当前位置:文档之家› 积分变换第一章

积分变换第一章

积分变换第一章

积分变换第一章

复变函数与积分变换习题答案

习题六 1. 求映射1 w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2222 11i=+i i x y w u v z x y x y x y ===-+++ 221 x x u x y ax a = ==+, 所以1w z =将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 22221i x y w z x y x y = =-++ 22 2222 x y kx u v x y x y x y = =- =- +++ v ku =- 故1 w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则2222 ,u v y x u v u v ==++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12w > (以(12,0)为圆心、 1 2为半径的圆)

复变函数与积分变换第五版习题解答

复变函数与积分变换第五版答案 目录 练 习 一...............................1 练 习 二...............................3 练 习 三...............................5 练 习 四...............................8 练 习 五..............................13 练 习 六..............................16 练 习 七..............................18 练 习 八..............................21 练 习 九 (24) 练 习 一 1.求下列各复数的实部、虚部、模与幅角。 (1)i i i i 524321-- --; 解:i i i i 524321---- = i 2582516+ z k k Argz z z z ∈+== = = π22 1 arctan 25 5825 8Im 25 16 Re (2)3 ) 231(i + 解: 3) 231(i + z k k Argz z z z e i i ∈+===-=-==+=π ππ π π 210Im 1Re 1 ][)3 sin 3(cos 333 2.将下列复数写成三角表示式。 1)i 31- 解:i 31-

)35sin 35(cos 2ππi += (2)i i +12 解:i i +12 )4 sin 4(cos 21π π i i +=+= 3.利用复数的三角表示计算下列各式。 (1)i i 2332++- 解:i i 2332++- 2sin 2 cos π π i i +== (2)4 22i +- 解:4 22i +-4 1 )]43sin 43(cos 22[ππi += 3,2,1,0] 1683sin 1683[cos 2]424/3sin ]424/3[cos 283 8 3 =+++=+++=k k i k k i k ππππππ 4..设 321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位 圆z =1的一个正三角形的项点。 证:因,1321===z z z 所以321,,z z z 都在圆周 32z z ++=0 则, 321z z z -=+1321=-=+z z z ,所以21z z +也在圆周1=z 上,又 ,12121==-+z z z z 所以以0,211,z z z +为顶点的三角形是正三角形,所以向量

复变函数与积分变换第六章测验题与答案

第六章 共形映射 一、选择题: 1.若函数z z w 22+=构成的映射将z 平面上区域G 缩小,那么该区域G 是 ( ) (A )21< z (B )211<+z (C )21>z (D )2 11>+z 2.映射i z i z w +-= 3在i z 20=处的旋转角为( ) (A )0 (B ) 2 π (C )π (D )2 π - 3.映射2 iz e w =在点i z =0处的伸缩率为( ) (A )1 (B )2 (C)1-e (D )e 4.在映射i e iz w 4 π +=下,区域0)Im( w (B )22)Re(->w (C )22)Im(> z (D )2 2 )Im(->w 5.下列命题中,正确的是( ) (A )n z w =在复平面上处处保角(此处n 为自然数) (B )映射z z w 43 +=在0=z 处的伸缩率为零 (C ) 若)(1z f w =与)(2z f w =是同时把单位圆1w 的分式线性变换,那么)()(21z f z f = (D )函数z w =构成的映射属于第二类保角映射 6.i +1关于圆周4)1()2(2 2 =-+-y x 的对称点是( )

(A )i +6 (B )i +4 (C )i +-2 (D )i 7.函数i z i z w +-=33将角形域3arg 0π<w (C ) 0)Im(>w (D )0)Im(z 映射为( ) (A )ππ <<- w arg 2 (B ) 0arg 2 <<- w π (C ) ππ <z 映射成圆域2

2.? -c i z z 3 )(cos C :绕点i 一周正向任意简单闭曲线。 五、(10分)求函数) (1 )(i z z z f -= 在以下各圆环内的罗朗展式。 1.1||0<-

