当前位置:文档之家› 有机氟材料的发展与应用

有机氟材料的发展与应用

有机氟材料的发展与应用
有机氟材料的发展与应用

有机氟材料的发展与应用

届别 09届

系别化学

专业化学

姓名郭萌萌

学号 2009121140

二〇一一年六月

有机氟材料的发展与应用

-----有机氟的发展史及研究成果学生姓名:郭萌萌指导教师:刘耀华

摘要: 有机氟材料具有优异的耐高低温、耐热、耐化学品、绝缘、抗粘、低摩擦、不燃和自润滑等性能,由于这些材料具有与其它材料无法比拟的优良性能,使其应用已也从最初的军工领域逐渐扩大到民用、工业领域,成为国民经济中不可缺少的新型高分子台成材料。我国的有机氟化学研究始于上世纪50年代后期,当时是为了满足国防建设的需求,经过50多年几代人的努力,如今我国已经能够生产许多含氟产品如氟塑料、氟橡胶、氟里昂、含氟表面活性剂、含氟油脂、含氟医药和农药、氟碳代血液等,形成了初具规模的氟化学工业基础。本文主要介绍了我国有机氟材料的发展历程、研究现状以及在各领域的应用。

关键词: 有机氟化学有机氟材料发展成果应用

有机氟材料其所以成为当前世界各国普遍重视的一类新材料,并未研究这类材料而形成的一门专门的科学----氟有机化学,是与它在当代科学技术进步和经济发展中所起的巨大作用密切相关的。近年来,含氟功能材料和众多精细氟有机化学产品的出现,以及氟化学基础研究的进展,展示了含氟材料和氟有机化学更广阔的前景。

1.我国有机氟化学的发展

1.1 任务带学科----有机氟化学的兴起

1896年氟代乙酸乙酯的合成标志着有机氟化学的开始,至今已有整整一个世纪的时间,在此期间,几次历史性的突破极大地促进了有机氟化学的发展,如本世纪三十年代氟里昂在制冷工业上的应用,二战期间曼哈顿工程的实施以及50年代高生理活性氟脲嘧啶的合成等[1]。我国氟资源丰富,已探明萤石的储量约占世界总储量的四分之一,但直到上世纪50年代,氟化学在中国还是一片空白,50年代末,由于国际形势的变化,我国开始自行开发原子能技术急需一批特殊的含氟材料,由此开始了有机氟化学在中国的研究。

1963年科学院决定将氟化学的工作集中到上海,集中力量形成特色,当时上海市调拨一个葡萄糖厂给有机所,经改造做为扩试和批量生产的基地,在这阶段的任务多数是仿制,成功后再批量生产。提供应用研制的氟材料包括采用不同方法聚合的聚四氟乙烯、四氟乙烯的共聚物、偏氟乙烯的共聚物,还有含氟聚氨酯、聚全氟苯、含氟油脂等,经过几年的艰苦拼搏,终于研制成功了各种国内急需的含氟材料,为我国原子弹的提前试爆成功作出了贡献,同时也培养出了一批氟化学科研人员,建立了有关的科研手段和设施,为以后我国有机氟化工的发展及有机氟化学研究打下了良好的基础。

[2]

1.2 渗透与发展-----有机氟工业的初步建立

完成军工研制任务以后,配合国防有机氟化学产品的扩大生产,在已建立的氟化技术及设施的基

1

础上,我国的有机氟化学研究开始转向民用方面,并在国内建立初步的有机氟化学工业体系。这阶段研制和生产的主要氟化学产品有含氟表面活性剂、氟里昂、含氟油脂、含氟医药和农药、氟碳代血液等,大部分产品仍然是仿制,但也开发出了一些独具特色的含氟化学品如抑铬雾剂、氟碳代血液等。

1.3学科促任务-----有机氟化学研究的全面发展

从上世纪50年代末到70年代末,氟化学研究在我国主要集中在应用方面,为国家安全和国民经济的发展研制出一些急需的含氟化学品,基础研究工作开展得较少,只是在个别实验室进行一些零散的基础研究课题,内容主要是由任务衍生出来的题目,尚不能构成一个学科。

在随后的几十年时间里,有机氟化学基础研究在我国一直十分活跃,并形成了一定的特色,取得了一些高水平的研究成果,如亚磺化脱卤反应、单电子转移、金属催化、亲卤反应、含氟卡宾等,在国际氟化学界产生了一定的影响。

与此同时,有机氟化学应用与开发研究在我国也广泛展开,并取得许多好成果。如全氟离子交换膜的研制、气相法和液相法制备氟里昂代用品、含氟高温润滑油、氟碳化合物的合成及临床应用、含氟医药中间体的开发等,有些成果已取得应用,为国防建设和国民经济的发展提供了许多急需的含氟化学品。在有机氟化学基础研究和应用基础研究的推动下,我国有机氟工业在最近30年得到迅速发展,生产规模和产品种类不断增加。如今我国已能够生产包括氟塑料、氟橡胶、含氟冷冻剂、含氟清洗剂、含氟表面活性剂、含氟油脂、含氟医药和农药等品种在内的绝大多数含氟产品。

2.近年来主要研究成果

2.1 特种含氟材料和含氟功能材料的研究一路领先

当前, 我国在许多工业部门, 特别是新技术部门显示出广阔应用前景的特种含氟材料和含氟功能材料作为主要研究方向。这方面的研究一路领先, 在以下几方面取得显著成绩。

2.1.1 氟塑料“合金”的研究

氟塑料“合金”既保持了“塑料王”聚四氟乙烯的耐高温、耐腐蚀、电绝缘性能好等优点, 又有硬度高、蠕变小、易加工等新特点, 扩大了氟塑料的应用范围。氟塑料“合金”已用于制造各种耐强酸、耐强碱、耐强氧化性和耐其它有机化学药品腐蚀的管道、阀门或泵的衬里、泵壳和叶轮, 也适合于加工成各种隔膜片、疏水器膜片或密封件,在石油、化工、化肥、农药、染化、冶金、电子及机械工业等部门有广阔的应用前景。

2.1.2 改性的乙烯和四氟乙烯共聚物的研究

这是又一类含氟新材料, 它的研制成功为我国氟塑料家族增添了新的成员。这种材料易加工、强度高、耐辐射、易染色, 可作为在高温和苛刻条件下使用的电绝缘材料, 用于制造电子计算机和原子能发电站等的内部电线, 还可以作防腐蚀、防粘附、耐化学药品侵蚀的材料。

2.1.3 含氟压电、热电功能材料的研究[4]

含氟功能材料的优异性能能够弥补普通功能材料的不足。上海有机所先后研制了含氟的压电、热电材料, 其中压电驻极体为发展我国的电声材料作出了贡献, 由驻极体制造的某些电声产品不仅能满足国内需要, 而且还能部分地进人国际市场。含氟的热电材料亦已用于红外照相技术。

2.1.4 全氟磺酸树脂和离子交换膜的研究

这是一类化学功能高分子材料, 有广阔的应用前景, 用离子交换膜电解食盐制造氯碱已列为国家重点攻关项目。这项新技术正在引起氯碱工业的革命。传统生产高纯烧碱普遍采用汞法, 汞的流失造成的污染是一大祸害。上世纪70年代, 美国和日本首先研究成功用含氟离子交换膜制造氯碱的新技术, 找到了根除汞害、实现氯碱工业现代化的好途径。另一方面, 消耗量更大的工业烧碱是用石棉隔膜电解槽制造的, 制造和更换这种电解槽要处理大量的石棉。而石棉是致癌物质, 这样用离

