当前位置:文档之家› 高中数学三角函数复习教案

高中数学三角函数复习教案

高中数学三角函数复习教案
高中数学三角函数复习教案

【讲练平台】

例1 已知角的终边上一点P (- 3 ,m ),且sin θ= 2 4

m ,求cos θ与tan θ的值. 分析 已知角的终边上点的坐标,求角的三角函数值,应联想到运用三角函数的定义

解题,由P 的坐标可知,需求出m 的值,从而应寻求m 的方程.

解 由题意知r= 3+m 2 ,则sin θ= m r = m 3+m 2

. 又∵sin θ= 2 4m , ∴ m 3+m 2

= 2 4 m . ∴m=0,m=± 5 . 当m=0时,cos θ= -1 , tan θ=0 ; 当m= 5 时,cos θ= - 6 4, tan θ= - 15 3

; 当m= - 5 时,cos θ= -

6 4,tan θ=15 3 . 点评 已知一个角的终边上一点的坐标,求其三角函数值,往往运用定义法(三角函数

的定义)解决.

例2 已知集合E={θ|cos θ<sin θ,0≤θ≤2π},F={θ|tan θ<sin θ},求集

合E ∩F .

分析 对于三角不等式,可运用三角函数线解之.

解 E={θ|π4 <θ<5π4}, F ={θ| π2<θ<π,或3π2

<θ<2π}, ∴E ∩F={θ|π2

<θ<π}. 例3 设θ是第二象限角,且满足|sin θ2|= -sin θ2 ,θ2

是哪个象限的角? 解 ∵θ是第二象限角, ∴2k π+

π2<θ<2k π+3π2 ,k ∈Z . ∴k π+ π4<θ2<k π+ 3π4,k ∈Z . ∴θ2

是第一象限或第三象限角. ① 又∵|sin θ2|= -sin θ2 , ∴sin θ2<0. ∴ θ2是第三、第四象限的角. ② 由①、②知, θ2

是第三象限角. 点评 已知θ所在的象限,求

θ2或2θ等所在的象限,要运用终边相同的角的表示法来表示,否则易出错.

第2课 同角三角函数的关系及诱导公式

【考点指津】

掌握同角三角函数的基本关系式:sin 2α+cos 2α=1, sin α cos α

=tan α,tan αcot α=1, 掌握正弦、余弦的诱导公式.能运用化归思想(即将含有较多三角函数名称问题化成含有较

少三角函数名称问题)解题 .

【讲练平台】

例1 化简 sin(2π-α)tan(π+α)cot(-α-π) cos(π-α)tan(3π-α)

. 分析 式中含有较多角和较多三角函数名称,若能减少它们的个数,则式子可望简化.

解 原式= (-sin α)tan α[-cot(α+π) ] (-cos α)tan(π-α) = (-sin α)tan α(-cot α) (-cos α)(-tan α)

= sin α·cos α sin α cos α

=1 . 点评 将不同角化同角,不同名的三角函数化成同名的三角函数是三角变换中常用的方

法.

例2 若sin θcos θ= 18 ,θ∈(π4 ,π2

),求cos θ-sin θ的值. 分析 已知式为sin θ、cos θ的二次式,欲求式为sin θ、cos θ的一次式,为了运用条

件,须将cos θ-sin θ进行平方.

解 (cos θ-sin θ)2=cos 2θ+sin 2θ-2sin θcos θ=1- 14 = 34

. ∵θ∈(π4 ,π2

),∴ cos θ<sin θ. ∴cos θ-sin θ= - 3 2

. 变式1 条件同例, 求cos θ+sin θ的值. 变式2 已知cos θ-sin θ= -

3 2 , 求sin θcos θ,sin θ+cos θ的值. 点评 sin θcos θ,cos θ+sin θ,cos θ-sin θ三者关系紧密,由其中之一,可求其余

之二.

例3 已知tan θ=3.求cos 2θ+sin θcos θ的值.

分析 因为cos 2θ+sin θcos θ是关于sin θ、cos θ的二次齐次式,所以可转化成tan θ

的式子.

解 原式=cos 2θ+sin θcos θ= cos 2θ+sin θcos θ cos 2θ+sin 2θ = 1+tan θ 1+tan 2θ

= 25 . 点评 1.关于cos θ、sin θ的齐次式可转化成tan θ的式子.

2.注意1的作用:1=sin 2θ+cos 2θ等.

第3课 两角和与两角差的三角函数(一)

【考点指津】

掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式,

能运用化归思想(将不同角化成同角等)解题.

【讲练平台】

例1 已知sin α-sin β=- 13 ,cos α-cos β=12

,求cos(α-β)的值 . 分析 由于cos(α-β)=cos αcos β+sin αsin β的右边是关于sin α、cos α、sin β、cos

β的二次式,而已知条件是关于sin α、sin β、cos α、cos β的一次式,所以将已知式两边

平方.

解 ∵sin α-sin β=-13, ① cos α-cos β= 12

, ② ①2 +②2 ,得2-2cos(α-β)=

1336

. ∴cos(α-β)= 7259. 点评 审题中要善于寻找已知和欲求的差异,设法消除差异.

例2 求 2cos10°-sin20° cos20°

的值 . 分析 式中含有两个角,故需先化简.注意到10°=30°-20°,由于30°的三角函

数值已知,则可将两个角化成一个角.

解 ∵10°=30°-20°,

∴原式=2cos(30°-20°)-sin20° cos20°

= 2(cos30°cos20°+sin30°sin20°)-sin20° cos20°= 3 cos30° cos20°

= 3 . 点评 化异角为同角,是三角变换中常用的方法.

例3 已知:sin(α+β)=-2sin β.求证:tan α=3tan(α+β).

分析 已知式中含有角2α+β和β,而欲求式中含有角α和α+β,所以要设法将已知

式中的角转化成欲求式中的角.

解 ∵2α+β=(α+β)+α,β=(α+β)-α,

∴sin [(α+β)+α]=-2sin [(α+β)-α].

∴sin(α+β)cos α+cos(α+β)sin α=-2sin(α+β)cos α+2cos(α+β)sin α.

若cos(α+β)≠0 ,cos α≠0,则3tan(α+β)=tan α.

点评 审题中要仔细分析角与角之间的关系,善于运用整体思想解题,此题中将α+β

看成一个整体

第4课 两角和与两角差的三角函数(二)

【考点指津】

掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;

能灵活运用和角、差角、倍角公式解题.

【讲练平台】

例1 求下列各式的值

(1)tan10°+tan50°+ 3 tan10°tan50°;

(2) ( 3 tan12°-3)csc12° 4cos 212°-2

. (1)解 原式=tan(10°+50°)(1-tan10°tan50°)+ 3 tan10°tan50°= 3 .

(2)分析 式中含有多个函数名称,故需减少函数名称的个数,进行切割化弦.

解 原式= ( 3 ·sin12°cos12°-3)1 sin12°2 cos24° =?

?-?24cos 212sin 312cos 3 =??-?=????-?48sin 2

1)12cos 2312sin 21(3224cos 12cos 12sin 212cos 312sin 3 =.3448sin )6012sin(34-=?

?-? 点评 (1)要注意公式的变形运用和逆向运用,注意公式tanA+tanB=tan(A+B)(1-

tanAtanB ),asinx+bsinx=22b a +sin(x+φ)的运用;(2)在三角变换中,切割化弦是常

用的变换方法.

例2 求证1+sin4θ-cos4θ2 tan θ = 1+sin4θ+cos4θ 1-tan 2θ

. 分析 三角恒等式的证明可从一边开始,证得它等于另一边;也可以分别从两边开始,

证得都等于同一个式子;还可以先证得另一等式,从而推出需要证明的等式.

