当前位置:文档之家› 如何解决大容量锂电池的安全性问题

如何解决大容量锂电池的安全性问题

如何解决大容量锂电池的安全性问题

如何解决大容量锂电池的安全性问题

锂离子电池的安全性问题,并不是外围问题,而是一个基于材料技术的本质问题。

在材料技术上取得突破:

1、选择安全的正极材料,目前的正极有钴酸锂和锰酸锂两种量产的材料产品。钴酸锂在小电芯方面是很成熟的体系,由于钴酸锂在分子结构方面(LiCo )的特点:充满电后,仍旧有大量的锂离子留在正极,当过充时,残留在正极的锂离子将会涌向负极,在负极上形成枝晶是采用钴酸锂材料的电池过充时必然的结果,甚至在正常充放电过程中,也有可能会有多余的锂离子游离到负极形成枝晶。所以手机电池频频发生爆炸事件,一方面是由于保护电路失效,但更重要的是在材料方面并没有根本的解决问题。同时钴酸锂的氧化性强,在175 度时就会分解,壳体泄漏,与空气接触,发生燃烧、爆炸。

2、选择锰酸锂材料,在分子结构方面保证了在满电状态,正极的锂离子已经完全嵌入到负极炭孔中,从根本上避免了枝晶的产生。同时锰酸锂稳固的结构,使其氧化性能远远低于钴酸锂,分解温度超过钴酸锂100 度,即使由于外力发生内部短路(针刺),外部短路,过充电时,也完全能够避免了由于析出金属锂引发燃烧、爆炸的危险。

3、选择热关闭性能好的隔膜,隔膜的作用是在隔离电池正负极的同时,允许锂离子的通过。当温度升高时,在隔膜熔化前进行关闭,从而使内阻上升至2000 欧姆,让内部反应停止下来。

4、防爆阀:当内部压力或温度达到预置的标准时,防爆阀将打开,开始进行卸压,以防止内部气体积累过多,发生形变,最终导致壳体爆裂。

5、保护电路:通常保护电路需起到防止过充电,过放电,超大电流的作用。主要原理是通过测量每一只电芯的电压和总电流,控制开关电路进行整个回路的关断,在电路的设计上并没有过高的难度。但保护电路的设计是否合理,可靠性是否足够高,是考验生产厂商的能力。保护电路是基于大约数十个个电阻、电容,开关MOS 管等电子元器件组成的PCB 电路,各个元器件都存在失效的可能性。失效的保护电路会出现开路或导通两种状态,当开路时会导致用户不能使用电池组,而导通的状态将会考验电芯抗过充的能力。

文章摘自电池论坛:https://www.doczj.com/doc/9017817673.html,/thread-210944-1-1.html

电池论坛https://www.doczj.com/doc/9017817673.html,

静止式锂电池储能系统安全要求示范文本

静止式锂电池储能系统安全要求示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

静止式锂电池储能系统安全要求示范文 本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 锂离子储能大概是什么样的组成和框架,简单介绍一 下。目前典型的锂离子储能单元配置基本都是用18650型 锂离子电池,圆柱型的,它可能是几十个,甚至几百个组 合在一起变成一个电池模块,这个电池模块再加上电池管 理单元就作为一个基本的储能单元配置。 关于储能装置的技术方案,我只是简单的来分分类, 不是一个非常标准化的分类。从应用规模大小来看,通常 情况下有三种类型。 第一种类型,属于小规模的运用,小规模的运用跟系 统的配置大概不大于10个千瓦的范围,当然电池储能是按 照容量来定,这里我们只是简单的粗略来分一下,按照功

率,按照装置和发电功率的大小。 这个上面是一个电池管理系统,下面是有多个电池模块这样组成一个系统。 第二种类型是中规模装置,这个电池模块跟小规模的电池模块结构可能不一样,但是总体来说它的组成还是类似的。 第三种类型是大规模装置,就是把各种各样的模块集成的多一点。 目前的大致应用领域,现在锂离子储能系统在德国也受到了国家政策的鼓励,因为德国目前来说,光伏装机容量已经达到了一定程度,再发展的空间也受到了限制。目前来说,光伏发电毕竟还是一个辅助的能源,还不是主要的能源,这跟能源特点有关系,有光了才能发电,没光了就没有,太阳好了发的就多一点,太阳少了就发的少一点,那么这个时候就要有一个类似水库的东西进行消纳,

锂电池的安全性设计参考文本

锂电池的安全性设计参考 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

锂电池的安全性设计参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 为了避免因使用不当造成电池过放电或者过充电,在 单体锂离子电池内设有三重保护机构。一是采用开关元 件,当电池内的温度上升时,它的阻值随之上升,当温度 过高时,会自动停止供电;二是选择适当的隔板材料,当 温度上升到一定数值时,隔板上的微米级微孔会自动溶解 掉,从而使锂离子不能通过,电池内部反应停止;三是设 置安全阀(就是电池顶部的放气孔),电池内部压力上升 到一定数值时,安全阀自动打开,保证电池的使用安全 性。 有时,电池本身虽然有安全控制措施,但是因为某些 原因造成控制失灵,缺少安全阀或者气体来不及通过安全 阀释放,电池内压便会急剧上升而引起爆炸。

