当前位置:文档之家› 铸件充型凝固过程数值模拟研究_熊守美

铸件充型凝固过程数值模拟研究_熊守美

铸件充型凝固过程数值模拟研究_熊守美
铸件充型凝固过程数值模拟研究_熊守美

铸造过程模拟仿真

铸造过程模拟仿真 1、概述 在铸造生产中,铸件凝固过程是最重要的过程之一,大部分铸造缺陷产生于这一过程。凝固过程的数值模拟对优化铸造工艺,预测和控制铸件质量和各种铸造缺陷以及提高生产效率都非常重要。 凝固过程数值模拟可以实现下述目的: 1)预知凝固时间以便预测生产率。 2)预知开箱时间。 3)预测缩孔和缩松。 4)预知铸型的表面温度以及内部的温度分布,以便预测金属型表面熔接情况,方便金属型设计。 5)控制凝固条件[1]。 为预测铸应力,微观及宏观偏析,铸件性能等提供必要的依据和分析计算的基础数据。作为铸造工艺过程计算机数值模拟的基础,温度场模拟技术的发展历程最长,技术也最成熟。温度场模拟是建立在不稳定导热偏微分方程的基础上进行的。考虑了传热过程的热传导、对流、辐射、结晶潜热等热行为。所采用的计算方法主要有:有限差分法、有限元法、边界元法等;所采用的边界条件处理方法有N方程法、温度函数法、点热流法、综合热阻法和动态边界条件法;潜热处理方法有:温度回升法、热函法和固相率法。 自丹麦Forsound于1962年第一次采用电子计算机模拟铸件凝固过程以来,为铸造工作者科学地掌握与分析铸造工艺过程提出了新的方法与思路,在全世界范围内产生了积极的影响,许多国家的专家与学者陆续开展此项研究工作。在铸造工艺过程中,铸件凝固过程温度场的数值模拟计算相对简单,因此,各国的专家与学者们均以铸件凝固过程的温度场数值模拟为研究起点。继丹麦人之后,美国在60年代中期开始进行大型铸钢件温度场的计算机数值模拟计算研究,且模拟计算的结果与实测温度场吻合良好;进入70年代后,更多的国家加入了铸件凝固过程数值模拟的研究行列中,相继开展了有关研究与应用,理论研究与实际应用各具特色。其中有代表性的研究人员有美国芝加哥大学的R.D.Pehlke教授、佐治亚工学院的J.Berry教授、日本日立研究所的新山英辅教授、大阪大学的大中逸雄教授、德国亚探工业大学的P.Sham教授和丹麦科技大学的P.N.Hansen教授等。我国的铸件凝固过程温度场数值模拟研究始于70年代末期,沈阳铸造研究所的张毅高级工程师与大连工学院的金俊泽教授在我国率先开展了铸造工艺过程的计算机数值模拟研究工作,虽然起步较晚,但研究工作注重与生产实践密切结合,取得了较好的应用效果,形成了我国在这一研究领域的研究特色[2]。 1988年5月,在美国佛罗里达州召开的第四届铸造和焊接计算机数值模拟会议上,共有来自10个研究单位的从事铸造凝固过程计算机数值模拟技术研究的专家和学者参加了会议组织的模拟斧锤型铸件凝固过程的现场比赛。由于该铸件在几何形状上属复杂类型,模拟计算有一定的难度。从比赛结果看,绝大部分的模拟结果与实际测温结果相吻合。此次比赛得出如下结论[8]: l)铸件凝固过程的计算机模拟达到了相当的水平,如三维自动刻分、三维模拟计算、三维温度场显示等,并产生了一些软件包,如日立公司的HICASS、丹麦的Geomesh、大阪大学的SOLAM及亚琛的CASTS等。 2)模拟计算的结果都接近实测,这说明有限差分、有限元和边界元这三种计算方法对温度场计算都能满足精度要求,同时也说明了铸件凝固过程温度场计算机模拟计算技术已趋成熟。

铸件充型凝固过程数值模拟

铸件充型凝固过程数值模拟 1 概述 欲获得健全的铸件,必先确定一套合理的工艺参数。数值模拟或称数值试验的目的,就是要通过对铸件充型凝固过程的数值计算,分析工艺参数对工艺实施结果的影响,便于技术人员对所设计的铸造工艺进行验证和优化,以及寻求工艺问题的尽快解决办法。 铸件充型凝固过程数值计算以铸件和铸型为计算域,包括熔融金属流动和传热数值计算,主要用于液态金属充填铸型过程;铸件铸型传热过程数值计算,主要用于铸件凝固过程;应力应变数值计算,用于铸件凝固和冷却过程;晶体形核和生长数值计算,主要用于金属铸件显微组织形成过程和铸件机械性能预测;传热传质传动量数值计算,主要用于大型铸件或凝固时间较长的铸件的凝固过程。数值计算可预测的缺陷主要是铸件形成过程中易发生的冷隔、卷气、缩孔、缩松、裂纹、偏析、晶粒粗大等等,另外可以通过数值计算,提出合理的铸造工艺参数,包括浇注温度、铸型温度、铸件凝固时间、打箱时间、冷却条件等等。目前,用于液态金属充填铸型过程的熔融金属流动和传热数值计算以及用于铸件凝 固过程的铸件铸型传热过程数值计算已经比较成熟,逐渐为铸造厂家在实际生产中采用,下面主要介绍这两种数值试验