由欲证的等式可知,可先证等式1+sin4θ-cos4θ 1+sin4θ+cos4θ =2tan θ 1-tan 2θ

,此式的右边等于tan2θ,而此式的左边出现了“1-cos4θ”和“1+cos4θ”,分别运用升幂公式可出现角2θ,sin4

θ用倍角公式可出现角2θ,从而等式可望得证.

证略

点评 注意倍角公式cos2α=2cos 2α-1,cos2α=1-2sin 2α的变形公式:①升幂公式

1+cos2α=2cos 2α,1-cos2α=2sin 2α,②降幂公式sin 2α= 1-cos2α2 ,cos 2α= 1+cos2α2

的运用;三角恒等式证明的方法:从一边推得另一边;左右归一,先证其等价等于等式;分

析法等.

例3 已知cos(π4+x)= 35,17π12<x < 7π4,求sin2x +sin2xtanx 1-tanx

的值. 解 原式= sin2x (1+tanx ) 1-tanx =sin2x ×tan π4+tanx 1-tan π4tanx =sin2xtan (π4+x ) = -cos [2(x+π4)]tan(x+π4)= -[2cos 2(x+ )-1]tan (π4

+x ) ∵17π12<x < 7π4, ∴ 5π3<x+π4

<2π. ∴sin(π4+x) = -45 ,∴tan (π4+x )=- 43

. ∴原式 = - 2875

. 点评 (1)注意两角和公式的逆用;(2)注意特殊角与其三角函数值的关系,如1=tan π4

等;(3)注意化同角,将所求式中的角x 转化成已知条件中的角x+ π4

第5课 三角函数的图象与性质(一) 【考点指津】

了解正弦函数、余弦函数、正切函数的图象和性质,能运用数形结合的思想解决问题,

能讨论较复杂的三角函数的性质.

【讲练平台】

例1 (1)函数y=x x sin 21)

tan 1lg(--的定义域为

(2)若α、β为锐角,sin α<cos β,则α、β满足 (C )

A .α>β

B .α<β

C .α+β<π2

D . α+β>π2

分析 (1)函数的定义域为?

??>>0.2sinx -10,tanx -1 (*) 的解集,由于y=tanx 的最小正周期为π,y=sinx 的最小正周期为2π, 所以原函数的周期为2π,应结合三角函数y=tanx

和y=sinx 的图象先求出(-π2, 3π2

)上满足(*)的x 的范围,再据周期性易得所求定义域为{x |2k π-π2<x <2k π+π6 ,或2k π+ 5π6< x <2k π+5π4

,k ∈Z} . 分析(2)sin α、cos β不同名,故将不同名函数转化成同名函数, cos β转化成sin(π2

-β),运用y=sinx 在[0,π2

]的单调性,便知答案为C . 点评 (1)讨论周期函数的问题,可先讨论一个周期内的情况,然后将其推广;(2)

解三角不等式,要注意三角函数图象的运用;(3)注意运用三角函数的单调性比较三角函

数值的大小.

例2 判断下列函数的奇偶性:

(1)y= x x x cos 1cos sin +-; (2)y=.cos sin 1cos sin 1x

x x x +--+

分析 讨论函数的奇偶性,需首先考虑函数的定义域是否关于原点对称,然后考f(-x)是

否等于f(x)或-f(x) .

解 (1)定义域关于原点对称,分子上为奇函数的差,又因为1+cosx=2cos 2 x 2

,所以分母为偶函数,所以原函数是奇函数.

(2)定义域不关于原点对称(如x=-π2,但x ≠π2

),故不是奇函数,也不是偶函数. 点评 将函数式化简变形,有利于判断函数的奇偶性.

例3 求下列函数的最小正周期:

(1)y=sin(2x -π6)sin(2x+ π3) ;(2)y= .)32cos(2cos )32sin(2sin ππ

++++x x x x 分析 对形如y=Asin(ωx+φ)、y=Acos(ωx+φ)和y=Atan(ωx+φ)的函数,易求出其

周期,所以需将原函数式进行化简.

解 (1)y=sin(2x -π6)sin(2x+ π2-π6)= 12sin(4x -π3

), 所以最小正周期为2π4 = π2

. (2)y=23)2(sin 21)2(cos 2cos 23)2(cos 21)2(sin 2sin ?-?+?+?

+x x x x x x =x x x x 2sin 232cos 232cos 232sin 23-+ =).62tan(2tan 3

3133

2tan 2tan 312tan 3π+=-+=-+x x x x x ∴是小正周期为π2. 点评 求复杂函数的周期,往往需先化简,其化简的目标是转化成y=Asin(ωx+φ)

+k 或y=Acos(ωx+φ) +k 或y=Atan(ωx+φ) +k 的形式(其中A 、ω、φ、k 为常数,

ω≠0).

例4 已知函数f(x)=5sinxcosx -53cos 2x+2

35 (x ∈R) . (1)求f(x)的单调增区间;

(2)求f(x)图象的对称轴、对称中心.

分析 函数表达式较复杂,需先化简. 解 f(x)= 52

sin2x -53×1+cos2x 2+2

35 =5sin(2x -π3). (1)由2k π-π2≤2x -π3≤2k π+π2,得[k π-π12 ,k π+5π12

](k ∈Z )为f(x)的单调增区间. (2)令2x - π3=k π+π2,得x= k 2π+5π12 (k ∈Z ),则x= k 2π+5π12

(k ∈Z )为函数y=f(x)图象的对称轴所在直线的方程,令2x -π3 =k π,得x=k 2π+π6

(k ∈Z ),∴ y=f(x)图象的对称中心为点(k 2π+π6

,0)(k ∈Z ). 点评 研究三角函数的性质,往往需先化简,以化成一个三角函数为目标;讨论y=Asin(ωx+φ)(ω>0)的单调区间,应将ω

x+φ看成一个整体,设为t ,从而归结为讨论y=Asint 的单调性.

第6课 三角函数的图象与性质(二)

【考点指津】

了解正弦函数、余弦函数、正切函数的图象,会用“五点法”画正弦函数、余弦函数和

函数y=Asin(ωx+φ)的图象,理解参数A 、ω、φ的物理意义.掌握将函数图象进行对称变

换、平移变换、伸缩变换.会根据图象提供的信息,求出函数解析式.

【讲练平台】

例1 函数y=Asin (ωx+φ)(A >0,ω>0,|φ|<π2

)的最小值为-2,其图象相邻的最高点和最低点横坐标差3π,又图象过点(0,1),求这个函数的解析式. 分析 求函数的解析式,即求A 、ω、φ的值.A 与最大、最小值有关,易知A=2,ω

与周期有关,由图象可知,相邻最高点与最低点横坐标差3π,即T 2

=3π.得 T=6π,所以ω=13.所以y=2sin(x 3

+φ),又图象过点(0,1),所以可得关于φ的等式,从而可将φ求出,易得解析式为y=2sin(x 3 +π6

). 解略

点评 y=Asin(ωx+φ)中的A 可由图象的最高点、最低点的纵坐标的确定,ω由周期的

大小确定,φ的确定一般采用待定系数法,即找图像上特殊点坐标代入方程求解,也可由φ

的几何意义(图象的左右平移的情况)等确定(请看下例).

