当前位置:文档之家› 运算放大器主要参数测试方法说明1

运算放大器主要参数测试方法说明1

运算放大器主要参数测试方法说明1
运算放大器主要参数测试方法说明1

通用运算放大器主要参数测试方法说明

1. 运算放大器测试方法基本原理

采用由辅助放大器(A)与被测器件(DUT)构成闭合环路的方法进行测试,基本测试原理图如图1所示。

图1

辅助放大器应满足下列要求:

(1) 开环增益大于60dB;

(2) 输入失调电流和输入偏置电流应很小;

(3) 动态范围足够大。

环路元件满足下列要求:

(1) 满足下列表达式

Ri·Ib<Vos

R<Rid

R·Ib >Vos

Ros<Rf<Rid

R1=R2

R1>RL

式中:Ib:被测器件的输入偏置电流;

Vos:被测器件的输入失调电压;

Rid:被测器件的开环差模输入电阻;

Ros:辅助放大器的开环输出电阻;

(2) Rf/ Ri值决定了测试精度,但须保证辅助放大器在线性区工作。

2.运算放大器测试适配器

SP-3160Ⅲ数/模混合集成电路测试系统提供的运算放大器测试适配器便是根据上述基本原理设计而成。它由运放测试适配板及一系列测试适配卡组成,可以完成通用单运放、双运放、四运放及电压比较器的测试。运算放大器适配器原理图如附图所示。3.测试参数

以OP-77G为例,通用运算放大器主要技术规范见下表。

3.1 参数名称:输入失调电压Vos (Input Offset Voltage)。

3.1.1 参数定义:使输出电压为零(或规定值)时,两输入端间所加的直流补偿电压。

3.1.2 测试方法: 测试原理如图2 所示。

图2

(1) 在规定的环境温度下,将被测器件接入测试系统中;

(2) 电源端施加规定的电压;

(3) 开关“K4”置地(或规定的参考电压);

(4) 在辅助放大器A的输出端测得电压Vlo;

(5) 计算公式:

Vos=(Ri/(Ri+Rf))*VLo 。

3.1.3编程举例:(测试对象:OP-77G,测试系统:SP3160)

----测试名称:vos----

测量方式:Vos

Bias 1=-15.000 V

Clamp1=-10.000mA

Bias 2=15.000 V

Clamp2=10.000mA

测量高限=0.0001 V

测量低限=____ V

测量延迟:50mS

箝位延迟:50mS

SKon=[0,4,11,12,13,19,23,27]

电压基准源2电压=0V

电压基准源2量程+/-2.5V

电压基准源3电压=0V

电压基准源3量程+/-2.5V

测试通道TP1

测量单元DCV

DCV量程:+/-2V

3.2 参数名称:输入失调电流Ios (Input Offset Current)。

3.2.1 参数定义:使输出电压为零(或规定值)时,流入两输入端的电流之差。

3.2.2 测试方法:测试原理如图3 所示。

图3

(1)在规定的环境温度下,将被测器件接入测试系统中;

(2) 电源端施加规定的电压;

(3) 开关K4置“地”(或规定的参考电压);

(4) 开关K1、K2闭合,在辅助放大器A的输出端测得电压VL0;

(5) 开关K1、K2断开,在辅助放大器A的输出端测得电压VL1;

(6) 计算公式:

Ios=(Ri/(Ri+Rf))*((VL1-VL0)/R) 。

3.2.3编程举例:(测试对象:OP-77G,测试系统:SP3160)

测试条件详见下一参数。

3.3 参数名称:输入偏置电流Ib (Input Bias Current)。

3.3.1 参数定义:使输出电压为零(或规定值)时,流入两输入端电流的平均值。

3.3.2 测试方法:测试原理如图4 所示。

图4

(1) 在规定的环境温度下,将被测器件接入测试系统中;

(2) 电源端施加规定的电压;

(3) 开关K4置“地”(或规定的参考电压);

(4) 开关K1断开、K2闭合,在辅助放大器A的输出端测得电压VL2;

(5) 开关K1闭合、K2断开,在辅助放大器A的输出端测得电压VL3;

(6) 计算公式:

Ib=(Ri/(Ri+Rf))*((VL2-VL3)/2R) 。

3.3.3 编程举例:(测试对象:OP-77G,测试系统:SP3160)

----测试名称:Ib/Ios----

测量方式:Ib/Ios

Bias 1=-15.000 V

Clamp1=-10.000mA

Bias 2=15.000 V

Clamp2=10.000mA

测量高限=2.8 nA

测量低限=2.8 nA

测量延迟:10mS

箝位延迟:10mS

SKon=[0,4,11,12,13,19,23,27]

电压基准源2电压=0V

电压基准源2量程+/-2.5V

电压基准源3电压=0V

电压基准源3量程+/-2.5V

测试通道TP1

测量单元DCV

:+/-2V 程量DCV.

