当前位置:文档之家› 高中数形结合问题总结

高中数形结合问题总结

高中数形结合问题总结
高中数形结合问题总结

数形结合思想在高中数学中的应用

灵宝实验高中王少辉

一、什么是“数形结合思想”

数形结合是一种数学思考方法;是数学研究和学习中的重要思想;也是解决数学问题的有效方法。“以形助数”可以使复杂问题简单化、抽象问题具体化;能够把抽象的数学语言变为直观的图形语言、把抽象的数学思维变为直观的形象思维;“以数助形”有助于把握数学问题的本质。

二、什么类型的题可以用“数形结合思想”解决

“数”和“形”是数学研究的两个基本对象。

数,通俗地说一般是指文字语言、数学符号语言、代数式等;

形,通俗地说一般指图形语言、函数图象、代数式的几何意义等。

既能用“数”表示,又能用“形”表示的知识就可以用数形结合思想解决。

数形结合的思想方法是数学教学内容的主线之一,应用数形结合思想,可以解决以下问题:

①集合问题②函数问题③方程与不等式问题④三角函数问题⑤向量问题⑥数列问题⑦线性规划问题⑧解析几何问题⑨立体几何问题⑩绝对值问题

三、数形结合思想应用举例

(一)在集合中的应用

【知识点】集合的基本运算

在这个知识点中集合的三种运算除了抽象的符号语言描述之外,还有直观的图形语言。所以在解决某些集合的运算问题时,我们可以用数形结合思想。

【例1】

(1)已知B A B C A C B A C B C A N x x x U U U U U ,},10,1{},9,7,5{},6,4,2{},,10|{*求===∈≤=

(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1

【小结】

数形结合在集合中的应用,主要体现在集合的基本运算中:

(1)离散的集合用Venn 图表示

(2)连续的数集用数轴表示,注意端点

(二)在函数中的应用

1.二次函数区间求值问题

二次函数的图象我们都很熟悉,所以在解决二次函数的相关问题时,我们就可以借助图象来进行。

【例2】已知12)(2+-=ax x x f ,求f (x )在[1,2]上的最小值

【跟踪训练】已知12)(2+-=x x x f ,求f (x )在[t,t+2]上的最小值

2.函数性质综合应用

函数的性质在图象上都有直观的反应,所以在利用函数性质解决某些问题时,我们就可以借助图象来进行。

【例3】设函数???>≤+-=4

,log 4,4)(22x x x x x x f ,若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.

【例4】已知函数??

?<+-≥=0,20,2)(x x x x f ,则满足不等式)2()3(2x f x f <-的x 的取值范

围为

3.函数零点个数问题

函数零点、方程的根与函数图象的交点密切相关,所以在解决函数零点个数问题,方程根的个数问题时,常使用数形结合思想。

【例5】已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x,如果函数g(x)=f(x)-m(m∈R)恰有4个零点,则m的取值范围是________.

【例6】已知定义在R上的偶函数f(x)满足f(x-4)=f(x),且在区间[0,2]上f(x)=x,若关于x的方程f(x)=log a x有三个不同的实根,求a的取值范围.

【小结】

数形结合在函数中的应用,主要体现在函数图象的应用中

(1)二次函数求给定区间上的最值问题

①轴动区间定②轴定区间动

(2)函数性质(奇偶性、单调性、周期性)的综合应用

①求范围②解不等式

(3)函数零点个数、方程根的个数

转化为图象交点个数问题

【跟踪训练1】函数f(x)=|x-2|-ln x在定义域内的零点的个数为( )

解析由题意可知f(x)的定义域为(0,+∞).在同一

直角坐标系中画出函数y1=|x-2|(x>0),y2=ln x(x

>0)的图象,如图所示:

由图可知函数f(x)在定义域内的零点个数为2.

答案C

【跟踪训练2】若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________.

解析 在同一个坐标系中画出函数y =|x |与y =a -x 的图象,

如图所示.由图象知当a >0时,方程|x |=a -x 只有一个解.

答案 (0,+∞)

【跟踪训练3】已知函数???>-≤+=0

,130,)(x x x a e x f x (a ∈R ),若函数f (x )在R 上有两个零点,

则a 的取值范围是( )

A.(-∞,-1)

B.(-∞,0)

C.(-1,0)

D.[-1,0)

解析 当x >0时,f (x )=3x -1有一个零点x =13

. 因此当x ≤0时,f (x )=e x +a =0只有一个实根,

∴a =-e x (x ≤0),则-1≤a <0.

答案 D

【跟踪训练4】(2016·山东卷)已知函数???>+-≤=m

x m mx x m x x x f ,42|,|)(2,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.

解析 在同一坐标系中,作y =f (x )与y =b 的图象.

当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,

∴要使方程f(x)=b有三个不同的根,则有4m-m2

即m2-3m>0.又m>0,解得m>3.

答案(3,+∞)

四、作函数图象的常用方法

数形结合的关键在于准确作出函数的图象,那么如何作函数图象就是最关键的步骤,同学们一定要掌握。下面介绍两种高中数学中最常用的方法。

1.利用描点法作函数的图象

步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.

2.利用图象变换法作函数的图象

(1)平移变换

①y=f(x+a)(a>0)的图象把y=f(x)的图象向左平移a个单位即可;

②y=f(x -a)(a>0)的图象把y=f(x)的图象向右平移a个单位即可;

③y=f(x)+b(b>0)的图象把y=f(x)的图象向上平移b个单位即可;

④y=f(x) -b(b>0)的图象把y=f(x)的图象向下平移b个单位即可;

即我们通常所说的左加右减,上加下减。

【练习1】作出下列函数的图象

(1)2

1-=x y (2)2)1(+=x y (3)12-=x y (2)对称变换

①y =-f(x) 的图象把y =f(x)的图象关于 x 轴对称即可 ;

②y =f(-x) 的图象把y =f(x)的图象关于 y 轴对称即可 ;

③y =-f(-x) 的图象把y =f(x)的图象关于原点对称即可 ;

【练习2】作出下列函数的图象

(1)x y 2-= (2))ln(x y -= (3)x e y --=

(3)伸缩变换

①y =f(ax)(a>0)的图象 把y =f(x)的图象纵坐标不变,各点的横坐标变为原来的a 1倍即可 ;

相当于以y 轴为中心,把图象往左右伸长或压缩;a<1时伸长,a>1时压缩. ②y =Af(x)(A>0)的图象

把y =f(x)的图象横坐标不变,各点的纵坐标变为原来的 A 倍即可 ; 相当于以x 轴为中心,把图象上下伸长或压缩;A>1时伸长,A<1时压缩.

(4)翻转变换

①y =|f(x)|的图象,把y =f(x)的图象位于x 轴下方的部分翻到x 轴上方即可;

函数值为负数的变为其相反数,函数值为正数的不变,图象全部在x轴上方。

②y=f(|x|)的图象,把y=f(x)的图象位于y轴左边的部分去掉,然后把右边的对称到左边即可.

自变量为负数时,与其相反数对应的函数值一样,所以是偶函数。

【练习3】作出下列函数的图象

(1)|

|

y=

ln x

ln

|x

y=(2)|

【练习4】作出下列函数的图象

(1)|)1

ln+

=x

|

y

|+

ln(

=x

y(2)|1

相关主题
文本预览
相关文档 最新文档