例2 右图为某三角函数图像的一段

(1)试用y=Asin (ωx+φ)型函数表示其解析式;

(2)求这个函数关于直线x=2π对称的函数解析式. 解:(1)T= 13π3- π3 =4π. ∴ω=2πT = 12 .又A=3,由图象可知 所给曲线是由y=3sin x 2沿x 轴向右平移 π3

而得到的. ∴解析式为 y=3sin 12 (x -π3

). (2)设(x ,y)为y=3sin(12 x -π6

)关于直线x=2π对称的图像上的任意一点,则该点关于直线x=2π的对称点应为(4π-x ,y),故与y=3sin(12 x -π6

)关于直线x=2π对称的函数解析式是y=3sin [12(4π-x)- π6]=-3sin(12 x +π6

). 点评 y=sin(ωx+φ)(ω>0)的图象由y=sin ωx 的图象向左平移(φ>0)或向右平移

(φ<0)|φ|ω

个单位.特别要注意不能搞错平移的方向和平移的单位数量.求一个函数的图象关于一条直线对称图象的函数解析式时,要注意解几知识的运用.

例3 已知函数y=12cos 2x+ 3 2

sinxcosx+1 (x ∈R). (1)当y 取得最大值时,求自变量x 的集合;

(2)该函数图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩变换得到?

解 (1)y= 12·1+cos2x 2 + 3 2·12 sin2x +1= 12sin(2x+π6)+ 54

. 当2x+π6 =2k π+π2 ,即x=k π+π6,k ∈Z 时,y max = 74

. (2)由y=sinx 图象左移π6个单位,再将图象上各点横坐标缩短到原来的12

(纵坐标不变),其次将图象上各点纵坐标缩短到原来的12

(横坐标不变),最后把图象向上平移 5

4个单位即可.

思考 还有其他变换途径吗?若有,请叙述.

点评 (1)回答图像的变换时,不能省略“纵坐标不变”、“横坐标不变”等术语.(2)

周期变换后的左右平移要注意平移单位的变化.

第7课 三角函数的最值

【考点指津】

掌握基本三角函数y=sinx 和y=cosx 的最值,及取得最值的条件;掌握给定区间上三角

函数的最值的求法;能运用三角恒等变形,将较复杂的三角函数的最值问题转化成一个角的

一个三角函数的最值问题.

【讲练平台】

例1 求函数f(x)=sin 2x+2sinxcosx+3cos 2x 的最大值,并求出此时x 的值. 分析 由于f (x )的表达式较复杂,需进行化简.

解 y=sin 2x+cos 2x+sin2x+1+cos2x=sin2x+cos2x+2= 2 sin(2x+π4

)+2 当2x+π4=2k π+π2, 即x=k π+π8 (k ∈Z)时,y max = 2 +2 .

点评 要熟练掌握y=asinx+bcosx 类型的三角函数最值的求法,asinx+bcosx=

a 2+

b 2 sin (x+φ).

例2 若θ∈[-π12, π12],求函数y=cos(π4+θ)+sin2θ的最小值. 分析 在函数表达式中,含有两个角和两个三角函数名称,若能化成含有一个角和一

个三角函数名称的式子,则问题可得到简化.

解 y=cos(π4+θ)-cos [2(θ+π4)]=cos(π4+θ)-[2cos 2(θ+π4

)-1] =-2cos 2(θ+π4)+cos(π4+θ)+1 =-2[cos 2(θ+π4)-12cos(θ+π4

)]+1 =-2[cos(θ+π4)-14]2+98

. ∵θ∈[-π12, π12], ∴θ+π4∈[π6,π3]. ∴12≤cos(θ+π4

)≤ 3 2, ∴y 最小值 = 3 -12 . 点评 (1)三角函数表达式转化成一个角的一个三角函数的形式(即f(sinx)或g(cosx)),

是常见的转化目标;(2)形如y=f(sinx)或y=g(cosx)的最值,常运用sinx ,cosx 的有界性,

通过换元转化成y=at 2+bt+c 在某区间上的最值问题;(3)对于y= Asin(ωx+φ)或y=Acos(ω

x+φ)的最值的求法,应先求出t=ωx+φ的值域,然后再由y=Asint 和y=Acost 的单调性求

出最值.

例3 试求函数y=sinx+cosx+2sinxcosx+2的最大值和最小值.

分析 由于sinx+cosx 与sinxcosx 可以相互表示,所以令sinx+cosx=t ,则原三角函数的

最值问题转化成y=at 2+bt+c 在某区间上的最值问题.

解 令t=sinx+cosx ,则y=t+t 2+1=(t+12)2+34,且t ∈[- 2 , 2 ], ∴y min =34 ,y max =3+ 2 .

点评 注意sinx+cosx 与sinxcosx 的关系,运用换元法将原三角函数的最值问题转化成

y=at 2+bt+c 在某个区间上的最值问题.

第8课 解斜三角形

【考点指津】

掌握正弦定理、余弦定理,能根据条件,灵活选用正弦定理、余弦定理解斜三角形.能

根据确定三角形的条件,三角形中边、角间的大小关系,确定解的个数.能运用解斜三角形

的有关知识,解决简单的实际问题.

【讲练平台】

例1 在△ABC 中,已知a=3,c=3 3 ,∠A=30°,求∠C 及b

分析 已知两边及一边的对角,求另一边的对角,用正弦定理.注意已知两边和一边的

对角所对应的三角形是不确定的,所以要讨论.

解 ∵∠A=30°,a <c ,c ·sinA=3 3 2

<a , ∴此题有两解. sinC=csinA a = 33×12 3 = 3 2

, ∴∠C=60°,或∠C=120°. ∴当∠C=60°时,∠B=90°,b=a 2+b 2 =6.

当∠C=120°时,∠B=30°,b=a=3.

点评 已知两边和一边的对角的三角形是不确定的,解答时要注意讨论. 例2 在△ABC 中,已知acosA=bcosB ,判断△ABC 的形状.

分析 欲判断△ABC 的形状,需将已知式变形.式中既含有边也含有角,直接变形难

以进行,若将三角函数换成边,则可进行代数变形,或将边换成三角函数,则可进行三角变

换.

解 方法一:由余弦定理,得 a ·(b 2+c 2—a 22bc )=b ·(a 2+c 2—b 2

2ac ),

∴a 2c 2-a 4-b 2c 2+b 4=0 .

∴(a 2-b 2)(c 2-a 2-b 2)=0 .

∴a 2-b 2=0,或c 2-a 2-b 2=0.

∴a=b ,或c 2=a 2+b 2.

∴△ABC 是等腰三角形或直角三角形.

方法二:由acosA=bcosB ,得 2RsinAcosA=2RsinBcosB .

∴sin2A=sin2B . ∴2A=2B ,或2A=π-2B . ∴A=B ,或A+B=π2

. ∴△ABC 为等腰三角形或直角三角形.

点评 若已知式中既含有边又含有角,往往运用余弦定理或正弦定理,将角换成边或将

边换成角,然后进行代数或三角恒等变换.

例3 已知圆内接四边形ABCD 的边长分别为AB=2,

BC=6,CD=DA=4,求四边形ABCD 的面积.

分析 四边形ABCD 的面积等于△ABD 和△BCD 的 面积之和,由三角形面积公式及∠A+∠C=π可知,只需

求出∠A 即可.所以,只需寻找∠A 的方程.

解 连结BD ,则有四边形ABCD 的面积 ·

A B D O

S=S △ABD +S △CDB =12AB ·AD ·sinA+12

BC ·CD ·sinC . ∵A+C=180°, ∴sinA=sinC .

故S=12

(2×4+6×4)sinA=16sinA . 在△ABD 中,由余弦定理,得BD 2=AB 2+AD 2-2AB ·ADcosA=20-16cosA .

在△CDB 中,由余弦定理,得BD 2=CB 2+CD 2-2CB ·CD ·cosC=52-48cosC .

∴20-16cosA=52-48cosC .

∵cosC=-cosA , ∴64cosA=-32,cosA=- 12

. 又∵0°<A <180°,∴A=120°. 故S=16sin120°=8 3 .

点评 注意两个三角形的公用边在解题中的运用.