方法。 1.1 数学模型 熔融金属充型与凝固过程为高温流体于复杂几何型腔内作有阻碍和带有自由表面的流动及向铸型和空气的传热过程。该物理过程遵循质量守恒、动量守恒和能量守恒定律,假设液态金属为常密度不可压缩的粘性流体,并忽略湍流作用,则可以采用连续、动量、体积函数和能量方程组描述这一过程。 质量守恒方程 ? u/? x+? v/? y+? w/? z= 0 (2-1) 动量守恒方程 ?(ρ u)/? t+u?(ρ u)/? x+v?(ρ u)/? y+w?(ρ u) /?z = -? p/? x+μ(?2u/? x2+?2v/?y2+? 2w/? z2)+ρ g x (2-2a) ?(ρ v)/? t+u?(ρ v)/? x+v?(ρ v)/? y+w?(ρ v) /?z = -? p/?y+μ (?2u/?x2+?2v/?y2+? 2w/? z2)+ρ

数值模拟在铸造充型及凝固过程的应用进展

数值模拟在铸造充型及凝固过程的应用进展 摘要:综述了铸造过程中数值计算的基本理论,简要介绍了铸造充型及凝固当前国内外发展状况以及所存在的问题,并对铸造过程数值模拟的相关软件进行评述。最后指出合理地利用铸造模拟软件,能够优化铸件的微观组织,提高产品质量,降低产品成本,缩短产品设计和试制周期。 关键词:铸造;充型过程;数值模拟;模拟软件

The Application of Numerical Simulation in Mold Filling and Solidification Process Abstract:The basic theory of numerical calculations is summarized, and a brief introduction of the developing situation and existing problems of the casting mold filling and solidification process at home and abroad,reviewed the numerical simulation software of casting process. In the end, it also clearly shows that it can optimize the casting microstructure, improve the quality, decrease the cost and reduce the design and trial cycle for the products by using the numerical simulation software properly. Key words: Casting; Filling and Solidification process; Numerical Simulation; Simulation Software

铸造工艺的数值模拟优化

! 收稿日期:2006-01-16;修回日期:2006-07-19 作者简介:胡红军(1976-),男,重庆工学院讲师,主要研究铸造CAD/CAE软件研究和开发。E-mail:hhj@cqit.edu.cn。 铸造工艺的数值模拟优化 胡红军,杨明波,龚喜兵,李国瑞 (重庆工学院材料科学与工程学院,重庆400050) 摘 要:为了研究和预测铸造工艺对铸件质量的影响,设置合理的军用汽车转向臂的铸造浇冒口系统和工艺参数。应用铸 造模拟软件对转向臂的三种不同工艺方案进行凝固模拟,根据凝固模拟结果显示的缺陷及内部缩松情况,提出改进工艺方案并对其进行凝固模拟,选择最佳方案应用于生产。研究表明,3#是最合理的浇冒口布置方式,最优的浇注温度825℃,浇注时间15s,采用水平分型。应用表明,铸造模拟软件能够准确地预测充型凝固过程中可能产生的缺陷,从而辅助工艺人员进行工艺优化。 关键词:凝固模拟;军用汽车转向臂;铸造工艺优化;浇冒口系统;缩孔;铸造模拟软件中图分类号:TG250.6 文献标识码:A 文章编号:1004-244X(2006)06-0051-03 Optimizationofcastingprocessesbasedoncomputernumericalsimulation HUHong-jun,YANGMing-bo,GONGXi-bing,LIGuo-rui (ChongqingInstituteofTechnology,Chongqing400050,China) Abstract:Inordertostudyandpredicttheinfluenceofcastingprocessoncastingsquality,therationalpouringsystemandprocessparametersareset.Threekindssolidificationsimulationschemehavebeenappliedwiththehelpofsimulationsoftware.Re-sultsandappearancedefectsandinnershrinkageporosityofthecastingsintrialproductionhavebeenbasedupontobringfor-warddifferenttechnologyimprovementsandselectanoptimalprojectusedinbatchproduction.Researchresultsshowthatno.3castingsstructureisreasonable,themostreasonablepouringtemperatureis825℃,pouringtimeis15s.Theapplicationshowsthatthesoftwarecanhelptechnologiststooptimizecastingprocessbyforecastingcastingdefectsduringmoldfillingandsolidi-ficationprocessesandinstructtheproductionofcasting. Keywords:solidificationsimulation;steeringarmcomponentusedinheavymilitarytruck;castingprocessoptimization;pour-ingandrisersystem;shrinkage;castingsimulationsoftware 铸造数值模拟是要通过对铸件充型凝固过程的数值计算,分析工艺参数对工艺实施结果的影响,便于技术人员对所设计的铸造工艺进行验证和优化,以及寻求工艺问题的尽快解决办法。为技术人员设计较合理的铸件结构和确定合理的工艺方案提供了有效的依据,从而避免传统的依靠经验进行结构设计和工艺制定的盲目性,节约试制成本[1-4]。 1 铸造过程充型数值模拟方法 军用汽车转向臂的几何实体造型采用UG软件建 立,在得到三维几何数据后,利用UG软件的反向出模模块,通过设定铝合金收缩率、铸件起模斜度、浇注系统的位置和分型面等,作为凝固模拟的几何模型。由于金属液充型过程数值模拟技术所涉及的控制方程多而复杂,需要根据连续性方程、动量方程及能量方程,并进 行速度场、压力场的反复迭代,计算量大而且迭代容易发散,致使其难度很大。通过不断完善数值计算方法,如有限差分法和SOLA-VOF体积函数法,开发出一些实用软件。该产品的凝固模拟就是采用MAGMA软件。作为整个模拟的核心部分,CAE的数值模拟效果最终将影响模拟的真实与否。在液态金属浇注过程中,热传导过程计算是数值模拟的主要内容。处理热传导问题采用傅里叶定律(式1),式2是根据能量守恒定律推导的方程[5-8]。 q=-λ !t !n (1)ρc!t!τ=!!x(λ!t!x)+!!y(λ!t!y)+!!z(λ!t !z)+qv (2)其中q为热流密度,λ为导热系数,t为温度(函数), n为温度传递方向上的距离,Τ 为温度,ρ为密度,c为质! 2006年11月兵器材料科学与工程 ORDNANCEMATERIALSCIENCEANDENGINEERING Vol.29No.6Nov.,2006 第29卷第6期

