(完整word版)基于单片机的DS18B20设计实验报告
- 格式:doc
- 大小:330.04 KB
- 文档页数:13
温度传感器ds18b20实验报告温度传感器DS18B20实验报告引言温度传感器在现代生活中扮演着重要的角色,它们被广泛应用于各种领域,包括工业、医疗、农业等。
DS18B20是一种数字温度传感器,具有精准的测量能力和数字输出,因此备受青睐。
本实验旨在通过对DS18B20温度传感器的测试和分析,探讨其性能和应用。
实验目的1. 了解DS18B20温度传感器的工作原理和特性。
2. 测试DS18B20温度传感器的测量精度和响应速度。
3. 探讨DS18B20温度传感器在实际应用中的优缺点。
实验器材1. DS18B20温度传感器2. Arduino开发板3. 4.7kΩ电阻4. 连接线5. 电脑实验步骤1. 将DS18B20温度传感器连接到Arduino开发板上,并接入4.7kΩ电阻。
2. 编写Arduino程序,通过串口监视器输出DS18B20传感器的温度数据。
3. 将DS18B20传感器置于不同的温度环境中,记录其输出的温度数据。
4. 分析DS18B20传感器的测量精度和响应速度。
5. 探讨DS18B20传感器在实际应用中的优缺点。
实验结果经过实验测试,DS18B20温度传感器表现出了较高的测量精度和响应速度。
在不同温度环境下,其输出的温度数据与实际温度基本吻合,误差较小。
此外,DS18B20传感器具有数字输出,易于与各种微控制器和单片机进行连接,应用范围广泛。
然而,DS18B20传感器在极端温度环境下可能出现测量误差,且价格较高,需要根据实际需求进行选择。
结论DS18B20温度传感器具有较高的测量精度和响应速度,适用于各种温度测量场景。
然而,在选择和应用时需要考虑其价格和适用范围,以确保满足实际需求。
希望本实验能够为DS18B20温度传感器的应用提供参考和借鉴,推动其在各个领域的发展和应用。
目录一、设计任务和性能指标 (1)1.1设计任务 (1)1.2性能指标 (1)二、设计方案 (1)三、系统硬件设计 (3)3.1主控制器AT89C52.. (3)3.2温度采集装置DS18B20 (4)3.3显示电路的设计 (7)3.4温度调节设置按键电路 (8)3.5复位电路 (8)3.6时钟电路 (8)3.7报警电路 (9)四、系统软件设计 (10)4.1主程序设计 (10)4.2温度检测装置设计 (11)4.3中断设定子程序设计 (14)4.4报警模块设计 (15)五、调试及性能分析 (15)5.1调试步骤 (15)5.2性能分析 (16)六、心得体会 (17)参考文献 (18)附录1 程序清单 (19)附录2 系统硬件电路图 (23)附录3 实物图 (24)附录4 元器件清单 (25)一、设计任务和性能指标1.1设计任务设计以智能集成温度传感器DS18B20,89S52单片机为控制器构成数字温度测量装置,它与传统的温度计相比,具有读数方便,测温范围广,测温准确,输出温度采用数字显示。
要求用Protel 画出系统的电路原理图(要求以最少组件,实现系统设计所要求的功能),印刷电路板(要求布局合理,线路清晰),绘出程序流程图,并给出程序清单(要求思路清晰,尽量简洁,主程序和子程序分开,使程序有较强的可读性)。
1.2性能指标(1)实时显示环境温度值(2)通过按键可以设定报警温度的上下限值(3)当环境温度大于报警温度上限值,通过红灯闪烁和蜂鸣器报警;当环境温度小于报警温度下限值,通过绿灯闪烁和蜂鸣器报警。
二.设计方案按照系统设计的功能的要求,初步确定设计系统主要由温度测量和数据采集两部分电路组成,电路系统构成框图如图1.1所示。
方案采用数字温度芯片DS18B20测量温度,输出信号全数字化。
便于单片机处理及控制,省去传统的测温方法的很多外围电路。
且该芯片的物理化学性很稳定,它能用做工业测温元件,此元件线形较好。
电子温度计(基于18B20)课程设计报告可以实现:●数码管能够显示当前的温度值(两位小数);●能够通过按键设定报警温度;●温度上限或下限时能够通过蜂鸣器报警,警线可设;●开式,华氏,摄氏温标的转化。
实验要求(略)一.设计目的通过课程设计使学生达到以下能力训练:调查研究、分析问题的能力;查阅中外文献的能力;计算机软件应用的能力;设计计算和绘图的能力;语言文字表达的能力。
对软件的灵活运用,适时开发并创新的能力。
二、设计内容利用数字温度传感器DS18B20设计一个电子温度计,通过数码管来实时显示测得的温度值。
基本要求:⑴、设计实验电路⑵、分析实验原理⑶、列出实验接线表⑷、采用汇编语言编写实验程序⑸、通过实验验证功能的实现⑹、编写课程设计说明书三、设计方案在单片机电路设计中,大多都是使用传感器,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。
预计功能:(从主界面开始)1.按下键1,可显示当前温度(整数部分),和温度上限设定值;并且在3秒的有效时间内可用键2减小设定温度上限,键3可增加上限值。
最后一次按下按键后3秒自动返回主显示界面。
