan α·tan β 2、倍角公式: sin(2α)=2sin α·cos α=2/(tan α+cot α) cos(2α)=(cos α)^2-(sin α)^2=2(cos α)^2-1=1-2(sin α)^2 tan(2α)=2tan α/(1-tan^2α) cot(2α)=(cot^2α-1)/(2cot α) 3、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβ αβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβαβαβαβααα αααβα αβααβα αα αα=±=???→=-↓=-=-±±=?-↓= - 4、同角三角函数的基本关系式: (1)平方关系:2 2 2 2 2 2 sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, (3)商数关系:sin cos tan ,cot cos sin αα αααα = =

高中数学教师备课必备系列(三角函数(一)专题9 三角函数图像与性质

专题九三角函数图像与性质.正弦函数、余弦函数、正切函数的图像 .三角函数的单调区间: 的递增区间是,递减区间是 ; 的递增区间是,递减区间是, 的递增区间是, .函数 最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中心。 .由=的图象变换出=(ω+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进

行图象变换。 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。 途径一:先平移变换再周期变换 (伸缩变换) 先将=的图象向左(>)或向右(<=平移||个单位,再将图象上各点的横坐标变为原来的 倍(ω>),便得=(ω+)的图象。 途径二:先周期变换(伸缩变换)再平移变换。 先将=的图象上各点的横坐标变为原来的倍(ω>),再沿轴向左(>)或向右(<=平移 个单位,便得=(ω+)的图象。 .由=(ω+)的图象求其函数式: 给出图象确定解析式(ω)的题型,有时从寻找“五点”中的第一零点(-,)作为突破口, 要从图象的升降情况找准 ..第一个零点的位置。 .对称轴与对称中心: 的对称轴为,对称中心为; 的对称轴为,对称中心为; 对于和来说,对称中心与零点相联系,对称轴与最值点联系。 .求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意、的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; .求三角函数的周期的常用方法: 经过恒等变形化成“、”的形式,在利用周期公式,另外还有图像法和定义法。 .五点法作(ω)的简图: 五点取法是设ω,由取、、π、、π来求相应的值及对应的值,再描点作图。 四.典例解析

三角函数的图像与性质

一、选择题 1.函数y =sin 2x +sin x -1的值域为( ) A .[-1,1] B .[-5 4,-1] C .[-5 4,1] D .[-1,5 4 ] [答案] C [解析] 本题考查了换元法,一元二次函数闭区间上的最值问题,通过sin x =t 换元转化为t 的二次函数的最值问题,体现了换元思想和转化的思想,令t =sin x ∈[-1,1],y =t 2 +t -1,(-1≤t ≤1),显然-5 4 ≤y ≤1,选C. 2.(2011·山东理,6)若函数f (x )=sin ωx (ω>0)在区间[0,π 3]上单调递增, 在区间[π3,π 2 ]上单调递减,则ω=( ) A .3 B .2 C.32 D.2 3 [答案] C [解析] 本题主要考查正弦型函数y =sin ωx 的单调性 依题意y =sin ωx 的周期T =4×π3=43π,又T =2π ω, ∴2πω=43π,∴ω=32 .

故选C(亦利用y =sin x 的单调区间来求解) 3.(文)函数f (x )=2sin x cos x 是( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数 D .最小正周期为π的偶函数 [答案] C [解析] 本题考查三角函数的最小正周期和奇偶性. f (x )=2sin x cos x =sin2x ,最小正周期T =2π 2=π, 且f (x )是奇函数. (理)对于函数f (x )=2sin x cos x ,下列选项中正确的是( ) A .f (x )在(π4,π 2)上是递增的 B .f (x )的图像关于原点对称 C .f (x )的最小正周期为2π D .f (x )的最大值为2 [答案] B [解析] 本题考查三角函数的性质.f (x )=2sin x cos x =sin2x ,周期为π,最大值为1,故C 、D 错;f (-x )=sin(-2x )=-2sin x ,为奇函数,其图像关 于原点对称,B 正确;函数的递增区间为???? ??k π-π4,k π+π4,(k ∈Z)排除A. 4.函数y =sin2x +a cos2x 的图像关于直线x =-π 8对称,则a 的值为 ( )

(完整版)高中数学必修一三角函数图像性质总结(精华版)

x ?正弦、余弦、正切函数图象和性质 正弦函数、余弦函数、正切函数的图像 -5 3 7 ~2~ ” - 丁1 T V x 2*伽 -4 -7 -3 ' 、一 -2 -3 - -1 o '2 5 3 J. ‘ 4 2 2 2

y=ta nx J J J 1 Jr jr y y ; 1 1 / / / I ? r / / / y\ y=cotx 1 1 1 \ i 1 ! i I 1 3f-2 1 f J 1 J f f o 2 f I \ I i 1 I L o I I X2 1 三角函数的性质 1定义域与值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y = sinx , y= tanx ;偶函数:y= cosx. ⑺八黒 ' -型三角函数的奇偶性 (i)g(x 丄^ 丁(x€ R) (x)为偶函数- U 山呂in(曲+ 训+ e二匕T +—〔七W E) 由此得- 同理或劝=丿血(阪+呦〔肚丘)为奇函数u 如卩二0吕貯=匕吋上亡£)丘)Q..I —「二一L> : C 2. ■■■ □ 为偶函数;.匚」一⑺一".S 为奇函数 O 炉=Rr+ —(h e 7) 3、周期性 1)基本公式 (i)基本三角函数的周期y= sinx , y= cosx 的周期为; y = tanx , y = cotx 的周期为;T? (ii)—",:'型三角函数的周期 尹=」幻n(购+ 朝 +匕尸=+炉)+上的周期为同 y=cosx