复变函数与积分变换(修订版复旦大学)课后的第三章习题答案

习题三 1. 计算积分2 ()d C x y ix z -+?,其中C 为从原点到点1+i 的直线段. 解 设直线段的方程为y x =,则z x ix =+. 01x ≤≤ 故 ()()1 22 1 23 1 0()1 1 (1)(1)(1)333C x y ix dz x y ix d x ix i i ix i dx i i x i -+=-++-=+=+?=+=?? ? 2. 计算积分(1)d C z z -?,其中积分路径C 为 (1) 从点0到点1+i 的直线段; (2) 沿抛物线y=x2,从点0到点1+i 的弧段. 解 (1)设z x ix =+. 01x ≤≤ ()()1 11()C z dz x ix d x ix i -=-++=?? (2)设2 z x ix =+. 01x ≤≤ ()()1 22 211()3 C i z dz x ix d x ix -=-++=?? 3. 计算积分d C z z ?,其中积分路径C 为 (1) 从点-i 到点i 的直线段; (2) 沿单位圆周|z|=1的左半圆周,从点-i 到点i; (3) 沿单位圆周|z|=1的右半圆周,从点-i 到点i. 解 (1)设z iy =. 11y -≤≤ 11 1 1 C z dz ydiy i ydy i --===??? (2)设i z e θ =. θ从32π到2π 22 332 2 12i i C z dz de i de i π π θ θππ===???

(3) 设i z e θ =. θ从32π到2π 2 32 12i C z dz de i π θ π==?? 6. 计算积分()sin z C z e z dz -???,其中C 为0 z a =>. 解 ()sin sin z z C C C z e z dz z dz e zdz -?=-????蜒 ? ∵sin z e z ?在z a =所围的区域内解析 ∴sin 0z C e zdz ?=?? 从而 ()20 22 sin 0 z i C C i z e z dz z dz adae a i e d π θ π θθ-?====?? ??蜒 故()sin 0 z C z e z dz -?=?? 7. 计算积分2 1 (1) C dz z z +??,其中积分路径C 为 (1)11:2 C z = (2) 23 :2 C z = (3) 31:2 C z i += (4) 43:2 C z i -= 解:(1)在 1 2 z = 所围的区域内, 21 (1)z z +只有一个奇点0z =. 12 1 11111 ()2002(1) 22C C dz dz i i z z z z i z i ππ= -?-?=--=+-+?? 蜒(2)在2C 所围的区域内包含三个奇点 0,z z i ==±.故 22 1 11111()20(1) 22C C dz dz i i i z z z z i z i πππ= -?-?=--=+-+?? 蜒(3)在2C 所围的区域内包含一个奇点 z i =-,故 32 1 11111()00(1) 22C C dz dz i i z z z z i z i ππ= -?-?=--=-+-+??蜒(4)在4C 所围的区域内包含两个奇点 0,z z i ==,故

复变函数与积分变换(修订版-复旦大学)课后的第二章习题答案

习题二 1. 求映射 1 w z z =+ 下圆周||2z =的像. 解:设i ,i z x y w u v =+=+则 2222 221i i i i i()i x y x y u v x y x y x y x y x y x y x y -+=++ =++=++-++++ 因为22 4x y +=,所以 53i 44u iv x y += + 所以 54u x =,34v y =+ 53 4 4 ,u v x y == 所以( ) ()2 25344 2 u v + =即( ) ()2 2 225322 1 u v + =,表示椭圆. 2. 在映射2 w z =下,下列z 平面上的图形映射为w 平面上的什么图形,设e i w ? ρ=或 i w u v =+. 解:设222 i ()2i w u v x iy x y xy =+=+=-+ 所以22 ,2.u x y v xy =-= (1) 记e i w ? ρ=,则 π 02,4r θ<<= 映射成w 平面内虚轴上从O 到4i 的一段,即 π 04,. 2ρ?<<= (2) 记e i w ? ρ=,则π0,024r θ<<<<映成了w 平面上扇形域,即 π 04,0.2ρ?<<<<

(3) 记w u iv =+,则将直线x=a 映成了22,2.u a y v ay =-=即 222 4().v a a u =-是以原点为焦点,张口向左的抛物线将y=b 映成了22 ,2.u x b v xb =-= 即222 4()v b b u =+是以原点为焦点,张口向右抛物线如图所示 . 3. 求下列极限. 解:令 1z t = ,则,0z t →∞→. 于是2 22 01lim lim 011z t t z t →∞→==++. (2) 0Re()lim z z z →; 解:设z=x+yi ,则Re()i z x z x y = +有 000 Re()1 lim lim i 1i z x y kx z x z x kx k →→=→== ++ 显然当取不同的值时f(z)的极限不同 所以极限不存在. (3) 2lim (1)z i z i z z →-+; 解: 2lim (1)z i z i z z →-+=11lim lim ()()() 2z i z i z i z i z z i z i z →→-==- +-+.

