当前位置:文档之家› 小波分析的理解

小波分析的理解

小波分析的理解
小波分析的理解

小波变换是克服其他信号处理技术缺陷的一种分析信号的方法。小波由一族小波基函数

构成,它可以描述信号时间(空间)和频率(尺度)域的局部特性。采用小波分析最大优点是可对信号进行实施局部分析,可在任意的时间或空间域中分析信号。小波分析具有发现其他信号分析方法所不能识别的、隐藏于数据之中的表现结构特性的信息,而这些特性对机械故障和材料的损伤等识别是尤为重要的。如何选择小波基函数目前还没有一个理论标准,常用的小波函数有Haar、Daubechies(dbN)、Morlet、Meryer、Symlet、Coiflet、Biorthogonal 小波等15种。但是小波变换的小波系数为如何选择小波基函数提供了依据。小波变换后的系数比较大,就表明了小波和信号的波形相似程度较大;反之则比较小。另外还要根据信号处理的目的来决定尺度的大小。如果小波变换仅仅反映信号整体的近似特征,往往选用较大的尺度;反映信号细节的变换则选用尺度不大的小波。由于小波函数家族成员较多,进行小波变换目的各异,目前没有一个通用的标准。

根据实际运用的经验,Morlet小波应用领域较广,可以用于信号表示和分类、图像识别特征提取;墨西哥草帽小波用于系统识别;样条小波用于材料探伤;Shannon正交基用于差分方程求解。

现在对小波分解层数与尺度的关系作如下解释:

是不是小波以一个尺度分解一次就是小波进行一层的分解?

比如:[C,L]=wavedec(X,N,'wname')中,N为尺度,若为1,就是进行单尺度分解,也就是分解一层。但是W=CWT(X,[2:2:128],'wname','plot')的分解尺度又是从2~128以2为步进的,这里的“分解尺度”跟上面那个“尺度”的意思一样吗?

[C,L]=wavedec(X,N,'wname')中的N为分解层数, 不是尺度,'以wname'是DB小波为例, 如DB4, 4为消失矩,则一般滤波器长度为8, 阶数为7.

wavedec针对于离散,CWT是连续的。

多尺度又是怎么理解的呢?

多尺度的理解: 如将0-pi定义为空间V0, 经过一级分解之后V0被分成0-pi/2的低频子空间V1和pi/2-pi的高频子空间W1, 然后一直分下去....得到VJ+WJ+....W2+W1. 因为VJ和WJ是正交的空间, 且各W子空间也是相互正交的. 所以分解得到了是相互不包含的多个频域区间,这就是多分辩率分析, 即多尺度分析.

当然多分辨率分析是有严格数学定义的,但完全可以从数字滤波器角度理解它.当然,你的泛函学的不错,也可以从函数空间角度理解.

是不是说分解到W3、W2、W1、V3就是三尺度分解?

简单的说尺度就是频率,不过是反比的关系.确定尺度关键还要考虑你要分析信号的采样频率大小,因为根据采样频率大小才能确定你的分析频率是多少.(采样定理).然后再确定你到底分多少层.

假如我这有一个10hz和50hz的正弦混合信号,采样频率是500hz,是不是就可以推断出10hz和50hz各自对应的尺度了呢?我的意思是,是不是有一个频率和尺度的换算公式?

实际频率=小波中心频率×采样频率/尺度

在小波分解中,若将信号中的最高频率成分看作是1,则各层小波小波分解便是带通

或低通滤波器,且各层所占的具体频带为(三层分解)a1:0~0.5 d1: 0.5~1; a2:0~0.25 d2: 0.25~0.5; a3: 0~0.125; d3:0.125~0.25

可以这样理解吗?如果我要得到频率为0.125~0.25的信号信息,是不是直接对d3的分解系数直接重构之后就是时域信息了?这样感觉把多层分解纯粹当作滤波器来用了,又怎么是多分辨分析??怎样把时频信息同时表达出来??

这个问题非常好,我刚开始的时候也是被这个问题困惑住了,咱们确实是把它当成了滤波器来用了,也就是说我们只看重了小波分析的频域局部化的特性。但是很多人都忽略其时域局部化特性,因为小波是变时频分析的方法,根据测不准原理如果带宽大,则时窗宽度就要小。那么也就意味着如果我们要利用其时域局部化特性就得在时宽小的分解层数下研究,也就是低尺度下。这样我们就可以更容易看出信号在该段时间内的细微变化,但是就产生一个问题,这一段的频率带很宽,频率局部化就体现不出来了。

对d3进行单支重构就可以得到0.125-0.25的信号了,当然频域信息可能保存的比较好,但如果小波基不是对称的话,其相位信息会失真。

小波变换主要也是用在高频特征提取上。

层数不是尺度,小波包分解中,N应该是层数,个人理解对应尺度应该是2^N

小波分解的尺度为a,分解层次为j。如果是连续小波分解尺度即为a。离散小波分解尺度严格意义上来说为a=2^j,在很多书上就直接将j称为尺度,因为一个j就对应者一个尺度a。其实两者是统一的。

小波基:一般从线性相位,消失矩,相似性,紧支撑等来选择。

Daubechies小波基的构造

% 此程序实现构造小波基

% periodic_wavelet.m

function ss=periodic_wavelet;

clear;clc;

% global MOMENT; % 消失矩阶数

% global LEFT_SCALET; % 尺度函数左支撑区间

% global RIGHT_SCALET; % 尺度函数右支撑区间

% global LEFT_BASIS; % 小波基函数左支撑区间

% global RIGHT_BASIS; % 小波基函数右支撑区间

% global MIN_STEP; % 最小离散步长

% global LEVEL; % 计算需要的层数(离散精度)