一般情况下,锂离子电池储存的总能量和其安全性是成反比的,随着电池容量的增加,电池体积也在增加,其散热性能变差,出事故的可能性将大幅增加。对于手机用锂离子电池,基本要求是发生安全事故的概率要小于百万分之一,这也是社会公众所能接受的最低标准。而对于大容量锂离子电池,特别是汽车等用大容量锂离子电池,采用强制散热尤为重要。 选择更安全的电极材料,选择锰酸锂材料,在分子结构方面保证了在满电状态,正极的锂离子已经完全嵌入到负极炭孔中,从根本上避免了枝晶的产生。同时锰酸锂稳固的结构,使其氧化性能远远低于钴酸锂,分解温度超过钴酸锂100℃,即使由于外力发生内部短路(针刺),外部短路,过充电时,也完全能够避免了由于析出金属锂引发燃烧、爆炸的危险。 另外,采用锰酸锂材料还可以大幅度降低成本。

锂离子电池安全性

车用锂离子动力电池系统的安全性剖析 国家大力支持以电动汽车为主的新能源汽车新兴产业。然而以热失控为特征的锂离子电池系统的安全性事故时有发生,困扰着电动汽车的发展。动力电池安全性事故的常见形式及成因是什么?又该采取怎样的防范措施?小编带你一览要点。 1 动力电池安全性问题 锂离子动力电池事故主要表现为因热失控带来的起火燃烧。如表1和图1 所示。 表1 近年发生的锂离子动力电池事故 图1 近年来部分锂离子动力电池事故 锂离子动力电池系统安全性问题表现为3个层次(图2)。 1)电池系统安全性的“演变”。即电池系统长期老化——“演化”(事故1、2、3、5、7)和突发事件造成电池系统损坏——“突变”(事故4、6)。 2)“触发”——锂离子动力电池从正常工作到发生热失控与起火燃烧的转折点。 3)“扩展”——热失控带来的向周围传播的次生危害。

图2 动力电池系统安全性问题的层次 2 动力电池安全性演变 2.1 “演化”与“突变” 电池系统长期老化带来的可靠性降低,演化耗时长,可以通过检测电池系统的老化程度来评估电池系统安全性的变化;相比而言安全性突变难以预测,但是可以通过既有事故的形式来改进电池系统的设计。 2.2 安全性演化机理 电池系统任何部件的老化都可能带来安全事故的触发,如事故1、7。除此之外,电池本身的安全性演化主要表现为内短路的发展。电池内部的金属枝晶生长是造成内短路的主要原因之一。值得一提的是,老化电池的能量密度降低,热失控造成的危害可能会降低;另一方面老化电池更容易发生热失控。 图3 锂离子电池内部金属枝晶的生长与隔膜的刺穿

3 电池安全事故触发 3.1 热失控机理 经过演变过程,电池事故将会进入“触发”阶段。一般在这之后,电池内部的能量将会在瞬间集中释放造成热失控,引发冒烟、起火与爆炸等现象。当然电池安全事故中,也可能不发生热失控,热失控后的电池不一定会同时发生冒烟、起火与爆炸,也可能都不发生,这取决于电池材料发生热失控的机理。 图4、图5与表2展示了某款具有三元正极/PE基质的陶瓷隔膜/石墨负极的25 A·h锂离子动力电池的热失控机理。热失控过程分为了7个阶段。 图4 某款三元锂离子动力电池热失控实验数据(实验仪器为大型加速绝热量热仪,EV-ARC) 图5 某款三元锂离子动力电池热失控不同阶段的机理 表2 某款锂离子动力电池热失控的分阶段特征与机理

锂离子动力电池的安全性问题分析Word版

锂离子动力电池的安全性问题分析 () 摘要:本文从锂离子电池材料和制作工艺两个方面分析影响锂离子电池安全性能的因素,并进一步分析锂离子电池组安全性的关键问题。 关键词:锂离子电池;安全性能;热稳定性;影响因素 Power type lithium ion battery safety problem analysis (Electrical Engineering College, Longdong University, Qingyang 745000, Gansu, China) Abstract:This article from the lithium ion battery materials and production process analysis of two aspects of influence of lithium ion battery safety performance factors, and further analysis of lithium ion battery safety problems. Key words:Lithium ion battery; Safety performance; Thermal stability; Influence factors. 0 引言 锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。一般采用含有锂元素的材料作为电极的电池。是现代高性能电池的代表。锂离子电池是最晚研究而商品化进程最快的一种高性能电池。锂离子电池以其独特的优势目前以成为各个领域广泛应用的新能源。锂离子电池具有电压高、比能量高、循环性能好等特点,越来越广泛应用发的3C市场领域、电动车(EV)和混合型电动车(HEV)市场领域、军事用途及空间技术领域。虽然,锂离子二次电池的安全性相对于金属锂二次电池有了很大的提高,但仍存在着许多隐患,比如:由于电池的比能量高,且电解液大多为有机易燃物等,当电池热量产生速度大于散热速度时,就有可能出现安全性问题。根据Ph.Biensan等的研究证明:锂离子电池在滥用的条件下有可能产生使铝集流体熔化的高温(>700℃),从而导致电池出现冒烟、着火、爆炸、乃至人员受伤等情况。因此对锂离子电池的研制和生产来说,电池的安全性不仅是指在各种测试条件下不出现冒烟、着火、爆炸等现象,最为重要的确保人员在电池滥用的条件下不受伤害。 1 锂离子电池的几代变革 第一代锂离子电池:负极:锂金属,工作电压高达3.7。由于直接以极其活跃的金属锂作为负极,安全隐患太大已经被淘汰。