2

子交换膜制造氯碱就更为重要。经过多年努力, 上海有机化学研究所全氟离子交换膜的研制工作已取得了相当大的进展, 作为关键材料的全氟磺酸树脂, 从单体合成、聚合到聚合物后处理及造粒等都已能正常生产, 可望通过与加工、应用单位的密切协作, 使这项重要的新技术在我国尽早进人工业规模的应用。此外, 全氟磺酸树脂作为强酸催化剂的应用, 全氟离子交换膜用于其它电解与分离过程, 也很有前途, 全氟磺酸膜还可用于铬酸溶液的电解再生和回收工艺等

2.2 注重发挥精细氟有机合成的特长

2.2.1 含氟油脂的研究

耐强氧化剂腐蚀的特种润滑油脂和特种陀螺油是原子能工艺和导航技术中不可缺少的材料。这些需要量不大、规格多变、合成方法复杂的产品是工业部门难以承担的。上海有机所先后研制了全氟油、全氟醚油、氟氯油和氟澳油, 满足了有关技术部门的需要。全氟油和全氟醚油无毒、无嗅耐热和导热性能好, 电绝缘性能优良, 化学稳定性高, 安全保险, 有越来越广的用途。

2.2.2 含氟表面活性剂的研究

含氟表面活性剂有优良的表面活性, 用量很少就能显著降低水溶液或有机液体的表面张力。由于它有极高的热稳定性和化学稳定性, 能在高温、强酸、强碱和强氧化还原的条件下使用, 因此应用范围很广, 在许多用普通表面活性剂满足不了要求的地方, 往往可用含氟表面活性剂圆满地解决问题。[3]

2.2.3 织物防水防油处理剂的研究

利用含氟化合物低表面能的特点, 可以用某些含氟聚合物作为纺织品的防水、防油处理剂。处理过的织物不仅有防水、防油性能, 而且透气性不降低,手感好, 不容易沾污, 好洗涤, 在国外已普遍使用。我国是个大的纺织品出口国, 要提高在国际市场上的竞争能力, 解决织物的防水、防油问题, 意义十分重大。

2.3 含氟生物活性物质的研究有所突破

2.3.1 氟碳代血液的研究

全氟化合物的化学、生物惰性和在常温下对氧气和二氧化碳有较大的溶解度, 引起科学家们萌发了用全氟化合物制造代血液的设想。我国科学家先后研制了两种型号的氟碳代血液。1 号氟碳代血液对脏器保存和移植很有实用价值, 保存肾脏可达96 小时。我国用1 号氟碳代血液代替普通的血浆进行肾脏病例中取得了很大成功。并发现它对某些心血管疾病, 如缺血性脑血管病、中风和半身不遂症的急性期有明显的疗效。2号氟碳代血液作为心肌保护液的研究也取得了进展。

2.3.2 含氟抗肿瘤药物的研究[5]

由于氟原子与氢原子的体积相差不大, 化合物中的个别氢原子被氟取代后, 几何构型不会发生大的变化, 这样氟取代物就可能被细胞吸收, “冒充”无氟的类似物参与细胞代谢的某些过程, 但并不能参与代谢的全部过程。到了代谢的某一阶段, 氟取代物就“原形毕露”, 中止、破坏细胞代谢过程。根据这个原理, 有可能找到适当的药物去抑制对人体有害的细胞, 如癌细胞的代谢过程, 达到治病的目的。氟尿咄淀及其衍生物就属于这类代谢药物, 它们有显著的抗肿瘤效果。我国先后研究成功的两种氟尿嚓吮抗肿瘤药物,对治疗肠癌、肝癌、肺癌和乳腺癌等都有很好的疗效。

2.3.3 含氟农物的研究

有显著生理活性的氟有机化合物早就被考虑作为农药研究使用, 只是由于大量便宜的有机氯、有机磷和有机硫农药的上市, 使有机氟农药的研究开发趋于迟缓。. 上世纪80年代以后, 由于有机氯农药积累毒性造成的环境污染和许多昆虫的抗药性问题出现, 发展新的农药品种成了当务之急。生理活性高、毒性小的氟有机化合物自然成了科学家重新重视研究的对象, 有机氟农药开始飞快地发展飞至今世界上已商品化的含氟农药有数十种。近年来我国研制成功的氟脉杀杀虫剂已进人扩试阶段, 氟乐灵除草剂亦已通过院级技术鉴定,可望在不久以后与化工部门合作, 共同在我国开创生产有机氟农药的历史。

3

3.有机氟化工新材料及应用

3.1 氟树脂[6]

氟树脂具有优异的耐高低温性能和化学稳定性,很好的电绝缘性、非粘附性、低摩擦性、耐候性和良好润滑性。氟树脂品种繁多,主要品种有聚四氟乙烯(R,RRE)和热塑性氟树脂聚全氟乙丙烯(ⅡLP)、聚偏氟乙烯(PVDF)、可熔性聚四氟乙烯( LA)、聚四氟乙烯一乙烯共聚物(RYE)、聚三氟氯乙烯(PCT.FE)、聚三氟氯乙烯一乙烯共聚物(ECQ)、聚氟乙烯(PVF)等,每个品种又衍生有数个到数十个品级[7]。而且历年来各品种还在不断改进,新的品级层出不穷,以满足各种不同用途。氟树脂应用面广、已遍及航空宇航、原子能、石油化工、机械、电子、建筑、轻纺、半导体、汽车、医疗器械、办公用机器、家用电器、燃料电池、锂电池等领域,用途迅速扩大。同时近l0多年来又相继开发了一些新型氟树脂,如全氟离子交换膜、全氟聚酰亚胺、软质氟树脂、透明热塑性氟树脂、用作驻极体的含氟树脂等[8]。这些含氟新材料有的已在工业生产中起着重要作用,如全氟离子膜用于氯碱工业,使氯碱工业生产技术发生了根本性变革;含氟聚合物表面能低,具有憎水憎油性能,可用作防幅用途;透明氟树脂,折射率低,是医学、军用、宇航等光学器械中理想材料[9],如用在微波、雷达及光学仪器等的透镜涂层、紫外线用的元件和窗口材料,光电子仪器、接触镜、化学惰性的绝缘材料,光导纤维的壳材,以及用作生物医学材料,涂于某些医学器材上可提高光学传感和诊断时生物相容性。氟聚合物膜对电子线和x射线的感应性,可用做电子线的抗蚀膜;聚偏氟乙烯及其共聚物或聚全氟乙丙烯在高压直流电场经特殊处理,具有压电性能,可用作各种光、电、热、机械能的传感器;聚四氟乙烯和聚偏氟乙烯的微孔膜用作微过滤膜,可广泛应用于微电子、医学、食品、化工领域[10],如用含氟材料加工成均匀的具有不同孔径的膜,由它制成的过滤膜、电解隔膜、分离膜等,可用于半导体、医疗领域的药液过滤、空气净化、粉尘回收;用作气体分离膜可用于富集氧气、分离s 或NH3等,此外还用作液体分离膜、超滤膜等。聚四氟乙烯多孔体可用作衣料,用于滑雪服、登山运动服、宇航员服装和雨衣等。用作生物医学材料,利用它对人体无害性和抗血栓性制成人体血管、体液透析膜、补片、关节抗磨材料等。用途不胜牧举,由此可见,氟树脂已从单纯的耐热、耐腐蚀、防粘、结构性用途材料发展到功能性用途特种材料,成为技术含量高、经济效益好、发展潜力非常大的材料[11]。