2.按下键3,可显示当前温度(整数部分),和温度下限设定值;并且在3秒的有效时间内可用键1减小设定温度上限,键2可增加上限值。
最后一次按下按键后3秒自动返回主显示界面。
3.按下键2,可实现开式,华氏,摄氏温标的循环转换。
4.温度小于下限温度警线,或是温度高于上限警线时,产生声光报警。
四、设计框图温度计电路设计总体设计框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用八位LED数码管以并口传送数据实现温度显示。
图1总体设计框图五、显示电路显示电路采用两个4位共阳LED数码管,从P1口RXD,TXD串口输出段码。
温度传感器设计DS18B20是1-wire器件,1-wire单总线是Maxim全资子公司Dallas的一项专有技术,与目前多数标准串行数据通信方式,如SPI/I2C/MICROWIRE不同,它采用单根信号线,既传输时钟,又传输数据,而且数据传输是双向的。
DS18B20温度传感器数字温度传感器DS18B20是由Dallas半导体公司生产的,它具有耐磨耐碰,体积小,使用方便,封装形式多样(如图1.1.1),适用于各种狭小空间设备数字测温和控制领域。
图1.1.1引脚说明:GND为接地引脚;DQ为数据输入输出脚。
用于单线操作,漏极开路;VCC接电源正;单总线通常要求接一个约4.7K左右的上拉电阻,这样,当总线空闲时,其状态为高电平。
如图1.1.2是温度传感器DS18B20的接线图图1.1.2温度传感器DS18B20的参数:●适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电●温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃●可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温●在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快●被测温度用符号扩展的16位数字量方式串行输出●有两种供电方式既可以直接加 3.0~5.5V的电源,也可以采用寄生电源方式由数据线供电DS18B20内部结构及功能:DS18B20的内部结构如图1.1.3所示。
主要包括:寄生电源,温度传感器,64位ROM和单总线接口,存放中间数据的高速暂存器RAM,用于存储用户设定温度上下限值的TH和TL触发器,存储与控制逻辑,8位循环冗余校验码(CRC)发生器等7部分。
开始8位是产品类型的编号,接着共有48 位是DS18B20 唯一的序列号。
最后8位是前面56 位的CRC 检验码,这也是多个DS18B20 可以采用一线进行通信的原因。
高速暂存存储器:高速暂存存储器由9个字节组成,其分配如图所示。
高速暂存存储器字节0~1 温度寄存器当DS18B20接收到温度转换命令后,开始启动转换。
转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1,2字节。
简易温度测量仪班级:0120902队员:指导老师:摘要温度测量仪主要有以DS18B20为核心的温度采集电路,以蜂鸣器为核心的报警电路以及学习板电路三部分电路构成。
软件实现方面包括三个模块:温度采集模块、报警模块、按键与显示模块。
本温度测试仪采用数码管显示温度测试范围0~+125℃,可实现两点温度测量、摄氏温度华氏温度相互转换、设置温度显示精度、设置报警温度上下限、蜂鸣器报警等五个功能。
关键词:温度测量仪 DS18B20 蜂鸣器分辨率多点测量目录目录……………………………………………………1第一章设计目的 (3)第二章方案的选取 (3)第三章DS18B20测温电路系统设计要求 (4)第四章DS18B20测温电路系统设计 (5)1.DS18B20测温电路的组成框图 (5)2. DS18B20的简介 (5)2.1 DS18B20的内部结构 (6)2.2 DS18B20的工作过程及时序 (7)3. 系统硬件电路 (10)3.1 DS18B20温度传感器与单片机的接口电路 (10)3.2 蜂鸣器电路 (11)4. 系统软件设计 (11)4.1系统主程序流程图 (11)4.2重点模块程序分析 (12)第五章系统测试和结论 (14)6.1测试条件及方案 (14)6.2测试结果和分析 (15)第六章设计体会 (15)一、设计目的1.进一步熟悉和掌握DS18B20芯片的结构及工作原理。
2.掌握单片机的接口技术及相关外围芯片的外特性,控制方法。
3.通过课程设计,掌握以单片机核心的电路设计的基本方法和技术,了解有关电路参数的计算方法。
4.通过实际程序设计和调试,逐步掌握模块化程序设计方法和调试技术。
5.通过完成一个包括电路设计和程序开发的完整过程,使学生了解开发单片机应用系统的全过程,为今后从事相应打下基础。
6.了解 DS1820数字温度传感器特性7. 掌握单片机基本功能的运用、简单接口电路如键盘、数码管显示电路设计及其相应驱动软件的编制软、硬件系统的调试二、方案的选取方案一由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。