复变函数与积分变换答案马柏林、李丹横、晏华辉修订版,习题2

习题二 1. 求映射1w z z =+下圆周||2z =的像. 解:设i ,i z x y w u v =+=+则 2222221i i i i i()i x y x y u v x y x y x y x y x y x y x y -+=++=++=++-++++ 因为224x y +=,所以53i 44 u iv x y +=+ 所以 54u x = ,34 v y =+ 5344 ,u v x y == 所以()()2 253442u v +=即()()222253221u v +=,表示椭圆. 2. 在映射2w z =下,下列z 平面上的图形映射为w 平面上的什么图形,设e i w ?ρ=或i w u v =+. (1)π02,4r θ<<= ; (2)π02,04 r θ<<<<; (3) x=a, y=b .(a, b 为实数) 解:设222i ()2i w u v x iy x y xy =+=+=-+ 所以22,2.u x y v xy =-= (1) 记e i w ?ρ=,则π02,4 r θ<<=映射成w 平面内虚轴上从O 到4i 的一段,即 π04,.2 ρ?<<= (2) 记e i w ?ρ=,则π0,024r θ<<<<映成了w 平面上扇形域,即π04,0.2 ρ?<<<<

(3) 记w u iv =+,则将直线x =a 映成了22,2.u a y v ay =-=即2224().v a a u =-是以原点为焦点,张口向左的抛物线将y =b 映成了22,2.u x b v xb =-= 即2224()v b b u =+是以原点为焦点,张口向右抛物线如图所示 . 3. 求下列极限. (1) 2 1lim 1z z →∞+; 解:令1z t =,则,0z t →∞→. 于是2 22 01lim lim 011z t t z t →∞→==++. (2) 0Re()lim z z z →; 解:设z =x +y i ,则Re()i z x z x y =+有 000 Re()1lim lim i 1i z x y kx z x z x kx k →→=→==++ 显然当取不同的值时f (z )的极限不同 所以极限不存在. (3) 2lim (1) z i z i z z →-+; 解:2lim (1)z i z i z z →-+=11lim lim ()()() 2z i z i z i z i z z i z i z →→-==-+-+.

复变函数与积分变换复习重点

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1)模:22 z x y =+; 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换第二章测验题与答案

第二章 解析函数 一、选择题: 1.函数2 3)(z z f =在点0=z 处是( ) (A )解析的 (B )可导的 (C )不可导的 (D )既不解析也不可导 2.函数)(z f 在点z 可导是)(z f 在点z 解析的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既非充分条件也非必要条件 3.下列命题中,正确的是( ) (A )设y x ,为实数,则1)cos(≤+iy x (B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导 (C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析 (D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的是( ) (A )xyi y x 22 2 -- (B )xyi x +2 (C ))2()1(22 2 x x y i y x +-+- (D )3 3 iy x + 5.函数)Im()(2 z z z f =在 =z 处的导数( ) (A )等于0 (B )等于1 (C )等于1- (D )不存在 6.若函数)(2)(2 2 2 2 x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常 数=a ( ) (A )0 (B )1 (C )2 (D )2- 7.如果)(z f '在单位圆1

(完整版)《复变函数与积分变换》习题册(2)

第一章 复数与复变函数 本章知识点和基本要求 掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念; 熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。 一、填空题 1、若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______. 2、设(12)(35)13i x i y i ++-=-,则x = ,y = 3、若1231i z i i +=--,则z = 4、若(3)(25) 2i i z i +-= ,则Re z = 5、若4 21i z i i +=- +,则z = 6、设(2)(2)z i i =+-+,则arg z = 7复数1z i =-的三角表示式为 ,指数表示式为 。 8、复数i z 212--=的三角表示式为 _________________,指数表示式为 _________________. 9、设i z 21=,i z -=12,则)(21z z Arg = _ _____. 10、设4 i e 2z π=,则Rez=____________. Im()z = 。z = 11、.方程0273=+z 的根为_________________________________. 12、一曲线的复数方程是2z i -=,则此曲线的直角坐标方程