3.4 参数名称:开环电压增益Avo (Large Signal Voltage Gain)。

3.4.1 参数定义:器件开环时,输出电压变化与差模输入电压变化之比。

3.4.2 测试方法:测试原理如图5 所示。

图5

(1) 在规定的环境温度下,将被测器件接入测试系统中;

(2) 电源端施加规定的电压;

(3) 开关K4置“1”,在辅助放大器A的输出端测得电压VL4;

(4) 开关K4置“2”,在辅助放大器A的输出端测得电压VL5;

(5) 计算公式:

Avo=((Vref-Vref)/(VL4-Vl5))*((Ri+Rf)/Ri) -+或

Avo=20lg(((Vref-Vref)/|(VL4-Vl5)|)*((Ri+Rf)/Ri))(dB) 。-+ 3.4.3 编程举例:(测试对象:OP-77G,测试系统:SP3160)

----测试名称:Avo----

测量方式:Op_Avo

Bias 1=-15.000 V

Clamp1=-10.000mA

Bias 2=15.000 V

Clamp2=10.000mA

测量高限=____ dB

测量低限=126 dB

测量延迟:10mS

箝位延迟:10mS

SKon=[0,4,11,12,13,17,19,23,27]

电压基准源2电压=0V

电压基准源2量程+/-2.5V

电压基准源3电压=-5_5V

电压基准源3量程+/-10V

测试通道TP1

测量单元DCV

:+/-2V 程量DCV.

3.5 参数名称:共模抑制比CMRR (Common-Mode Rejection Ratio)。

3.5.1 参数定义:差模电压增益与共模电压增益之比。

3.5.2 测试方法:测试原理如图6 所示。

图6

(1) 在规定的环境温度下,将被测器件接入测试系统中;

(2) 电源端施加规定的电压;

(3) 输入端施加规定的直流共模信号电压Vic+,在辅助放大器A的输出端测得电压VL6;

(4) 输入端施加规定的直流共模信号电压Vic-,在辅助放大器A的输出端测得电压VL7;

(5) 计算公式:

CMRR=((Vic-Vic)/(VL6-VL7)*((Ri+Rf)/Ri)-+或

CMRR=20lg(((Vic-Vic)/(VL6-VL7)*((Ri+Rf)/Ri))(dB) 。-+

3.5.3 编程举例:(测试对象:OP-77G,测试系统:SP3160)

----测试名称:CMRR----

测量方式:Cmrr

Bias 1=-5_-25 V

Clamp1=-10.000mA

Bias 2=25_5 V

Clamp2=10.000mA

测量高限=____ dB

测量低限=116 dB

:10mS 测量延迟

箝位延迟:10mS

SKon=[0,4,11,12,13,18,19,23,27]

电压基准源2电压=0V

电压基准源2量程+/-2.5V

电压基准源3电压=-5_5V

电压基准源3量程+/-10V

测试通道TP1

测量单元DCV

:+/-2V 程量DCV.

放大器注意参数及概念

最近在使用一款PGA,在PGA输入端接地时发现输出总有个矩形波信号,放大1000倍后非常明显,怀疑是电源引起的干扰。开始的时候在输入正负电源处都加了100uf和0.1的电容,但效果不明显,后来准备再电源输入端再串联一个电阻,一开始电阻选择的是1k,但上电后发现芯片根本都无法工作,测量芯片两端的电源电压发现才一点多v。这时候就看了下数据手册的静态电流,发现竟然是5mA,然后这个PGA是5v供电的,如果PGA正常工作,1k电阻上的分压都能到5v。所以后来用了个50欧的电阻配合着100uf和0.1uf构成了个低通滤波,这样一来芯片工作正常了,然后输出的波纹也小了很多。 在选择运放时应该知道自己的设计需求是什么,从而在运放参数表中来查找。一般来说在设计中需要考虑的问题包括1. 运放供电电压大小和方式选择;2.运放封装选择;3.运放反馈方式,即是VFA (电压反馈运放)还是CFA(电流反馈运放);4.运放带宽;5.偏置电压和偏置t电流选择;6温漂;7.压摆率;8.运放输入阻抗选择;9.运放输出驱动能力大小选择;10.运放静态功耗,即ICC电流大小选择;11.运放噪声选择;12.运放驱动负载稳定时间等等。 偏置电压和输入偏置电流 在精密电路设计中,偏置电压是一个关键因素。对于那些经常被忽视的参数,诸如随温度而变化的偏置电压漂移和电压噪声等,也必须测定。精确的放大器要求偏置电压的漂移小于200μV和输入电压噪声低于6nV/√Hz。随温度变化的偏置电压漂移要求小于1μV/℃。 低偏置电压的指标在高增益电路设计中很重要,因为偏置电压经过放大可能引起大电压输出,并会占据输出摆幅的一大部分。温度感应和张力测量电路便是利用精密放大器的应用实例。 低输入偏置电流有时是必需的。光接收系统中的放大器就必须具有低偏置电压和低输入偏置电流。比如光电二极管的暗电流电流为pA量级,所以放大器必须具有更小的输入偏置电流。CMOS和JFET输入放大器是目前可用的具有最小输入偏置电流的运算放大器。 因为我现在用的是光电池做采集的系统,所以在使用中重点关心了偏置电压和电流。如果还有其他的需要,这时应该对其他参数也需要多考虑了。 1、输入失调电压VIO(Input Offset Voltage) 输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。 输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。 2、输入失调电压的温漂αVIO(Input Offset Voltage Drift) 输入失调电压的温度漂移(又叫温度系数)定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。 这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变