凝固模拟实验

凝固模拟实验 【实验性质】综合性实验;学时:4 ;选做实验 1实验目的 通过模拟实验了解实际高温钢液凝固过程,观察以下三种现象: (1)直接观察自然对流现象,目测其流速,观察宏观组织(Λ形偏析)形成的过程及“沟槽”产生的方位。 (2)观察结晶雨现象导致钢锭底部的负偏析(沉积锥)。 (3)观察凝固过程中氯化铵形成的基本晶形。 2实验原理及设备 2.1实验原理 金属凝固过程是从液态转化为固态的过程,从微观来讲,凝固就是金属原子从无序状态到有序状态的排序过程。也就是液态中无规则原子集团转变为原子按一定规则排列的固态结晶。从宏观来讲,是把液态金属所储藏的热和凝固潜热通过模壁转移到外界,使液态金属转变成为具有一定形状的固体金属。整个凝固过程将发生一系列的物理化学变化。 凝固过程的收缩,密度的差异以及温度场的变化而产生的自然对流现象对钢坯的质量影响是特别显著的。特别是在模铸生产中,大型镇静钢锭由于成分不均匀性而产生Λ形偏析(也就是冶金中常说的倒V形偏析,偏析部位表现在钢锭的柱状晶带上),以及钢锭底部的沉积锥偏析等内部缺陷。 2.1.1 倒“V”形偏析的形成 含有不同物质的熔体在凝固过程中,由于温度、密度、体积以及温度场的变化,液体中会产生对流现象。这种对流现象使流动的液体在通过柱状晶凝固前沿时不易凝固,随着柱状晶的生长延伸而夹入中间,形成带有一定角度的液体流。在选分结晶过程中,高熔点的物质首先结晶,低熔点的物质向液体中扩散,形成液体流中低熔点的物质富集,我们称为正偏析。在钢锭的表现形式称为“Λ”形偏析或称倒“V”形偏析。在钢坯的横断面上通过低倍腐蚀表现得形状又称为“方框形”偏析或称“锭形”偏析。 2.1.2 沉积锥偏析 熔体在凝固过程由于选分结晶,高熔点的物质首先形核结晶称为固体。密度小的物质上浮,密度大的物体自然下落。根据形核机理,在一定温度下会形成大量的晶体,由于其密度大于熔体而下落,在下落过程逐渐长大,此现象称为结晶雨。柱状晶向中心生在阻碍了边沿晶体的下落,在底部形成一个锥体,称为沉积锥。由于高熔点的物质成分富集,所以称为负偏析。 2.1.3 减少偏析生成的措施 (1)提高熔体的纯洁度,减少钢中有害元素。 (2)改善熔体的凝固条件控制浇注过程的注温、注速。 (3)改善熔体凝固过程的动力学条件。 2.2实验方法 本实验采用NH4Cl-H2O溶液模拟钢锭凝固过程,NH4Cl-H2O系二元相图如图1所示。由于NH4Cl-H2O溶液的透明性和NH4Cl-H2O树枝晶体的半透明性,因而可以观察晶体及凝固结构形成的过程,更可形象地观察到晶体的结构。再者氯化铵溶液熔化焓低,便于模拟实验操作。由图1可知,氯化铵溶液的浓度超过19.7%以后为过共晶系,实验中可采用35%的

冶金过程物料模拟(水模拟)技术

5 冶金过程水模拟 【实验性质】综合性实验;学时:4 5.1实验目的 冶金过程多是在高温状态下完成,很难对冶金过程的进行直接的观察与测试,因此通常采用物理模拟实验的方法对冶金传输过程加以研究,最为常用的方法是水模实验。冶金传输过程主要典型的反应有两种,一是全混流,另一种是活塞流,以这两种流动现象为基础,开设两个水模实验,一是钢包内钢水流动过程的水模实验研究,另一个是中间包内钢水流动过程的水模实验研究,前者为选作项目后者为比作项目。通过水模实验研究,要求学生掌握以下学习内容: (1) 钢包或中间包的水模型建立方法; (2) 如何保证这两个典型流动水模实验中水的流动与实际钢水流动的相似; (3) 对钢包或中间包内模拟钢水的流动可视化显示; (4) 示踪剂的加入方法及主要研究指标(均匀混合时间、平均停留时间)的计算方法; 5.2实验原理及设备 钢包、中间包内钢液的流动,是钢液在重力作用下从钢包水口流入中间包,然后从中间包水口流出。这种情况,一般可视为粘性不可压缩稳态流动,同时可忽略化学反应的影响。根据相似理论,只要满足几何相似和动力学相似就可以保证模型和原型相似。 影响钢包、中间包内钢液流动状态的作用力主要有惯性力、重力和黏性力。根据相似理论,在中间包物理模拟中只要选择模型和原型的Re、Fr准数相等就可以保证模型和原型相似。根据流体力学原理,当流体流动的Re数大于第二临界值时,流体的湍动程度及流速的分布几乎不再受Re数的影响,此时流体的流动状态不再变化,且彼此相似,与Re数不再有关,也就是说流体流动进入第二自模化区域,当原型的Re数处于第二自模化区以内时,则模型的Re数不一定与原型的Re数相等,只要都处于第二自模化区域,Fr数相等就能满足相似条件。一般Re数的第二自模化区的临界值为1×104~1×105。 夹杂物是危害钢液、钢材质量的主要杂质,尽可能多的去除尽量夹杂物是炼钢的主要目标,钢包吹氩是炉外精炼的重要手段之一,它不仅具有均匀钢水温度、成分的作用,而且也是十分有效的去夹杂措施。通过钢包水模型实验,分析吹气时间及不同吹气量对去除夹杂行为的影响。通过中间包水模型实验,研究使用不同形状的挡墙对中间包内钢液流动的影响,测量其在中间包内的平均停留时间和滞止时间的变化,找出最佳的挡墙设置。 利用水模拟方法测量流体分子的停留时间分布,通常应用“刺激-响应”实验,其方法是:在容器入口注入流处输入一个刺激信号,信号一般使用示踪剂来实现。然后在容器出口处测量该输入信号的输出,即所谓响应,从响应曲线得到流体在中间包内的停留时间分布。刺激-响应实验相当于黑箱研究方法,即使流体在流动过程中其流动状态不易或不能直接测量,仍可从响应曲线分析其流动状况,因此这一方法在理想流动的反应器中得到了广泛采用。 冶金实验研究中常用的示踪剂有:若系统为高温实际反应器(中间包),既可采用灵敏的放射性同位素作为示踪剂,也可采用不参与反应的其他元素,如铜、金等。若系统为冷态模拟研究,常使用电解质、发光或染色物质作为失踪剂,例如水模型中常采用KCl溶液作为