浅析影响锂离子电池安全性的主要因素

Open Journal of Nature Science 自然科学, 2018, 6(5), 391-394 Published Online September 2018 in Hans. https://www.doczj.com/doc/9017817673.html,/journal/ojns https://https://www.doczj.com/doc/9017817673.html,/10.12677/ojns.2018.65050 Analysis of the Main Factors Affecting the Safety of Lithium Ion Batteries Haowen Liu School of Chemical Materials Science, South-Central University for Nationalities, Wuhan Hubei Received: Aug. 20th, 2018; accepted: Aug. 31st, 2018; published: Sep. 7th, 2018 Abstract Currently, safety issue is one of the bottlenecks in the development of lithium ion batteries from portable products to power batteries and large-scale energy storage technologies. This paper briefly introduces the influence of cathode, anode, cell separator, electrolyte and the use of battery on the safety of lithium-ion batteries. It is concluded that use and storage is a key factor in the ac-cident of lithium ion battery. Keywords Lithium Ion Batteries, Safety, Influence Factors 浅析影响锂离子电池安全性的 主要因素 刘浩文 中南民族大学化学材料科学学院,湖北武汉 收稿日期:2018年8月20日;录用日期:2018年8月31日;发布日期:2018年9月7日 摘要 当前,安全是锂离子电池从便携式产品向动力电池和大规模储能技术发展的瓶颈之一。本文从正极、负极、隔膜、电解质和电池使用方式五个方面简要介绍对锂离子电池安全性的影响,总结出电池的使用方式和存放环境是引起锂离子电池发生事故的一个关键因素。

锂电池测试方法

锂电池性能测试方法 锂电池是一个要求高品质、高安全的产品、消费者在使用时往往不清楚电池的性能,导致在使用时电池的工作效率往往达不到理想目标,有时甚至盲目使用还会引起电池爆炸事件的发生,人生安全也会受到损伤,因此了解电池的性能也是至关重要的。 锂电池性能测试主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等 工具/原料 测试仪 硬质棒 钉子 方法/步骤 方法一、自放电测试 镍镉和镍氢电池的自放电测试为: 由于标准荷电保持测试时间太长,一般采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至 1.0V.1C充电80分钟,搁臵15分钟,以1C放电至10V,测其放电容量C1, 再将电池以1C充电80分钟,搁臵24小时后测1C容量C2,C2/C1×100%应小于15% 锂电池的自放电测试为:一般采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至 3.0V,恒流恒压1C充电至 4.2V,截止电流:10mA,搁臵15分钟后,以1C放电至3.0V测其放电容量C1,再将电池恒流恒压1C充电至 4.2V,截止电流100mA,搁臵24小时后测1C容量C2,C2/C1×100%应大于99%. 方法二、内阻测量 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极

容易极化,产生极化内阻,故无法测出其真实值;而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值. 方法三、IEC标准循环寿命测试 IEC规定镍镉和镍氢电池标准循环寿命测试为: 电池以0.2C放至1.0V/支后 1.以0.1C充电16小时,再以0.2C放电2小时30分(一个循环). 2.0.25C充电3小时10分,以0.25C放电2小时20分(2-48个循环). 3.0.25C充电3小时10分,以0.25C放至1.0V(第49循环) 4.0.1C充电16小时,搁臵1小时,0.2C放电至1.0V(第50个循环),对镍 氢电池重复1-4共400个循环后,其0.2C放电时间应大于3小时;对镍隔电池重复1-4共500个循环,其0.2C放电时间应大于3小时. EC规定锂电池标准循环寿命测试 电池以0.2C放至3.0V/支后,1C恒流恒压充电到4.2V,截止电流20MA,搁臵1小时后,再以0.2C放电至3.0V(一个循环)反复循环500次后容量应在初容量的60%以上. 方法四、内压测试 镍镉和镍氢电池内压测试为: 将电池以0.2C放至1.0V后,以1C充电3小时,根据电池钢壳的轻微形变通过转换得到电池的内压情况,测试中电池不应彭底,漏液或爆炸. 锂电池内压测试为:(UL标准)