3.2 氟橡胶

氟橡胶具有优异的耐高温或耐低温性、耐油和耐化学药品性。氟橡胶主要品种有26类氟橡胶(含偏氟乙烯、六氟丙烯及其它含氟烯烃单体)、四丙氟橡胶(含四氟乙烯、丙烯等)、氟硅橡胶、氟化膦腈橡胶、氟醚橡胶和含氟热塑性弹性体等各品种又衍生有许多品级以满足不同用途需要。主要应用于航空、宇航、汽车、石油、化工、机械、仪器仪表等工业领域。在一些关键用途中已成为不可替代的材料。[12]

3.3 氟涂料

氟涂料具有优异的防腐、防粘、耐候等性能。耐久性好,显著优于目前常用的各种不含氟涂料。它可选用各种氟树脂或氟橡胶开发出相应的各种氟涂料,有分散液状、溶液型、粉末状和凝胶型等,品种品级繁多,主要用于防腐蚀、防粘、耐候用途,如使用于建筑外装饰寿命可达40 年以上。近些年来,又通过引入新的含氟单体或少量非含氟单体进行共聚改性,相继开发了各种室温固化型的氟涂料,方便施工,拓宽了应用范围。其它还有含氟聚氨酯涂料,作为船用涂料,可解决舰船结构防腐蚀,消除或防止海洋生物在船底附着,还可用作飞机外装、飞机油箱、汽车、文物保护涂料和高压电绝缘子涂料。可聚合的全氟烷基表面活性剂类涂料,可用作汽车外壳保护涂层,墙壁抗涂写污染、飞机防冰雪、游艇耐污染涂料。[13]

3.4 氟利昂替代品

4

氟利昂氟氯烃和哈隆(含溴的氟烃或氟氯烃)的替代品氟利昂氟氯烃(CFC)是很好的制冷剂、发泡剂,而哈隆是非常有效的灭火剂[14],但这二类化合物排放人大气后,会破坏大气臭氧层,危及人类生存环境。近年来通过努力已开发出多种氢氟烃(HFC),不仅能保持以前产品的同样使用效果,而且具有能显著降低或不破坏大气臭氧层的效果,成为理想的替代品。[15]

结束语:有机氟化工新材料的发展正处在成长期,琳琅满目,方兴未艾。由于材料中存在着奇妙的氟,其潜在的作用仍有待人们去进一步探索、认识、开发、利用。含氟材料作为一种优异的高分子合成材料.已经引起业内人士的注意,其应用领域不断扩大,但国内有机氟的开发研究还存在不少问题.一些关键技术有待进一步深入研究和开发.推广应用还须加大力度,可以预料.有机氟材料将越来越多地使用在工业、国防、航空、航海、电讯电缆及其它领域中应用。

有机氟工业的发展始终离不开技术创新,而开展技术新的机会也始终存在我们的学习以及以后的工作中。我们既要努力去掌握坚实的理论基础,丰富实践经验,又不能固步自封,要拓宽思路,活跃思维,一步一个脚印去学习,聚沙成塔,一定会创造出一片新天地。

参考文献:

[1] 黄维垣,杜灿屏,朱士正.中国有机氟化学十年进展 1999

[2] 黄维垣.中国有机氟化学研究 1996

[3] 程宁.含氟表面活性剂的生产应用现状及研究进展[期刊论文]-日用化学品科学 2008(6)

[4] 陶海升,李茂国,吴丽芳等.化学氟化最新进展[期刊论文]-化学进展 2004(2)

[5] 杜春华,张文玉,彭鹏.含氟生理活性物质的特性及创制[期刊论文]-精细与专用化学品2007(20)

[6] 安静雯,李顺龙,潘敖龙等.有机氟工业,2000,2:7

[7] 邓海球.涂料工业,1999,29(10):32

[8]孟博.程桂林.许茂乾.阎宗刚二氟乙醇的合成方法[期刊论文]-浙江化工 2010(4)

[9] Vecellio M. Progress in Organic Coatings ,2000 ,40 :225.

[10] Matuszczak S ,James Feast W. Journal of Fluorine Chemistry ,2000 ,102 (1 - 2) :269.

[11]Silagy D ,Bussi P ,Marot G. Journal of Fluorine Chemistry ,2000 ,104 (1) :79.

[12]施铭德,童身毅,张良均,等1 上海化工,1999 ,5 :26.

[13]苗国祥,安静雯,陈营祥,等1 有机氟工业,1999 ,3 :5.

[14]Forsythe S ,Hill D J T,etal . Radiation Physics and Chemistry ,2001 ,60 (6) :609.

[15]柯毅民.含氟醇的制备方法评述[期刊论文]-精细石油化工进展 2008(6)

Organic fluorine material development and application

-------Organic fluorine history and research

Student: Guo Mengmeng Tutor: Liu Yaohua Abstract: organic fluorine material has excellent resistance to high temperature, heat resistance, resistance to chemicals, insulation, resistance to stick, low friction, non-combustible and since Lubrication, such as performance, because these materials with other material has the incomparable excellent performance, make its application has also from the initial military domain expands gradually to civil and

5

industrial areas of national economy, become an indispensable polymer Taiwan into materials. In China, the organic fluorine chemistry study began in the 1950s, when is late to meet the demand, national defense building for over 50 years the efforts of several generations, now China already can produce many containing fluorine products such as fluorine plastic, fluorine rubber, freon, containing fluorine surfactants, containing fluorine grease, containing fluorine medicine and pesticides, fluorine carbon generation blood, formed a certain scale of fluorine chemistry industrial base. This paper mainly introduced in the organic fluorine material development, research status and the application in all fields.

Keywords:organic fluorine chemical organic fluorine material development achievements applications

6

超材料和变换光学

由「超材料」到「变换光学」的发展简史与基本原理 「超材料」(Metamaterial) 并不是一个定义得很清楚的术语,其中的字根"meta" 意指「超越」,相当於英文的"beyond".一般而言,此一术语意指一些特别设计的人工结构,能像均匀材料那样对电磁场(波)或声波,弹性波反应(response),但却具有天然材料所没有的反应特性[1].这些特性包括:高频人工磁性(artificial magnetism) [2], 负磁导率(negative permeability) [3], 负折射指数(negative index of refraction) [4], 以及双曲型色散关系(hyperbolic dispersion) [5,6] 等.这些有趣的特性导致一些迷人的现象,例如负折射(negative refraction) [7], 次波长成像(subwavelength imaging) [8], 电磁场增益(field enhancement) [9], 以及近场—远场转换(near-to-far field conversion) [5,6] 等.根据这些现象,在过去数年已有许多新颖的元件被设计与制作出来,并已被测试.例如超透镜(superlens) [8,10], 双曲透镜(hyperlens) [6], 工作频率在微波频段的隐形斗篷(invisibility cloak) [11], 以及电浆子波导(plasmonic waveguide) [12] 等.这些工作显示了超材料研究在微波与光波研究方面都有很好的理论与应用前景. 研究超材料的最初目的主要是为了创造一种具有很强的高频磁响应(strong magnetic response at high frequency) 特性的人工材料或结构[2].当这个目的实现后,研究人员又成功的设计并制作了能同时具有等效负磁导率与负介电常数(negative permittivity) [13] 的周期性金属结构.此种「双负」(double negative, or DNG) 材料会具有等效的负折射率[3,4],因而可以具体实现V. G. Veselago 在40 年前[7] 就预测过的「把光折

(发展战略)人工智能的发展及应用最全版

(发展战略)人工智能的发 展及应用

人工智能的发展及应用 这是个信息爆炸自动控制飞速发展的时代,而在这样的时代中,人工智能也取得了飞速的发展。成为了最前沿最热门的学科和研究方向之壹。 人工智能的定义 “人工智能”(ArtificialIntelligence)壹词最初是在1956年Dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的壹门新的技术科学。人工智能是计算机科学的壹个分支,它企图了解智能的实质,且生产出壹种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学和技术的发展史联系在壹起的。 人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,且使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。 人工智能的应用领域 1.在管理系统中的应用 (1)人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》壹文中刘玉然指出把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。换句话说,就是将企业各部门的数据进行统壹集成管理,搭建人工智能的应用平台,使之成为企业管理和决策中的关键因子。