激光放大器使用说明

GDPH-270激光放大器使用说明 一、调整放大器设定值 放大器是检测PVC两板之间泡沿距离大小的一种传感器。如果设置不好,放大器将找不到两版之间的最大值,会导致冲裁初始化失败,也会导致冲裁步进的不准确,从而影响照相检测功能。一般情况下,只需要调整放大器设定值就可以满足要求,调整放大器设定值的方法如下。 设定放大器的数值可以通过手动把PVC片子慢慢的通过冲裁导板的检测区域观察放大器的数值变化,记住放大器数值的最大值,然后用最大值减去200-400就是我们需要设定的数值,然后把这个数值输入到放大器中就可以了。把数值输入到放大器的方法是:直接按住放大器的左右键入下图1-25所示。 图1-25 放大器设置 图中区域1为黄色数值是需要设置的数值,就是需要人为输入进去的数值。 区域2红色数字是所检测到的实际数值,区域3是放大器的左右键,即手动按钮,直接按下即可增大或减小设定数值。 一般情况下只需要调整设定值就可以满足现场要求,如果工艺改变,实际检测精度达不到要求,可以更改放大器的灵敏度,可以对放大器进行复位和初始化等操作,详细方法见本说明第二章。 二、激光传感器设置 -1-

第一章第7步介绍了调整放大器设定值的方法,如果实际检测精度达不到要求,可以更改放大器的灵敏度,2.1节为调整灵敏度方法。2.2节为初始化放大器的方法,如果需要复位,可参照2.3节的步骤。如果需要重设默认值,可以对放大器初始化。2.4节为激光传感器感测头安装要求。 2.1灵敏度设置 放大器灵敏度共分5档,下面再简单介绍一下如何设置放大器灵敏度。 第一步:按住“MODE”键3秒钟以上,如下图所示: 图2-1 灵敏度调整 第二步:按方向键,将出现几种模式,默认为“”模式,可根据所需灵敏度来选择不同的模式。例如,如果要求灵敏度较高,可选择“hsp”模式。 第三步:按“MODE ”键,显示“”,再按“MODE”键,显示“”,再按“MODE”键,出现数字,这样就完成了放大器的灵敏 -2-

运算放大器组成的各种实用电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 (原文件名:1.jpg)

运放参数解释

运放带宽相关知识! 一、单位增益带宽GB 单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 二、运放的带宽是表示运放能够处理交流信号的能力(转) 对于小信号,一般用单位增益带宽表示。单位增益带宽,也叫做增益/带宽积能够大致表示运放的处理信号频率的能力。例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。 对于大信号的带宽,既功率带宽,需要根据转换速度来计算。 对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。 1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。 2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。 3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。 就是Gain Bandwidth=放大倍数*信号频率。 当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。 在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。 也就是在设计电路时要同时满足增益带宽和功率带宽。 运放关于带宽和增益的主要指标以及定义 开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。 单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽

集成运放的主要参数以及测试方法

集成运放的性能主要参数及国标测试方法 集成运放的性能可用一些参数来表示。 集成运放的主要参数: 1.开环特性参数 (1)开环电压放大倍数Ao。在没有外接反馈电路、输出端开路、在输入端加一个低频小信号电压时,所测出输出电压复振幅与差动输入电压复振幅之比值,称为开环电压 放大倍数。Ao越高越稳定,所构成运算放大电路的运算精度也越高。 (2)差分输入电阻Ri。差分输入电阻Ri是运算放大器的主要技术指标之一。它是指:开环运算放大器在室温下,加在它两个输入端之间的差模输入电压变化量△V i与由它所引起的差模输入电流变化量△I i之比。一般为10k~3M,高的可达1000M以上。 在大多数情况下,总希望集成运放的开环输入电阻大一些好。 (3)输出电阻Ro。在没有外加反馈的情况下,集成运放在室温下其输出电压变化与输出电流变化之比。它实际上就是开环状态下集成运放输出级的输出电阻,其大小反映 了放大器带负载的能力,Ro通常越小越好,典型值一般在几十到几百欧。 (4)共模输入电阻Ric。开环状态下,两差分输入端分别对地端呈现的等效电阻,称为共模输入电阻。 (5)开环频率特性。开环频率特性是指:在开环状态下,输出电压下降3dB所对应的通频带宽,也称为开环-3dB带宽。 2.输入失调特性 由于运算放大器输入回路的不对称性,将产生一定的输入误差信号,从而限制里运算放大器的信号灵敏度。通常用以下参数表示。 (1)输入失调电压Vos。在室温及标称电源电压下,当输入电压为零时,集成运放的输出电位Vo0折合到输入端的数值,即: Vos=Vo0/Ao 失调电压的大小反映了差动输入级元件的失配程度。当集成运放的输入端外接电阻比较小时。失调电压及其漂移是引起运算误差的主要原因之一。Vos一般在mV级,显然它越小越好。 (2)输入失调电流Ios。在常温下,当输入信号为零时,放大器两个输入端的基极偏置电流之差称为输入失调电流。即: Ios=Ib- — Ib+ 式中Ib-、Ib+为放大器内两个输入端晶体管的基极电流。Ios一般在零点几微安到零点零几微安数量级,其值越小越好。失调电流的大小反映了差动输入级两个晶体管B值的失配程度,当集成运放的输入端外接电阻比较大时,失调电流及其漂移将是运算误差的主要原因。(3)输入失调电流温漂dIos。温度波动对运算放大器的参数是有影响的。如温度变化时,不仅能使集成运放两输入晶体管的基极偏置电流Ib-、Ib+发生变化,而且两者的变化率也不相同。也就是输入失调电流Ios将随温度而变化,不能保持为常数。一般 常用的集成运放的dIos指标如下: ●通用I型低增益运放。在+25℃~+85℃范围约为5~20nA/℃,-40℃~+25℃范围约为 20~50nA/℃。 ●通用Ⅱ型中增益运放。dIos约为5~20nA/℃。 ●低漂移运放。dIos约为100PA/℃ (4)输入失调电压温漂dVos。在规定的工作温度范围内,Vos随温度的平均变化率,即:dVos=△Vos/△T一般为1~50uV/℃,高质量的低于0.5uV。由于该指标不像Vos可