锂离子电池性能测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:锂离子电池性能测试 实验类型:验证设计综合实验时间:2014年5月5日-17日 实验指导老师:马国正组员:黄日权郭金海 一、实验目的 1.熟悉、掌握锂离子电池的结构及充放电原理。 2.熟悉、掌握锂离子正极材料的制备过程及工艺。 3.熟悉、掌握锂离子电池的封装工艺及模拟电池测试方法。 二、实验原理 锂离子电池是指正负极为Li+嵌入化合物的二次电池。正极通常采用锂过渡金属氧化物 Li x CoO2,Li x NiO2或Li x Mn2O4,负极采用锂-碳层间化合物Li x C6。电解质为溶有锂盐LiPF6,LiAsF6,LiClO4等的有机溶液。溶剂主要有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)和氯碳酸酯(CIMC)等。在充放电过程中,Li+在两极间往返嵌入和脱出,被形象的称之为“摇椅电池”。 锂离子电池充放电原理和结构示意图如下。 锂离子电池的化学表达式为: -)Cn|LiPF6-EC+DMC|LiM x O y(+ 其电池反应为: LiM x O y+nC Li1-x M x O y+Li x C n 本实验以高温固相法制备的尖晶石型LiMn2O4为正极材料,纯锂片为负极,制备扣式锂离子模拟电池,并对制备的扣式半电池进行充放电测试。 三、仪器与试剂 电化学工作站,蓝点测试系统、手套箱、电子天平、真空干燥箱、切片机、对辊机、鼓风干燥机 LiMn2O4、乙炔黑、PVDF、无水乙醇、电解液(1M LiPF6溶与体积比EC:DEC:EMC=1:1:1

关于锂电池爆炸锂电池不安全的问题

关于爆炸的文章 锂是化学周期表上直径最小也最活泼的金属。体积小所以容量密度高,广受消费者与工程师欢迎。但是,化学特性太活泼,则带来了极高的危险性。锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。 锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。放电时,整个程序倒过来。为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。 保护措施 锂电池芯过充到电压高于4.2V后,会开始产生副作用。过充电压愈高,危险性也跟着愈高。锂电芯电压高于4.2V后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。这些锂金属结晶会穿过隔膜 纸,使正负极短路。有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,让使得电池外壳或压力阀鼓涨破裂,氧气进去与堆积在负极表面的锂原子反应,进而爆炸。因此,锂电池充电时,一定要设定电压上限,才可以同时兼顾到电池的寿命、容量、和安全性。最理想的充电电压上限为4.2V。 锂电芯放电时也要有电压下限。当电芯电压低于2.4V时,部分材料会开始被破坏。又由于电池会自放电,放愈久电压会愈低,因此,放电时最好不要放到2.4V才停止。锂电池从3.0V 放电到2.4V这段期间,所释放的能量只占电池容量的3%左右。因此,3.0V是一个理想的放电截止电压。 充放电时,除了电压的限制,电流的限制也有其必要。电流过大时,锂离子来不及进入储存格,会聚集于材料表面。这些锂离子获得电子后,会在材料表面产生锂原子结晶,这与过充一样,会造成危险性。万一电池外壳破裂,就会爆炸。 因此,对锂离子电池的保护,至少要包含:充电电压上限、放电电压下限、及电流上限三项。一般锂电池组内,除了锂电池芯外,都会有一片保护板,这片保护板主要就是提供这三项保护。但是,保护板的这三项保护显然是不够的,全球锂电池爆炸事件还是频传。要确保电池系统的安全性,必须对电池爆炸的原因,进行更仔细的分析。 爆炸类型分析

锂电池生产厂易忽视的安全问题及安全对策措施

锂电池生产厂易忽视的安全问题及安全对策措 施 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

锂电池生产厂易忽视的安全问题 主要危险因素及相应的安全对策措施 近来,在工作中发现,我国锂电池生产企业对锂电池生产中的安全问题认识不足,主要表现在: ①电池液的毒性认识不足,许多企业不知道电池液是有毒的; ②对锂电池的火灾、爆炸危险性认识不足。下面介绍并分析锂电池生产、储存过程中 的毒性危险和火灾、爆炸危险性。 1、中毒危险电池液中一般含有六氟磷酸锂以及作为溶剂使用的碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸乙烯酯、碳酸丙烯酯。六氟磷酸锂是有毒物质,而上述碳酸酯类物质化学性质则比较稳定,没有被列入有毒物质类,但是可燃。六氟磷酸锂是电池液中 的重要成分,国内及一些国外出品的六氟磷酸锂没有说明其毒性,但据国际知名的 sigma-aldrich(西格玛公司)制定的六氟磷酸锂《化学品安全技术说明书》(CSDS),说 明了其毒性。六氟磷酸锂的性质简述如下:分子式:LiPF6;燃烧性:不燃(0);毒性:中等(2);剌激性:中等(2);化学活性:低(1);慢性影响:中等(2);TLV-TWA:m3(ACGIH)。括号 内的数字表示分级,从0到4共分5级。 TLV-TWA是美国卫生医师协会推荐的时间加权平均浓度的最高允许值。六氟磷酸锂:白色粉末,吸湿性强,遇水易分解;进入体内可损害健康,多次接触可产生累积的毒性效应,呼吸道、眼、皮肤可受到损伤。一些国内企业出品的六氟磷酸锂,产品说明中注明 含氟化氢(也称为氢氟酸)≤10-4。氟化氢为高毒物质,具有强烈的腐蚀性,损伤呼吸 道、眼、皮肤,可引起支气管炎和肺炎,吸收后可产生全身的毒作用。六氟磷酸锂分解 后的产物是高毒性的,应引起注意。韩国三星公司电解液包装桶上标签注明其应在30℃