例4 墙壁上一幅图画,上端距观察者水平视线b 下端距水平视线a 米,问观察者距墙壁多少米时,才能使观察者上、下视角最大. 分析 如图,使观察者上下视角最大,即使∠APB

最大,所以需寻找∠APB 的目标函数.由于已知有关边长,

所以考虑运用三角函数解之.

解 设观察者距墙壁x 米的P 处观察,PC ⊥AB ,AC=b ,BC=a(0<a <b),

则∠APB=θ为视角. y=tan θ=tan(∠APC -∠BPC)= tan ∠APC —tan ∠BPC 1+ tan ∠APC ·tan ∠BPC =x

a x

b x a x b ?+-1 =

b —a x+ab x ≤b —a 2ab , 当且仅当x= ab x , 即x=ab 时,y 最大.

由θ∈(0,π2)且y=tan θ在(0,π2

)上为增函数,故当且仅当x=ab 时视角最大. 点评 注意运用直角三角形中三角函数的定义解决解三角形的有关问题.

大面积.

【单元检测】

单元练习(三角函数)

(总分100分,测试时间100分钟)

一、选择题:本大题共12小时,每小题3分,共36分.在每小题给出的四个选项中,只有

一项是符合题目要求的.

1.若角α满足sin2α<0,cos α-sin α<0,则α在 ( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

2.若f(x)sinx 是周期为π的偶函数,则f(x)可以是 ( )

A .sin2x

B . cosx

C . sinx

D . cox2x

3.若sinx=m -3m+5,cosx=4-2 m m+5,且x ∈[π2

,π],则m 的取值范围为 ( ) A .3<m <9 B . m=8 C . m=0 D . m=0或m=8

4.函数f(x)=log 13

(sin2x+cos2x)的单调递减区间是 ( ) A .(k π-π4,k π+π8)(k ∈Z) B .(k π-π8,k π+π8

)(k ∈Z) C .(k π+π8,k π+3π8)(k ∈Z) D .(k π+π8,k π+ 5π8

)(k ∈Z) 5.在△ABC 中,若2cosBsinA=sinC ,则△ABC 的形状一定是 ( )

A .等腰直角三角形

B .直角三角形

C .等腰三角形

D .等边三角形

6.△ABC 中,∠A=60°,b=1,其面积为 3 ,则a+b+c sinA+sinB+sinC

等于 ( ) A .3 3 B .239 3 C .26 3 3 D .39 2

7.已知函数y= 2 cos(ωx+φ)(0<φ<π2

)在一个周期 内的函数图象如图,则 ( ) A .T=6π5,φ= π4 B .T=3π2,φ=π4

C .T=3π,φ=- π4

D .T=3π,φ= π4

8.将函数y=f(x)sinx 的图象向右平移π4

个单位后,再作关于x 轴的对称变换,得到函数y=1-2sin 2x 的图象,则f(x)可以是( )

A .cosx

B .2cosx

C .sinx

D .2sinx

9.函数f(x)=Msin(ωx+φ)(ω>0)在区间[a ,b ]上是增函数,且f(a)=-M ,f(b)=M ,则函

数g(x)=Mcos(ωx+φ)在区间[a ,b ]上 ( )

A .是增函数

B .是减函数

C .可以取得最大值M

D .可以取得最小值-M

10.在△ABC 中,∠C >90°,则tanA ·tanB 与1的关系适合 ( )

A .tanA ·tan

B >1 B .anA ·tanB <1

C .tanA ·tanB=1

D .不确定

11.设θ是第二象限角,则必有 ( A )

A .cot θ2<tan θ2

B .tan θ2<cot θ2

C .sin θ2>cos θ2

D .sin θ2<cos θ2

12.若sin α>tan α>cot α(-π2<α<π2

},则α∈ ( ) A .(-π2,- π4 ) B .(-π4,0) C .(0,π4) D .(π4,π2

) 二、填空题:本大题共4小题,每小题3分,共12分,把答案填在题中横线上.

13.sin390°+cos120°+sin225°的值是 .

14. sin39°-sin21°cos39°-cos21°

= . 15.已知sin θ+cos θ= 15

,θ∈(0,π),cot θ的值是 . 16.关于函数f(x)=4sin(2x+π3

)(x ∈R),有下列命题: (1)y=f(x)的表达式可改写为y=4·cos(2x -π6

); (2)y=f(x)是以2π为最小正周期的周期函数;

(3)y=f(x)的图象关于点(- π6

,0)对称; (4)y=f(x)的图象关于直线x=-

π6对称. 其中正确的命题序号是 (注:把你认为正确的命题序号都填上).

三、解答题:本大题共6小题,共52分,解答应写出文字说明,证明过程或演算步骤.

17.(本小题8分)已知角α的顶点与直角坐标系的原点重合,始边在x 轴的正半轴上,终

边经过点P (-1,2),求sin(2α+2π3

)的值.

18.(本小题8分)已知sin 22α+sin2αcos α-cos2α=1,α∈(0,π2

),求sin α、tan α的值. 19.(本小题9分)设f(x)=sin 2x -asin 2x 2

,求f(x)的最大值m .

20.(本小题9分)已知α、β∈(0,π4),且3sin β=sin(2α+β),4tan α2 =1-tan 2α2

,求α+β的值.

21.(本小题9分)某港口水的深度y(米)是时间t(0≤t ≤24,单位:时)的函数,记作y=f(t),

下面是某日水深的数据:

经长期观察,y=f(t)的曲线可以近似地看成函数y=Asinωt+b的图象.

(1)试根据以上数据,求出函数y=f(t)的近似表达式;

(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的,某船吃水深度(船底离水面的距离)为6.5米,试求一天内船舶安全进出港的时间.

22.(本小题9分)在△ABC中,角A、B、C所对边分别为a、b、c.若b2=ac,求y=

1+sin2B sinB+cosB

的取值范围.

单元练习(三角函数)

一、选择题

1.B 2.C 3.B 4.B 5.C 6.B 7.A 8.B 9.C 10.B 11.A 12.B 二、填空题

13.—2

214.— 3 15.-

3

416.(1)(3)

三、解答题

17.4—3 3

1018.sinα=

1

2,tanα=

3

319.当a<-4时,m=-a;当-4≤a≤4

时,m= a2

16-

a

2+1;当a>4时,m=0 20.α+β=

π

421.(1)y=3sin

π

6t+10;

(2)1时至5时,13时至17时22.1<y≤ 2

高中数学选修4-4全套教案

高中数学选修4-4全套教案 第一讲坐标系 一平面直角坐标系 课题:1、平面直角坐标系 教学目的: 知识与技能:回顾在平面直角坐标系中刻画点的位置的方法 能力与与方法:体会坐标系的作用 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:体会直角坐标系的作用 教学难点:能够建立适当的直角坐标系,解决数学问题 授课类型:新授课 教学模式:启发、诱导发现教学. 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位 置机器运动的轨迹。 情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景 图案,需要缺点不同的画布所在的位置。 问题1:如何刻画一个几何图形的位置? 问题2:如何创建坐标系? 二、学生活动 学生回顾 刻画一个几何图形的位置,需要设定一个参照系 1、数轴它使直线上任一点P都可以由惟一的实数x确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定 三、讲解新课: 1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足: 任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