% global MAX_LEVEL; % 周期小波最大计算层数

[s2,h]=scale_integer;

[test,h]=scalet_stretch(s2,h);

wave_base=wavelet(test,h);

ss=periodic_waveletbasis(wave_base);

function [s2,h]=scale_integer;

% 本函数实现求解小波尺度函数离散整数点的值

% sacle_integer.m

MOMENT=10; % 消失矩阶数

LEFT_SCALET=0; % 尺度函数左支撑区间

RIGHT_SCALET=2*MOMENT-1; % 尺度函数右支撑区间

LEFT_BASIS=1-MOMENT; % 小波基函数左支撑区间

RIGHT_BASIS=MOMENT; % 小波基函数右支撑区间

MIN_STEP=1/512; % 最小离散步长

LEVEL=-log2(MIN_STEP); % 计算需要的层数(离散精度)

MAX_LEVEL=8; % 周期小波最大计算层数

h=wfilters('db10','r'); % 滤波器系数

h=h*sqrt(2); % FI(T)=SQRT(2)*SUM(H(N)*FI(2T-N)) N=0:2*MOMENT-1;

for i=LEFT_SCALET+1:RIGHT_SCALET-1

for j=LEFT_SCALET+1:RIGHT_SCALET-1

k=2*i-j+1;

if (k>=1&k<=RIGHT_SCALET+1)

a(i,j)=h(k); % 矩阵系数矩阵

else

a(i,j)=0;

end

end

end

[s,w]=eig(a); % 求特征向量,解的基

s1=s(:,1);

s2=[0;s1/sum(s1);0]; % 根据条件SUM(FI(T))=1,求解;

% 本函数实现尺度函数经伸缩后的离散值

% scalet_stretch.m

function [s2,h]=scalet_stretch(s2,h);

MOMENT=10; % 消失矩阶数

LEFT_SCALET=0; % 尺度函数左支撑区间

RIGHT_SCALET=2*MOMENT-1; % 尺度函数右支撑区间

LEFT_BASIS=1-MOMENT; % 小波基函数左支撑区间

RIGHT_BASIS=MOMENT; % 小波基函数右支撑区间

MIN_STEP=1/512; % 最小离散步长

LEVEL=-log2(MIN_STEP); % 计算需要的层数(离散精度)

MAX_LEVEL=8; % 周期小波最大计算层数

for j=1:LEVEL % 需要计算到尺度函数的层数

t=0;

for i=1:2:2*length(s2)-3 % 需要计算的离散点取值(0,1,2,3 -> 1/2, 3/2, 5/2)

t=t+1;

fi(t)=0;

for n=LEFT_SCALET:RIGHT_SCALET; % 低通滤波器冲击响应紧支撑判断

if ((i/2^(j-1)-n)>=LEFT_SCALET&(i/2^(j-1)-n)<=RIGHT_SCALET) % 小波尺度函数紧支撑判断

fi(t)=fi(t)+h(n+1)*s2(i-n*2^(j-1)+1); % 反复应用双尺度方程求解

end

end

end

clear s

n1=length(s2);

n2=length(fi);

for i=1:length(s2)+length(fi) % 变换后的矩阵长度

if (mod(i,2)==1)

s(i)=s2((i+1)/2); % 矩阵奇数下标为小波上一层(0,1,2,3)离散值

else

s(i)=fi(i/2); % 矩阵偶数下标为小波下一层(1/2,3/2,5/2)(经过伸缩变换后)的离散值end

end

s2=s;

end

% 采用双尺度方程求解小波基函数PSI(T)

% wavelet.m

function wave_base=wavelet(test,h);

MOMENT=10; % 消失矩阶数

LEFT_SCALET=0; % 尺度函数左支撑区间

RIGHT_SCALET=2*MOMENT-1; % 尺度函数右支撑区间

LEFT_BASIS=1-MOMENT; % 小波基函数左支撑区间

RIGHT_BASIS=MOMENT; % 小波基函数右支撑区间

MIN_STEP=1/512; % 最小离散步长

LEVEL=-log2(MIN_STEP); % 计算需要的层数(离散精度)

MAX_LEVEL=8; % 周期小波最大计算层数

i=0;

for t=LEFT_BASIS:MIN_STEP:RIGHT_BASIS; % 小波基支撑长度

s=0;

for n=1-RIGHT_SCALET:1-LEFT_SCALET % g(n)取值范围

if((2*t-n)>=LEFT_SCALET&(2*t-n)<=RIGHT_SCALET) % 尺度函数判断

s=s+h(1-n+1)*(-1)^(n)*test((2*t-n)/MIN_STEP+1); % 计算任意精度的小波基函数值end

end

i=i+1;

wave_base(i)=s;

end

一维数字滤波器filter():

Y=filter(B, A, X) 由传递函数模型向量B、A描述的滤波器对向量X中的元素进行滤波,并将结果数据存放在向量Y中。

[Y, Zf]=filter(B, A, X, Zi) 给出了滤波器延时的初始和终止条件Zf和Zi。

例子:

人体心电信号在测量过程中往往受到工业高频干扰,所以必须经过低通滤波处理后,才能判断心脏功能的有用信息。下面给出一实际心电图信号采样序列样本x(n),其中存在高频干扰。在试验中以x(n)作为输入序列,滤除其中的干扰成分。

{ x(n) } = {-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,0,-16,-38,-60,-84,-90,-66,-32,-4, -2,-4,8,12,12,10,6,6,4,0,0,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0}

