Permitted Oxygen Abundances and the Temperature Scale of Metal-Poor Turn-Off Stars
- 格式:pdf
- 大小:514.07 KB
- 文档页数:29
1000 0569/2020/036(10) 3097 16ActaPetrologicaSinica 岩石学报doi:10 18654/1000 0569/2020 10 10藏南冲巴雍错淡色花岗岩体热年代学及其对藏南拆离系和亚东裂谷构造活动时限的制约李开玉1 CHEVALIERMarie Luce1,2 李海兵1,2 潘家伟1,2 王世广1,3 白明坤1,4 刘富财1,3 王平1LIKaiYu1,CHEVALIERMarie Luce1,2 ,LIHaiBing1,2,PANJiaWei1,2,WANGShiGuang1,3,BAIMingKun1,4,LIUFuCai1,3andWANGPing11 中国地质科学院地质研究所,自然资源部深地动力学重点实验室,北京 1000372 南方海洋科学与工程广东省实验室(广州),广州 5114583 中国地质大学地球科学与资源学院,北京 1000834 北京大学地球与空间科学学院,北京 1008711 KeyLaboratoryofDeep EarthDynamicsofMinistryofNaturalResources,InstituteofGeology,ChineseAcademyofGeologicalSciences,Beijing100037,China2 SouthernMarineScienceandEngineeringGuangdongLaboratory(Guangzhou),Guangzhou511458,China3 SchoolofEarthScienceandMineralResources,ChinaUniversityofGeosciences,Beijing100083,China4 SchoolofEarthandSpaceSciences,PekingUniversity,Beijing100871,China2020 05 21收稿,2020 08 24改回LiKY,ChevalierML,LiHB,PanJW,WangSG,BaiMK,LiuFCandWangP 2020 ThermochronologyoftheChumbaYumcoleucogranite,southernTibet:ConstraintsontheonsettimeoftheSTDSandtheYadongrift ActaPetrologicaSinica,36(10):3097-3116,doi:10 18654/1000 0569/2020 10 10Abstract TheSouthTibetanDetachmentSystem(STDS)andtheYadong GuluRift(YGR)areimportantextensionalstructuresinthesouthernTibet,whicharecloselyrelatedtotheupliftoftheTibetanPlateau ThechronologicalinformationofthetectonicupliftinsouthernTibetsincetheCenozoicisofgreatsignificanceforthediscussionoftheupliftmechanismoftheTibetanPlateauandthedynamicsofcontinentaldeformation WeconductedzirconU Pbdatingandlow temperaturethermochronologyanalysisofapatitefissiontracksontheChumbaYumcoleucograniteintheYadongareaofthesouthernTibet TheresultsshowthattheChumbaYumcoleucogranitehavegonethroughfivedifferentuplift coolingstageswithin22Ma:thecoolingrateduring18~15 6Mais125℃/Myr;during15 6~11Ma,theaveragecoolingratewasabout94℃/Myr;11~7Ma,theaveragecoolingrateisabout24℃/Myr;theaveragecoolingrateof7~3Maisabout5℃/Myr;after3Ma,theaveragecoolingratewasabout14℃/Myr BecausethestudiedplutonislocatedintheSTDSandhasbeencutbytheYadongfault,weconcludethattheactivitytimeoftheSTDSis22~11MaandtheonsettimeoftheYadongriftis11Ma Thermalhistorymodelingresultsindicateafastcoolingstageat~3Ma,whichrepresentstrongactivityoftheYadongriftKeywords SouthTibetanDetachmentSystem;YadongRift;Leucogranite;U Pbdating;Low temperaturethermochronology摘 要 藏南拆离系和亚东裂谷是藏南地区重要的伸展构造,与青藏高原的隆升和生长密切相关,其新生代以来的构造热 年代学研究,对探讨高原的生长过程和大陆变形动力学具有重要意义。
spectrometer equipped with a automatic carbonate preparation system(CAPS).Results are reported relative to the Vienna Pee Dee Belemnite standard(VPDB).Standard external analytical precision,based on replicate analysis of in-house standards calibrated to NBS-19,is better than0.1‰for d18O and d13C.Received1September;accepted25October2004;doi:10.1038/nature03135.1.Broecker,W.S.&Peng,T.-H.The role of CaCO3compensation in the glacial to interglacialatmospheric CO2change.Glob.Biogeochem.Cycles1,15–29(1987).2.Van Andel,T.H.Mesozoic/Cenozoic calcite compensation depth and the global distribution ofcalcareous sediments.Earth Planet.Sci.Lett.26,187–194(1975).3.Kennett,J.P.&Shackleton,N.J.Oxygen isotopic evidence for the development of the psychrosphere38Myr ago.Nature260,513–515(1976).ler,K.G.,Wright,J.D.&Fairbanks,R.G.Unlocking the ice house:Oligocene-Miocene oxygenisotopes,eustasy,and margin erosion.J.Geophys.Res.96,B4,6829–6849(1991).5.Zachos,J.C.,Quinn,T.M.