汇总高中数学教学案例分析.doc

教学案例 我所带的是高二(2)班,她是个庞大的班级,有56名学生。 在第一周上课的几天里,我渐渐的发现一名“怪”学生——张勇明。这名学生坐在教室正中间第二排的位置上。这样的位置是老师能看到的最佳位置,就在老师眼皮底下。上课时,其他这种位置的同学慑于被老师盯上,一般都规规矩矩的坐着,认认真真的听课,而这位同学却不然,他好象一点也不怕被我盯上。 上课时,先是看着黑板听一会儿,然后就弯下腰半趴在课桌上什么也不看,懒懒的样子,不知道在干什么。下课后我走到他跟前问他是不是有什么事,他笑着摇摇头说没有。 课后(2)班主任周老师告诉我,其实那个学生的数学基础挺扎实的,只是有些懒不能长久坚持下去,应该多注意多关照一下。 在以后的上课中,我在提问其他同学问题的时候,也有意无意的去提问他。课后,走到他跟前问他有没有不清楚的问题。 渐渐的在以后的课堂上,这位同学半趴在课桌上的次数少了,当讲到关键处时,我也能看到他在集中精力听。而且我还发现他一个很好的学习习惯——提前预习书本内容,提前做课后练习及习题。有一次我讲四种命题的关系,下课后我走到张勇明跟前,看到他已经把下一节充分必要条件的练习题做过啦,而且准确无误。 中段考试成绩出来了,张勇明的数学考了75分(满分150分),全班第一名。其中有一道数学大题难度较大,我曾在课堂上给同学们讲过,可是只有张勇明一个学生作对,其他做对的同学寥寥无几。 由此,我体会到:由于(2)班大部分同学基础比较薄弱,而高中阶段新内容新知识的接受又需要以前所学内容做铺垫,而以前的知识又没真正掌握,这样恶性循环下去以致使他们失去了学习的兴趣。所以在课堂上,多数同学听的蒙蒙胧胧似懂非懂。 针对这种现象,我要求同学做到:(1)把以前的数学课本从家里找到带到教室来,放在课桌上有意识的经常翻一翻。这样有些没记住的公式或不熟悉的公理定理就能记住了。(2)同学们作课堂笔记的时候,对于涉及到的旧知识内容如果不了解,那么也要做笔记。这样易于查漏补缺,新旧内容一起巩固并掌握。(3)当天事情当天做。每天上完新课后,若有不懂的问题争取当天解决,或者问我或者问同学。(4)经常复习巩固。 高二(班)路玉

高中数学三角函数教案

高中数学三角函数教案 一、教学目标 1.掌握任意角的正弦、余弦、正切函数的定义包括定义域、正负符号判断;了解任意 角的余切、正割、余割函数的定义. 2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概 念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验. 3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的 辩证唯物主义世界观. 4.培养学生求真务实、实事求是的科学态度. 二、重点、难点、关键 重点:任意角的正弦、余弦、正切函数的定义、定义域、正负符号判断法. 难点:把三角函数理解为以实数为自变量的函数. 关键:如何想到建立直角坐标系;六个比值的确定性α确定,比值也随之确定与依赖性比值随着α的变化而变化. 三、教学理念和方法 教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模 仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、 讲练结合”的方法组织教学. 四、教学过程 [执教线索: 回想再认:函数的概念、锐角三角函数定义锐角三角形边角关系——问题情境:能推广 到任意角吗?——它山之石:建立直角坐标系为何?——优化认知:用直角坐标系研究锐角三 角函数——探索发展:对任意角研究六个比值与角之间的关系:确定性、依赖性,满足函数 定义吗?——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析对应法则、定义域、值域与正负符号判定——例题与练习——回顾小结——布置作业]

高中数学教案模板

高中数学教案模板 篇一:高中数学备课模板《空间中的垂直关系》教学计划- 1 -- 2 - - 3 - - 4 - 篇二:高中数学教案模板(1) 课题:三角函数模型的简单应用学校莱钢高中姓名李红一、教学目标:(1)通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法,根据解析式作出图象并研究性质;(2)体验实际问题抽象为三角函数模型问题的过程,体会三角函数是描述周期变化现象的重要函数模型;(3)让学生体验一些具有周期性变化规律的实际问题的数学建模思想,从而培养学生的建模、分析问题、数形结合、抽象概括等能力。二、教学重点、难点:重点:用三角函数模型解决一些具有周期变化规律的实际问题.难点:将某些问题抽象为三角函数模型。三、教学方法:数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是三角函数的应用,所以应让学生多参与,让其自主探究分析问题,然后由老师启发、总结、提炼,升华为分析和解决问题的能力。四、教学过程:(一)课题引入生活中普遍存在着周期性变化规律的现象,昼夜交替四季轮回,潮涨潮散、云卷云舒,情绪的起起落落,庭前的花开花谢,一切都逃不过数学的眼睛!这节课我们就来学习如何用数学的眼睛洞察我们身边存在的周期现象-----1.6三角函数模型的简单应用。(二)典型例题(1)由图象探求三角函数模型的解析式例1.如图,某地一天从6~14时的温度变化曲线近似满足函数错误!未找到引用源。.(1)求这一天6~14时的最大温差;(2)写出这段曲线的函数解析式意图:切入本节课的课题,让学生明确学习任务和目标。同时以设问和探索的方式导入新课,创设情境,激发思维,做好基础铺垫,让学生带着问题,有目的地参与后续教学活动。解:(1)由图可知:这段时间的最大温差是20?C;(2)从图可以看出:从6~14是y?Asin(?x??)?b的半个周期的图象,∴ T ?14?6?8∴T?16 2 2? ∵T? ? ,∴?? ? 8 30?10?A??10??A?10?2又∵? ∴? b?20??b?30?10?20 ?2? ∴y?10? 8 x??)?20 3? ??)??1, 4 将点(6,10)代入得:∴ 3?3????2k??,k?Z,42 3?3? , ,k?Z,取?? 44 ∴??2k?? ?3? ∴y?10x?)?20,(6?x?14)。 84 【问题的反思】:①一般地,所求出的函数模型只能近似刻画这天某个时段的温度变化情况,因此应当特别注意自变量的变化范围;②与学生一起探索?的各种求法;(这是本题的关键!也是难点!)设计意图:提出问题,有学生动脑分析,

教学片断与案例

教学片断与案例 1、综合法和分析法的一个教学片断 师:合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的.观察、思考下列证明过程各有什么特点?它们是以怎样的形式使结论获证的? 引例1已知a,b>0,求证2222()()4a b c b c a abc +++≥ 证明:因为222,0b c bc a +≥>,所以22()2a b c abc +≥, 因为222,0c a ac b +≥>,所以22()2b c a abc +≥. 因此, 2222()()4a b c b c a abc +++≥. 引例2已知,a b R +∈,求证: 2a b +≥ 证明:要证2 a b +≥a b +≥, 只需证0a b +-,只需证20≥ 因为20≥显然成立,所以原不等式成立. 引例3已知0,0,0>>++>++abc ca bc ab c b a .求证: 0,,>c b a 证:设0abc ,∴0++c b a ,则0>-=+a c b ∴0)(<++=++bc c b a ca bc ab ,与题设矛盾 又若0=a ,则与0>abc 矛盾,∴必有0>a . 同理可证: 0,0>>c b 设计意图:通过三种证明方法案例的展示,引导学生观察、比较、辨析、思考三种证明方法的形式、特点,为归纳、抽象、概括三种证明方法提供感性认识,也为理解不同证明方法的表述形式打下基础.引例1、2的方法是本课要学习的重点内容,引例3的方法(反证法)是下一课的学习任务,在此给出引例3有两方面的作用,一方面,让学生对不同方法有一个整体认识与了解,另一方面,为下一课的学习作好铺垫. 对三个引例,引导学生分两个层次比较、归纳.第一层次的比较,是否直接针对结论进行证明?得出直接证明与间接证明;第二层次的比较,是引例1、2之间,证明的起点及逻辑推理形式,由此可引导学生归纳、概括出本课重点学习的两种方法:综合法与分析法. 2、归纳探索的一个教学片断 问题情境:(河内塔游戏)传说在古老的印度有一座神庙,神庙中有三根针和套在一根针上的64个圆环.古印度的天神指示他的僧侣们按下列规则,把圆环从一根针上全部移到另一根针上,第三根针起“过渡”的作用. ①每次只能移动1个圆环; ②较大的圆环不能放在较小的圆环上面.