Matlab程序设计如下:

X=[-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,0,-16,-38,-60,-84,-90,-66,-32,-4,-2,-4,8, 12,12,10,6,6,4,0,0,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0];

figure;

plot(X);

xlabel('时间');

ylabel('幅值');

wp=40; ws=50; rp=0.5; rs=40; Fs=200;

[N, Wn] = buttord(wp/(Fs/2), ws/(Fs/2), rp, rs);

[b, a]=butter(N, Wn);

figure;

[H, W]=freqz(b, a);

plot(W*Fs/(2*pi), abs(H)); grid;

xlabel('频率/Hz');

ylabel('幅值');

Y=filter(b,a,X);

figure

plot(Y)

xlabel('时间');

ylabel('幅值');

figure

psd(X, [ ],200);

figure

psd(Y, [ ],200);

end;

分析这段程序可知包括以下几部分:

(1)首先绘制原始数据的图形;

(2)设计一个Butterworth低通滤波器并绘制出它的幅频响应曲线;

(3)用设计的滤波器对原数据进行滤波;

(4)绘制滤波以后的数据图形;

(5)绘制原数据功率谱图形;

(6)绘制滤波以后数据功率谱图形。

滤波器的主要目的是按照设计者的目的,突出或抑制一些频段。在本程序中,设计了一个低通滤波器,主要是抑制高频段突出低频段;在心电图信号分析中,要滤除工业高频干扰,突出低频部分.

有时某些信号容易受到噪声污染,导致无法直接辨别信号的发展趋势。由于信号的发展趋势往往代表信号的低频部分,因此通过信号的多尺度分解,在分解的低频系数中可以观察到信号的发展趋势。

由于噪声的污染,从原始信号x中无法观察信号的发展趋势。通过进行五尺度的小波分解,在小波分解的低频系数重构中可以明显地看到原始信号的发展趋势。这是因为信号的发展趋势往往是信号的低频成分,在小波变换中对应着最大尺度小波变换的低频系数。此外还可以在低频中理解它,在进行低频成分的尺度分解时,随着分解层数的增加,它所含的高频成分会随之减少,因此随着尺度的增加,更多高频的信号被滤掉,可以看到信号的发展趋势。

1.监测信号的自相似性

直观上讲,小波分解系数表示了信号与小波之间的“相似指数”,如果相似程度越高,则相似指数越大。因此如果一个信号的不同的尺度之间相似,则小波系数在不同的尺度上也应该相似。因此可以通过小波分解检测信号的自相似性,即检测信号的分形特征。实践表明,通过小波分解可以很好地研究信号或图像的分形特征。

下面通过一个简单的例子来说明小波分析在检测信号自相似性中的应用,待检测的信号是经过反复迭代生成的信号,因此具有自相似性。

程序代码如下:

load vonkoch;

x=vonkoch;

subplot(211);

plot(x);

title('原始信号');

subplot(212);

%进行一维连续小波变换

f=cwt(x,[2:2:128],'coif3','plot');

从图中可以看出分解后的小波系数在许多尺度上看上去都非常相似。

2.信号的奇异性检测

信号的突变点和奇异点等不规则部分通常包含重要信息。

一般信号的奇异性分为两种情况:(1)信号在某一时刻其幅值发生突变,引起信号的非连续,这种类型的突变称为第一类型的间断点;(2)信号在外观上很光滑,幅值没有发生突变,但是信号的一阶微分有突变发生且一阶微分不连续,这种类型的突变称为第二类型的间断点。

应用小波分析可以检测出信号中的突变点的位置、类型以及变化的幅度。下面介绍小波分析在信号奇异性检测中的应用。

(1)第一类型间断点的检测

下面举例说明小波分析用于检测第一类型的间断点。

在本例中,信号的不连续是由于低频特征的正弦信号在后半部分突然有高频特征的正弦信号加入,首先利用傅里叶变换分析对信号在频域进行分析,发现无检测突变点,接着利用小波分析进行分析,结果证明它能够准确地检测出了信号幅值突变的位置,即高频信号加入的时间点。

程序代码如下:

load freqbrk;

x=freqbrk;

%对信号进行傅里叶变换

f=fft(x,1024);

f=abs(f);

figure;

subplot(211);

plot(x);

subplot(212);

plot(f);

%使用db6小波进行6层分解

[c,l]=wavedec(x,6,'db6');

figure(2);

subplot(811);

plot(x);

ylabel('x');

%对分解的第六层低频系数进行重构

a=wrcoef('a',c,l,'db6',6);

subplot(812);

plot(a);

ylabel('a6');

for i=1:6

%对分解的第6层到第1层的高频系数分别进行重构

d=wrcoef('d',c,l,'db6',7-i);

subplot(8,1,i+2);

plot(d);

ylabel(['d',num2str(7-i)]);

end

由图中可以看出,由于傅里叶变换不具有时间分辨力,因此无法检测信号的间断点。而在小波分析的图中,在信号的小波分解的第一层高频系数d1和第二层高频系数d2中,可以非常清楚地观察到信号的不连续点,用db1小波比用db6小波要好。

这个例子也表明小波分析在检测信号的奇异点时具有傅里叶变换无法比拟的优越性,利用小波分析可以精确地检测出信号的突变点。

在信号处理中,信号中通常都包含噪声,而噪声的存在增加了辨别信号不连续点的难度。一般来说,如果信号小波分解的第一层能够估计出噪声的大体位置,则信号的间断点就能够在小波分解的更深层次上表现出来。

下面通过例子说明如何应用小波分析识别某一频率区间上的信号:

在本例中,使用小波分析一个由三个不同频率的正弦信号叠加的信号,看是否能将这三个正弦信号区分开来,结果证明小波分析可以很好地识别某一频率区间的信号。

程序代码如下:

load sumsin;

x=sumsin;

figure;

subplot(611);

plot(x);

ylabel('x');

title('原始信号以及各层近似信号');

%使用db3小波进行5层分解

[c,l]=wavedec(x,5,'db3');

for i=1:5

%对分解的第5层到第1层的低频系数分别进行重构

a=wrcoef('a',c,l,'db3',6-i);

subplot(6,1,i+1);

plot(a);

ylabel(['a',num2str(6-i)]);

end

figure;

subplot(611)

plot(x);

ylabel('x')

for i=1:5

%对分解的第5层到第1层的高频系数进行重构

d=wrcoef('d',c,l,'db3',6-i);

subplot(6,1,i+1);

plot(d);

ylabel(['d',num2str(6-i)]);

end

分析:

在本例中,该信号是由周期分别为200、20、2的信号组成的,它们的采样周期均为1,为方便起见,在此分别称为低频、中频和高频的正弦信号。从图中可以看出,低频、中频和高频信号分别对应于分解的近似信号a4、细节信号d4以及细节信号d1。

MATLAB小波函数总结

2007-05-23 09:04:16| 分类:matlab编程|字号订阅

函数含义*:小波通用函数

Allnodes 计算树结点

appcoef 提取一维小波变换低频系数

appcoef2 提取二维小波分解低频系数

bestlevt 计算完整最佳小波包树

besttree 计算最佳(优)树

*biorfilt 双正交样条小波滤波器组

biorwavf 双正交样条小波滤波器

*centfrq 求小波中心频率

cgauwavf Complex Gaussian小波

cmorwavf coiflets小波滤波器

cwt 一维连续小波变换

dbaux Daubechies小波滤波器计算

dbwavf Daubechies小波滤波器dbwavf(W) W='dbN' N=1,2,3,...,50 ddencmp 获取默认值阈值(软或硬)熵标准

depo2ind 将深度-位置结点形式转化成索引结点形式

detcoef 提取一维小波变换高频系数

detcoef2 提取二维小波分解高频系数

disp 显示文本或矩阵

drawtree 画小波包分解树(GUI)

dtree 构造DTREE类

dwt 单尺度一维离散小波变换

dwt2 单尺度二维离散小波变换

dwtmode 离散小波变换拓展模式

*dyaddown 二元取样

*dyadup 二元插值

entrupd 更新小波包的熵值

fbspwavf B样条小波

gauswavf Gaussian小波

get 获取对象属性值

idwt 单尺度一维离散小波逆变换

idwt2 单尺度二维离散小波逆变换

ind2depo 将索引结点形式转化成深度—位置结点形式

*intwave 积分小波数

isnode 判断结点是否存在

istnode 判断结点是否是终结点并返回排列值

iswt 一维逆SWT(Stationary Wavelet Transform)变换

iswt2 二维逆SWT变换

leaves Determine terminal nodes

mexihat 墨西哥帽小波

meyer Meyer小波

meyeraux Meyer小波辅助函数

morlet Morlet小波

nodease 计算上溯结点

nodedesc 计算下溯结点(子结点)

nodejoin 重组结点

nodepar 寻找父结点

nodesplt 分割(分解)结点

noleaves Determine nonterminal nodes

ntnode Number of terminal nodes

ntree Constructor for the class NTREE

*orthfilt 正交小波滤波器组

plot 绘制向量或矩阵的图形

*qmf 镜像二次滤波器

rbiowavf Reverse biorthogonal spline wavelet filters

read 读取二进制数据

readtree 读取小波包分解树

*scal2frq Scale to frequency

set

shanwavf Shannon wavelets

swt 一维SWT(Stationary Wavelet Transform)变换

swt2 二维SWT变换

symaux Symlet wavelet filter computation.

symwavf Symlets小波滤波器

thselect 信号消噪的阈值选择

thodes References

treedpth 求树的深度

treeord 求树结构的叉数

upcoef 一维小波分解系数的直接重构

upcoef2 二维小波分解系数的直接重构

upwlev 单尺度一维小波分解的重构

upwlev2 单尺度二维小波分解的重构

wavedec 单尺度一维小波分解

wavedec2 多尺度二维小波分解

wavedemo 小波工具箱函数demo

*wavefun 小波函数和尺度函数

*wavefun2 二维小波函数和尺度函数

wavemenu 小波工具箱函数menu图形界面调用函数

*wavemngr 小波管理函数

waverec 多尺度一维小波重构

waverec2 多尺度二维小波重构

wbmpen Penalized threshold for wavelet 1-D or 2-D de-noising wcodemat 对矩阵进行量化编码

wdcbm Thresholds for wavelet 1-D using Birge-Massart strategy wdcbm2 Thresholds for wavelet 2-D using Birge-Massart strategy wden 用小波进行一维信号的消噪或压缩

wdencmp De-noising or compression using wavelets

wentropy 计算小波包的熵

wextend Extend a vector or a matrix

*wfilters 小波滤波器

wkeep 提取向量或矩阵中的一部分

*wmaxlev 计算小波分解的最大尺度

wnoise 产生含噪声的测试函数数据

wnoisest 估计一维小波的系数的标准偏差

wp2wtree 从小波包树中提取小波树

wpcoef 计算小波包系数

wpcutree 剪切小波包分解树

wpdec 一维小波包的分解

wpdec2 二维小波包的分解

wpdencmp 用小波包进行信号的消噪或压缩

wpfun 小波包函数

wpjoin 重组小波包

wprcoef 小波包分解系数的重构

wprec 一维小波包分解的重构

wprec2 二维小波包分解的重构

wpsplt 分割(分解)小波包

wpthcoef 进行小波包分解系数的阈值处理

wptree 显示小波包树结构

wpviewcf Plot the colored wavelet packet coefficients.