2.在工程领域的应用 (1)医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它能够帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。事实上,早在1982年,美国匹兹堡大学的Miller就发表了著名的作为内科医生咨询的Internist2Ⅰ内科计算机辅助诊断系统的研究成果,由此,掀起了医学智能系统开发和应用的高潮。目前,医学智能系统已通过其在医学影像方面的重要作用,从而应用于内科、骨科等多个医学领域中,且在不断发展完善中。 (2)地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978年美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工业领域的首个人工智能专家系统,其发现了壹个钼矿沉积,价值超过1亿美元。 3.在技术研究中的应用 (1)在超声无损检测(NDT)和无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器,以其高精度的运算、控制和逻辑判断力代替大量人的体力和脑力劳动,减少了任务因素造成的无擦,提高了检测的可靠性,实现了超声检测和评价的自动化、智能化。 (2)人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点,因此我们必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而和人工智能技术

几种智能材料在一些领域中有应用1

上课班级:2班学院:艺术学院姓名:王定波专业:雕塑学号:1016040104 几种智能材料在一些领域中的应用 智能复合材料成型工艺的在线监控技术 智能结构健康监控系统的研究 智能结构振动主动控制系统的研究 形状自适应改变智能结构的研究 智能蒙皮的研究 1、建筑和结构工程领域 将建筑和结构传感元件、微型计算机芯片、形状记忆合金’电流变体及压电材料等经设计后复合在结构体中,可研制出带有感知用判断能力,可自动加固用防护的自适应性智能结构,实现在线监测、自诊断、自预警、自修复,防止灾难性事故的发生。 ●自诊断混凝土 ●自愈合混凝土 2、航空航天领域 能经受恶劣环境,同时能对自己的状况进行自我诊断,并能阻止损坏和退化,能自动加固或自动修补裂纹,从而防止灾难性事故的发生。

a.机翼用智能材料:在高性能复合材料中嵌入细小的光纤,光纤象神经那样 感受机翼上承受的不同压力,光纤断裂时,光传输中断,发出事故警告。 b.自动加固的直升飞机水平旋转叶片:当叶片在飞行中遇到疾风作用而猛烈 振动时,分布在叶片中微小液滴会变成固体自动加固叶片。 c.智能蒙皮:对于飞行器如飞机、火箭、卫星及潜水艇等,具有随外界条件 变化而变化以及探测周围环境的能力的表皮(蒙皮)。 d.检测飞行速度、温度、湿度等各种条件,并能对变化的环境做出反应,如 抑制噪声和振动、维持飞行器座舱的通风、温度恒定、改变机翼形状等。 e.对于材料内部的缺陷和损伤,能进行自诊断,确定缺陷和损伤的部位并进 行自我修复、自适应。 3、抑制振动和噪声 传感元件对结构的振动进行监测,驱动元件在微电子的控制下准确地动作以改变结构的振动状态 ——具有振动和噪声主动控制功能的智能结构。 成功应用:减轻交通工具如汽车、飞机振动和噪声。 ●压电材料 将压电材料置于结构表面或内部用来感测振动,利用经过放大的输出功率去驱动另一个粘贴于下同区域的压电材料,为减小振动反应。这种方法已经成功地应用在降低圆柱型卫星天线桅杆的振动。 ●电(磁)流变体 在复合材料悬臂梁的空腔内注入电流变体,通过外电场改变电流变体的状态,从而实时控制梁的刚度、阻尼,实现了对结构整体振动的主动控件。 4、用于机器人 ●形状记忆合金能够感知温度或位移的变化,可将热能转换为机械能。如果 控制加热或冷却,可获得重复性很好的驱动动作。 ●刺激响应性高分子凝胶 在机器人中应用:触觉传感器、机器人手足和筋骨动作部分等。 5、在医学领域的应用 ●智能药物释放体系——以智能材料为载体材料,根据病情所引起的化学物

智能材料及其发展

智能材料及其发展 1.材料的发展 材料是人类用于制造物品、器件、构件、机器或者其他产品的物质,是人类生活、生产的基础,是人类认识自然和改造自然的工具,与信息、能源并列为人类赖以生存、现代文明赖以发展的三大支柱。材料也是人类进化的标志之一,一种新材料的出现必将促进人类文明的发展和科技的进步,从人类出现,经历旧石器时代、新石器时代、青铜时代……,一直到21世纪,材料及材料科学的发展一直伴随着人类的文明的进步。在人类文明的进程中,材料大致经历了一下五个发展阶段。 1)利用纯天然材料的初级阶段:在远古时代人类只能利用纯天然材料(如石头、草木、野兽毛皮、甲骨、泥土等),也就是通常所说的旧石器时代。这一阶段人类只能对纯天然材料进行简单加工。 2)单纯利用火制造材料阶段:这一阶段跨越了新石器时代、青铜时代和铁器时代,它们风别已三大人造材料为象征,即陶、铜、铁。这一时期人类利用火来进行烧结、冶炼和加工,如利用天然陶土烧制陶、瓷、砖、瓦以及后来的玻璃、水泥等,从天然矿石中提炼铜、铁等金属。 3)利用物理和化学原理合成材料阶段:20世纪初,随着科学的发展和各种检测手段及仪器的出现,人类开始研究材料的化学组成、化学键、结构及合成方法,并以凝聚态物理、晶体物理、固体物理为基础研究材料组成、结构和性能之间的关系,并出现了材料科学。这一时期,人类利用一系列物理、化学原理、现象来创造新材料,这一时期出现的合成高分子材料与已有的金属材料、陶瓷材料(无机非金属材料)构成了现代材料的三大支柱。除此之外,人类还合成了一系列的合金材料和无机非金属材料,如超导材料、光纤材料、半导体材料等。 4)材料的复合化阶段:这一阶段以20世纪50年代金属陶瓷的出现为开端,人类开始使用新的物理、化学技术,根据需要制备出性能独特的材料。玻璃钢、铝塑薄膜、梯度功能材料以及抗菌材料都是这一阶段的杰出代表,它们都是为了适应高科技的发展和提高人类文明进步而产生的。 5)材料的智能化阶段:自然界的材料都具有自适应、自诊断、自修复的功能。如所有的动物和植物都能在没有受到毁灭性打击的情况下进行自诊断和修复。受大自然的启发,近三四十年的研发,一些人工材料已经具备了其中的部分功能,即我们所说的智能材料,如形状记忆合金、光致变色玻璃等。但是从严格意义上将,目前研制成功的智能材料离理想的智能材料还有一定的距离。 材料科学的发展主要集中在以下几个方面:超纯化(从天然材料到复合材料)、量子化