高中数学优秀教学案例设计汇编(上册)

高中数学教学设计大赛获奖作品汇编 (上部)

目 录 1、集合与函数概念实习作业…………………………………… 2、指数函数的图象及其性质…………………………………… 3、对数的概念………………………………………………… 4、对数函数及其性质(1)…………………………………… 5、对数函数及其性质(2)…………………………………… 6、函数图象及其应用…………………………………… 7、方程的根与函数的零点…………………………………… 8、用二分法求方程的近似解…………………………………… 9、用二分法求方程的近似解…………………………………… 10、直线与平面平行的判定…………………………………… 11、循环结构 ………………………………………………… 12、任意角的三角函数(1)………………………………… 13、任意角的三角函数(2)…………………………………… 14、函数sin()y A x ω?=+的图象………………………… 15、向量的加法及其几何意义……………………………………… 16、平面向量数量积的物理背景及其含义(1)……………… 17、平面向量数量积的物理背景及其含义(2)…………………… 18、正弦定理(1)…………………………………………………… 19、正弦定理(2)…………………………………………………… 20、正弦定理(3)……………………………………………………

21、余弦定理……………………………………………… 22、等差数列……………………………………………… 23、等差数列的前n项和……………………………………… 24、等比数列的前n项和……………………………………… 25、简单的线性规划问题……………………………………… 26、拋物线及其标准方程……………………………………… 27、圆锥曲线定义的运用………………………………………

高中数学《组合》教学设计

组合教学设计(第一课时) 一、教材分析 本节课的教学内容是选修2-3(人教A版)§1.2.2《组合》第一课时.本节内容是两个计数原理及排列知识的延续,也是后续学习二项式定理,研究二项式系数性质及求等可能事件概率的基础,因此本节课在整个章节中起了承上启下的重要作用。本节课主要是借助学生身边的例子,类比排列的知识探究组合的定义、组合数的定义、组合数计算公式及组合数的性质,并从具体情境中体会排列与组合的区别与联系。通过对组合教学的探究,让学生体会类比,从特殊到一般等重要数学思想的应用以及数学来源于生活又服务于生活的课程理念。 二、学情分析 从学生的现有知识水平看,在学习本节前,学生已学习了两个基本计数原理、排列。绝大多数学生能正确运用两个计数原理,能正确理解排列、排列数的概念,能比较熟练地应用排列数公式进行计算。还能遵循先特殊后一般、先取后排、先分类后分步的原则,解决典型的排列问题。因此在本节课教学要借助这些已有的知识,通过观察、分析、类比、归纳,帮助学生理解组合的概念;从能力的角度看,学生已经具备了一定的分析问题的能力、思考的能力、探究的能力、计算的能力、数学表达的能力,教学中要借助学生已有的能力,提供实际问题情境,引导学生进行分析,向学生提供合适的探究材料,引发学生的主动探究,借助小组讨论、合作交流,全班展示等活动培养学生的自主学习、合作学习及数学表达能力。 三、设计思想 《组合》是继排列后的又一特殊的计数模型,是计数问题的延续与拓展。本节课我的设计理念是:以问题为载体,以学生为主体,创设有效问题情境,努力营造开放、民主、和谐的学习氛围,充分调动学生的兴趣与积极性。让学生在经历“自主、探究、合作”的过程中,体验从生活中发现数学,并通过观察、分析、对比、归纳、猜想、证明、展示、交流等一系列思维活动,在教师的适当引导、组织下主动地建构数学知识的过程。同时注重渗透“特殊与一般”、“分类讨论”、“转化与化归”等重要数学思想及类比的学习方法,让学生掌握知识的同时提升数学素养与思维品质,真正做到“授之以鱼不如授之以渔”。 四、教学目标 1、知识与技能: 正确理解组合、组合数的概念;会利用排列与组合的关系推导组合数公式;初步掌握组合数的性质; 2、过程与方法: 借助学生生活中熟悉的例子创设问题情境,学生通过对实际问题的探究、思考、对比、分析,初步形成组合、组合数的概念;用类比、归纳的思想得出组合、组合数的概念,并深刻体会组合、排列的区别与联系;通过小组讨论、交流合作、成果展示等活动,才用类比、特殊到一般的思想探究推导组合数公式并能进行简单应用;从组合数的计算中观察、归纳、猜想得到组合数的性质并进行简单的应用。3、情感态度与价值观: 学会用联系的观点看问题,培养良好的个性品质及团队合作意识;让学生充分感受到数学来源于生活又服务于生活,提高应用数学的意识。 五、教学重点:组合的概念、组合数公式、组合数的性质 六、教学难点:组合数公式的推导. 七、教学方法:启发、引导、自主、合作、探究

人教版高中数学人教A版必修3练习 2.1.2系统抽样

2.1.2系统抽样 1.从2 015个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的分段间隔为() A.99 B.99.5 C.100 D.100.55 答案:C 2.某商场想通过检查发票及销售记录的2%来快速估计每月的销售总额.采取如下方法:从某本发票的存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.这种抽取样本的方法是() A.抽签法 B.随机数法 C.系统抽样法 D.其他方式的抽样 解析:本抽样中,“相邻”两个样本的号码都相差50,是等距抽样,即系统抽样. 答案:C 3.在一个个体数目为2 020的总体中,利用系统抽样抽取一个容量为100的样本,则总体中每个个体被抽到的机会为() A B C D 解析:在抽样过程中尽管要剔除20个个体,但每个个体被抽到的机会仍是相同的,即每个个体被抽到的概率为 答案:C 4.用系统抽样法(按等距离的规则)从160名学生中抽取容量为20的样本,将这160名学生从1到160编号.按编号顺序平均分成20段(1~8号,9~16号,…,153~160号),若第16段应抽出的号码为125,则第1段中用简单随机抽样确定的号码是() A.7 B.5 C.4 D.3 解析:由系统抽样知,每段中有8人,第16段应为从121到128这8个号码,125是其中的第5个号码,所以第一段中被确定的号码是5. 答案:B 5.一个总体的60个个体的编号为0,1,2,…,59,现要从中抽取一个容量为10的样本,用系统抽样抽取,并且第一段内抽取个体号码为3,则抽取的样本号码是. 答案:3,9,15,21,27,33,39,45,51,57 6.一个总体中的100个个体的编号分别为0,1,2,3,…,99,依次将其分成10个小段,段号分别为0,1,2,…,9.现要用系统抽样的方法抽取一个容量为10的样本,规定如果在第0段随机抽取的号码为l,那么依次错位地取出后面各段的号码,即第k段中所抽取的号码的个位数为l+k或l+k-10(l+k≥10),则当l=6时,所抽取的10个号码依次是. 解析:在第0段随机抽取的号码为6,则由题意知,在第1段抽取的号码应是17,在第2段抽取的号码应是28,依次类推.故正确答案为6,17,28,39,40,51,62,73,84,95. 答案:6,17,28,39,40,51,62,73,84,95 7.要从1 002个学生中选取一个容量为20的样本.试用系统抽样的方法给出抽样过程. 解:第一步,将1 002名学生编号. 第二步,从总体中剔除2人(剔除方法可用随机数法),将剩下的1 000名学生重新编号(编号分别为 000,001,002,…,999),并分成20段. 第三步,在第1段000,001,002,…,049这五十个编号中用简单随机抽样法抽出一个(如003)作为起始号码. 第四步,将编号为003,053,103,…,953的个体抽出,组成样本. 8.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题: 本村人口:1 200人,户数300,每户平均人口数4人; 应抽户数:30户; 抽样间隔:=40; 确定随机数字:取一张人民币,编码的后两位数为12; 确定第一样本户:编码的后两位数为12的户为第一样本户; 确定第二样本户:12+40=52,52号为第二样本户; …… (1)该村委采用了何种抽样方法? (2)抽样过程中存在哪些问题?指出并修改. (3)何处采用的是简单随机抽样? 解:(1)系统抽样.