wrcoef 对一维小波系数进行单支重构

wrcoef2 对二维小波系数进行单支重构

wrev 向量逆序

write 向缓冲区内存写进数据

wtbo Constructor for the class WTBO

wthcoef 一维信号的小波系数阈值处理

wthcoef2 二维信号的小波系数阈值处理

wthresh 进行软阈值或硬阈值处理

wthrmngr 阈值设置管理

wtreemgr 管理树结构

小波分析应用实例读文报告

小波分析应用实例读文报告 一、小波分析的基本理论 小波分析(Wavelet Analysis )或多分辨分析(Multiresolution Analysis )是傅里叶分析仪发展史上里程碑式的进展,也是调和分析这一数学领域半个世纪以来工作的结晶。其基础理论知识涉及到泛函分析、数值分析、统计分析,涉及到电子工程、电气工程、通信工程和计算机工程等,其同时具有理论深刻和工程应用十分广泛的双重意义。 小波(wavelet ),即小区域的波,是一种特殊的长度有限(紧支集)或快速衰减,且均值为0的波形。 1.小波函数 小波函数的确切定义为:设()t ψ为一平方可积函数,即2()()t L R ψ∈,若其傅里叶变换()ψω满足条件: ()R C d ωωωψψ=0τ∈,; (1-4) 式中,a 为伸缩因子,τ为平移因子,,()a t τψ为依赖于参数a 和τ的小波基函数,由于尺度因子a 和平移因子τ是连续变化的值,因此称,()a t τψ为连续小波基函数。它们是由同一组母函数()t ψ经伸缩和平移后得到的一组函数序列。 小波奇函数的窗口随尺度因子的不同而伸缩,当a 逐渐增大时,基函数,()a t τψ的时间

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

小波理论

小波变换 一、小波变换的基本原理及性质 1、小波是什么? 小波可以简单的描述为一种函数,这种函数在有限时间范围内变化,并且平均值为0。这种定性的描述意味着小波具有两种性质:A 、具有有限的持续时间和突变的频率和振幅;B 、在有限时间范围内平均值为0。 2、小波的“容许”条件 用一种数学的语言来定义小波,即满足“容许”条件的一种函数,“容许”条件非常重要,它限定了小波变换的可逆性。 小波本身是紧支撑的,即只有小的局部非零定义域,在窗口之外函数为零;本身是振荡的,具有波的性质,并且完全不含有直流趋势成分,即满足 3、信号的信息表示 时域表示:信号随时间变化的规律,信息包括均值、方差、峰度以及峭陡等,更精细的表示就是概率密度分布(工程上常常采用其分布参数)。 频域表示:信号在各个频率上的能量分布,信息为频率和谱值(频谱或功率谱),为了精确恢复原信号,需要加上相位信息(相位谱),典型的工具为FT 。 时频表示:时间和频率联合表示的一种信号表示方法,信息为瞬时频率、瞬时能量谱 信号处理中,对不同信号要区别对待,以选择哪种或者哪几种信号表示方法 ) ()(ωψ??x ∞ <=?∞ ∞-ωω ωψ?d C 2 ) (0 )()0(==?∞ ∞ -dx x ?ψ

平稳信号 非平稳信号 不满足平稳性条件至少是宽平稳条件的信号。 信号的时域表示和频域表示只适用于平稳信号,对于非平稳信号而言,在时间域各种时间统计量会随着时间的变化而变化,失去统计意义;而在频率域,由于非平稳信号频谱结构随时间的变化而变化导致谱值失去意义。 时频表示主要目的在于实现对非平稳信号的分析,同样的可以应用于平稳信号的分析。 4、为什么选择小波 小波提供了一种非平稳信号的时间-尺度分析手段,不同于FT 方法,与STFT 方法比较具有更为明显的优势。 ) ,,,;,,,(),,,;,,,(21212121τττ+++=n n n n t t t x x x f t t t x x x f [][][] ??? ????∞<-=====?+∞ ∞-)(),()()(),()()(21 22121t x E t t R t x t x E t t R m dx x xf t x E x x x ττ时间幅度 小波变换 时间 尺度

小波分解与重构原理

“小波工程应用”实验报告 一维信号离散小波分解与重构(去噪)的VC实现 一、目的 在理解了离散小波变换的基本原理和算法的基础上,通过设计VC程序对简单的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波和Haar小波变换,从而得到小波分解系数;再通过改变分解得到的各层高频系数进行信号的小波重构达到消噪的目的。在这一程序实现的过程中能直观地理解信号小波分解重构的过程和在信号消噪中的重要作用,以及在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。 二、基本原理 1、信号的小波分解与重构原理 在离散小波变换(DWT)中,我们在空间上表示信号,也就是说对于每一个在上表示的信号能用在上面提到的两个空间中的基函数来表示。 Where and are the coefficients of the scale metric space (j-1) which are obtained after the Decomposing the coefficient of the scale metric space j . Analogously we could reconstruct the by and . 我们在尺度度量空间对系数进行分解得到在尺度度量空间的两个系数 和。同样的,我们也能从两个系数和通过重构得到系数。