干线放大器使用说明书

移动通信干线放大器 使用说明书 2008年9月

目录 前 言 (3) 第一章 产品介绍 (4) 1.1概述 (4) 1.2设备的主要特点 (4) 1.3设备工作原理 (4) 第二章 主要技术性能和技术条件 (5) 2.1主要技术性能指标 (5) 2.2通用技术条件 (6) 第三章 设备开通 (7) 3.1设备安装前的准备工作 (7) 3.2设备安装与开通步骤 (7) 3.3设备安装与开通注意事项 (10) 3.4设备与附件 (11) 第四章 系统的维护与保养 (12) 4.1系统维护 (12) 4.2系统保养 (12) 第五章 安全使用注意事项 (13) 第六章 附 则 (14)

前 言 版权所有,侵权必究。 本公司对本手册保留一切权利。任何单位和个人,未经公司的书面许可,不得擅自摘抄、复制本手册(包括电子版本)的部分或全部,并不得以任何形式进行传播。 本手册仅供参考,如有改动恕不另行通知。 本使用说明书主要介绍的是移动通信干线放大器的安装、使用和维护方法,用户在安装和使用 该设备之前,请认真阅读本手册。 一、设备安全使用要则 1.MS、BS射频信号接口严禁空载。连接或断开电缆前必须先切断设备电源。 2.注意防护信号接口,防止撞坏接头;同时防止杂物、灰尘落入。 3.非专业维护人员,不得随意拆开设备,以免损坏设备。 4.维护设备时,应采取静电防护措施。 5.注意对雷电和电源浪涌的防护,电源要有必要的防雷设施,不要将设备和大功率用电器安装在同一电源支路上。 二、参考技术规范 1.3GPP TS25.105 《UTRA (BS) TDD: Radio transmission and reception》 2.GB/T2423.1-2001《电工电子产品基本环境试验规程 试验A:低温试验方法》 3.GB/T2423.2-2001《电工电子产品基本环境试验规程 试验B:高温试验方法》 4.《GSM数字蜂窝移动通信网干线放大器技术要求和测试方法》 5.GB15842-1995《移动通信设备安全要求和试验方法》 6.《900MHz1800MHz GSM直放站技术要求和测试方法》 7.《GSM直放站测试规范(监控协议联通GSM1.0)》 8.《中国移动直放站监控系统功能规范1.0.0》

运算放大器地全参数选择

运算放大器的参数指标 1.开环电压增益Avd 开环电压增益(差模增益)为运算放大器处于开环状态下,对小于200Hz的交流输入信号的放大倍数,即输出电压与输入差模电压之比。它一般为104~106,因此它在电路分析时可以认为无穷大。 2.闭环增益A F 闭环增益是运算放大器闭环应用时的电压放大倍数,其大小与放大电路的形式有关,与放大器本身的参数几乎无关,只取决于输入电组和反馈电阻值的大小。 反相比例放大器,其增益为 A F=- RI RF 3.共模增益Avc和共模抑制比 当两个输入端同时加上频率小于200Hz的电压信号Vic时,在理想情况下,其输出电压应为零。但由于实际上内部电路失配而输出电压不为零。此时输出电压和输入电压之比成为共模增益Avc。 共模抑制比Kcmr= Avc Avd 共模增益 运算放大器的差模增益, 通常以对数关系表示:Kcmr=20log Avc Avd 共模增益 运算放大器的差模增益 共模抑制比一般在80~120Db范围内,它是衡量放大器对共模信号抑制能力高低的重要指标。这不仅是因为许多应用电路中要求抑制输入信号中夹带的共模干扰,而且因为信号从同相端输入时,其两个输入端将出现较大的共模信号而产生较大的运算误差。

在常温(25℃)下当输入电压为零时,其输出电压不为零。此时将其折算到输入端的电压称为输入失调电压。它一般为±(0.2~15)mV 。这就是说,要使放大器输出电压为零,就必须在输入端加上能抵消Vio 的差值输入电压。 5. 输入偏置电流 在常温(25℃)下输入信号为零(两个输入端均接地)时,两个输入端的基极偏置电流的平均值称为输入偏置电流,即 I IB =2 1( I IB -+ I IB+) 它一般在10nA~1uA 的范围内,随温度的升高而下降,是反映放大器动态输入电阻大小的重要参数。 6. 输入失调电流I IO 输入失调电流可表示为 I IO =︱I IB -- I IB+∣ 在双极晶体管输入级运算放大器中,I IO 约为(0.2~0.1)I IB -或(0.2~0.1)I IB+。当I IO 流过信号源内阻时,产生输入失调电压。而且它也是温度的函数。 7. 差模输入电阻R ID 在一般应用电路中,输入阻抗是指差模输入电阻R ID 。它一般为100K Ω~1M Ω,高输入阻抗运算放大器的差模输入电阻可达1013Ω。 8. 温度漂移 输入失调电压、输入失调电流和输入偏置电流等参数均随温度、时间和电源等外界条件的变化而变化。其中输入偏置电流的变化是造成放大器温度漂移的主要原因。对于双极晶体管输入级运算放大器,输入偏置电流随温度上升而变小,数量级为nA 级。