薄膜材料的应用与发展

薄膜材料的应用与发展 薄膜材料的发展以及应用,薄膜材料的分类,如金刚石薄膜、铁电薄膜、氮化碳薄膜、半导体薄膜复合材料、超晶格薄膜材料、多层薄膜材料等。各类薄膜在生产与生活中的运用以及展望。 1 膜材料的发展 在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。 自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。生物体生命现象的重要过程就是在这些表面上进行的。细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。细胞膜的这些结构和功能带来了生命,带来了神奇。 2 膜材料的应用 人们在惊叹细胞膜奇妙功能的同时,也在试图模仿它,仿生一直以来就是材料设计的重要手段,这就是薄膜材料。它的一个很重要的应用就是海水的淡化。虽然地球上70%的面积被水覆盖着,但是人们赖以生存的淡水只占总水量的2.5%~3%,随着人口增长和工业发展,当今世界几乎处于水荒之中。因此将浩瀚的海水转为可以饮用的淡水迫在眉睫。淡化海水的技术主要有反渗透法和蒸馏法,反渗透法用到的是具有选择性的高分子渗透膜,在膜的一边给海水施加高压,使水分子透过渗透膜,达到膜的另一边,而把各种盐类离子留下来,就得到了淡水。反渗透法的关键就是渗透膜的性能,目前常用有醋酸纤维素类、聚酰胺类、聚苯砜对苯二甲酰胺类等膜材料.这种淡化过程比起蒸法法,是一种清洁高效的绿色方法。 利用膜两边的浓度差不仅可以淡化海水,还可以提取多种有机物质。工业生产中,可用膜法过滤含酚、苯胺、有机磺酸盐等工业废水,膜法过滤大大节约了成本,有利于我们的生存环境。 膜的应用还体现在表面化学上面。在日常生活中,我们会发现在树叶表面,水滴总是呈圆形,是因为水不能在叶面铺展。喷洒农药时,如果在农药中加入少量的润湿剂(一种表面活性剂),农药就能够在叶面铺展,提高杀虫效果,降低农药用量。 更重要的,研究人员还将膜材料用于血液透析,透析膜的主要功能是移除体内多余水份和清除尿毒症毒素,大大降低了肾功能衰竭患者的病死率[1] 3 膜材料的分类 近年来,随着成膜技术的飞速发展,各种材料的薄膜化已经成为一种普遍趋势。 薄膜材料种类繁多,应用广泛,目前常用的有:超导薄膜、导电薄膜、电阻薄膜、半导体薄膜、介质薄膜、绝缘薄膜、钝化与保护薄膜、压电薄膜、铁电薄膜、光电薄膜、磁电薄膜、磁光薄膜等。目前很受人们注目的主要有一下几种薄膜。 3.1金刚石薄膜 金刚石薄膜的禁带宽,电阻率和热导率大,载流子迁移率高,介电常数小,击穿电压高,是一种性能优异的电子薄膜功能材料,应用前景十分广阔。 近年来,随着科技的发展,人们发展了多种金刚石薄膜的制备方法,比如离子束沉积法、磁控溅射法、热致化学气相沉积法、等离子化学气相沉积法等.成功获得了生长速度快、具有较高质量的膜,从而使金刚石膜具备了商业应用的可能。

未来十年高分子材料重点发展领域及需求分析

未来十年高分子材料重点发展领域及需求分析 《中国制造2025》围绕经济社会发展和国家安全重大需求,选择10大优势和战略产业作为突破点,力争到2025年达到国际领先地位或国际先进水平。十大重点领域是:新一代信息技术产业、高档数控机床和机器人、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车、电力装备、农业装备、新材料、生物医药及高性能医疗器械。 图表高分子材料十大重点发展领域 数据来源:产研智库 为指明十大重点领域的发展趋势、发展重点,引导企业的创新活动,国家制造强国建设战略咨询委员会特组织编制了《中国制造2025》重点领域技术路线图,其中提到与高分子材料直接相关的项目如下: 1、降低船体摩擦阻力涂料 重点突破新型高性能降阻涂料技术、船底空气润滑降阻技术等。 2、低温材料与防寒设备 重点开展适用于极地航行船舶的低温材料、泵、阀件等核心液压元件低温启动和密封技术研发。 3、轻量化车身 实现复合材料/混合材料技术突破,降低成本,在新能源汽车上的应用率达到30%,自主率超过50%。

4、高性能聚烯烃材料 突破高熔融指数聚丙烯、超高分子量聚乙烯、发泡聚丙烯、聚丁烯-1(PB)等工业化生产技术,实现规模应用。 5、聚氨酯树脂 重点发展环保型聚氨脂材料如水性聚氨酯材料,加快发展脂肪族异氰酸酯等原料。 6、氟硅树脂 重点发展聚偏氟乙烯、PET、其它氟树脂以及硅树脂、硅油等。 7、特种合成橡胶 重点发展异戊橡胶并配套发展异丁烯合成异戊二烯;发展硅橡胶、溶聚丁苯橡胶和稀土顺丁橡胶;发展卤化丁基、氢华丁腈等具有特殊性能的橡胶等。 8、生物基合成材料 重点突破生物基橡胶合成技术,生物基芳烃合成技术,生物基尼龙制备关键技术,新型生物基增塑剂合成及应用关键技术,生物基聚氨酯制备关键技术,生物基聚酯制备关键技术,生物法制备基础化工原料关键基础技术等。 9、生物基轻工材料 重点发展聚乳酸(PLA)、聚丁二酸丁二酯(PBS)、聚对苯二甲酸二元醇酯(PET、PTT)、聚羟基烷酸(PHA)、聚酰胺(PA)等产品。PLA关键单体L-乳酸和D-乳酸的光学纯度达99.9%以上,成本下降20%;PBS关键单体生物基丁二酸、1,4-丁二醇提高生物转化率达5-10%;PTT关键单体1,3-丙二醇以木薯淀粉、甘油等非粮原料发酵生产,PTT纤维聚合纺丝实现产业化;PA关键单体戊二胺硫酸盐成品纯度高于99%,成本下降20%。 10、特种工程塑料 重点发展基于热塑性聚酰亚胺(PI)工程塑料树脂、杂萘联苯型聚醚砜酮共聚树脂(PPESK)、高端氟塑料的加工成型的特种纤维、过滤材料、耐高温功能膜、高性能树脂基复合材料、耐高温绝缘材料、耐高温功能涂料、耐高温特种胶粘剂。热塑性聚酰亚胺工程塑料树脂,粘度0.38dL/g,Tg=230-310℃,Td5%>500℃,拉伸强度>100MPa,弯曲强度>150MP,成本<15万/吨;杂萘联苯型聚醚砜酮共聚树脂,Tg=263-305℃,拉伸强度90-122MPa,拉伸模量2.4-3.8GPa,体积电阻率3.8-4.8×1016Ω·cm,成本降低到PEEK的50-70%。高端氟塑料主要性能指标:超纯氟塑料制品:PTFE固体表现密度SSG≤2.147g/cm3,PTFE树脂拉伸强度>28MPa,伸长率>350%,绝缘强度>3.5KV/mil。满足SEMI标准中C12的要求;耐高低温氟材料功能膜、特种氟纤维及过滤产品:满足高端环保要求,PTFE树脂要求压缩比>3000,拉伸强度>28MPa,伸长率>360%;油气及化工流体输送用泵、阀门及管

智能材料

智能材料及其在医学领域的应用 目录 1、智能材料的概述 1.1智能材料的定义和基本特征........................................................ 1.2智能材料的构成............................................................................ 1.3智能材料的分类............................................................................ 1.4智能材料的制备............................................................................ 2、智能材料的应用领域 2.1智能材料的研究方向................................................................... 2.2智能材料在医学上的应用............................................................ 2.3智能材料在医疗方法中的应用....................................................