基于DS18B20的温度传感器设计报告一、概述单片机技术是一项运用广泛且极具发展潜力的技术。
2009年6月14日随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术。
本文主要介绍了一个基于89S52单片机的测温系统,详细描述了利用液晶显示器件传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感DS18B20的数据采集过程。
对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。
DS18B20与AT89C52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。
二、内容1、课程设计题目基于DS18B20的温度传感器2、课程设计目的通过基于MCS-52系列单片机AT89C52和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,汇编语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。
3、设计任务和要求以MCS-52系列单片机为核心器件,组成一个数字温度计,采用数字温度传感器DS18B20为检测器件,进行单点温度检测,检测精度为±0.5摄氏度。
温度显示采用LCD1602显示,两位整数,一位小数。
第1章引言在日常生活及工农业生产中经常要涉及到温度的检测及控制,传统的测温元件有热点偶,热敏电阻还有一些输出模拟信号得温度传感器,而这些测温元件一般都需要比较多的外部硬件支持。
其硬件电路复杂,软件调试繁琐,制作成本高,阻碍了其使用性。
因此美国DALLAS半导体公司又推出了一款改进型智能温度传感器——DS18B20。
本设计就是用DS18B20数字温度传感器作为测温元件来设计数字温度计。
本设计所介绍的数字温度计与传统温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于测温比较准确得场所,或科研实验室使用。
该设计控制器使用单片机STC89C51,测温传感器使用DS18B20,显示器使用LED.第2章任务与要求2.1测量范围-50~110°C,精确到0.5°C;2.2利用数字温度传感器DS18B20测量温度信号;2.3所测得温度采用数字显示,计算后在液晶显示器上显示相应得温度值;第3章方案设计及论证3.1温度检测模块的设计及论证由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,其中还涉及到电阻与温度的对应值的计算,感温电路比较麻烦。
而且在对采集的信号进行放大时容易受温度的影响出现较大的偏差。
进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,电路简单,精度高,软硬件都以实现,而且使用单片机的接口便于系统的再扩展,满足设计要求。
3.2显示模块的设计及论证LED是发光二极管Light Emitting Diode 的英文缩写。
LED显示屏是由发光二极管排列组成的一显示器件。
单片机原理及应用课程设计报告书题目:DS18B20数字温度计姓名:李成学号:0指导教师:周灵彬设计时刻: 2015年1月目录DS18B20数字温度计设计1.引言1.1. 设计意义在日常生活及工农业生产中,常常要用到温度的检测及操纵,传统的测温元件有热电偶和热电阻。
而热电偶和热电阻测出的一样都是电压,再转换成对应的温度,需要比较多的外部硬件支持。
其缺点如下:●硬件电路复杂;●软件调试复杂;●制作本钱高。
本数字温度计设计采纳美国DALLAS半导体公司继DS1820以后推出的一种改良型智能温度传感器DS18B20作为检测元件,测温范围为-55~125℃,最高分辨率可达℃。
DS18B20能够直接读出被测温度值,而且采纳三线制与单片机相连,减少了外部的硬件电路,具有低本钱和易利用的热点。
1.2. 系统功能要求设计出的DS18B20数字温度计测温范围在0~125℃,误差在±1℃之内,采纳LED数码管直接读显示。
2.方案设计依照系统设计功能的要求,确信系统由3个模块组成:主操纵器、测温电路和显示电路。
数字温度计整体电路结构框图如下图:图3. 硬件设计温度计电路设计原理图如下图所示,操纵器利用单片机AT89C2051,温度传感器利用DS18B20,利用四位共阳LED数码管以动态扫描法实现温度显示。
主操纵器单片机AT89C51具有低电压供电和小体积等特点,两个端口恰好知足电路系统的设计需要,很适合便携手持式产品的设计利用。
系统可用两节电池供电。
AT89C51的引脚图如右图所示:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被概念为高阻输入。
P0能够用于外部程序器,它能够被概念为数据/地址的第八位。
在FIASH编程时,P0 口作为输入口,当FIASH进行校验时,P0输出,此刻P0外部必需被拉高。