浅谈锂电池厂房的环境控制

浅谈锂电池厂房的环境控制 摘要:根据锂电池生产的特性,大气环境中的水分、浮土、尘埃等都会妨碍锂 电池的生产。在锂电池的制造过程中,锂电池里原材料中一旦有空气中的水分进入,就会影响锂电池的安全,严重地一般会引起锂电池鼓包甚至爆炸;而大气环 境中的浮土、尘埃则会引起锂电池的短路。所以在锂电池的生产过程中需要严格 有效控制空气中的水分、浮尘埃、颗粒。故锂电池厂房建设最关键的一环节就是 有效的进行除湿净化对锂电池的生产环境。伴随着国家对锂电池行业的支持以及 众多锂电池公司的投资新建和扩产,随着消费者对锂电池安全性的要求不断提高,国内各大锂电池公司对生产车间的环境控制要求也相应越来越高。 关键词:定义;低露点;除湿净化;吸附转轮除湿;节能减耗;成本控制 引言 做好锂电池厂房的环境控制需要做的有很多,涉及面也很广,而我这次要讨 论是其中的几个重点:除湿净化、除湿的方法、如何节能减耗和成本控制等,也 通过我以往接触的实际项目案例来阐述和分析以上几个问题,希望能对银行的锂 电池厂房建设和生产中的环境控制作出一些参考意义。 一、锂电池厂房的环境特点 锂电池材料最害怕的是的空气中的水分、浮尘埃、颗粒,其中影响和危害最 大的是水分,因此锂电池生产设备和生产线必须要置于低湿度洁净室内。而目前 国内通用的降低湿度的方法就是利用除湿机把生产车间里的空气湿度降低到生产 所需的低湿度范围内。锂电池的制造过程中,锂电池里原材料中一旦有空气中的 水分进入,就会影响锂电池的安全,严重地一般会引起锂电池鼓包甚至爆炸;而 大气环境中的浮土、尘埃则会引起锂电池的短路。 二、环境控制的关键-除湿净化 目前按原材料和生产的安全性、经济性等考虑:锂电池生产车间的湿度控制 梯段一般建议为(具体湿度控制会有少许差异,应根据各电池企业实际情况来进 行操作),同时除湿循环运作也需要控制工序的停留时间:相对湿度≦30%车间(如搅拌、涂布机头、机尾等);相对湿度≦20%车间(如辊压、制片、烘烤等);相对湿度≦10%车间(如叠片、卷绕、装配等),露点温度≦-45℃车间 (如电芯烘烤、注液、封口等)。 因为锂电池生产设备一般较大、产线也较长,导致生产车间也相应的空间较 大从而制冷负荷大,除湿机组设计选型以及就位地点选择是必须要综合计算全空 间内的总湿度(水分)和冷负荷,同时考虑到节能减排的需求,站房内应该统一 设置冷水机组、泵和换热装置等设备,并且为后期可能的扩产扩建预留管路和阀门,再通过冷冻水管分区输送冷源。 还有锂电池生产厂间的洁净室与其它行业的洁净室最大的不同点就是对生产 环境中湿度控制要求较高(温度要求低露点),因此空调机组都必须带有除湿段,除湿空调机组是降低环境露点的关键设备;目前在锂电池的生产制造过程中,锂 电池生产厂间的洁净室内部空气所要求-35℃至-40℃范围内的露点温度是较难控 制稳定住的。况且要生产就肯定生产员,而且电池行业产线又较长会导致大量的 工作人员一直在电池生产线上体力操作,这时候生产人员也肯定散发出比平时更 多湿气,该部分湿气多多少少肯定会从洁净服中漏出,因此该部分湿气则必须要 及时吹扫干净,所以就会对除湿机组性能要求更高:一般电池行业肯定都选择稳 定性好(能够连续运转)和除湿量大的机组,最好能产生在-50℃~ -60℃露点(精

静止式锂电池储能系统安全要求(正式)