P =」tan (处: + &) +匕尸二(处卄洞+& 的周期为91 . (2)认知 (i ) ?卜巳-,?| 型函数的周期 y = pisin (伽+ 剑| j = A cos(d&r+ 4?)| 的周期为 7T y = |j4tan(dft + 训,y=血 ot 〔伽 + 训 的周期为 ? = |了(曲+卩)+円往无0)的周期 》=|£血(血工+朝胡』=|1(:0£(处+?+上| y = |^tan(&r + ^) +円 j =凶诃(你+昉+刈 的周期为’; 7T 的周期为'? 均同它们不加绝对值时的周期相同,即对 数 的周期不变?注意这一点与(i )的区别? (ii ) 若函数为-’二 型两位函数之和,则探求周期适于“最小公倍数法”. (iii ) 探求其它“杂”三角函数的周期,基本策略是试验一一猜想一一证明 ? (3)特殊情形研究 y 二门」 彳J 的解析式施加绝对值后,该函 JT (i) y = tanx — cotx 的最小正周期为 ; y = sin z|+|co5z| 7T 的最小正周期为二; 7T (iii ) y = sin 4X + cos 4x 的最小正周期为 二. 由此领悟“最小公倍数法”的适用类型,以防施错对象 . 4、单调性 (1) 基本三角函数的单调区间(族) 依从三角函数图象识证“三部曲”: ① 选周期:在原点附近选取那个包含全部锐角,单调区间完整,并且最好关于原点对称的 一个周期; ② 写特解:在所选周期内写出函数的增区间(或减区间); ③ 获通解:在②中所得特解区间两端加上有关函数的最小正周期的整数倍,即得这一函数 的增区间族(或减区间族) 循着上述三部曲,便可得出课本中规范的三角函数的单调区间族 . 揭示:上述“三部曲”也适合于寻求简单三角不等式的解集或探求三角函数的定义域 (2) 』— 丁 型三角函数的单调区间

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

(完整版)高一数学三角函数的图像和性质练习题

高一数学 三角函数的图像和性质练习题 1.若cosx=0,则角x 等于( ) A .k π(k ∈Z ) B . 2π+k π(k ∈Z ) C .2π+2k π(k ∈Z ) D .-2π+2k π(k ∈Z ) 2.使cosx=m m -+11有意义的m 的值为( ) A .m ≥0 B .m ≤0 C .-1<m <1 D .m <-1或m >1 3.函数y=3cos ( 52x -6π)的最小正周期是( ) A .5 π2 B .2π5 C .2π D .5π 4.函数y=2sin 2x+2cosx -3的最大值是( ) A .-1 B .21 C .-21 D .-5 5.下列函数中,同时满足①在(0, 2π)上是增函数,②为奇函数,③以π为最小正周期的函数是( ) A .y=tanx B .y=cosx C .y=tan 2x D .y=|sinx| 6.函数y=sin(2x+π6 )的图象可看成是把函数y=sin2x 的图象做以下平移得到( ) A.向右平移π6 B. 向左平移 π12 C. 向右平移 π12 D. 向左平移π6 7.函数y=sin(π4 -2x)的单调增区间是( ) A. [kπ-3π8 , kπ+3π8 ] (k∈Z) B. [kπ+π8 , kπ+5π8 ] (k∈Z) C. [kπ-π8 , kπ+3π8 ] (k∈Z) D. [kπ+3π8 , kπ+7π8 ] (k∈Z) 8.函数 y=15 sin2x 图象的一条对称轴是( )

A.x= - π2 B. x= - π4 C. x = π8 D. x= - 5π4 9.函数 y=15 sin(3x-π3 ) 的定义域是__________,值域是________,最小正周期是________,振幅是________,频率是________,初相是_________. 10.函数y=sin2x 的图象向左平移 π6 ,所得的曲线对应的函数解析式是____ _____. 11.关于函数f(x)=4sin(2x+π3 ),(x∈R),有下列命题: (1)y=f(x)的表达式可改写为y=4cos(2x-π6 ); (2)y=f(x)是以2π为最小正周期的周期函数; (3)y=f(x)的图象关于点(-π6 ,0)对称; (4)y=f(x)的图象关于直线x=-π6 对称;其中正确的命题序号是___________. 12. 已知函数y=3sin (21x -4 π). (1)用“五点法”作函数的图象; (2)说出此图象是由y=sinx 的图象经过怎样的变化得到的; (3)求此函数的最小正周期; (4)求此函数的对称轴、对称中心、单调递增区间. 13. 如图是函数y =A sin(ωx +φ)+2的图象的一部分,求它的振幅、最小正周期和初 相。