&Salamy,K.A.High-resolution(104years)deep-sea foraminiferal stableisotope records of the Eocene-Oligocene climate transition.Palaeoceanography11,251–266(1996).6.Lear,C.H.,Elderfield,H.&Wilson,P.A.Cenozoic deep-sea temperatures and global ice volumesfrom Mg/Ca in benthic foraminiferal calcite.Science287,269–272(2000).7.DeConto,R.M.&Pollard,D.Rapid Cenozoic glaciation of Antarctica triggered by decliningatmospheric CO2.Nature421,245–249(2003).8.Shipboard Scientific Party2002.Leg199summary.Proc.ODP Init.Rep.(eds Lyle,M.W.,Wilson,P.A.&Janecek,T.R.)199,1–87(2002).skar,J.et al.Long term evolution and chaotic diffusion of the insolation quantities of Mars.Icarus170,343–364(2004).10.Peterson,L.C.Backman,te Cenozoic carbonate accumulation and the history of the carbonatecompensation depth in the western equatorial Indian Ocean.Proc.ODP Sci.Res.(eds Duncan,R.A., Backman,J.,Dunbar,R.B.&Peterson,L.C.)115,467–489(1990).11.Salamy,K.A.&Zachos,test Eocene-Early Oligocene climate change and Southern Oceanfertility:inferences from sediment accumulation and stable isotope data.Palaeogeogr.Palaeoclimatol.Palaeoecol.145,61–77(1999).12.Ehrmann,W.U.&Mackensen,A.Sedimentological evidence for the formation of an East Antarcticice sheet in Eocene/Oligocene time.Palaeogeogr.Palaeoclimatol.Palaeoecol.93,85–112(1992). 13.Ivany,L.C.,Patterson,W.P.&Lohmann,K.C.Cooler winters as a possible cause of mass extinction atthe Eocene/Oligocene boundary.Nature407,887–890(2000).14.Pa¨like,H.,Laskar,J.&Shackleton,N.J.Geologic constraints on the chaotic diffusion of the solarsystem.Geology32(11),929–932doi:10.1130/G20750(2004).15.Billups,K.&Schrag,D.P.Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoicclimate change.Earth Planet.Sci.Lett.209,181–195(2003).16.Lear,C.H.,Rosenthal,Y.,Coxall,H.K.&Wilson,te Eocene to early Miocene ice-sheetdynamics and the global carbon cycle.Paleoceanography19,doi:10.1029/2004PA001039(2004). 17.Pekar,S.F.,Christie-Blick,N.,Kominz,M.A.&Miller,K.G.Calibration between eustatic estimatesfrom backstripping and oxygen isotopic records for the Oligocene.Geology30,903–906(2002). 18.Lythe,M.B.,Vaughan,D.G.&BEDMAP Consortium,BEDMAP:A new ice thickness and subglacialtopographic model of Antarctica.J.Geophys.Res.106,B6,11335–11351(2001).19.Huybrechts,P.Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland andAntarctic ice sheets during the glacial cycles.Quat.Sci.Rev.21,203–231(2002).20.Hindmarsh,R.C.A.Time-scales and degrees of freedom operating in the evolution of continental ice-sheets.Trans.R.Soc.Edinb.Earth Sci.81,371–384(1990).21.Davies,R.,Cartwright,J.,Pike,J.&Line,C.Early Oligocene initiation of North Atlantic deep waterformation.Nature410,917–920(2001).22.Archer,D.&Maier-Reimer,E.Effect of deep-sea sedimentary calcite preservation on atmosphericCO2concentration.Nature367,260–263(1994).23.Sigman,D.M.&Boyle,E.A.Glacial/interglacial variations in atmospheric carbon dioxide.Nature407,859–869(2000).24.Zeebe,R.E.&Westbroek,P.A simple model for the CaCO3saturation state of the ocean:The“Strangelove,”the“Neritan,”and the“Cretan”Ocean.Geochem.Geophys.Geosyst.4,1104(2003).25.Kump,L.R.&Arthur,M.A.in Tectonics Uplift and Climate Change(ed.Ruddiman,W.F.)399–426(Plenum,New York,1997).26.Zachos,J.C.,Opdyke,B.N.,Quinn,T.M.,Jones,C.E.&Halliday,A.N.Early Cenozoic glaciation,Antarctic weathering and seawater87Sr/86Sr;is there a link?Chem.Geol.161,165–180(1999). 27.Ravizza,G.