铸造模拟

三个基本问题 1)什么是金属材料制备工艺? 通过一定的生产流程,获得可以作为工业或工程中使用的金属材料或者构件,这个过程称之为金属材料制备与加工。 2)什么是金属材料制备工艺的计算机模拟? 根据用户要求,基于一定的判据设计的制备与加工工艺过程,建立起数学物理模型,在计算机上进行造型、运算,并将得到的成千上万的数据综合在一起逼近研究对象的全貌,表达出成分工艺组织性能的演变规律,用形象的图形或者动画形式,显示出这些过程的直观画面称之为计算机模拟。 3)为什么进行金属材料制备工艺的计算机模拟? 基本的加工工艺 1)铸造,凝固成形,液固相变。 2)焊接,凝固成形,液固相变,热影响区晶粒长大。 3)压力加工,固态成形,固态相变。 4)热处理,固态相变。 5)冷成形模拟 模拟的框架1)前处理,造型,数据输入等 2)计算,算法的优化 3)后处理,模拟结果输出,判据函数 4)数据库 模拟具有实时性,模拟的准确性取决于模型的精度。 开展工艺模拟的目的 1)优化现有工艺 2)进行模具与新工艺设计 3)缩短设计、试制和生产周期,降低成本 4)工艺的可视化,工程师和模拟工作者之间能够共同分析出达到最佳工艺的判据标准 5)机理性分析 热加工过程的结果成型和改性:使材料的成分、组织、性能最后处于最佳状态 热加工工艺设计根据所要求的组织和性能,制定合理的热加工工艺,指导材料的热加工过程热加工工艺设计存在的问题 复杂的高温、动态、瞬时过程:难以直接观察,间接测试也十分困难 建立在“经验”、“技艺”基础上 解决方法 热加工工艺模拟技术:在材料热加工理论指导下,通过数值模拟和物理模拟,在实验室动态仿真材料的热加工过程,预测实际工艺条件下的材料的最后组织、性能和质量,进而实现热加工工艺的优化设计 热加工过程模拟的意义 认识过程或工艺的本质,预测并优化过程和工艺的结果(组织和性能) 与制造过程结合,实现快速设计和制造 热加工过程模拟的部分商业软件 铸造PROCAST, SIMULOR 锻压DEFORM, AUTOFORGE, SUPERFORGE 通用MARC, ABAQUS, ADINA, ANSYS 三种传热方式:热对流,热传导,热辐射。

凝固过程模拟仿真课程论文

凝固过程模拟仿真课程论 文 铸造过程数值模拟的研究发展现状 (Research on the development status of numerical simulation of casting process) 学院名称:材料科学与工程学院 专业班级:复合材料1102 学生姓名:不知道 学号:3110703451 指导教师:怯喜周

铸造过程数值模拟的研究发展现状 摘要:随着电子计算机技术的飞速发展,铸造工艺计算机辅助设计CAD,铸件凝固过程数值模拟CAE等多项技术已大量应用于生产实际。工业发达国家制定的下一代制造(NGM)计划所提出的十项关键基础技术中就包括建模与仿真。铸件的凝固过程数值模拟技术主要包括铸件及其工艺的几何造型、三维传热数值计算技术和缺陷判据这三部分,并可对凝固过程中出现的缺陷进行预测,评判铸造工艺设计的合理性,以减少工艺实验的次数,降低工艺设计成本,提高工艺出品率和合格率。 关键词:凝固模拟;数值仿真;铸造CAE;CAD;铸造充型; Research on the development status of numerical simulation of casting process Abstract: with the rapid development of computer technology, computer aided design of foundry technology CAD, numerical simulation of casting solidification process of CAE and many other technology has been widely applied in actual production. Industrial developed countries to develop the next generation manufacturing (NGM) are ten key basic technology plan put forward in includes modeling and simulation. The casting defects of computing technology and criterion of this three part of numerical heat transfer, including 3D geometric modeling and Simulation of the process of casting solidification process numerical, and to predict the defects that appear during the solidification process of casting process design, evaluation of rationality, in order to reduce the times of experiment process, reduce the design cost, increase the process yield and the qualified rate. Keywords: solidification simulation; numerical simulation; CAE CAD; casting; mold filling; 1 前言 凝固在自然界及人类生产实践中占有十分重要的地位。从熔岩冻结为地壳到