高中数学教学案例doc

高中数学《诱导公式》教学案例 教材分析:三角函数的诱导公式是普通高中课程标准实验教科书(人教B版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时, 教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义 和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发 现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。 教案背景:通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗 透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。 因此本节内容在三角函数中占有非常重要的地位. 教学方法:以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。 教学目标:借助单位圆探究诱导公式。 能正确运用诱导公式将任意角的三角函数化为锐角三角函数。 教学重点:诱导公式(三)的推导及应用。 教学难点:诱导公式的应用。 教学手段:多媒体。 教学情景设计: 一.复习回顾: 诱导公式(一)(二)。 角(终边在一条直线上) 思考:下列一组角有什么特征?()能否用式子来表示? 二.新课: 已知由 可知 而(课件演示,学生发现) 所以 于是可得:(三) 设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。

由公式(一)(三)可以看出,角角相等。即: . 公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。 设计意图:结合学过的公式(一)(二),发现特点,总结公式。 练习 (1) 设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。 (学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。) 三.例题 例3:求下列各三角函数值: (1) (2) (3) (4) 例4:化简 设计意图:利用公式解决问题。 练习: (1) (2)(学生板演,师生点评) 设计意图:观察公式特点,选择公式解决问题。 四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。

高中数学解题方法及解析大全

最全面的高考复习资料 目录 前言 (2) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第一章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和 演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想 等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

高中数学【北师大选修1-1】教案全集

第一章常用逻辑用语1.1 命题 教学过程: 一、复习准备: 阅读下列语句,你能判断它们的真假吗? (1)矩形的对角线相等; >; (2)312 >吗? (3)312 (4)8是24的约数; (5)两条直线相交,有且只有一个交点; (6)他是个高个子. 二、讲授新课: 1. 教学命题的概念: ①命题:可以判断真假的陈述句叫做命题(proposition). 也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件. 上述6个语句中,(1)(2)(4)(5)(6)是命题. ②真命题:判断为真的语句叫做真命题(true proposition); 假命题:判断为假的语句叫做假命题(false proposition). 上述5个命题中,(2)是假命题,其它4个都是真命题. ③例1:判断下列语句中哪些是命题?是真命题还是假命题? (1)空集是任何集合的子集; (2)若整数a是素数,则a是奇数; (3)2小于或等于2; (4)对数函数是增函数吗? x<; (5)215 (6)平面内不相交的两条直线一定平行; (7)明天下雨. (学生自练→个别回答→教师点评) ④探究:学生自我举出一些命题,并判断它们的真假. 2. 将一个命题改写成“若p,则q”的形式: ①例1中的(2)就是一个“若p,则q”的命题形式,我们把其中的p叫做命题的条件,q 叫做命题的结论. ②试将例1中的命题(6)改写成“若p,则q”的形式. ③例2:将下列命题改写成“若p,则q”的形式. (1)两条直线相交有且只有一个交点; (2)对顶角相等; (3)全等的两个三角形面积也相等. (学生自练→个别回答→教师点评) 3. 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若p,则q”的形式. 巩固练习: 教材 P4 1、2、3 4. (师生共析→学生说出答案→教师点评) ②例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假: (1)同位角相等,两直线平行; (2)正弦函数是周期函数;

高中数学系统抽样人教版必修三

§2.1第2课时抽样方法(2)——系统抽样 教学目标 (1)正确理解系统抽样的概念,掌握系统抽样的一般步骤; (2)通过对解决实际问题的过程的研究学会抽取样本的系统抽样方法,体会系统抽样与简单随机抽样的关系。 教学重点、难点 正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。 教学过程 一、问题情境 情境:某校高一年级共有20个班级,每班有50名学生。为了了解高一学生的视力状况,从这1000 名学生中抽取一个容量为100的样本进行检查,应该怎样抽取? 二、学生活动 用简单随机抽样获取样本,但由于样本容量较大,操作起来费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,你能否设计其他抽取样本的方法? 三、建构数学 1.系统抽样的定义: 一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。说明:由系统抽样的定义可知系统抽样有以下特证: (1)当总体容量N较大时,采用系统抽样。 (2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称 k 等距抽样,这时间隔一般为[]N n (3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号。 (4)系统抽样与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样; (5)简单随机抽样和系统抽样过程中,每个个体被抽取的可能性是相等的。 练习:(1)你能举几个系统抽样的例子吗? (2)下列抽样中不是系统抽样的是(C) (A)从标有1~15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样 (B)工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验 (C)搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止 (D)电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈

高中数学教案模板(1)

课题:三角函数模型的简单应用 学校莱钢高中姓名李红 一、教学目标: (1)通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法,根据解析式作出图象并研究性质; (2)体验实际问题抽象为三角函数模型问题的过程,体会三角函数是描述周期变化现象的重要函数模型; (3)让学生体验一些具有周期性变化规律的实际问题的数学建模思想,从而培养学生的建模、分析问题、数形结合、抽象概括等能力。 二、教学重点、难点: 重点:用三角函数模型解决一些具有周期变化规律的实际问题. 难点:将某些问题抽象为三角函数模型。 三、教学方法: 数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是三角函数的应用,所以应让学生多参与,让其自主探究分析问题,然后由老师启发、总结、提炼,升华为分析和解决问题的能力。 四、教学过程: (一)课题引入 生活中普遍存在着周期性变化规律的现象,昼夜交替四季轮回,潮涨潮散、云卷云舒,情绪的起起落落,庭前的花开花谢,一切都逃不过数学的眼睛!这节课我们就来学习如何用数学的眼睛洞察我们身边存在的周期现象-----1.6三角函数模型的简单应用。 (二)典型例题 (1)由图象探求三角函数模型的解析式 例1.如图,某地一天从6~14时的温度变化曲线近似满足函数错误!未找到 引用源。.Array(1)求这一天6~14时的最大温差; (2)写出这段曲线的函数解析式

设计意图:切入本节课的课题,让学生明确学习任务和目标。同时以设问和探索的方式导入新课,创设情境,激发思维,做好基础铺垫,让学生带着问题,有目的地参与后续教学活动。 解:(1)由图可知:这段时间的最大温差是C 20; (2)从图可以看出:从6~14是b x A y ++=)sin(?ω的 半个周期的图象, ∴ 86142 =-=T ∴16=T ∵ω π 2= T ,∴8 π ω= 又∵??? ????=+==-=20 210301021030b A ∴???==2010b A ∴20)8 sin( 10++=?π x y 将点)10,6(代入得:1)4 3sin(-=+?π , ∴ Z k k ∈+=+,2 3243ππ?π, ∴Z k k ∈+ =,432ππ?,取4 3π ?= , ∴)146(,20)4 38sin(10≤≤++=x x y π π。 【问题的反思】: ①一般地,所求出的函数模型只能近似刻画这天某个时段的温度变化情况,因此应当特 别注意自变量的变化范围; ②与学生一起探索?的各种求法;(这是本题的关键!也是难点!) 设计意图:提出问题,有学生动脑分析,自主探究,培养学生数形结合的数学思考习惯。