&Peucker-Ehrenbrink,B.The marine187Os/188Os record of the Eocene-Oligocenetransition:the interplay of weathering and glaciation.Earth Planet.Sci.Lett.210,151–165(2003).28.Berger,W.H.&Winterer,E.L.in Plate Stratigraphy and the Fluctuating Carbonate line in PelagicSediments:On Land and Under the Sea(eds Hsu¨,K.J.&Jenkyns,H.C.)11–48(Int.Assoc.Sedimentologists Spec.Publ.1,Blackwell Science,Oxford,1974).29.Opdyke,B.N.&Wilkinson,B.H.Surface area control of shallow cratonic to deep marine carbonateaccumulation.Paleoceanography3,685–703(1989).30.Harrison,K.G.Role of increased marine silica input on paleo-pCO2levels.Paleoceanography15,292–298(2000).Supplementary Information accompanies the paper on /nature. Acknowledgements We thank the Shipboard Party of Ocean Drilling Program Leg199for assistance at sea and M.Bolshaw,M.Cooper and H.Birch for laboratory assistance.This work was supported by a NERC UK ODP grant to P.A.W.,a Royal Commission for the Exhibition of1851 fellowship awarded to H.K.C.and by Swedish Research Council(VR)funding to H.P.We thank W.Broecker,R.Hindmarsh,S.D’Hondt,A.Merico,Y.Rosenthal,R.Rickaby,J.Shepherd and T.Tyrrell for discussions and comments on an earlier draft and L.Kump for a constructive review.Competing interests statement The authors declare that they have no competingfinancial interests.Correspondence and requests for materials should be addressed to P.A.W.(paw1@)............................................................... Similar response of labile and resistant soil organic matterpools to changes in temperature Changming Fang1,Pete Smith1,John B.Moncrieff2&Jo U.Smith11School of Biological Sciences,University of Aberdeen,Aberdeen AB243UU,UK 2Ecology and Resource Management,School of GeoSciences,The University of Edinburgh,Edinburgh EH93JU,UK ............................................................................................................................................................................. Our understanding of the relationship between the decompo-sition of soil organic matter(SOM)and soil temperature affects our predictions of the impact of climate change on soil-stored carbon1.One current opinion is that the decomposition of soil labile carbon is sensitive to temperature variation whereas resistant components are insensitive2–4.The resistant carbon or organic matter in mineral soil is then assumed to be unresponsive to global warming2,4.But the global pattern and magnitude of the predicted future soil carbon stock will mainly rely on the temperature sensitivity of these resistant carbon pools.To inves-tigate this sensitivity,we have incubated soils under changing temperature.Here we report that SOM decomposition or soil basal respiration rate was significantly affected by changes in SOM components associated with soil depth,sampling method and incubation time.Wefind,however,that the temperature sensitivity for SOM decomposition was not affected,suggesting that the temperature sensitivity for resistant organic matter pools does not differ significantly from that of labile pools,and that both types of SOM will therefore respond similarly to global warming.The temperature sensitivity of SOM decomposition,commonly referred to as Q10,is critical for modelling changes in soil C stock3–6. The assumption that the decomposition of old organic matter2–3or organic C in mineral soil4does not vary with temperature—that is, that the decomposition of labile C pools are sensitive,but resistant