铸造模拟软件讲解

PROCAST ProCAST由法国ESI公司开发的综合的铸造过程软件解决方案,有20多年的历史,提供了很多模块和工程工具来满足铸造工业最富挑战的需求。基于强大的有限元分析,它能够预测严重畸变和残余应力,并能用于半固态成形,吹芯工艺,离心铸造,消失模铸造、连续铸造等特殊工艺。 procast 百科名片 ProCast软件界面 ProCAST由法国ESI公司开发的综合的铸造过程软件解决方案,有20多年的历史,提供了很多模块和工程工具来满足铸造工业最富挑战的需求。基于强大的有限元分析,它能够预测严重畸变和残余应力,并能用于半固态成形,吹芯工艺,离心铸造,消失模铸造、连续铸造等特殊工艺。 目录 适用范围材料数据库 模拟分析能力 分析模块 ProCAST特点 模拟过程 展开 适用范围 材料数据库 模拟分析能力 分析模块 ProCAST特点 模拟过程 展开 ProCast应用(10张) 编辑本段适用范围 ProCAST适用于砂型铸造、消失模铸造、高压铸造、低压铸造、重力铸造、

软件操作界面 倾斜浇铸、熔模铸造、壳型铸造、挤压铸造、触变铸造、触变成形、流变铸造。由于采用了标准化、通用的用户界面,任何一种铸造过程都可以用同一软件包ProCAST进行分析和优化。它可以用来研究设计结果,例如浇注系统、通气孔和溢流孔的位置,冒口的位置和大小等。实践证明,ProCAST可以准确地模拟型腔的浇注过程,精确地描述凝固过程。可以精确地计算冷却或加热通道的位置以及加热冒口的使用。 编辑本段材料数据库 ProCAST可以用来模拟任何合金,从钢和铁到铝基、钴基、铜基、镁基、镍基、钛基和锌基合金,以及非传统合金和聚合体。ESI旗下的热物理仿真研究开发队伍汇集了全球顶尖的五十多位冶金、铸造、物理、数学、计算力学、流体力学和计算机等多学科的专家,专业从事ProCAST和相关热物理模拟产品的开发。得益于长期的联合研究和工业验证,使得通过工业验证的材料数据库不断地扩充和更新,同时,用户本身也可以自行更新和扩展材料数据。除了基本的材料数据库外,ProCAST还拥有基本合金系统的热力学数据库。这个独特的数据库使得用户可以直接输入化学成分,从而自动产生诸如液相线温度、固相线温度、潜热、比热和固相率的变化等热力学参数。 编辑本段模拟分析能力 ProCAST可以分析缩孔、裂纹、裹气、冲砂、冷隔、浇不足、应力、变形、模具寿命、工艺开发及可重复性。ProCAST几乎可以模拟分析任何铸造生产过程中可能出现的问题,为铸造工程师提供新的途径来研究铸造过程,使他们有机会看到型腔内所发生的一切,从而产生新的设计方案。其结果也可以在网络浏览器中显示,这样对比较复杂的铸造过程能够通过网际网络进行讨论和研究。 编辑本段分析模块 ProCAST是针对铸造过程进行流动一传热一应力耦合作出分析的系统。它主要由8个模块组成:有限元网格划分MeshCAST基本模块、传热分析及前后处理(Base License)、流动分析(Fluid flow)、应力分析(Stress)、热辐射分析(Radiation)、显微组织分析(Micromodel)、电磁感应分析(Electromagnetics)、反向求解(Inverse),这些模块既可以一起使用,也可以根据用户需要有选择地使用。对于普通用户,ProCAST应有基本模块、流动分析模块、应力分析模块和网格划分模块。 1)传热分析模块 本模块进行传热计算,并包括ProCAST的所有前后处理功能。传热包括