几种常用集成运算放大器的性能参数解读

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

运放参数说明(加选型和例子)

1、输入失调电压(Input Offset Voltage) V OS 若将运放的两个输入端接地,理想运放输出为零,但实际运放输出不为零。此时,用输出电压除以增益得到的等效输入电压称为输入失调电压。 其值为数mV,该值越小越好,较大时增益受到限制。 输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在 1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 本文来自: https://www.doczj.com/doc/9012411753.html, 原文网址: https://www.doczj.com/doc/9012411753.html,/info/analog/3366_2.html 2、输入失调电压的温漂(Input Offset Voltage Drift),又叫温度系数 TC V OS 一般为数uV/.C 输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 本文来自: https://www.doczj.com/doc/9012411753.html, 原文网址: https://www.doczj.com/doc/9012411753.html,/info/analog/3366_2.html 3、输入偏置电流(Input Bias Current) I BIAS 运放两输入端流进或流出直流电流的平均值。 对于双极型运放,该值离散性较大,但却几乎不受温度影响;而对于MOS型运放,该值是栅极漏电流,值很小,但受温度影响较大。 输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

集成运算放大器IC的主要参数【经典】

集成运算放大器IC的主要参数 本节以《中国集成电路大全》集成运算放大器为主要参考资料,同时参考了其它相关资料。 集成运放的参数较多,其中主要参数分为直流指标和交流指标。 其中主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。 主要交流指标有开环带宽、单位增益带宽、转换速率SR、全功率带宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。 这里重点描述——直流指标 输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。 输入失调电流IIO:输入失调电流定义为当运放的输出直流电压为零时,其两输入端偏置电流的差值。输入失调电流同样反映了运放内部的电路对称性,对称性越好,输入失调电流越小。输入失调电流是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电流大约是输入偏置电流的百分之一到十分之一。输入失调电流对于小信号精密放大或是直流放大有重要影响,特别是运放外部采用较大的电阻(例如10k?或更大时),输入失调电流对精度的影响可能超过输入失调电压对精度的影响。输入失调电流越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电流的温度漂移(简称输入失调电流温漂):输入偏置电流的温度漂移定义为在给定的温度范围内,输入失调电流的变化与温度变化的比值。这个参数实际是输入失调电流的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。输入失调电流温漂一般只是在精密运放参数中给出,而且是在用以直流信号处理或是小信号处理时才需要关注。

集成运算放大器的外特性及参数

集成运算放大器的外特性及参数 1. 理想集成运算放大器 所谓理想运放就是将各项技术指标理想化的集成运放,即认为: 开环差模电压放大倍数 Od A =∞; 差模输入电阻 id R =∞; 输出电阻 O R =0; 共模抑制比 CMR K =∞; 输入偏置电流 id I =0; 上限频率 H f =∞ 。 2. 集成运算放大器的电压传输特性 我们称集成运放输出电压O U 与其输入电压id U 之间的关系曲线为电压传输特性,集成运放的电压传输特性如图2-15(a )所示。 (a) (b) 图2-15 集成运放的电压传输特性 (a) 集成运放的电压传输特性 (b) 理想集成运放的电压传输特性 在id U 很小的范围内为线性区,id od O U A U =,输出电压的最大值为OM U ±,当

od OM A | |U U >||id 时,输出信号O U 不再跟随id U 线性变化,进入饱和工作区(非线性区) 。由于集成运放的开环差模电压放大倍数Od A 非常高,一般为104 ~107 ,即80~140dB ,所以它的线性区非常窄,图2-15(b )为理性运算放大器的电压传输特性。如果输出电压最大值 V U O M 13±=±。Od A =5×105,那么只有当输入信号|id U |<26μV 时,电路才会工作 在线性区。否则输出级就将工作在正向饱和或负向饱和状态,输出电压O U 不是OM U +就是 OM U -。其饱和值OM U ±接近正、负电源电压值。 3. 集成运算放大器的参数 集成运算放大器的性能可以用各种参数来表示,了解这些参数有助于正确选择和使用各种不同类型的集成运放。常用的典型集成运算放大器的参数详见表2-1。 表2-1典型集成运算放大器的参数表