编订:__________________ 单位:__________________ 时间:__________________ 静止式锂电池储能系统安全要求(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1884-31 静止式锂电池储能系统安全要求(正 式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 锂离子储能大概是什么样的组成和框架,简单介绍一下。目前典型的锂离子储能单元配置基本都是用18650型锂离子电池,圆柱型的,它可能是几十个,甚至几百个组合在一起变成一个电池模块,这个电池模块再加上电池管理单元就作为一个基本的储能单元配置。 关于储能装置的技术方案,我只是简单的来分分类,不是一个非常标准化的分类。从应用规模大小来看,通常情况下有三种类型。 第一种类型,属于小规模的运用,小规模的运用跟系统的配置大概不大于10个千瓦的范围,当然电池储能是按照容量来定,这里我们只是简单的粗略来分一下,按照功率,按照装置和发电功率的大小。

这个上面是一个电池管理系统,下面是有多个电池模块这样组成一个系统。 第二种类型是中规模装置,这个电池模块跟小规模的电池模块结构可能不一样,但是总体来说它的组成还是类似的。 第三种类型是大规模装置,就是把各种各样的模块集成的多一点。 目前的大致应用领域,现在锂离子储能系统在德国也受到了国家政策的鼓励,因为德国目前来说,光伏装机容量已经达到了一定程度,再发展的空间也受到了限制。目前来说,光伏发电毕竟还是一个辅助的能源,还不是主要的能源,这跟能源特点有关系,有光了才能发电,没光了就没有,太阳好了发的就多一点,太阳少了就发的少一点,那么这个时候就要有一个类似水库的东西进行消纳,那这就是储能系统。目前储能系统由于价格和其他因素,它的发展还不是那么的快。 完全从技术的角度来说,储能系统的运用,比如

锂电池安全测试项目方案

锂电池安全测试项目分析及解决方案 截止今天,锂离子电池的应用已经取得了巨大的成功,特别是其广泛应用在了在移动电子产品。但不能忽视的是,自从锂离子电池大规模商业化推广以来,与其相关的安全事故就几乎没有停止过。锂离子电池的安全性已经成为制约其进一步发展的关键因素。鉴于电池材料体系、制造过程一致性等原因,对锂离子电池进行安全性检测将非常的重要。 目前针对锂离子电池的安全检测标准在不断的更新中,但其基本安全检测模式已经成型,各种常见的检测项目也已被广泛接纳和采用。在安全检测项目中,每个检测项目都模拟了一种用户在使用过程中可能会发生的误(滥)用情况。如过充电测试模拟的是保护电路板失效的情况。由于模拟的情况不同,锂离子电池各个安全测试项目的难度显然是不同的。根据摩尔实验室(MORLAB)的以往检测经验,过充电、150℃热冲击、针刺、挤压、高温短路、重物冲击等是经常发生失效(Fail)的项目。 由于内容设计面较多,因此我们将分期介绍并分析各种锂电池测试项目的相关程序、标准要求、失效原因以及对应的解决方案。本期我们主要讲一下锂电池的热冲击测试项目。热冲击: 以CTIA 关于符合IEEE1725标准的认证程序为例,其中与热冲击有关的条款: Section 4.2: Test Procedure: 5 cells at 80% +/- 5%SOC to be placed in oven at ambient temperature. The oven temperature shall be ramped at 5 ± 2°C per minute to 150 ± 2°C. After 10 minutes at 150 ±2°C, the test is complete. Compliance: No fire, smoke, explosion or breaching of the cell is allowed within t he first 10 minutes. Venting is permitted. Section 4.50: Test Procedure: 5 fully charged cells (per cell manufacture's specifications) shall be suspended (no heat transfer allowed to non-integral cell components) in a gravity convection or circulating air oven at ambient temperature. The oven temperature shall be ramped at 5 ± 2°C per minute to 130 ± 2°C. After 1 hour at 130 ± 2°C, the test is ended. Compliance: Cells shall not flame or explode when exposed to 130°C for 1h.

锂离子动力电池安全性问题影响因素

锂离子动力电池安全性问题影响因素... 影响动力电池安全性能的因素贯穿了一个动力电池从电芯选材到使用终结的生命周期的始终,因此原因复杂多样层次丰富。电芯材料本身,电芯的制造过程,电池集成中关于BMS(电池管理系统)和安全性方面的设计和使用工况都是锂离子电池安全性表现的影响因素。 在这些环节中,出现制造误差和滥用工况是无论如何也难以避免的,所以在这个现实条件下,对电池发生热失控的预案设计就显得尤其重要。本文通过对锂离子动力电池安全性能影响因素的梳理总结,以期为其在高能量/高功率领域的应用和研究提供可靠的依据。 1前言 锂离子电池因为其具备高能量密度,高功率密度和长使用寿命的特点,在化学储能器件中脱颖而出,现在在便携式电子产品领域已经技术成熟广泛应用了,如今在国家的政策支持下,在电动车领域和大规模储能领域的需求量也呈爆发式的增长。 锂离子电池在通常情况下是安全的,但是,时有安全性事故的报道呈现在公众面前。比较著名的有近几年的波音公司737 和B787飞机电池着火,比亚迪电动车起火,特斯拉MODEL S起火…这些锂离子电池安全性事故进入公众视野的最早时间可以追溯到4、5年以前。发展到现在,安全性仍然是制约锂离子电池在高能量/高功率领域应用的关键性因素。热失控不仅是发生安全性问题的本质原因,也是制约锂离子电池性能表现的短板之一。