如上图中的分解与重构我们可以通过一定的滤波器组来实现(也就是小波变换算法)。当小波和尺度在空间内是正交的,我们就可以用内积公式计算得到系数和: 下面是内积计算方法的具体公式: 具体的系数计算过程如下: 对于上面的小波分解过程,通过分别设计高通滤波器和低通滤波器两组滤波器的系数(数组g[]和h[])即可实现,特别是对于离散小波变换,程序算法相对简单。而重构也只是分解的逆过程,重构算法和分解的算法是相对应而互逆的。 2、小波去噪原理

小波变换的几个典型应用

第六章小波变换的几个典型应用 6.1 小波变换与信号处理 小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。 6.1.1 小波变换在信号分析中的应用 [例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为 应用db5小波对该信号进行7层分解。xiaobo0601.m 图6-1含躁的三角波与正弦波混合信号波形 分析: (1)在图6-2中,逼近信号a7是一个三角波。 (2)在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4)与正弦信号相关。 图6-2 小波分解后各层逼近信号 图6-3 小波分解后各层细节信号 6.1.2 小波变换在信号降躁和压缩中的应用 一、信号降躁 1.工程中,有用信号一般是一些比较平稳的信号,噪声通常表现为高频信号。2.消躁处理的方法:首先对信号进行小波分解,由于噪声信号多包含在具有较高频率的细节中,我们可以利用门限、阈值等形式对分解所得的小波系数进行处理,然后对信号进行小波重构即可达到对信号的消躁目的。 小波分析进行消躁处理的3种方法: (1)默认阈值消躁处理。该方法利用ddencmp生成信号的默认阈值,然后利用wdencmp函数进行消躁处理。 (2)给定阈值消躁处理。在实际的消躁处理过程中,阈值往往可通过经验公式获得,且这种阈值比默认阈值的可信度高。在进行阈值量化处理时可利用函数wthresh。 (3)强制消躁处理。该方法时将小波分解结构中的高频系数全部置为0,即滤掉所有高频部分,然后对信号进行小波重构。方法简单,消躁后信号比较平滑,但易丢失信号中的有用成分。 小波阈值去噪方法是目前应用最为广泛的小波去噪方法之一。 3.信号降噪的准则: 1.光滑性:在大部分情况下,降噪后的信号应该至少和原信号具有同等的光滑性。

用matlab小波分析的实例

1 绪论 1.1概述 小波分析是近15年来发展起来的一种新的时频分析方法。其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。 从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。 在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。 而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。 全文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消失矩等,都做了简要的说明。在不同的应用场合,各个小波函数各有利弊。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。

【免费下载】小波分析及其应用

科技文献检索作业 卷 试 料 小波分析及其应用 测控技术1103 雷创新

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪 数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家 J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反

时间序列的小波分析

时间序列的小波分析 时间序列(Time Series )是地学研究中经常遇到的问题。在时间序列研究中,时域和频域是常用的两种基本形式。其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。显然,时域分析和频域分析对此均无能为力。 20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。 目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。 一、小波分析基本原理 1. 小波函数 小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2 ∈ψ且满足: ? +∞ ∞ -=0dt )t (ψ (1) 式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系: )a b t ( a )t (2 /1b ,a -=-ψψ 其中, 0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。 需要说明的是,选择合适的基小波函数是进行小波分析的前提。在实际应用研究中,应针对具体情况选择所需的基小波函数;同一信号或时间序列,若选择不同的基小波函数,所得的结果往往会有所差异,有时甚至差异很大。目前,主要是通过对比不同小波分析处理信号时所得的结果与理论结果的误差来判定基小波函数的好坏,并由此选定该类研究所需的基小波函数。 2. 小波变换 若)t (b ,a ψ是由(2)式给出的子小波,对于给定的能量有限信号)R (L )t (f 2 ∈,其连续小波变换(Continue Wavelet Transform ,简写为CWT )为: dt )a b t ( f(t)a )b ,a (W R 2 /1-f ?-= (3) 式中,)b ,a (W f 为小波变换系数;f(t)为一个信号或平方可积函数;a 为伸缩尺度;b 平移参数;) a b x (-ψ为)a b x (-ψ的复共轭函数。 地学中观测到的时间序列数据大多是离散的,设函数)t k (f ?,(k=1,2,…,N; t ?

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

研究生《小波理论及应用》复习题

2005年研究生《小波理论及应用》复习题 1. 利用正交小波基建立的采样定理适合于:紧支集且有奇性(函数本身或其导数不连续)的函数(频谱无限的函数)。Shannon 采样定理适合于频谱有限的信号。 2. 信号的突变点在小波变换域常对于小波变换系数模极值点或过零点。并且信号奇异性大小同小波变换的极值随尺度的变化规律相对立。只有在适当尺度下各突变点引起的小波变化才能避免交迭干扰,可以用于信号的去噪、奇异性检测、图象也缘提取、数据压缩等。 3. 信号在一点的李氏指数表征了该点的奇异性大小,α越大,该点的光滑性越小,α越小,该点的奇异性越大。光滑点(可导)时,它的1≥α;如果是脉冲函数,1-=α;白噪声时0≤α。 4. 做出三级尺度下正交小波包变换的二进数图,小波包分解过程?说明小波基与小波包基的区别? 5. 最优小波包基的概念:给定一个序列的代价函数,然后在小波包基中寻找使代价函数最小的基――最优基。 6. 双通道多采样率滤波器组的传递函数为: ()()()()()()()()()()()()()z X z G z G z H z H z X z G z G z H z H z Y z Y z Y -??????-++??????+=+=∧∧∧∧212121请根据此式给出理想重建条件: 为了消除映象()z X -引起的混迭:()()()()0=-+-∧ ∧z G z G z H z H