YE5850A电荷放大器使用说明书2

YE5850A电荷放大器 使 用 说 明 书 江苏联能电子技术有限公司

一、概述 YE5850A电荷放大器是一种输出电压与输入电荷量成正比的宽带电荷放大器,可配接压电式传感器测量振动、冲击、压力等机械量,广泛应用于水利、动力、采矿、交通、建筑、地震、航空、航天、兵器、化爆等部门。由于下限频率极低,因而特别适合对压电式压力,力传感器进行准静态标定。 YE5850A电荷放大器具有如下特点: ●采用高质量进口器件,稳定可靠 ●可输入电荷信号或电压信号 ●输入等效直流电阻可达1014Ω ●频带宽2μH z-100KH z ●输入可配接长电缆而不影响测量精度 ●操作简单,维修方便,性能好,价格低 ●有两种极性输出 使用环境符合SJ2075-82《电子测量仪器环境要求及其试验方法》Ⅱ组条件。 二、技术参数 2.1 输入特性 2.1.1 最大输入电荷量:106PC。 2.1.2 直流分流电阻:约1014Ω。 2.3 传感器灵敏度调节:三位数字转盘调节传感器电荷灵敏度1~109.9PC/ Unit(1)。 2.4 准确度 三档低灵敏度档: 当输入负载分别小100nF、47nF、10nF时,1KHz基准条件(2),(2) <±1%,额定 工作条件(3) <±2%。 二档高灵敏度档: 当输入负载分别小4.7nF时,1KHz基准条件<±1%,额定工作条件<±2%。 2.5滤波器及频率响应 2.5.1 高通滤波器: 下限频率(-3dB)和时间常数见表1。 注:(1)unit表示机械单位,取决于所用传感器的单位,例:加速度g,绝对加速度单位m/S2,压力单位Kg/cm2,力单位N等。 (2)基准条件:a、20℃±2%;b、相对湿度(45~75)%RH;c、供电电 压AC220V±2%,DC±18V~27V;d、输出负载>10KΩ。 (3)额定工作条件:a、0℃~40℃;b、相对湿度(20~90)%RH;c、 供电电压AC220V±10%,DC±18V~27V。 偏差:0.3Hz以上-3dB±1dB,0.3Hz和0.3Hz以下档为-3dB±1.5dB。 衰减斜率:约-6dB/oct。 M档时间常数:偏差±50% 2.5.2 低通滤波器: 上限频率:0.3,1,3,10,30和100kHz(-3dB) 偏差:-3dB±1dB 衰减斜率:约-12dB/oct。 2.6 输出特性 2.6.1 最大输出:±10Vp(D C~30 kHz)

运算放大器主要参数测试方法说明1

通用运算放大器主要参数测试方法说明 1. 运算放大器测试方法基本原理 采用由辅助放大器(A)与被测器件(DUT)构成闭合环路的方法进行测试,基本测试原理图如图1所示。 图1 辅助放大器应满足下列要求: (1) 开环增益大于60dB; (2) 输入失调电流和输入偏置电流应很小; (3) 动态范围足够大。 环路元件满足下列要求: (1) 满足下列表达式 Ri·Ib<Vos R<Rid R·Ib >Vos Ros<Rf<Rid R1=R2 R1>RL 式中:Ib:被测器件的输入偏置电流; Vos:被测器件的输入失调电压; Rid:被测器件的开环差模输入电阻; Ros:辅助放大器的开环输出电阻; (2) Rf/ Ri值决定了测试精度,但须保证辅助放大器在线性区工作。

2.运算放大器测试适配器 SP-3160Ⅲ数/模混合集成电路测试系统提供的运算放大器测试适配器便是根据上述基本原理设计而成。它由运放测试适配板及一系列测试适配卡组成,可以完成通用单运放、双运放、四运放及电压比较器的测试。运算放大器适配器原理图如附图所示。 3.测试参数 以OP-77G为例,通用运算放大器主要技术规范见下表。

3.1 参数名称:输入失调电压Vos (Input Offset Voltage)。 3.1.1 参数定义:使输出电压为零(或规定值)时,两输入端间所加的直流补偿 电压。 3.1.2 测试方法: 测试原理如图2 所示。 图2 (1) 在规定的环境温度下,将被测器件接入测试系统中; (2) 电源端施加规定的电压; (3) 开关“K4”置地(或规定的参考电压); (4) 在辅助放大器A的输出端测得电压Vlo; (5) 计算公式: Vos=(Ri/(Ri+Rf))*VLo 。 3.1.3编程举例:(测试对象:OP-77G,测试系统:SP3160) ----测试名称:vos---- 测量方式:Vos Bias 1=-15.000 V Clamp1=-10.000mA Bias 2=15.000 V Clamp2=10.000mA 测量高限=0.0001 V 测量低限=____ V 测量延迟:50mS 箝位延迟:50mS SKon=[0,4,11,12,13,19,23,27] 电压基准源2电压=0V 电压基准源2量程+/-2.5V 电压基准源3电压=0V 电压基准源3量程+/-2.5V 测试通道TP1 测量单元DCV DCV量程:+/-2V

全国电子设计大赛射频宽带放大器

全国电子设计大赛

射频宽带放大器(D题) 摘要 本设计以增益调整、带宽预置、单片机反馈调节为核心,制作一个射频宽带放大器,要求具有0.3~100MHz通频带,增益0~60dB范围内可调,并且实现输入输出阻抗、最大输出正弦波有效值、指定频带内平坦度等功能指标要求。由于系统输入信号小,频率高,带宽要求大,可控增益范围宽,并且需要满足平坦度、输出噪声电压等指标。为此,采用高增益带宽运放组成频带预置、AD8367的压控增益放大系统完成增益调整、单片机实现反馈调节。除此之外,通过增加缓冲级、外加硬件保护措施有效地抑制了高频信号的噪声和自激振荡。经测试,系统对mV ≤的输入信号实现了增益0~60dB范围内可调,带宽0.3~100MHz,并在1 1~80MHz频带内增益起伏dB 1 ≤,且全程波形无明显失真。完成了题目所要求的所有基本要求以及绝大部分发挥部分的性能指标。 关键字:带宽预置AD8367压控增益单片机