为 。 13、方程3)Im(=-z i 表示的曲线是__________________________. 14、复变函数1 2 +-= z z w 的实部=),(y x u _________,虚部=),(y x v _________. 15、不等式114z z -++<所表示的区域是曲线 的内部。 16 二、判断题(正确打√,错误打?) 1、复数7613i i +>+. ( ) 2、若z 为纯虚数,则z z ≠. ( ) 3、若 a 为实常数,则a a = ( ) 4、复数0的辐角为0. 5、()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在 00(,)x y 点连续。 ( ) 6、设21,z z 为复数,则2121z z z z ?=。 ( ) 7、1212z z z z +=+ ( ) 8、参数方程2 z t ti =+ (t 为实参数)所表示的曲线是抛物线2y x =. ( ) 三、单项选择题 1、下列等式中,对任意复数z 都成立的等式是 ( ) A.z·z =Re(z·z ) B. z·z =Im(z·z ) C. z·z =arg (z·z ) D. z·z =|z| 2、方程3z =8 的复根的个数为 ( ) A. 3个 B. 1个 C. 2个 D. 0个 3、当11i z i +=-时,1007550z z z ++的值等于 ( ) A i B i - C 1 D 1- 4、方程23z i +-= ( ) A 中心为23i -的圆周

积分变换课后答案

1-1 1. 试证:若 ()f t 满足Fourier 积分定理中的条件,则有 ()()()d d 0 cos sin f t a t b t ωωωωωω+∞+∞ =+? ? 其中()()()()d d ππ11cos ,sin .a f b f ωτωττωτωττ+∞+∞ -∞-∞ ==?? 分析:由Fourier 积分的复数形式和三角形式都可以证明此题,请读者试 用三角形式证明. 证明:利用Fourier 积分的复数形式,有 ()()j j e e d π12t t f t f ωωτω+∞+∞--∞-∞??= ? ????? ()()j j d e d π11cos sin 2t f ωτωτωττω+∞+∞-∞-∞??=-???? ?? ()()()j j d 1cos sin 2 a b t t ωωωωω+∞ -∞??= -+??? 由于()()()(),,a a b b ωωωω=-=--所以 ()()()d d 11cos sin 22 f t a t b t ωωωωωω+∞+∞-∞-∞= +?? ()()d d 0 cos sin a t b t ωωωωωω+∞+∞ =+? ? 2.求下列函数的Fourier 积分: 1)()22 21,10,1t t f t t ?-≤?=?>??; 2) ()0, 0;e sin 2,0 t t f t t t -???为连续的偶函数,其Fourier 变换为 j 21()[()]()e d 2()cos d 2(1)cos d 00t F f t f t t f t t t t t t ωωωω-+∞ +∞?====-?-∞ ???F

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题7

习题 七 1.证明:如果f (t )满足傅里叶变换的条件,当f (t )为奇函数时,则有 ?+∞ ?=0d sin )()(ωωωt b t f 其中()?+∞ ?=0 tdt sin π2)(ωωt f b 当f (t )为偶函数时,则有?+∞ ?=0 cos )()(ωωtd w a t f 其中?+∞ ?=02 tdt c f(t))(ωωπ os a 证明: 因为ωωωd G t f t i ?+∞ ∞ -=e )(π21)(其中)(ωG 为f (t )的傅里叶变换 ()()()(cos sin )i t G f t e dt f t t i t dt ωωωω+∞+∞ --∞ -∞ ==?-?? ()cos ()sin f t tdt i f t tdt ωω+∞+∞-∞ -∞ =?-?? ? 当f (t )为奇函数时,t cos f(t)ω?为奇函数,从而 ? +∞ ∞-=?0tdt cos f(t)ω t sin f(t)ω?为偶函数,从而??+∞ ∞ -+∞ ?=?0 .sin f(t)2tdt sin f(t)tdt ωω 故.sin f(t)2)(0 tdt i G ωω?-=? +∞ 有)()(ωωG G -=-为奇数。 ωωωωπωωπωd t i t G d e G t f t i )sin (cos )(21)(21)(+?=?=??+∞∞ -+∞∞- =01()sin d ()sin d 2ππ i G i t G t ωωωωωω+∞+∞-∞?=??? 所以,当f(t)为奇函数时,有 2()b()sin d .b()=()sin dt.πf t t f t t ωωωωω+∞ +∞ =??? ?其中 同理,当f(t)为偶函数时,有 ()()cos d f t a t ωωω+∞ =??.其中 02()()cos π a f t tdt ωω+∞ = ??