为了使()z Y 成为()z X 的延迟,要求:()()()()k CZ z G z G z H z H -∧∧=+ (C,K 为任一常数) 7. 正交镜像对称滤波器()()n h n g ,的()jw e G 与()jw e H 以2π=w 为轴左右对称。如果知道QMF 的()n h ,能否确定()()()n h n g n g ∧ ∧,,? ()()()n h n g n 1-= ,()()()n g n h n 1--=∧ , ()()()n h n g n 1-=∧ 8. 试列出几种常用的连续的小波基函数 Morlet 小波,Marr 小波,Difference of Gaussian (DOG ),紧支集样条小波 9. 试简述海森堡测不准原理,说明应用意义? 10. 从连续小波变换到离散小波变换到离散小波框架-双正交小波变换-正交变换、紧支集正交小波变换,其最大的特点是追求变换系数的信息冗余小,含有的信息量越集中。 11. 解释紧支集、双正交、正交小波、紧支集正交小波、光滑性、奇异性。 12. 已知共轭正交滤波器组(CQF )()n h 请列出()()()n g n h n g ∧ ∧,,。 ()()() ()()()()()()???????-=--=-=---=∧∧n h n N g n g n N h n h n N h n g n n 11 13. 共轭正交滤波器()()n g n h ,的()jw e G 与()jw e H 的关系与QMF 情况

小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑∑ ∑∑+∞-∞=+∞ -∞ =+∞-∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

《小波分析及其应用》word版

现代数字信号处理作业 小波分析及其应用 电研111 梁帅

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反演公示,但当时该理论未能得到数学家的认可。1986年法国数学家YMcyer偶尔构造出一个真正的小波基,并与

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨率分析(Multi-resolution)的特点,而且在时频两域都具有表征信号局部特征的能力,使一种窗口大小固定不变,但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方法。小波变换在低频部分具有较高的频率分辨率和较低的时间分辨率。在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬态反常现象并展示其成分,所以被誉为分析信号的显微镜。 小波分析最早应用在地震数据压缩中, 以后在图像处理、故障诊断等方面取得了传统方法根本无法达到的效果. 现在小波分析已经渗透到了自然科学、应用

小波分析算法资料整理总结

一、小波分析基本原理: 信号分析是为了获得时间和频率之间的相互关系。傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。与傅立叶变换不同,小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征,通过平移母小波来获得信号的时间信息。对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。相关原理详见附件资料和系统设计书。 注:小波分析相关数学原理较多,也较复杂,很多中文的著作都在讨论抽象让非数学相关专业人难理解的数学。本人找到了相对好理解些的两个外文的资料: Tutorial on Continuous Wavelet Analysis of Experimental Data.doc Ten.Lectures.of.Wavelets.pdf 二、搜索到的小波分析源码简介 (仅谈大体印象,还待继续研读): 1、83421119WaveletVCppRes.rar 源码类型:VC++程序 功能是:对简单的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波和Haar小波变换,从而得到小波分解系数;再通过改变分解得到的各层高频系数进行信号的小波重构达到消噪的目的。 说明:在这一程序实现的过程中能直观地理解信号小波分解重构的过程和在信号消噪中的重要作用,以及在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。但这是为专业应用写的算法,通用性差。 2、WA.FOR(南京气象学院常用气象程序中的小波分析程序) 源码类型:fortran程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。 3、中科院大气物理学所.zip(原作者是美国Climate Diagnostics Center的C. Torrence 等)源码类型:fortran和matlab程序各一份 功能是:气象应用。用小波分析方法对太平洋温度的南方涛动指数进行分析。 说明:用的是Morlet和墨西哥帽小波。程序编写规范,思路清晰,但这是为专业应用写的算法,通用性差。 4、Morlet小波变换源程序.rar 源码类型:matlab程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。

小波分析-经典解读

时间序列-小波分析 时间序列(Time Series )是地学研究中经常遇到的问题。在时间序列研究中,时域和频域是常用的两种基本形式。其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。显然,时域分析和频域分析对此均无能为力。 20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。 目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。 一、小波分析基本原理 1. 小波函数 小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足: ? +∞ ∞ -=0dt )t (ψ (1) 式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系: )a b t ( a )t (2 /1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。 需要说明的是,选择合适的基小波函数是进行小波分析的前提。在实际应用研究中,应针对具体情况选择所需的基小波函数;同一信号或时间序列,若选择不同的基小波函数,所得的结果往往会有所差异,有时甚至差异很大。目前,主要是通过对比不同小波分析处理信号时所得的结果与理论结果的误差来判定基小波函数的好坏,并由此选定该类研究所需的基小波函数。 2. 小波变换 若)t (b ,a ψ是由(2)式给出的子小波,对于给定的能量有限信号)R (L )t (f 2 ∈,其连续小波变换(Continue Wavelet Transform ,简写为CWT )为: dt )a b t ( f (t)a )b ,a (W R 2 /1-f ? -=ψ (3) 式中,)b ,a (W f 为小波变换系数;f(t)为一个信号或平方可积函数;a 为伸缩尺度;b 平移参数; )a b x ( -ψ为)a b x (-ψ的复共轭函数。地学中观测到的时间序列数据大多是离散的,设函数)t k (f ?,