铸造数值模拟

铸造过程数值模拟 摘要:铸造过程数值模拟技术是当今公认材料科学的重要前沿领域。铸造过程的数值模拟是本学科发展的前沿之一,包含铸件充型、凝固过程、缩松缩孔的预测、应力场、热裂、微观组织的计算机模拟以及计算机模拟软件开发等研究内容。 关键词:数值模拟;充型过程;微观组织;应力;热裂; 计算机技术的飞速发展,已使其自电力发明以来最具生产潜力的工具之一,数字化时代正一步步向我们走来。计算机辅助设计(CAD)、计算机辅助工程分析(CAM)和计算机辅助制造(CAE)等技术在材料科学领域的应用正在不断扩大和深入,已经成为材料科学领域的技术前沿和十分活跃的研究领域。就铸造领域而言,铸造过程数值模拟已经成为计算机在铸造研究和生产应用中最为核心的内容之一,涉及铸造理论、凝固理论、传热学、工程力学、数值分析、计算机图形学等多个学科,是公认的材料科学的前沿领域。 一、铸件充型过程数值模拟的研究概况 液态金属的充型过程是铸件形成的第一个阶段, 许多铸造缺陷, 如卷气、夹渣、浇不足、冷隔及砂眼等都是在充型不利的情况下产生的。然而由于本身的复杂性, 与凝固过程相比, 充型过程计算机数值模拟技术的起步较晚。长期以来人们对充型过程的把握和控制主要是建立在大量的试验基础上的经验准则。从20世纪80年代开始, 在此领域进行了大量的研究, 在数学模型的建立、算法的实现、计算效率的提高以及工程实用化方面均取得了重大突破。 许多铸造缺陷如卷气、夹杂、缩孔等都与液态金属的充型过程有关。为了控制充型顺序和流动方式,对充型过程进行数值模拟非常必要。其研究多数以SOLA—VOF法为基础,引人体积函数处理自由表面,并在传热计算和流量修正等方法进行研究改进。有的研究在对层流模型进行大量实验验证之后,用K一£双方程模型模拟铸件充型过程紊流现象。 目前,虽然已研究了许多算法,如并行计算法、三维有限单元法等,但最好的算法仍然没有找到。常用的网格划分为矩形单元(2D)或正交平行六面体(3D)。日本的I.Ohnaka等人提出了无结构非正交网格,这种技术是通向较高精度充型模拟的可能途径之一。砂型铸造的充型模拟研究在铸造过程计算机模拟中占主导地位,然而消失模铸造、金属型铸造等充型模拟的研究工作已经开始。充型模拟的另一发展趋势是浇注系统辅助设计,R.McDavid和J.Dantzig在这方面进行了尝试,并取得了一定的成果。 二、缩松和缩孔预测的数值模拟研究概况 铸件缩松、缩孔形成的模拟预测是铸件充型凝固过程模拟软件的主要功能之一。目前国内外常用的凝固模拟软件中均提供了多种判据用于铸件缩松、缩孔的预测.但是,大多数判据均是在用于铸钢件或不含石墨的铸造合金时比较有效。由于石墨铸铁凝固时析出比体积较大的石墨。因此其体积变化较铸钢等复杂得多,必须采用专门的判据。 铸钢件缩松、缩孔预测判据经过多年的发展,从最初的定性温度场热节法,发展到后来的E.Niyama提出的G/R1/2法,再到后面的流导法、固相率梯度法等定量预测方法,无论从精度还是从使用范围看,均达到了较高的水平,可以有效地预测铸件钢中的缩松、缩孔。 而铸铁件,特别是球墨铸铁件缩松、缩孔的预测一直缺乏可靠有效的判据。1994年,李嘉荣等在大量试验的基础上提出了球墨铸铁缩松、缩孔形成预测的“收缩膨胀动态叠加法(DECAM)”,该法基于Fe—C平衡相图,用杠杆原理计算凝固过程中收缩和膨胀量,将收缩和膨胀量进行叠加,可以预测球墨铸铁件缩松、缩孔的形成.李文珍等在进行球墨铸铁微观

小方坯初始凝固三维数值模拟

小方坯初始凝固三维数值模拟 邓安元赫冀成 摘要:建立了描述小方坯初始凝固的三维数学模型,并用实验数据进行了验证。计算表明:三维模型比二维模型能更好的用来描述小方坯结晶器内的初始凝固和流体流动,凝固时结晶器内的回流区明显减小。 关键词:小方坯初始凝固三维模型流体流动回流区 NUMERICAL VALUE SIMULATION OF INITIAL SOLIDIFICATION OF BILLET Deng Anyuan He Jichen (Northeastern University) Abstract:A mathematical model depicting the initial solidification of the billet is built up and verified with the experimental data.Calculation shows that the 3-dimensional model can more effectively describe the solidification of the billet and flowing of the hot metal in the mould compared with the 2-dimensional model,and the return flow region in the mould is apparently reduced during solidification. Keywords:initial solidification of billet3-dimensional model fluid flow return flow region▲ 1 前言 在连铸过程中,凝固过程对铸坯质量具有决定性的影响,它直接关系到铸坯的表面缺陷和内部组织的形成以及高速连铸技术的实现。铸坯凝固是一个复杂的过程,除流体流动外,还同时伴随有传热、传质以及多相组元的相变。各国冶金工作者对铸坯凝固已做了大量的实验和理论研究工作[1~4],但大多集中在热传导模型上[1~2]。由于通过引入有效传热系数来表示对流换热的影响,使所得结果与实际有较大的误差,因此,又提出了耦合模型[3~4]。 目前,对连铸结晶器内钢液流动、传热及凝固耦合模型的研究还很不充分,且主要集中在二维模型上[3~4]。二维模型对于圆坯能较好的进行模拟,但对方坯误差较大[3]。本文运用三维耦合模型对小方坯初始凝固进行了数值模拟,并用实验数据加以验证,同时与二维模型进行了对比。 2 数学模型 由于小方坯凝固过程的复杂性,首先对所研究的问题作如下假设: (1)流体流动为不可压缩定常流动;

充型过程的水模拟实验

充型过程的水模拟实验 实验学时:3h 实验性质:验证性实验要求:必开所属课程:材料成形工艺 一、实验目的 ⒈了解在充填过程中浇注系统各组元产生的主要物理现象及带来的后果; ⒉了解几种典型浇注系统的结构及其优缺点。 ⒊了解阶梯式浇注系统的优缺点,掌握阶梯式浇注系统的要领。 二、实验内容 ⒈在充填过程中浇口杯出现的水平旋涡及吸气现象;垂直旋涡及捕渣效果; ⒉有机玻璃模型直浇口中的吸气现象及防止措施; ⒊横浇道中各断面压力分布,充满情况; ⒋不同横浇道捕渣效果的观察。 三、实验用仪器设备和材料 ⒈ZS-1型浇注系统水模拟实验台; ⒉各种浇注系统有机玻璃模型、U型测压计(用水,自制)、乳胶管、钢板尺、支架; ⒊聚苯乙烯泡沫颗粒(渣团的“模拟物”)。 四、实验方法和步骤 ⒈浇口杯中水平和垂直旋涡及吸气现象; ⑴将二元浇注系统模型1(等截面直浇道)放到水力模拟实验台架上,按以下次序 进行观察和测量水平旋涡出现和消除时,浇口杯中液面的高度。(注意用阀门控制水量)(a)浇注在浇口杯的中部;图1—2(a) (b)浇注在浇口杯的侧壁上;图1—2 (b) 实验时注意观察浇口杯液面深度和浇注高度对形成水平涡流的影响、液体流入直浇道的状况、吸气情况,并放入模拟渣团,绘简图记录之。 图1—1 模型1 图1—2 ⑵将模型2(图1—3)放到水力模拟实验台支架上,观察垂直旋涡出现的情况及渣 团的运动。 浇注时让下落的流股靠近浇口杯的侧壁,开始浇注时应慢,保持一定的液面高度,绘简图记录渣团的运动。 ⒉有机玻璃直浇道中的吸气现象及防止措施 ⑴将模型1放到实验台架上,保持浇口杯液面呈接近充满状态,观察直浇道上三个 小孔有何现象,然后与测压计胶管连接并测出三个小孔的压力值,填入表1中。