锂离子电池的潜在安全性问题很大程度上影响了消费者的信心。虽然人们一直期待BMS能够准确地监控安全状况(SOS)并能预测和阻止一些故障的发生, 但是,由于热失控的情况复杂多样,很难由一种技术系统保障其生命周期中所面临的所有安全状况,所以,对其引发原因的分析和研究对一个安全可靠的锂离子电池来说仍然是必要的。 2电芯材料的选择 锂离子电池的内部组成主要为正极|电解质|隔膜|电解质|负极,在此基础上再进行极耳的焊接,外包装的包裹等步骤最终形成一只完整的电芯。电芯再经过初始的充放电,化成分容排气等步骤以后,就可以出厂使用了。这个过程的第一步,是材料的选择。影响材料的安全性因素主要是其本征的轨道能量、晶体结构和材料的性状。 正极材料 正极活性材料在电池中的主要作用是贡献比容量和比能量,其本征电极电势对安全性有一定的影响。例如,近年来,中国已经将低电压材料LiFePO4(磷酸铁锂)作为动力电池的正极材料广泛应用于交通工具(例如混合式动力车HEV,电动车EV)和储能设备(例如不间断电源UPS)中,但是LiFePO4在众多材料中所展现出来的安全性优势实际是以牺牲能量密度为代价的,也就是说会制约其使用者(如EV,UPS)的续航能力。而像NMC (LiNixMnyCo1-x-yO2)等三元材料虽然在能量密度上表现优异,但是作为动力电池的理想正极材料,安全性问题一直得不到完善

浅谈锂电池的安全和质量

浅谈锂电池的安全和质 量 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

浅谈锂电池的安全和质量郑州正方科技: 锂电池在我们生活中的应用已经极为广泛了,在很多的数码设备上都能看到锂电池的“踪影”,我们的手机等电子产品功能越来越多,基本上能够代替很多东西,但是电量始终是目前电子产品最大的问题之一,因为手机上看电影以及玩游戏都是极其耗电的,出厂所带的一块或者两块电池以及不能满足我们的需求。所以移动电源成为当下最热的电子产品之一。 移动电源所采用的电池基本上都是可二次使用的锂电池,其中采用18650的圆柱形锂离子电池居多,而相对来讲,锂聚合物电池的安全系数以及能量密度比更适合作为移动电源的内部电池,但是锂聚合物电池的价格却要比锂离子电池的价格高出不少。这也正是锂聚合物电池被使用较少的主要原因。 锂电池创始人Yoshio Niashi也说过,锂离子电池目前最为重要的则是其安全与质量,而并非能力密度比以及体积重量。作为索尼前副总裁,同时也是首席技术官的Yoshio Niashi的这句话也是直截了当的说出了锂离子电池所存在的最大的问题,锂离子电池的不稳定性也是众所周知的。虽然在最近几年得到的不少的改进,但是依然是

不尽人意。 一方面是电芯以及正负极材料本身的问题,另一方面则是外部的安全电路的问题,前者就目前的技术水平来讲,前者属于硬件问题,可提升的空间相对较少,而后者则是主要通过锂电池保护板 >,来保证其安全问题。就国内来讲,锂电池的安全电路设计对于小型放电设备已经是绰绰有余了,但是网上以及媒体上关于所爆出的锂电事故却依然频频不断,归根究底,除了电芯自身的质量有问题之外,还有一点则是锂电池保护板方面出现了问题,虽然国内的保护板技术完全可以应付锂离子电池的安全问题,但是不少厂家为了节约成本,宁可使用次品保护板也不愿意使用安全参数更高的保护板,这样也就直接导致了锂电池市场的鱼龙混杂。锂离子电池的安全问题也就成为了锂离子电池最大的一个问题。并不是说不可以解决,而是不愿意解决。 不管是锂离子电池还是锂聚合物电池,锂电池保护板必然是不可缺少的,尤其是锂电池的应用已经慢慢涉及到大倍率的放电设备,而这些设备或者工具采用的都是成串组合的锂电池组,一旦发生短路或别的意外情况,其造成的后果是极其危险的。所以,除了政府的调管,更多的还需要厂家的严以律己,同时,作为消费者的我们,也更要杜绝此种产品,这样,整个锂电池市场才能得以净化,得以改善!