一个小波变换实例及Matlab实现

1、选择'(t)或,使心(t-k)J?k z为一组正交归一基 2、求h n。 h n *W(t)] 或H( Jh?(2 ?)/ ?( ?) 3、由h n求g n。 g n - ( -I) h1 Jn 或G( J=e^1H (仁) 4、由g n, ;:(t)构成正交小波基函数(t) ⑴八g n ln(t) 或?^ J=GC ■ /2)?C ■ /2) Haar小波的构造 1)、选择尺度函数。 ⑴=1 O *1 C)O 其他 易知「(t - n)关于n为一正交归一基 2)、求h n h n In(t);=2. - (t)(2t-n)dt 其中 n n 1 壬F= 1 2 0 其他 当n=0时, ——I cp(2t)=[ 0 当n=1时, 1 C -t 2 其他

e J σj +26" S J U 6 N H e ^ 。≡ G 怪 A 寸 超 M O 一 L H U L ^二— 7τd L I τu 6 0"u ? 二 甘 LHU ≡ 超 M 01 0!— ’」丄U — &¥( ? ?H 0 IHU P H (U l 10) ? (I)Cb 匸 ?f? LHU O H U ≡ 疼 超 M 0 ________ CXI H — &) Cb

其图形如下: 1、Haar尺度函数 Haar尺度函数空间: C , (2 jχ 2), (2 j X -1), (2j x), (2 jχ -1), :(2j x-1), ? J 为非负的整数,该空间又称为J级阶梯函数空间V i。则 V O 二V1二V2二=V jJ=V j= V j 1 随j的增加,分辨更为精细。 2、性质 函数集、2j/2「(2j X - k): k Z ?是V j的一个标准正交基。 f(x) V0当且仅当f(2j x) V j。 3、Haar小波函数 函数满足两点:(1)??是V1的成员;(2)??与V0正交。 (X)V(2x) _ (2x -1) -bo 性质:j(,(x)dx=0 (x)是对称的、局部支撑的函数; 小波函数空间Wj : V a k (2j x-k),a k R kZ W j是V j的正交互补,即V jT=V j二W j 函数集、2j/2 "2j x-k):k?Zi是W i的一个标准正交基 4、Haar小波分解与重建 对Haar 小波,有(2j x^( (2j^xp :(2j4x))/2 (2jχ-1) = ( Q j"1 x) - ’(2j*x)) / 2

小波变换及其应用_李世雄

现代数学讲座 小波变换及其应用 李世雄 (安徽大学数学系 合肥 230039) 科学技术的迅速发展使人类进入了信息时代。在信息社会中人们在各种领域中都会涉及各种信号(语音,音乐,图像,金融数据,……)的分析、加工、识别、传输和存储等问题。长期以来,傅里叶变换一直是处理这方面问题最重要的工具,并且已经发展了一套内容非常丰富并在许多实际问题中行之有效的方法。但是,用傅里叶变换分析处理信号的方法也存在着一定的局限性与弱点,傅里叶变换提供了信号在频率域上的详细特征,但却把时间域上的特征完全丢失了。小波变换是80年代后期发展起来的新数学分支,它是傅里叶变换的发展与扩充,在一定程度上克服了傅里叶变换的弱点与局限性。本文从信号分析与处理的角度来介绍小波变换的基本理论与应用,使具有微积分基础的读者通过本文能对这一新的数学分支有一初步了解。小波变换在函数论、微分方程、数值计算等方面也有着重要的应用,有兴趣的读者可参看[1][4]。 (一)从傅里叶变换谈起 数学中经常用变换这一技巧将问题由繁难化为简易,初等数学中用对数将较繁难的乘除法化为简易的加减法就是很典型的一个例子。而傅里叶变换(简称FT )则是利用积分将一个函数f (t )(-∞

小波变换及应用

小波变换及应用 一. 为什么研究小波变换 傅立叶变换(Fourier Transform ,缩写为FT )由下列公式定义: 正变换公式 ?()()i t f f t e dt ωω∞ --∞ =?? (1) 逆变换公式 ? ∞ ∞ -?= dt e f t f t i ωωπ )(?21 )( (2) 分析: 1.对于确定信号和平稳随机过程,傅立叶变换把时间域与频率域联系起来,许多在时域内难以看清的问题,在频域中往往表现得非常清楚。 2.变换积分核t i e ω±的幅值在任何情况下均为1,即1=±t i e ω,因此,频 谱)(?ωf 的任一频率点值是由时间过程)(t f 在整个时间域),(∞-∞上的贡献决定的;反之,过程)(t f 在某一时刻的状态也是由)(?ωf 在整个频率域),(∞-∞上的贡献决定的。)(t f 与)(?ωf 彼此之间是整体刻画,不能够反映各自在局部区域上的特征,因此不能用于局部分析。特别是傅立叶变换的积分作用平滑了非平稳过程的突变成分。要知道所分析的信号在突变时刻的频率成分,傅立叶变换是无能为力的。 3.实际中存在许多信号具有局部时间范围(特别是突变时刻)内的信号特征(一般是频率成分),例如,在音乐和语音信号中,人们所关心的是什么时刻奏什么音符,发出什么样的音节;图像信号中的细节信息,如边缘特征。 4.为了对非平稳信号作较好的分析,可以对信号在时域上加一个窗函数 )(τ-t g ,使其对信号)(t f 进行乘积运算以实现在τ附近的开窗,再对加窗的信 号进行傅立叶分析,这就是短时傅立叶变换(Short Time Fourier Transform, 缩写为STFT ),或者称为加窗傅立叶变换(Windowed Fourier Transform )。STFT 定义如下: (,)()()i t f S f t g t e dt ωωττ∞ --∞ =-? (3)

相关主题
文本预览
相关文档 最新文档