P1口:P1口是一个内部提供的8位双向I/O口,P1口能接收输出4TTL门电流。
温度传感器ds18b20实验报告温度传感器DS18B20实验报告引言:温度传感器是一种用于测量环境温度的设备,它在许多领域都有广泛的应用,如气象学、工业控制、冷链物流等。
本实验报告将介绍DS18B20温度传感器的原理、实验装置和实验结果,并对其性能进行评估。
一、实验原理DS18B20温度传感器是一种数字温度传感器,采用单总线接口进行通信。
它采用了最新的数字温度传感器技术,具有高精度、低功耗、抗干扰等特点。
其工作原理是利用温度对半导体材料电阻值的影响,通过测量电阻值的变化来确定温度。
二、实验装置本实验使用的实验装置包括DS18B20温度传感器、Arduino开发板、杜邦线和计算机。
Arduino开发板用于读取传感器的温度数据,并通过串口将数据传输到计算机上进行处理和显示。
三、实验步骤1. 连接电路:将DS18B20温度传感器的VCC引脚连接到Arduino开发板的5V 引脚,GND引脚连接到GND引脚,DQ引脚连接到Arduino开发板的数字引脚2。
2. 编写代码:使用Arduino开发环境编写代码,通过OneWire库和DallasTemperature库读取DS18B20传感器的温度数据。
3. 上传代码:将编写好的代码上传到Arduino开发板上。
4. 监测温度:打开串口监视器,可以看到DS18B20传感器实时的温度数据。
四、实验结果在实验过程中,我们将DS18B20温度传感器放置在不同的环境中,记录了其测得的温度数据。
实验结果显示,DS18B20温度传感器具有较高的精度和稳定性,能够准确地测量环境温度。
五、实验评估本实验评估了DS18B20温度传感器的性能,包括精度、响应时间和抗干扰能力。
实验结果表明,DS18B20温度传感器具有较高的精度,能够在0.5℃的误差范围内测量温度。
响应时间较快,能够在毫秒级别内完成温度测量。
同时,DS18B20温度传感器具有较好的抗干扰能力,能够在干扰环境下保持稳定的测量结果。
温度传感器DS18B20实验报告一、实验目的1.复习掌握Protues,keil软件的使用2.了解掌握DS18B20的工作原理以及编程方法二、实验器材单片机开发板温度传感器芯片DS18B20串口线三、实验原理一应用背景概述测量温度的关键是温度传感器。
随着技术飞速发展,传感器已进入第三代数字传感器。
本测温系统采用的DS18B20就是属于这种传感器。
DS18B20是美国DALLAS半导体公司生产的单总线数字温度传感器,它可以实现数字化输出和测试,并且有控制功能强、传输距离远、抗干扰能力强、接口方便、微功耗等优点,因而被广泛应用在工业、农业、军事等领域的控制仪器、测控系统中。
二 DS18B20的原理及特性介绍1.DS18B20的几个特点:a. DS18B20因为采用了单总线技术,可通过串行口线,也可通过其他I/O口线与微机直接接传感器直接输出被测温度值(二进制数)。
b.其测量温度范围为:-55℃————+125℃,c.测量分辨率为:0.0625℃,是其他传感器无法相比的。
图1 DS18B20外部形状及管脚d.内含64位只读存储器ROM,(内存出厂序列号,是对应每一个器件的唯一号),还又RAM 存有温度当前转换值及符号。
e.用户可分别设定每个器件的温度上、下限。
f.内含寄生电源。
2. DS18b20的结构:a. 64位光刻ROM ,可以看作是DS18B20的地址序列号,如表一所示。
表1b.高速暂存器RAM共占0、1两个单元:表2两个8位的RAM中,存放二进制的数,高五位是符号位,如果温度大于0OC,这五位数为0,将测到的数值乘以0.0625,即得到实际的温度值;如果温度小于0OC,高五位为1,测到的数值需要取反加1,再乘以0.0625 ,才得到实际的温度值。
c. 九个寄存器的名称及作用:表3三 DS18B20 的控制方法DS18B20的操作是通过执行操作命令实现的,其控制程序是按照DS18B20的通讯协议编制的。
第1章引言在日常生活及工农业生产中经常要涉及到温度的检测及控制,传统的测温元件有热点偶,热敏电阻还有一些输出模拟信号得温度传感器,而这些测温元件一般都需要比较多的外部硬件支持。
其硬件电路复杂,软件调试繁琐,制作成本高,阻碍了其使用性。
因此美国DALLAS半导体公司又推出了一款改进型智能温度传感器——DS18B20。
本设计就是用DS18B20数字温度传感器作为测温元件来设计数字温度计。
本设计所介绍的数字温度计与传统温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于测温比较准确得场所,或科研实验室使用。
该设计控制器使用单片机STC89C51,测温传感器使用DS18B20,显示器使用LED.第2章任务与要求2.1测量范围-50~110°C,精确到0.5°C;2.2利用数字温度传感器DS18B20测量温度信号;2.3所测得温度采用数字显示,计算后在液晶显示器上显示相应得温度值;第3章方案设计及论证3.1温度检测模块的设计及论证由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,其中还涉及到电阻与温度的对应值的计算,感温电路比较麻烦。