泵体铸件凝固过程模拟

第一章绪论 1.1选题的背景及意义 铸造行业是一个古老而又非常重要的传统行业,具有数千年的历史。无论过去还是现在,无论发达国家还是发展中国家,铸造行业对国民经济的发展都起着十分重要的作用。据有关资料统计,铸件(按重量计)在机床、内燃机、重型机器中占70%~90%,农业机械中占40%--70%。此外,在冶金工业、能源工业的水电站、火电站与核电站、航空、航天等产业部门都发挥着重要作用。 铸造技术随着科学技术和生产机械化的发展而获得了巨大发展,但我国铸造行业的技术水平与国外相比有较大差距,它严重制约着我国国民经济的发展。我国铸件年产量已超过1000万吨。居世界第二,但其中高性能、优质铸件的比例只占20.7%,丽美国已占40.7%(1998年统计);精密铸件比例只占2%,而美国已占13%(1994年统计)。又如,服务予航空、航天工业的精密熔模铸造业,全世界销售额为52.3亿美元,其中美国为24.8亿奖元,占47.4%,而中国仅1.8亿美元,只占3.4%。另外,我国铸件重量平均比国外重10%、20%,劳动生产率低5~8倍,而能耗高2倍。再以汽车发动机缸体铸件为例:我国生产的发动机缸体铸件平均壁厚为5.5~6.0mm,而国外只有3.5-4.5mm。我国的轿车生产已有多年历史,但目前发动机铸铁缸体质量仍然是关键技术问题。 铸件充型凝固过程计算机模拟仿真是铸造学科发展的前沿领域,是改造传统铸造产业的重要途径。经历了数十年的努力,铸件充型凝固过程计算机模拟仿真发展已进入工程实用化阶段。铸造生产正在由凭经验走向科学理论指导。铸件充型凝固过程的数值模拟,可以帮助工作人员在实际铸造前对铸件可能出现的某些缺陷及其大小、部位和发生的时间予以有效的预测,在浇注前采取对策以确保铸件的质量。缩短试制岗期,降低生产成本。计算机技术的突飞猛进使得这一梦想成为现实。 1.2用计算机技术改造传统铸造行业 1.2.1 铸造过程计算数值模拟的国内外研究概况 随着计算机技术的迅猛发展,计算机在铸造中的应用越来越广泛。60年代初,杰·麦德弗洛桑德把戴森摩尔等人在工程应用中提出的有限差分近似法第一次用于铸造凝固过程的传热计算,开始了铸件凝固的过程模拟。此后,美国密西根大学的曼.万等人以及日本的大中逸雄等相继开始了凝固过程模拟,并取得了显著的进步。在第50届国际铸造年会举办的“凝固过程计算机模拟”专题讨论会上,深入讨论了铸件凝国过程数值模拟在研究微观组织结构和铸件性能等方面的应用,总结了凝固过程模拟所依据的。系列关系式,并设想利用这些关系式将几何

加工过程的数值模拟作业

材料加工数值模拟 论文 专业:材料加工 姓名:闫禹伯 学号:2013432109

目录

第一章.铸造过程的数值模拟分析 传统铸件的生产是根据经验确定铸造工艺,先试浇铸,检验试样是否存在浇铸缺陷,如有则修改工艺方案,然后重复上述过程,直至获得合格铸件。由于这种方法必须在浇铸后才能对铸件工艺是否合理进行评价,因而该方法存在设计周期长、生产成本高、效率低等缺点;而且得到的往往不是最终铸造工艺,对于大型或复杂形状铸件该缺点显得更加突出。铸造CAE模拟技术是利用计算机技术来改造和提升传统铸造术,对降低产品的成本、提高铸造企业的竞争力有着不可替代的作用。 一.铸造过程数值模拟的发展现状 计算机技术的飞速发展,已使其自电力发明以来最具生产潜力的工具之一,数字化时代正一步步向我们走来。计算机辅助设计(CAD)、计算机辅助工程分析(CAM)和计算机辅助制造(CAE)等技术在材料科学领域的应用正在不断扩大和深入,已经成为材料科学领域的技术前沿和十分活跃的研究领域。就铸造领域而言,铸造过程数值模拟已经成为计算机在铸造研究和生产应用中最为核心的内容之一,涉及铸造理论、凝固理论、传热学、工程力学、数值分析、计算机图形学等多个学科[1-5],是公认的材料科学的前沿领域。 铸造过程数值模拟技术经过了四十年的发展历程,其间,从简单到复杂、从温度场发展到流动场、应力场,从宏观模拟深入到微观领域,从普通的重力铸造拓展到低压、压铸等特种铸造,从实验室研究进入到工业化实际应用。特别是近些年来,在包括计算机硬件、软件、信息处理技术以及相关学科的强有力的支持下,数值模拟技术在人类社会的各个领域得到了广泛的应用,取得了长足的进步。如果说10年前,大多数铸造技术人员对模拟仿真技术还抱有观望、怀疑的态度的话,那么10年后的今天,已有众多的企业纷纷采用数值模拟技术,应用于实际生产。目前欧美日等西方发达国家的铸造企业普遍应用了模拟技术,特别是汽车铸件生产商几乎全部装备了仿真系统,成为确定工艺的固定环节和必备工具。上世纪90年代中后期以来,国内铸造厂家逐渐认识到其重要性,纷纷引入该技术,目前已有超过200家铸造企业拥有模拟仿真手段,在实际生产中起到了较为