1. 系统方案设计与论证 1.1总体方案设计与论证 分析该射频宽带放大器设计的指标,为达到题目所设定带宽与增益可调,并且能够满足在输入和输出阻抗=50Ω的情况下,最大输出正弦波电压有效值达到要求的目的,我们将整个系统分为前置缓冲级、带宽预置、增益调整、输出缓冲级、峰值检波等部分组成,主控器采用STC12系列单片机。系统整体框图如图1所示: 图1 系统框图 1.2前置缓冲级的方案论证与选择 前置缓冲电路使用电压跟随器实现, 如图2所示。考虑到本系统的通频带为 0.3~100MHz ,且输入阻抗限定为50Ω,由 正相输入电压跟随器的输入阻抗为R j 趋 于无穷大,所以图2电路的输入阻抗为 k k k k R R R R R R R R ≈+*==j j j n i //。则可令实际 电路取R k =50Ω以达到输入阻抗要求。除 此之外,此前置放大电路还具有缓冲、避 图2 前置缓冲级 免引入噪声等作用,起到了良好的隔离功能。其电压增益接近于1,运算放大器选用AD8005,此放大器的增益带宽积达到270MHz 。 1.3带宽预置的方案论证与选择 方案一:通过对继电器L 1和L 2触点的控制实现系统通频带0.3~20MHz 和

功放使用说明书

QiSheng 功 放 使 用 说 明 书 该说明书为东莞市奇声电子实业有限公司版权所有

安全碱知 请阅读*用户指南 鬻务愁仏真遂守本用户揩南中的愷明。它有助于悠正■安 芸和援作本爲能.拿用它的先进功籠?i#舉存本屈户!h 南 留件以丘參考u ?&-話丹軼鬓电主运睦、羔潯楚枣产巔受更淋或 豈軌 ■吿:本产鬲不耨受液谑滋灘或锁 洋 黑 心再塔董有渣体的曉炼 应疋 “ 攥卸 产品上或龙产岛册 匚王' 近?切裁it 淹律憑入乘麴的任義部 ":蘆磁埜搏念逆*刊?*妥孑勒讥虬孔竝屠範理 不当' 电洁可踐导龜■畑炖戦.藕蛮对创蜒巖拆 氛 妬看100乜 ⑵m 粗上或岛饥 潺M 昼理拠8 电独 更換电進迥心稈建民上蟆芒董型轄玉号「 雙吉:如果电迪更渙不当.耶MMMT 焙馳血一更囲址 歯嗽 期勢畤认诗的他叫 CR2O32暴DL3O32 等M 钛運电港? 繭适titff 舉旧电池.胃它忏対目地现章"请勿粹 JI 夏化' 企就康茨善烦育的电子产品一 冲时引歳学愆哉璋翩弐火宅 H 心为於电击的念险*拿忘豊人员蓬疵却本产品° + g 接的绦烽人貝洱邂蚪公李宾。 ?K ,tvitaiAit utlli ^kK It£fe I ■ Lrt*l>'IIVAftiltfTi?*, WifiZW 内間期久貳闪电标忑用来?示用户.那境 外亮闷存苻耒紡冷的危祚电JT 耳电※皓右可靛客戍 电奇1&瞠? A 系堆上标示的尊边三鬲理内的i?収号标忑旨布? 示用 /!\ 户.在本用山抬旳力牡楫冷笛靈劉?忡和皇爭招示' 小心:为訪止电击.恥粮电簿蛭播头3朗B 审t 准交涛 俺凉」插座上的竟棘£ 插头要完全SL\播座. #沁:壓罚捧慕吾屋播走遜真它左兀.逗整莖損门理阵. 可盐导塹育碗光雄稈捷生危险的电却舟刼"除具有 适当资格的疆务入盘弊.住気心不拇運整糜算轿*光播 舷■辄 ■希 r 割将崔何駅失次豪f 握点毬的蜻密■于粗■ 工或軽近盛设备* ■吿:邑m a 部件.可繼車连息蔻趙. ms 芬、$乾扎毕镁用. 注?:本产鬲込:标患左十产品虽忘-.■ 注童:以頁忘宇内連用本产品:在枣卉、旅童汽乍或惡範 上匿用聿产品也小捋$本 产品的设计聂謝试麹衷; 注曾;阳就『??翼圭 襦 Tt ?巴帶偌卅十? ■■紬挣- 那却談橹養的设畜应当可沁連像畫王作。 f 匕 咗爭丄口 ■ I .本产品拦合所有竽盟摘會要囂. I U 您可以从 www.Bosexoni/com pl iancs 找到完整 的睜育 声明「 1类漱光产品 抿扬EMEC 60825.粋本CD Ji 啟机归粪为1娄激光产 品4 —类滋光产品的标古位于1S 备旅凱, 1”在产刚之畝 诒闻连本文主于矿有组禅的指示■= 2.谓棵存这些幅示■祈作以后拥竜」 3” 11注童本产船上U 阴用户检南屮的才有皆告= 4+谓)?守所肓桶示, S- 水或漏遷环境帽近檯用本迅* - Ml 勿在理EL 水益.厨宦忠櫚?况衣垃"更虚的地卜室’前一掘乜阳 亡一或任舸有■■貳啦态宜时地月便K 齐讦莆■: 虽 只醍便用干布-井週守Boam 梵司的摘示进行清 却右洼淸 才前茫本产品电洱饮从电通捕升卜慣氏 T*谄勿堵塞任何11凤口「谓按制谐曲的说明进行簣萼- 荷■ 廉本产品的可豊运厅,咲从防止其览热.tttt* 产品放在 A