而且在对采集的信号进行放大时容易受温度的影响出现较大的偏差。
进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,电路简单,精度高,软硬件都以实现,而且使用单片机的接口便于系统的再扩展,满足设计要求。
3.2显示模块的设计及论证LED是发光二极管Light Emitting Diode 的英文缩写。
LED显示屏是由发光二极管排列组成的一显示器件。
它采用低电压扫描驱动,具有如下优点:1、耗电省、2、使用寿命长、3、成本低、4、亮度高、5、视角大、6、可视距离远、7、规格品种多。
3.3控制器模块的设计及论证单片机是指一个集成在一块电路芯片上的完整计算机系统。
尽管他的大部分功能集成在一块小芯片上,但是它具有一个完整计算机所需要的大部分部件:中央处理单元CPU、存储器/RAMROM和各种/IO接口,目前大部分还会具有外部存储扩展。
采用STC89C52单片机。
它是一种带8K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8的微处理器。
该器件采用ATMEL高密度非易失存储器技术制造,与工业标准51MCS指令集和输出管脚相兼容。
属于51单片机系列,是C51单片机向下完全兼容51全部系列产品。
该款单片机片内含8k Bytes ISP(I-system programmable)可反复擦写1000次的Flash只读存储器,可以通过串口进行程序的烧写,内带2k Bytes EEPROM存储空间,4个8位的可编程并行I/O口(P0口,P1口,P2口,P3口),一个全双工串口,5个中断源,2级中断优先权,3个16位的定时器/计数器),具有四种工作方式以及特殊功能寄存器(SFR)等。
3.4数字温度计总体设计第4章硬件设计4.1主控制器模块电路4.1.1 STC89C52主要功能及引脚介绍单片机STC89C52具有低电压供电高性能COMS8位单片机,片内含有8K bytes 的可反复擦写的Flash只读程序存储器和256bytes 的随机存取数据存储器,在单芯片上,拥有灵巧的8 位CPU 和在线系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。
STC89C52具有以下标准功能: 8k字节Flash,256字节RAM, 32位I/O 口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。
另外,STC89C52可降至0Hz静态逻辑操作,支持2种软件可选择节电模式。
空闲模式下,CPU 停止工作,允许RAM、定时器/计数器、串口、中断继续工作。
掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。
8位微控制器8K字节在系统可编程 Flash。
图4-1为STC89C52的引脚图:其各引脚介绍如下:P0 口:P0口是一个8位漏极开路的双向I/O口。
作为输出口,每位能驱动8个TTL逻辑电平。
对P0端口写“1”时,引脚用作高阻抗输入。
当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。
在这种模式下, P0具有内部上拉电阻。
在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指令字节。
程序校验时,需要外部上拉电阻。
P1 口:P1 口是一个具有内部上拉电阻的8 位双向I/O 口,p1 输出缓冲器能驱动4 个 TTL 逻辑电平。
对P1 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。
作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。
此外,P1.0和P1.2分别作定时器/计数器2的外部计数输入(P1.0/T2)和时器/计数器2 的触发输入(P1.1/T2EX),具体如下表所示。
在flash 编程和校验时,P1口接收低8位地址字节。
引脚号第二功能:P1.0 T2(定时器/计数器T2的外部计数输入),时钟输出P1.1 T2EX(定时器/计数器T2的捕捉/重载触发信号和方向控制)P1.5 MOSI(在线系统编程用)P1.6 MISO(在线系统编程用)P1.7 SCK(在线系统编程用)P2 口:P2 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器能驱动4 个 TTL逻辑电平。
对P2 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。
作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。