积分变换课后答案.docx

1-1 1.试证:若 f t 满足Fourier积分定理中的条件,则有 f t a cos td b sin td 00 1 f cos d , b 1 sin d . 其中 a f ππ 分析:由 Fourier 积分的复数形式和三角形式都可以证明此题,请读者试用三角形式证明 . 证明:利用 Fourier积分的复数形式,有 f t1f e j t e j t d 2π 11f cos j sin d e j t d 2π 1 j b cos t j sin t d a 2 由于 aa, b b, 所以 f 1 a cos td 1 b sin td t 2 2 a cos td b sin t d 00 2.求下列函数的 Fourier积分: 1)f 1t 2 ,t 21 2)f 0,t0 t t 2 ;t; 0,1 e t sin 2t, t0 0,t1 3)f 1,1t0 t 0t1 1, 0,1t 分析:由 Fourier积分的复数形式和三角形式都可以解此题,请读者试用三角形式解 . 解: 1)函数f 1t 2 , t 21 t t 2 为连续的偶函数,其 Fourier 变换为0,1 F () F [ f (t )] f (t)e j t d t2 f (t )cos tdt 21 t 2 )cos tdt (1

— sin t2t cos t2sin t t 2 sin t 1 cos ) 4(sin (偶函 2233 数) f(t)的 Fourier积分为 f (t )1 F ()e j t d1 F ()cos td 2ππ 0 4(sin cos) td π 03cos 2) 所给函数为连续函数,其Fourier变换为 F ω F f (t ) f (t )e j t dt e t sin 2te j t dt 0e t e2tj e 2tj e j t dt1 [e( 1 2j j ) t e (1 2j j )t ]d t 2j2j 1e( 1 2j j )t e (1 2j j )t 2j 1 2j j 1 2j j0 j11 2 5 2 1 (2)j 1 (2)j25 62 2 j 24(实部为偶函数,虚 数为奇函数) f (t)的 Fourier变换为 f t1 F ()e j t d 2π 1252 2j cos t jsin t d 2π25624 152 cos t2sin t152 sin t 2 cos t π25624d π25 624 d 252 cos t2sin t π 025624d 这里用到奇偶函数的积分性质 . 3)所给函数有间断点 -1 ,0,1且 f(- t)= - f(t)是奇函数,其 Fourier变换为 F F f ( t ) f ( t)e j t dt2j f (t )sin tdt

复变函数与积分变换答案-第2章解析函数

11 2 7、 第二章 解析函数 习题详解 1、(1) f 1(z )= z 4在定义域(- ,+) 内连续; 2) f 2(z ) =4z +5在定义域(-,+)内连续; 1 在定义域 -, 3 , 3 , + 内连续。 - 4, v = 16u + 64, 为一抛物线。 4、(1)w = z 3,则w = (2i )3= -8i , w =( 2+2i )3=2 2+12i -12 2-8i =-10 2+4i ; 5、 f (z )=Re z =x ,当 y →0时, f (z )→1;当x →0时, f (z )→0,因为极限不等, z x + iy 所以当z →0时, f (z )极限不存在。 1 在原点处不连续,故 w =i arg z +1 在负实轴上与原点 zz 3) f 3 (z )= 2 2、w = z 2 u =x 2-y 2 v = 2 xy u =x 2 -4 ,把直线C :y =2映射成 : u =x -4 v = 4 x v x = ,代入第一个式子, 4 u = 3、 1z w = = = z zz x - iy 22 , x + y v = x 22 x + y -y 22 x + y 把直线C :x =1映射成, : v u = v = 1 1+y 2 -y 1+y 2 1-u u 2 u = (1- u ) u v 2 + u 2 2)w = z 3, 像域为0arg w 2 6、i arg z 在负实轴上与原点处不连续, 处不连续。 f (z +z )- f (z ) z →0 z = lim z →0 (z +z )2 z y 2 = 1 -1 = u 为一个圆周。 u

相关主题
文本预览
相关文档 最新文档