运算放大器常见问题

1.一般反相/同相放大电路中都会有一个平衡电阻,这个平衡电阻的作用是什么呢? (1) 为芯片内部的晶体管提供一个合适的静态偏置。 芯片内部的电路通常都是直接耦合的,它能够自动调节静态工作点,但是,如果某个输入引脚被直接接到了电源或者地,它的自动调节功能就不正常了,因为芯片内部的晶体管无法抬高地 线的电压,也无法拉低电源的电压,这就导致芯片不能满足虚短、虚断的条件,电路需要另外分 析。 (2)消除静态基极电流对输出电压的影响,大小应与两输入端外界直流通路的等效电阻值平衡, 这也是其得名的原因。 2.同相比例运算放大器,在反馈电阻上并一个电容的作用是什么?? (1)反馈电阻并电容形成一个高通滤波器, 局部高频率放大特别厉害。 (2)防止自激。 3.运算放大器同相放大电路如果不接平衡电阻有什么后果? (1)烧毁运算放大器,有可能损坏运放,电阻能起到分压的作用。 4.在运算放大器输入端上拉电容,下拉电阻能起到什么作用?? (1)是为了获得正反馈和负反馈的问题,这要看具体连接。比如我把现在输入电压信号,输出电 压信号,再在输出端取出一根线连到输入段,那么由于上面的那个电阻,部分输出信号通过该电 阻后获得一个电压值,对输入的电压进行分流,使得输入电压变小,这就是一个负反馈。因为信 号源输出的信号总是不变的,通过负反馈可以对输出的信号进行矫正。 5.运算放大器接成积分器,在积分电容的两端并联电阻RF 的作用是什么? (1) 泄放电阻,用于防止输出电压失控。 6.为什么一般都在运算放大器输入端串联电阻和电容? (1)如果你熟悉运算放大器的内部电路的话,你会知道,不论什么运算放大器都是由几个几个晶 体管或是MOS 管组成。在没有外接元件的情况下,运算放大器就是个比较器,同相端电压高的时 候,会输出近似于正电压的电平,反之也一样……但这样运放似乎没有什么太大的用处,只有在 外接电路的时候,构成反馈形式,才会使运放有放大,翻转等功能…… 7.运算放大器同相放大电路如果平衡电阻不对有什么后果? (1)同相反相端不平衡,输入为0 时也会有输出,输入信号时输出值总比理论输出值大(或小) 一个固定的数。 (2)输入偏置电流引起的误差不能被消除。 8.理想集成运算放大器的放大倍数是多少输入阻抗是多少其同相输入端和反相输入端之间的电 压是多少? (1) 放大倍数是无穷大,输入阻抗是无穷小,同向输入和反向输入之间电压几乎相同(不是0

电子综合设计测量放大器

第6节 电子综合设计范例5----测量放大器 一、设计任务与要求 1、设计任务 设计并制作一个测量放大器及所用的直流稳压电源。参见图1。 输入信号VI取自桥式测量电路的输出。当R1=R2=R3=R4时,V I=0。R2改变时,产生V I≠0的电压信号。测量电路与放大器之间有1 m长的连接线。 2、设计要求 ⑴基本要求 ①测量放大器 a. 差模电压放大倍数A VD=1~500,可手动调节; b. 最大输出电压为±10V,非线性误差<0.5%; c. 在输入共模电压+7.5 V~-7.5 V范围内,共模抑制比KCMR>105; d. 在A VD=500时,输出端噪声电压的峰-峰值小于1 V; e. 通频带0~10Hz f. 直流电压放大器的差模输入电阻≥2 MΩ(可不测试,由电路设计予以保证)。 ②设计并制作上述放大器所用的直流稳压电源。由单相220V交流电压供电。交流电压变化范围为+10%~-15%。 ③设计并制作一个信号变换放大器(参见图2)。将函数发生器单端输出的正弦电压信号不失真地转换为双端输出信号,用作测量直流电压放大器频率特性的输入信号。 ⑵发挥部分 ①提高差模电压放大倍数至A VD=1000,同时减小输出端噪声电压。 ②在满足基本要求(I)中对输出端噪声电压和共模抑制比要求的条件下,将通频带展宽为0~100Hz以上。 ③提高电路的共模抑制比。 ④差模电压放大倍数A VD可预置并显示,预置范围1~l000,步距为1,同时应满足基本要求(1)中对共模抑制比和噪声电压的要求。 ⑤其他(例如改善放大器性能的措施等)。

3、说明 直流电压放大器部分只允许采用通用型集成运算放大器和必要的其他元器件组成,不能使用单片集成的测量放大器或其他定型的测量放大器产品。 二、方案设计与论证 根据题目要求,我们分以下三部分进行方案设计与论证: 1、测量放大器部分 ⑴低噪声前置放大电路的设计最初方案如图1。本电路结构简单,输入阻抗较高,放大倍数可调,但是共模抑制比较小。实测只达到104,所以我们放弃本方案,选择了第二个方案,如图2。此电路的优点在于输入电压接在两个运放的同相端,输入阻抗高,共模抑制比大,可满足要求。其中,直流信号的共模抑制比实测可达2.5×106,交流信号的共模抑制比可达2×105。由电路的对称性可知共模信号被有效地抑制,而差模信号放大了10倍,从而提高了共模抑制比。另外,温度在两个输入端引起的漂移是共模信号,对输出电压影响很小,无需另加补偿。 图1低噪声前置放大电路的设计 图2低噪声前置放大电路的设计

相关主题
文本预览
相关文档 最新文档