铸件充型凝固过程数值模拟实验报告

哈尔滨工业大学 《材料加工过程数值模拟基础》实验课程 铸件充型凝固过程数值模拟实验报告 姓名: 学号: 班级: 材料科学与工程学院

铸件充型凝固过程数值模拟实验报告 实验一:铸件凝固过程数值模拟 一、实验目的 1.学习有限差分法温度场模拟的数学模型和基本思路; 2.掌握用AnyCasting 铸造模拟软件进行温度场模拟的方法。 二、实验原理 1.有限差分法温度场模拟的基本思路: 设计铸造工艺方案→根据定解条件求解能量方程→揭示凝固行为细节→预测凝固缺陷→改进工艺方案,返回第二步循环。 2.有限差分法温度场模拟的数学模型: 222222T T T T L C t x y z t r l 骣抖抖?÷?÷=+++?÷÷?抖抖?桫 三、铸件凝固模拟过程及参数设置 1.凝固模拟过程 铸件、浇冒口等三维实体造型(输出STL 文件)→网格剖分、纯凝固过程参数设置等前处理→凝固温度场和收缩缺陷计算模拟数据→后处理得到动态的液相凝固、铸件色温图和缩孔缺陷等文件。 2.参数设置 铸件材质:AC1B 铸型材质:SM20C 初始条件:上下模500℃,侧模400℃,升液管700℃。 边界条件:所有界面与空气间的界面传热系数都为10W/(m 2?K),熔融金属液与模具之间的界面传热系数为4000 W/(m 2?K),各部分模具间和模具与升液管间界面传热系数都为5000 W/(m 2?K)。 四、模拟结果

图1 冷却时间 由于模拟中设置了水冷和空冷条件,所以铸件冷却速度较快。由图1可知凝固首先发生在铸件表面,铸件的轮辋区厚度较薄,冷却速度比轮辐处冷却快。内浇口先于轮辐凝固,在内浇口凝固后升液管内铝合金熔液无法对轮毂进行补缩, 则在轮毂中最后凝固处容易产生缩松缩孔。 图2 冷却率 由冷却率分布情况可知凝固过程中各部分冷却速率不同,可以判断出凝固时 内应力较大的区域,在应力较大区域铸件容易产生裂纹缺陷。 由模拟结果中铸件的温度场情况,合理设置工艺参数减少缩松缩孔及裂纹的 产生,合理布置冷却水管的分布位置。

铸件凝固过程中热应力场及热裂的数值模拟分析

铸件凝固过程中热应力场及热裂的数值模拟分析 作者:杨屹蒋玉明刘力菱焦玉琴 1铸件凝固过程数值模拟的意义及概况 自1962年丹麦Fround第1个采用电子计算机模拟铸件凝固过程以来,计算机在铸造工艺研究中得到了广泛的应用,如凝固过程温度场、热应力场的数值模拟,充型过程流速场的数值模拟;组织形态及力学性能的数值模拟等。通过这些单1或复合过程的数值模拟,可以分析铸件中存在的各种缺陷的产生原因,进而采取相应工艺措施来消除缺陷,实现工艺优化,同时可以节省大量的人力、物力和财力,缩短产品从设计到应用的周期,增强产品的市场竞争能力。如今,在芬兰,90%以上的铸造厂在日常中应用铸造模拟软件辅助铸造工艺设计;世界上一些大型的汽车公司的铸造厂,如美国的通用、福特,德国的奔驰等,都把数值模拟软件作为1种日常工具来使用。 近10年来,涌现出了许多优秀的铸造过程数值模拟软件,如美国的ProCast、德国的MAGMASoft、芬兰的CastCAE、西班牙的ForCast、日本的CASTEM、法国的SIMULOR 软件等。从功能上看,许多软件可以对砂型铸造、金属型铸造、精密铸造、压力铸造等多种工艺进行温度场、流场、应力场的数值模拟,可以预测铸件的缩孔、缩松、裂纹等缺陷和铸件各部位的组织。国内在经历了10多年的基础研究和发展后,也出现了一些技术水平接近国外商品化的应用软件,可以进行铸钢、铸铁件砂型铸造时的三维温度场模拟及收缩缺陷的预测,以及对铸钢、铝合金件的热应力场进行模拟。总的来说,国外软件的通用性强,能进行铸造全过程的数值模拟,并具有较强的后置处理功能及友好的用户界面。建模方便,易于模型设计和修改,便于用户掌握和使用。其计算精度与运算速度等方面也能满足需要。正因为如此,国外模拟软件已经成为实际生产中的有力工具.国内不少用户趋向于采用大型通用工程软件如:COSMOS、ANSYS、ADINA等进行模拟计算。 2数值模拟的基础性研究 2.1铸件凝固过程温度场数值模拟 经过几十年的发展,铸件凝固过程温度场数值模拟技术已日臻成熟。现在可以采用有限差分法、有限元法、DFF格式、Solyef格式等进行温度值的计算,边界条件处理方法有N方程法、温差函数法、点热流法、综合热阻法、动态边界条件法等,潜热的处理方法有温度

相关主题
文本预览
相关文档 最新文档