锂电池安全测试项目方案

锂电池安全测试项目方案 目前针对锂离子电池的安全检测标准在不断的更新中,但其基本安全检测模式已经成型,各种常见的检测项目也已被广泛接纳和采用。在安全检测项目中,每个检测项目都模拟了一种用户在使用过程中可能会发生的误(滥)用情况。如过充电测试模拟的是保护电路板失效的情况。由于模拟的情况不同,锂离子电池各个安全测试项目的难度显然是不同的。根据摩尔实验室(MORLAB)的以往检测经验,过充电、150℃热冲击、针刺、挤压、高温短路、重物冲击等是经常发生失效(Fail)的项目。 由于内容设计面较多,因此我们将分期介绍并分析各种锂电池测试项目的相关程序、标准要求、失效原因以及对应的解决方案。本期我们主要讲一下锂电池的热冲击测试项目。热冲击: 以CTIA 关于符合IEEE1725标准的认证程序为例,其中与热冲击有关的条款: Section 4、2:Test Procedure:5 cells at80% +/-5%SOC to be placed in oven at ambient temperature、 The oven temperature shall be ramped at52C per minute to1502 C、 After10 minutes at1502C, the test is complete、Compliance: No fire, smoke, explosion or breaching of the cell is allowed within t he first10 minutes、 Venting is permitted、 Section 4、50: Test Procedure:5 fully charged cells (per cell manufactures specifications) shall be suspended (no heat transfer allowed to non-integral cell components) in a gravity convection or circulating air oven at ambient temperature、 The oven temperature shall be ramped at52C per minute to1302

锂电池的安全性设计正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 锂电池的安全性设计正式 版

锂电池的安全性设计正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 为了避免因使用不当造成电池过放电或者过充电,在单体锂离子电池内设有三重保护机构。一是采用开关元件,当电池内的温度上升时,它的阻值随之上升,当温度过高时,会自动停止供电;二是选择适当的隔板材料,当温度上升到一定数值时,隔板上的微米级微孔会自动溶解掉,从而使锂离子不能通过,电池内部反应停止;三是设置安全阀(就是电池顶部的放气孔),电池内部压力上升到一定数值时,安全阀自动打开,保证电池的使用安全性。

有时,电池本身虽然有安全控制措施,但是因为某些原因造成控制失灵,缺少安全阀或者气体来不及通过安全阀释放,电池内压便会急剧上升而引起爆炸。 一般情况下,锂离子电池储存的总能量和其安全性是成反比的,随着电池容量的增加,电池体积也在增加,其散热性能变差,出事故的可能性将大幅增加。对于手机用锂离子电池,基本要求是发生安全事故的概率要小于百万分之一,这也是社会公众所能接受的最低标准。而对于大容量锂离子电池,特别是汽车等用大容量锂离子电池,采用强制散热尤为重要。 选择更安全的电极材料,选择锰酸锂材料,在分子结构方面保证了在满电状

锂离子电池安全性问题(最新版)

锂离子电池安全性问题(最新 版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0176

锂离子电池安全性问题(最新版) 1、使用安全型锂离子电池电解质 目前锂离子电池电解液使用碳酸酯作为溶剂,其中线型碳酸酯能够提高电池的充放电容量和循环寿命,但是它们的闪点较低,在较低的温度下即会闪燃,而氟代溶剂通常具有较高的闪点甚至无闪点,因此使用氟代溶剂有利于抑制电解液的燃烧。目前研究的氟代溶剂包括氟代酯和氟代醚。 阻燃电解液是一种功能电解液,这类电解液的阻燃功能通常是通过在常规电解液中加入阻燃添加剂获得的。阻燃电解液是目前解决锂离子电池安全性最经济有效的措施,所以尤其受到产业界的重视。 使用固体电解质,代替有机液态电解质,能够有效提高锂离子

电池的安全性。固体电解质包括聚合物固体电解质和无机固体电解质。聚合物电解质,尤其是凝胶型聚合物电解质的研究取得很大的进展,目前已经成功用于商品化锂离子电池中,但是凝胶型聚合物电解质其实是干态聚合物电解质和液态电解质妥协的结果,它对电池安全性的改善非常有限。干态聚合物电解质由于不像凝胶型聚合物电解质那样包含液态易燃的有机增塑剂,所以它在漏液、蒸气压和燃烧等方面具有更好的安全性。目前的干态聚合物电解质尚不能满足聚合物锂离子电池的应用要求,仍需要进一步的研究才有望在聚合物锂离子电池上得到广泛应用。相对于聚合物电解质,无机固体电解质具有更好的安全性,不挥发,不燃烧,更加不会存在漏液问题。此外,无机固体电解质机械强度高,耐热温度明显高于液体电解质和有机聚合物,使电池的工作温度范围扩大;将无机材料制成薄膜,更易于实现锂离子电池小型化,并且这类电池具有超长的储存寿命,能大大拓宽现有锂离子电池的应用领域。 常规的含阻燃添加剂的电解液具有阻燃效果,但是其溶剂仍是易挥发成分,依然存在较高的蒸气压,对于密封的电池体系来说,

相关主题
文本预览
相关文档 最新文档