2.4智能材料在医学器械方面的应用................................................. 3、结束语.................................................................... 4、参考文献................................................................ 摘要本文综合评述了智能材料的研究、应用和进展。对智能材料与结构的概念进行了描述,全面总结了智能材料智能材料生物医药方面的应用, 探讨了智能材料光明的应用前景和发展趋势。 关键词智能材料;医学应用;发展 1智能材料的概述 1.1定义:智能材料(Intelligent material),是一种能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。智能材料是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,是现代高技术新材料发展的重要方向之一,将支撑未来高技术的发展,使传统意义下的功能材料和结构材料之间的界线逐渐消失,实现结构功能化、功能多样化。科学家预言,智能材料的研制和大规模应用将导致材料科学发展的重大革命。 基本特征:因为设计智能材料的两个指导思想是材料的多功能复合和材料的仿生设计,所以智能材料系统具有或部分具有如下的智能功能和生命特征: (1)传感功能(Sensor)

智能材料的研究现状与未来发展趋势

龙源期刊网 https://www.doczj.com/doc/909554466.html, 智能材料的研究现状与未来发展趋势 作者:邓焕 来源:《科学与财富》2017年第36期 摘要:智能材料这一概念在上世纪80年代首次被提出,近年来,关于智能材料在航空航天领域的研究与应用被频繁提及。由于智能材料具备着结构整体性强、可塑性高、功能多样化等优点,因此在航空航天领域得到了广泛的研究与使用,首先根据功能性的不同对智能材料进行了系统的分类与概述,然后对当前智能材料在航空航天领域的主要应用进行了系统性的分析与总结,最后对智能材料在未来的航空航天的应用前景中进行了进一步地展望。 关键词:智能材料;复合材料;航空航天;功能多样化 1 引言 进入二十一世纪以来,全球各大航空航天强国在航天航空领域投入了大量的研发资金,而作为航空航天领域重要环节的航天材料,近年来也不断有着新的突破,而其中被提及最多的就是智能材料在航空航天领域的应用。在智能材料的范畴中,智能复合材料最具有代表性,智能复合材料主要具备着:外界环境感知功能;判断决策功能;自我反馈功能;执行功能等。此外,由于当前智能复合材料都向着轻量化、低成本化的方向发展,因此在航天领域复合材料的设计结构以及使用用途上都有着不同的侧重发展方向。而近年来国内外各国也均加快了各自在该领域的研发使用发展进度,主要的研究大方向还是集中在了智能检测、结构稳定性、低成本化等方向上,本文着重对相关部分进行系统性的概述与总结。 2 航空航天领域智能复合材料的功能介绍 在航空航天领域中,国内外普遍利用智能复合材料以实现在降低航空航天飞行器的自身重量的前提下保证系统结构的稳定性,其次根据复合智能材料具备智能检测自身系统内部工作状态和自愈合等功能实现航空航天材料在微电子与智能应用方向的交叉发展。 2.1 智能复合材料在航天结构检测方向的应用 智能复合材料在航空航天器中的应用,主要是通过将传感器以嵌入的方式与原始预浸料铺层以及湿片铺层等智能复合材料紧密键合,最终集成在控制芯片控制器上实现对整个系统的实时监控诊测、自我修复等供能,值得注意的是,在这一过程中,智能化不仅仅是符合材料的必要功能,复合材料在很大程度上可以有效承受比传统应用材料更大外界机械压力[1]。 除此之外,由于智能复合材料作为传感器的铺放衬底,因此智能复合材料还可以实现对整个材料内部结构的状况进行收集并且将出现的诸如温度异常、结构异常、表面裂痕等隐患及时反馈至中央处理器,这在一定程度上可以有效实现整个系统内部的检测与寿命预测,在这方面的技术上,美国的Acellent公司研发的缠绕型复合材料以压力感应的形式,按照矩形布线形式

人工智能发展与应用简介

人工智能发展与应用综述 摘要:概要的阐述了人工智能的概念、发展历史、当前研究热点和实际应用以及未来的发展趋势 20世纪是自然科学发展史上最为辉煌的时代,生物科学是自然科学中发展最迅速的学科。因为生物科学与人类生存、人民健康、社会发展密切相关,必然成为21世纪初的主导学科。在20世纪生物科学的发展中有许多重大突破,出现了许多新观念、新思想、新成果和新技术。特别是20世纪50年代以来,随着数理科学广泛深入地渗透到生物科学以及一些先进的仪器设备和研究技术的问世,生物科学已经从基本上是静态的、以形态描述与分析为主的学科演化发展成动态的、以实验为基础的定量的学科,逐步发展为自动化、智能化。在生物系统的领域,人工智能的发展尤为令人关注。 一.人工智能的概念 人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了“人工智能”(Artificial Intelligence,AI)这个术语。 人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。如果仅从技术的角度来看,人工智能要解决的问题是如何使电脑表现智能化,使电脑能更灵活方效地为人类服务。只要电脑能够表现出与人类相似的智能行为,就算是达到了目的,而不在乎在这过程中电脑是依靠某种算法还是真正理解了。人工智能就是计算机科学中涉及研究、设计和应用智能机器的—个分支,人工智能的目标就是研究怎样用电脑来模仿和执行人脑的某些智力功能,并开发相关的技术产品,建立有关的理论。 人工智能是在计算机科学、控制论、信息论、心理学、语言学等多种学科相互渗透的基础发展起来的一门新兴边缘学科,主要研究用机器(主要是计算机)来模仿和实现人类的智能行为. 二.人工智能的发展历史 50年代人工智能的兴起和冷落人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、LISP表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。 60年代末到70年代,专家系统出现,使人工智能研究出现新高潮DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、

智能材料的种类、来源与功能

智能材料 定义:智能材料是模仿生命系统,能感知环境变化,并能实时地改变自身的一种或多种性能参数,作出所希望的、能与变化后的环境相适应的复合材料或材料的复合。 智能材料的分类 一.按材料种类 1.1金属系智能材料 1.2无机非金属系智能材料 1.3高分子系智能材料 1.3.1记忆功能高分子材料 1.3.1.1应力记忆高分子材料 1.3.1.2形状记忆高分子材料 1.3.1. 2.1反式聚异戊二烯(trans-polyisoprene,TPI) 特点:形变量大、加工成型容易、形状回复温度可调整、耐溶剂性好、耐 酸碱、高度的绝缘性、极好的耐寒性、耐臭氧性 主要原料:巴拉塔胶、杜仲胶和古塔波胶,以及人工合成的反式聚异戊二 烯。 应用:○1土木建筑,如固定铆钉、空隙密封、异径管连接等;○2机械制造,如自动启闭阀门、热收缩管、防音辊、防震器、连接装置、衬里材料、 缓冲器等;○3电子通讯,如电子集束管、电磁屏蔽材料、光记录媒体、 电缆防水接头等;○4印刷包装,如热收缩薄膜、夹层覆盖、商标等; ○5医疗卫生,如人工假肢套、绷带、夹板、矫形材料、扩张血管、四 肢模型材料等;○6日常用品,如便携式餐具、头套、人造花、领带、 衬衣领、包装材料等;○7文体娱乐,如文具、教具、玩具、体育保护 器材;○8科学试验,如大变形的应变片;○9其它,如商品识伪、火灾 报警、口香糖基料、服装定型剂、丝绸印染剂、用于机械零件模拟实 验等。 1.3.1. 2.2聚降冰片烯(polynorbornene) 特点:○1分子内没有极性官能团和一般橡胶具有的交联结构,属于热 塑性树脂,可通过压延、挤出、注射、真空成型等工艺加工成 型,但由于分子量太高,加工较为困难;○2Tg接近人体温度, 室温下为硬质,适于制造人工织物,但此温度不能任意调整;○3 充油处理后变成JIS硬度为15的低硬度橡胶,具有较好的耐湿 气性和滑动性;○4未经硫化的式样强度高,具有减震性能。 构成:由环戊二烯与乙烯在狄尔斯-阿尔德(Diels-Alder)催化条件下 反应合成降冰片烯,在通过开环聚合而得到含双键和五元环交 替结合的无定形高分子化合物的。 1.3.1. 2.3苯乙烯—丁二烯共聚物(styrene-butadiene copolymer)