高中数学解题思路全部内容完整版

一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如: a2+b2=(a+b)2-2ab=(a-b)2+2ab; a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b 2 )2+( 3 2 b)2; a2+b2+c2+ab+bc+ca=1 2 [(a+b)2+(b+c)2+(c+a)2] a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα)2; x2+1 2 x =(x+ 1 x )2-2=(x- 1 x )2+2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n }中,a 1 ?a 5 +2a 3 ?a 5 +a 3 ?a 7 =25,则 a 3 +a 5 =_______。 2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k=1 4 或k=1 3. 已知sin4α+cos4α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log 1 2 (-2x2+5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [5 4 ,+∞) C. (-1 2 ,5 4 ] D. [5 4 ,3) 5. 已知方程x2+(a-2)x+a-1=0的两根x 1、x 2 ,则点P(x 1 ,x 2 )在圆x2+y2=4上,则 实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p + =a m 2,将已知等式左边后配方(a 3 + a 5 )2易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a)2+(y-b)2=r2,解r2>0即可,选B。 3小题:已知等式经配方成(sin2α+cos2α)2-2sin2αcos2α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组:

高中数学人教版选修1-2全套教案

高中数学人教版选修1-2全套教案 第一章统计案例 第一课时 1.1回归分析的基本思想及其初步应用(一) 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析. 教学难点:解释残差变量的含义,了解偏差平方和分解的思想. 教学过程: 一、复习准备: 1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关? 2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报. 二、讲授新课: 1. 教学例题: ① 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 体重. (分析思路→教师演示→学生整理)

第一步:作散点图第二步:求回归方程第三步:代值计算 ②提问:身高为172cm的女大学生的体重一定是60.316kg吗? 不一定,但一般可以认为她的体重在60.316kg左右. ③解释线性回归模型与一次函数的不同 事实上,观察上述散点图,我们可以发现女大学生的体重y和身高x之间的关系并不能用一次=+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体函数y bx a 重的关系). 在数据表中身高为165cm的3名女大学生的体重分别为48kg、57kg和61kg,如果能用一次函数来描述体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e(即残差变量或随机 =++,其中残差变量e中包含体重变量)引入到线性函数模型中,得到线性回归模型y bx a e 不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式. 2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义. 3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同.

(完整版)高中数学教学案例

高中数学教学案例 孙世纪 直线与平面平行的判定 一、教学内容分析: 本节教材选自人教A版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。 二、学生学习情况分析: 任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。 三、设计思想 本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助 实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定 理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的 过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养 成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力, 提高学生的数学逻辑思维能力。 四、教学目标 通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。 五、教学重点与难点 重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。 六、教学过程设计 (一)知识准备、新课引入

浅谈高中数学解题教学

浅谈高中数学解题教学 发表时间:2010-11-09T09:31:17.767Z 来源:《现代教育科研论坛》2010第10期供稿作者:何永峰 [导读] 波利亚认为,教书是一种有无数大小诀窍的行业,通过努力,总可以讲的更深刻更生动。 何永峰(石河子市121团第一中学新疆石河子 832000) 【摘要】“问题是数学的心脏”。学习数学的过程与数学解题紧密相关,数学能力的考查是通过解题来体现的,本文通过一个简单的案例旨在探究中学数学课堂中解题教学如何帮助学生在解题过程中不断总结经验,积累解题思维方法,促进数学思维能力有效的提高。 【关键词】高中数学;解题教学;数学思维能力 上高一的女儿假期带回了这样一道作业题:某厂拟对甲、乙两种产品投资3万元,设甲乙两种产品的利润分别为P、Q。已知甲乙两种产品的利润与投资 成本之间的关系分别为试问:如何投资可使利润最大?最大利润是多少? 女儿的解答如: 解:设甲产品投资x万元,则乙产品投资(3-x)万元。 依题意可得总利润 (0≤x≤3)到这里女儿做不下去了。 问:你觉得这是个什么问题? 女:我觉得应该是一个在给定范围内求函数最大值的问题。而且好像应该是个二次函数问题。 问:为什么做不下去了?你的困难在哪里? 女:函数式子中的根号,这样的函数我没有见过。 问:你的想法很好,按照你的感觉我们一起来看下这里面存在二次关系吗?我们可以处理好式子中的根号吗? 女:(想了一会)二次根号与一次之间有二次的关系,我们可以把一次式看做二次根号的平方,可是被开方数是(3-x)…我明白了,可以把x配凑成关于(3-x)的代数式-(3-x)+3。 女儿很高兴,很快解完了这道题。做完后我又问她:可以让你的过程更优化些吗?因为你还需要配凑。 女:(这次女儿反应很快)我可以设乙产品投资x万元。 问:那你还有其他方法处理这里的困难吗?(根号的问题) 女:我是不是可以直接设乙产品投资x2万元?这样关于总利润的表达式中就不会出现二次根号了。(女儿显得很高兴)。 问:你在以往的学习中还有类似的经验吗? 女:有,像2x与4x、3x与9x。 我鼓励了女儿并对她说:希望你以后能多总结勤思考,很多数学问题都是借助于一些简单的数学模型来解决的,你要能在总结中析出对自己有用的数学模型。 通过这个问题的解决我想谈几点如何通过解题教学提高学生的思维能力。 著名数学家和教育家G.波利亚有一句脍炙人口的名言:“掌握数学就是意味着善于解题”,其实这句话的背后是学好数学必须大量的做题,并在这一漫长的过程中获取知识,积累解题经验,获得解题方法。这一过程离不开时间的保证和经验(量)的积累,更离不开科学的方法和“质”的转变。 《高中数学课程标准》中指出高中数学课程应注意提高学生的数学思维能力,这是数学教育的基本目标之一。人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程。这些过程是数学思维能力的具体体现,有助于学生对客观事物中蕴涵的数学模式进行思考和做出判断。数学思维能力在形成理性思维中发挥着独特的作用。众所周知,中学生要提高数学思维能力的重要途径之一是解题,而教师要提高学生的数学思维能力就必须进行解题教学研究。 中学数学解题教学目前存在以下几个误区:(1)长期徘徊在一招一式的归类,缺少观点上的提高或实质性的突破。有时候,只是解题方法的简单堆积或解题技巧的神秘出现,在解题具体操作与解题策略或数学思想方法之间缺少沟通的桥梁。(2)多是研究“怎样解”,较少问“为什么这样解”,更少问“怎样学会解”,重结果,轻过程。(3)更关注现成的、形式化问题的求解,对问题“提出”和“应用”研究不足。 笔者认为要解决以上问题,教学中应注意以下几点:①概念课的教学要注重知识形成的背景和形成的过程,注意引导学生搞清概念的来龙去脉,如果学生对概念理解还是“夹生饭”时,就被要求听老师的一招一式的例题教学,甚至被要求解大量的课外习题。那么学生整节课只能忙于抄录老师的笔记,没有任何思考的时间和空间,从而使“听课”变成“抄课”,课后投入大量时间完成一知半解的习题。最后,学生学得很苦很累,但还是会出现上课能听懂下课不会做的情况。②在习题课的教学中,老师不要牵着学生的鼻子走,要帮助学生把例题解答过程中丢失的思维过程找回来,充分暴露解题思维,就像魏惠王面前那位“庖丁”,不仅能表演精湛的解牛技术,而且能说出解得又快又净的原因所在,赖以熏陶学生,逐渐培养起分析问题的能力和积极思考的良好习惯。不能单纯追求习题量的积累,要让学生明白“怎样解题”,解决学生“拿起题无从下手”的问题。解题者每解一题都应重视用数学思想和方法来指导解题,避免盲目的生搬硬套。解完题后应注重归纳总结知识和方法,并不断将新学习的知识和方法纳入已有的知识网络,最终提升为数学思想。③研究问题和解决问题靠种种思维能力,但要学会这些能力,首先靠摹仿。仿而娴熟,熟而省悟,悟而生巧,巧而创新。为了给学生创造摹仿的条件,就需要拟出各种有效的模型。而为了

相关主题
文本预览
相关文档 最新文档