在访问外部程序存储器或用16位地址读取外部数据存储器(例如执行MOVX @DPTR)时,P2 口送出高八位地址。
在这种应用中,P2 口使用很强的内部上拉发送1。
在使用 8位地址(如MOVX @RI)访问外部数据存储器时,P2口输出P2锁存器的内容。
在flash编程和校验时,P2口也接收高8位地址字节和一些控制信号。
P3 口:P3 口是一个具有内部上拉电阻的8 位双向I/O 口,p2 输出缓冲器能驱动4 个 TTL 逻辑电平。
对P3 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。
作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。
P3口亦作为STC89C52特殊功能(第二功能)使用,如下表所示。
在flash编程和校验时,P3口也接收一些控制信号。
端口引脚第二功能: P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 INTO(外中断0)P3.3 INT1(外中断1)P3.4 TO(定时/计数器0)P3.5 T1(定时/计数器1)P3.6 WR(外部数据存储器写选通)P3.7 RD(外部数据存储器读选通)RST——复位输入。
当振荡器工作时,RST引脚出现两个机器周期以上高电平,则单片机复位。
4.1.2 STC89C52最小系统的基本电路最小系统是指能进行正常工作的最简单电路。
STC89C52最小应用系统它包含五个电路部分:电源电路、时钟电路、复位电路、片内外程序存储器选择电路、输入输出接口电路。
其中电源电路、时钟电路、复位电路是保证单片机系统能够正常工作的最基本的三部分电路,缺一不可。
(1)电源电路芯片引脚VCC一般接上直流稳压电源+5V,引脚GND接电源+5V的负极,电源电压范围在4—5.5之间,可保证单片机系统能正常工作。
为提高电路的抗干扰性能,通常在引脚VCC和GND直接接上一个10μF的电解电容和一个0.1μF陶片电容,这样可以抑制杂波串扰,从而有效确保电路稳定性。
(2)时钟电路STC89C52内部有一个用于构成振荡器的高增益反相放大器,引脚RXD和TXD分别是此放大器的输入端和输出端。
时钟可以由内部方式产生或外部方式产生。
在RXD和TXD引脚上外接定时元件,内部振荡器就产生自激振荡。
定时元件通常采用石英晶体和电容组成的并联谐振回路。
晶体振荡频率可以在1.2~12MHz之间选择,电容值在5~30pF之间选择,电容值的大小可对频率起微调的作用。
在本设计中时钟采用内部方式产生,晶振振荡频率使用12MHZ。
4.1.3 STC89C52与各部分功能块电路的连接其中P0.0-P0.7,P2.0-P2.7,P3.0-P3.7接串口输入输出端,PI.0接DS18B20的DQ 端,XTAL2,XYAL1接晶振,P0口还接上拉电阻:EA*接电源.4.2显示电路模块MT05011AR的引脚图4.3 DS18B20温度显示模块4.3.1 DS18B20的功能和引脚介绍DS18B20的性能特点如下:●独特的单线接口仅需要一个端口引脚进行通信;●多个DS18B20可以并联在惟一的三线上,实现多点组网功能;●无须外部器件;●可通过数据线供电,电压范围为3.0-5.5V;●温度以9或12位数字读数;●零待机功耗;●用户可定义报警设置;●报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;●负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作; DS18B20详细引脚功能描述如下表所示4.3.2 DS18B20的测温原理DS18B20的测温原理是这这样的,器件中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1;高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入。
器件中还有一个计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲进行计数进而完成温度测量。
计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55℃所对应的一个基数分别置入减法计数器1、温度寄存器中,计数器1和温度寄存器被预置在-55℃所对应的一个基数值。
减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时,温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器计数到0时,停止温度寄存器的累加,此时温度寄存器中的数值就是所测温度值。
其输出用于修正减法计数器的预置值,只要计数器门仍未关闭就重复上述过程,直到温度寄存器值大致被测温度值。
4.3.1 DS18B20温度传感器与单片机的接口电路DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。