玻璃材料的应用现状与发展趋势

玻璃材料的应用与趋势 内容摘要:随着建筑多元化的发展,建筑玻璃的已经成为建筑多样化和建筑功能化的关键组成部分,尤其是最近几年,建筑用深加工玻璃的品种、数量也得到了很大的发展,产品质量有了很大的提高。但是一些建筑使用的深加工玻璃出现了如钢化玻璃自爆、中空玻璃漏气等多种问题,造成很大的损失。当今世界玻璃制造商们在开发钢化玻璃新技术方面,均向能源、材料、环保、信息、生物等五大领域的发展和需求奋进。 关键词:玻璃材料的应用现状,玻璃材料的发展趋势 一 .世界建筑的发展对玻璃的要求变化 从20世纪60年代,随着第一个玻璃幕墙出现开始,建筑幕墙一直占据着建筑市场的主导位置并引领着建筑行业技术的发展。到目前,建筑对玻璃的要求经过了从白玻、本体着色玻璃、热反射镀膜到低辐射镀膜玻璃的变化。玻璃的颜色也由无色、茶色、金黄色到兰色、绿色并最后向通透方向的发展变化。 二.建筑玻璃的主要应用品种及特点 1、钢化玻璃 它是利用加热到一定温度后迅速冷却的方法,或是化学方法进行特殊处理的玻璃。一般是在原来普通的浮法玻璃基础上,经过将玻璃加热到软化点温度再经过淬火处理,使玻璃内部中心部位具有张应力

而玻璃表面部位具有压应力并达到均匀应力平衡的玻璃产品。钢化玻璃的品种包括化学钢化也称离子钢化和物理钢化两种;化学钢化玻璃的特点是由于采用颗粒较大的离子如钾离子置换玻璃表面的钠离子,在约400度的温度下经过一定的工艺制作完成;化学钢化玻璃可以切割、热弯等,但经过高温加工后的玻璃强度会受影响;化学钢化玻璃的初始强度可以达到原片的6-7倍,但是随着使用时间加长,性能会衰减;由于离子置换的特殊性,多数使用在超薄的玻璃上。物理钢化玻璃的特点是强度高,一般强度可以达到普通平板玻璃的4倍左右 2、夹层玻璃 夹层玻璃是由一层玻璃与一层或多层玻璃、塑料材料夹中间层而成的玻璃制品,中间层是介于玻璃之间或玻璃与塑料材料之间起粘结和隔离作用的材料,使夹层玻璃具有抗冲击、阳光控制、隔音等性能;夹层玻璃的特点是安全—即使破碎,也不会对人造成伤害。缺点是降低采光性能、玻璃自重增加。 3、镀膜玻璃 镀膜玻璃俗称热反射玻璃,包括阳光控制镀膜玻璃和低辐射镀膜玻璃(Low-E)玻璃两个品种。镀膜形成的原理是在原片玻璃表面镀上金属或者金属氧化物/氮化物膜,使玻璃的遮蔽系数降低,又称低辐射玻璃,是一种对波长范围4.5μm-25μm的远红外线有较高反射比的镀膜玻璃。低辐射镀膜玻璃还可以复合阳光控制功能,称为阳光控制低辐射玻璃。镀膜玻璃主要有两个系列的品种,一种是在线镀

《化学材料的发展与应用》

《化学与人类文明》课程论文 化学材料的发展与应用 学院:机械学院 专业:机械制造及其自动化 班级:机制101 学号: 学生姓名: 电子信箱: 2012年12月12日

化学材料的发展与应用 摘要:随着现代科学技术的飞跃发展,以前传统的材料早已不能满足我们人类的需求和发展,为了获得更多满足人类工业和日常生活中所需要的具有特定性能的材料,化学材料先如今得到了很大的发展,化学材料不仅获得了传统材料的有点,还具备了一些特殊的功能,极大的满足了工业生产和生活所需。本文章分析了一些常见的化学材料的应用和发展状况,并提出了未来材料化学的发展趋势的一些简单看法。 关键词:材料化学;化学材料;性能;应用;发展 化学与材料息息相关,面对传统的材料不能满足工业生产、日常生活的时候,世界上各国都已开始把目光看向了材料化学,材料化学的发现和使用,使之研发出一系列的新材料,材料化学在原子和分子的水准上设计新材料的战略意义有着广阔的应用前景。然而,材料化学在发挥巨大作用的同时也不短的推动自身理论与技术水平的提高,并且为材料工程的发展带来了新的活力和更加广阔的发展空间。 1材料化学简介 材料化学是材料科学的一个重要分支,也是材料科学的核心部分,在新材料的发现和合成,制备和修饰工艺的发展以及表征方法的革新等领域所作出了的独到贡献。材料是具有使其能够用于机械、结构、设备和产品的性质的物质,是人们利用化合物的某些功能来制作物件时用的化学物质。而化学是在原子、分子水平上研究物质的组成、结构、件能、反应和应用的学科。材料与化学试剂不同,后者在使用过程中通常被消耗并转化成别的物质,而材料则一般可重复持续使用,除了正常消耗以外,它不会不可逆的转变为别的物质。化学则是关于物质的组成,结构和性质以及物质相互转变的研究。显然,材料科学和化学的对象都是物质,前者注重的是宏观方面,而后者则关注原子和分子水平的相互作用。材料化学正是这两者结合的产物,它是关于材料的结构、性能,制备和应用的化学。2化学材料的分类、功能及应用 材料一般按其化学组成,结构进行分类。通常可把材料分成金属材料,无机非金属材料,聚合物材料和复合材料四大类。此外,随着材料科学的迅猛发展,

人工智能的发展及应用()

人工智能的发展及应用 学院: 班级: 姓名: 学号: 人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能几乎涉及到是自然科学和社会科学的所有学科,其范围

已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。 人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识、自我、思维等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。关于人工智能一个大家比较容易接受的定义是这样的:人工智能是人造的智能,是计算机科学、逻辑学、认知科学交叉形成的一门科学,简称AI。 人工智能体现在思维、感知、行为三个层次。它主要模拟眼神、扩展人的智能。其研究内容可以分为机器思维和思维机器、机器行为和行为机器、机器感知和感知机器、三个层次。人工智能研究与应用虽然取得了不少成果,但离全面推广应用还有很大距离,还有很多问题需要许多学科的共同研究。 人工智能有两种实现方式,第一种叫做工程学方法(Engineering approach),是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。它已在一些领域内作出了成果,如文字识别、电脑下棋等。第二种是模拟法(Modeling approach),它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。第一种方法,需要人工详细规定程序逻辑,如果游戏简单,还是方便的。如果游戏复杂,角色数量和活动空间增加,相应的逻辑就会很复杂(按指数式增长),人工编程就非常繁琐,容易出错。而一旦出错,就必须修改原程序,重新编译、调试,最后为用户提供一个新的版本或提供一个新补丁,非常麻烦。采用第二种方法时,编程者要为每一角色设计一个智能系统(一个模块)来进行控制,这个智能系统(模块)开始什么也不懂,就像初生婴儿那样,但它能够学习,能渐渐地适应环境,应付各种复杂情况。 人工智能的发展: 人工智能的研究经历了以下几个阶段: 孕育阶段:古希腊的Aristotle(亚里士多德)(前384-322),给出了形式逻辑的基本规律。英国的哲学家、自然科学家Bacon(培根)(1561-1626),系统地给出了归纳法。“知识就是力量”德国数学家、哲学家Leibnitz(布莱尼兹)(1646-1716)。提出了关于数理逻辑的思想,把形式逻辑符号化,从而能对人的思维进行运算和推理。做出了能做四则运算的手摇计算机英国数学家、逻辑学家Boole(布尔)(1815-1864)实现了布莱尼茨的思维符号化和数学化的思想,提出了一种崭新的代数系统——布尔代数。 第一阶段:50年代人工智能的兴起和冷落人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序LISP表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。 第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮DENDRAL 化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语