高考数学重点难点讲解之三角函数的图像和性质

难点15 三角函数的图象和性质 三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来.本节主要帮助考生掌握图象和性质并会灵活运用. ●难点磁场 (★★★★)已知α、β为锐角,且x(α+β-2π)>0,试证不等式f(x)=)sin cos ()sin cos (αββα+x x <2对一切非零实数都成立. ●案例探究 [例1]设z1=m+(2-m2)i,z2=cos θ+(λ+sin θ)i,其中m,λ,θ∈R ,已知z1=2z2,求λ的取值范围. 命题意图:本题主要考查三角函数的性质,考查考生的综合分析问题的能力和等价转化思想的运用,属★★★★★级题目. 知识依托:主要依据等价转化的思想和二次函数在给定区间上的最值问题来解决. 错解分析:考生不易运用等价转化的思想方法来解决问题. 技巧与方法:对于解法一,主要运用消参和分离变量的方法把所求的问题转化为二次函数在给定区间上的最值问题;对于解法二,主要运用三角函数的平方关系把所求的问题转化为二次函数在给定区间上的最值问题. 解法一:∵z1=2z2, ∴m+(2-m2)i=2cos θ+(2λ+2sin θ)i,∴ ???+=-=θλθ sin 222cos 22m m ∴λ=1-2cos2θ-sin θ=2sin2θ-sin θ-1=2(sin θ-41)2-89 . 当sin θ=41时λ取最小值-89 ,当sin θ=-1时,λ取最大值2. 解法二:∵z1=2z2 ∴ ???+=-=θλθsin 222cos 22m m

∴??????? --==222sin 2cos 2 λθθm m , ∴4)22(42 22λ--+m m =1. ∴m4-(3-4λ)m2+4λ2-8λ=0,设t=m2,则0≤t ≤4, 令f(t)=t2-(3-4λ)t+4λ2-8λ,则 ???????? ?≥≥≤-≤ ≥?0 )4(0)0(424300 f f λ或f(0)·f(4)≤0 ∴??? ??? ??? ≤≥≤≤≤≤--≥02204345 89λλλλλ或或 ∴-89 ≤λ≤0或0≤λ≤2. ∴λ的取值范围是[-89 ,2]. [例2]如右图,一滑雪运动员自h=50m 高处A 点滑至O 点,由于运动员的技巧(不计阻力),在O 点保持速率v0不为,并以倾角θ起跳,落至B 点,令OB=L ,试问,α=30°时,L 的最大值为多少?当L 取最大值时,θ为多大? 命题意图:本题是一道综合性题目,主要考查考生运用数学知识来解决物理问题的能力.属★★★★★级题目. 知识依托:主要依据三角函数知识来解决实际问题. 错解分析:考生不易运用所学的数学知识来解决物理问题,知识的迁移能力不够灵活. 技巧与方法:首先运用物理学知识得出目标函数,其次运用三角函数的有关知识来解决实际问题. 解:由已知条件列出从O 点飞出后的运动方程:

三角函数的图象与性质

三角函数的图象与性质(1) 教学目标 1、能借助正弦函数画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象; 2、借助图象理解正弦函数、余弦函数的性质. 重点难点 重点:正弦函数、余弦函数的图象及其性质; 难点:借助正弦函数画出正弦函数的图象. 教学过程 ]2,0[,sin π∈=x x y 的图象→R x x y ∈=,sin 的图象→余弦函数的图象→五点作图法 问题情境 学习函数我们需要研究它的图象和性质。借助三角函数线,我们已经得到了正弦、余弦函数的哪些性质? “为了更加直观地研究三角函数的性质,可以先作出它们的图象.”怎样作出正弦函数的图象? 学生活动 问题1:直接作出y = sinx ,x ∈ R 的图象有困难,我们该怎么作图呢? 根据周期性,可以先作出y = sinx ,x ∈ [0,2π]的图象,再由周期性得到整个图象. 问题2:描点法的基本步骤是什么?在[0,2π]上需要找几个点? ————列表描点连线。 比比看 ,看谁画的最快,最准确! 归纳出1、列表描点法 建构数学 (一)正弦函数的图像 问题3:如何比较精确的作出这些点并且可以准确的反映函数的变化趋势呢?利用正弦线可以实现吗? ————演示几何描点法和电脑描点法。 基本步骤详细化:(2、几何描点法) 先作单位圆,把⊙O1十二等分(当然分得越细,图象越精确); 十二等分后得对应于0,6π, 3π,2π ,…2π等角,并作出相应的正弦线; 将x 轴上从0到2π一段分成12等份(2π≈6.28),若变动比例,今后图象将相应“变形”; 取点,平移正弦线,使起点与轴上的点重合; 描图(连接)得y=sinx x ∈[0,2π];

相关主题
文本预览
相关文档 最新文档