智能材料研究进展及应用

各专业全套优秀毕业设计图纸 目录 0 引言 (2) 1 智能材料结构的研究现状 (3) 1.1 智能传感技术 (3) 1.2智能驱动技术 (4) 1.3智能控制技术 (6) 1.4智能信息处理与传输 (6) 2 常用制备方法 (8) 2. 1 物理气相沉积法 (8) 2. 2 喷涂法 (8) 2. 3烧结法 (8) 2. 4 注射成型法 (8) 2.5创构智能材料的物理新技术 (8) 3智能材料的应用领域 (9) 3.1军事领域中的应用 (9) 3.2医学领域中的应用 (11) 3.3建筑领域的应用 (13) 3.4智能服装和纺织品领域的应用 (13) 3.5 未来热点应用 (14) 3 结束语 (15) 参考文献 (15)

智能材料研究进展及应用 侯博 材料与化工学院材料科学与工程 摘要:智能材料是广受瞩目的新兴材料科学门类,经过几十年的发展,已日趋成熟,必将逐渐深入到人类生活之中,且越来越多地影响乃至大范围地改变人们的生活方式。本文介绍了智能材料的基本构成和分类,对对智能材料结构的研究现状进行了阐述,并简单介绍了一些常用的制备方法,概述了其应用,探讨了其研究价值和广阔的发展应用前景。 关键词:智能材料智能传感技术智能驱动技术智能控制技术智能信息处理与传输 0 引言 材料是人类一切生产和生活水平提高的物质基础,是人类进步的里程碑。随着科技的发展,特别是20世纪80年代以来,现代航天、航空、电子、机械等高技术领域取得了飞速的发展,人们对所使用的材料提出了越来越高的要求,传统的结构材料或功能材料已不能满足这些技术的要求,材料科学的发展由传统单一的仅具有承载能力的结构材料或功能材料,向多功能化、智能化的结构材料发展。20世纪80年代末期,受到自然界生物具备的某些能力的启发,美国和日本科学家首先将智能概念引入材料和结构领域,提出了智能材料结构的新概念。 智能材料结构又称机敏结构(Smart/Intelligent Materials and Structures),泛指将传感元件、驱动元件以及有关的信号处理和控制电路集成在材料结构中,通过机、热、光、化、电、磁等激励和控制,不仅具有承受载荷的能力,而且具有识别、分析、处理及控制等多种功能,能进行自诊断、自适应、自学习、自修复的材料结构。智能材料结构是一门交叉的前沿学科,所涉及的专业领域非常广泛,如:力学、材料科学、物理学、生物学、电子学、控制科学、计算机科学与技术等,目前各国都有一大批各学科的专家和学者正积极致力于发展这一学科[1]。当

(汽车行业)汽车车身新材料的应用及发展方向

(汽车行业)汽车车身新材料的应用及发展方向

汽车车身新材料的应用及发展趋势 现代汽车车身除满足强度和使用寿命的要求外,仍应满足性能、外观、安全、价格、环保、节能等方面的需要。在上世纪八十年代,轿车的整车质量中,钢铁占80%,铝占3%,树脂为4%。自1978年世界爆发石油危机以来,作为轻量化材料的高强度钢板、表面处理钢板逐年上升,有色金属材料总体有所增加,其中,铝的增加明显;非金属材料也逐步增长,近年来开发的高性能工程塑料,不仅替代了普通塑料,而且品种繁多,在汽车上的应用范围广泛。本文着重介绍国内外在新型材料应用方面的情况及发展趋势。 高强度钢板 从前的高强度钢板,拉延强度虽高于低碳钢板,但延伸率只有后者的50%,故只适用于形状简单、延伸深度不大的零件。当下的高强度钢板是在低碳钢内加入适当的微量元素,经各种处理轧制而成,其抗拉强度高达420N/mm2,是普通低碳钢板的2~3倍,深拉延性能极好,可轧制成很薄的钢板,是车身轻量化的重要材料。到2000年,其用量已上升到50%左右。中国奇瑞汽车X公司和宝钢合作,2001年在试制样车上使用的高强度钢用量为262kg,占车身钢板用量的46%,对减重和改进车身性能起到了良好的作用。低合金高强度钢板的品种主要有含磷冷轧钢板、烘烤硬化冷轧钢板、冷轧双相钢板和高强度1F冷轧钢板等,车身设计师可根据板制零件受力情况和形状复杂程度来选择钢板品种。含磷高强度冷轧钢板:含磷高强度冷轧钢板主要用于轿车外板、车门、顶盖和行李箱盖升板,也可用于载货汽车驾驶室的冲压件。主要特点为:具有较高强度,比普通冷轧钢板高15%~25%;良好的强度和塑性平衡,即随着强度的增加,伸长率和应变硬化指数下降甚微;具有良好的耐腐蚀性,比普通冷轧钢板提高20%;具有良好的点焊性能;烘烤硬化冷轧钢板:经过冲压、拉延变形及烤漆高温时效处理,屈服强度得以提高。这种简称为BH钢板的烘烤硬化钢板既薄又有足够的强度,是车身外板轻量化设计首选材料之壹;冷轧双向钢板:具有连续屈服、屈强比低和加工硬化高、兼备高强度及高塑性的特点,如经烤漆后其强度可进壹步提高。适用于形状复杂且要求强度高的车身零件。主要用于要求拉伸性能好的承力零部件,如车门加强板、保险杠等;超低碳高强度冷轧钢板:在超低碳钢(C≤0.005%)中加入适量的钛或铌,以保证钢板的深冲性能,再添加适量的磷以提高钢板的强度。实现了深冲性和高强度的结合,特别适用于壹些形状复杂而强度要求高的冲压零件。 轻量化迭层钢板 迭层钢板是在俩层超薄钢板之间压入塑料的复合材料,表层钢板厚度为0.2~0.3mm,塑料层的厚度占总厚度的25%~65%。和具有同样刚度的单层钢板相比,质量只有57%。隔热防振性能良好,主要用于发动机罩、行李箱盖、车身底板等部件。铝合金 和汽车钢板相比,铝合金具有密度小(2.7g/cm3)、比强度高、耐锈蚀、热稳定性好、易成形、可回收再生等优点,技术成熟。德国大众X公司的新型奥迪A2型轿车,由于采用了全铝车身骨架和外板结构,使其总质量减少了135kg,比传统钢材料车身减轻了43%,使平均油耗降至每百公里3升的水平。全新奥迪A8通过使用性能更好的大型铝铸件和液压成型部件,车身零件数量从50个减至29个,车身框架完全闭合。这种结构不仅使车身的扭转刚度提高了60%,仍比同类车型的钢制车身车重减少50%。由于所有的铝合金都能够回收再生利用,深受环保人士的欢迎。根据车身结构设计的需要,采用激光束压合成型工艺,将不同厚度的铝板或者用铝板和钢板复合成型,再在表面涂覆防具有良好的耐腐蚀性。 镁合金 镁的密度为1.8g/cm3,仅为钢材密度的35%,铝材密度的66%。此外它的比强度、比刚度高,阻尼性、导热性好,电磁屏蔽能力强,尺寸稳定性好,因此在航空工业和汽车工业中得到了广泛的应用。镁的储藏量十分丰富,镁可从石棉、白云石、滑石中提取,特别是海水的

相关主题
文本预览
相关文档 最新文档