pools are insensitive,to temperature perturbations—suggests that higher losses of carbon will occur from soils in boreal and tundra regions in response to global warming.This is because these soils have the largest store of labile organic matter,and are predicted to experience the greatest rise in temperature7.Tropical soils may release less C than previously predicted4owing to a large store of SOM in deep soil8and the high proportion of resistant C pools in SOM.Soil warming experiments,an analogue for the effects of global warming on SOM decomposition9,suggest that the effect of warming on SOM decomposition may decline with time.The change in SOM composition associated with warming and the different temperature sensitivity of the C pools were assumed to be responsible for this decline10–11.Despite the common assertion that SOM composition affects the temperature sensitivity of SOM decomposition,experimental or modelling evidence is yet to be presented.If the temperature sensitivity of SOM decomposition is not affected by SOM composition,predictions of climate change impacts on soil stored C will be greatly affected.By definition,the temperature sensitivity of SOM decomposition is the change in SOM decomposition rate with temperature under otherwise constant conditions5.At present,this concept is often confused with concepts of SOM turnover4,12–13or SOM dynamics2–4 under different environmental conditions with accompanying different temperatures.Temperature sensitivity of SOM decompo-sition(or Q10)estimated by incubating soils at different but constant temperatures14–16or by radiocarbon accumulation in undisturbed soils13is confounded by many factors other than temperature.We incubated soil samples under changing temperature toletters to natureNATURE|VOL433|6JANUARY2005|/nature57©2005Nature Publishing Groupinvestigate the influence of SOM composition on the temperature dependence of SOM decomposition.Figure 1shows that soil C contents for both labile components (water-dissolved organic carbon (DOC),microbial carbon (C mic )and K 2SO 4-extracted carbon (C KSO ))and the total organic carbon (TOC),are signifi-cantly lower in the subsoil (20–30cm)than in the surface soil (0–10cm).The ratio of DOC:TOC and C KSO :TOC declined signifi-cantly with soil depth (F ¼28.5and 36.1,respectively,P ,0.0001),but C mic :TOC was not significantly affected by depth (F ¼1.9,P ,0.2).After the initial flush of CO 2emission,soil basal respi-ration rate at 208C was (mean ^s.e.m.)6.67^0.46m g CO 2per g dry soil per h for root-free samples in the 0–10cm layer,but only 1.92^0.20m g CO 2per g dry soil per h for the 20–30cm layer.Corresponding values were 6.27^0.66and 1.47^0.16for intact samples.Over a period up to 88days,the subsoil respired only ,0.29^0.13of the CO 2respired in the surface soil.These results indicate that soil basal respiration rate is closely related to variations in C pools occurring at different soil depths.Q 10values for individual soil samples varied in the range 1.97–2.21during the early stage of incubation (up to day 10).No significant correlation was found between Q 10and the rate of basal respiration.Relationships in Fig.1between respiration rate,Q 10value and SOM pools reflect the long-term acclimation of the microbial community to the environment (such as temperature,moisture and O 2)associated with soil depths.During the incubation,there was a significant decline in the labile components (Fig.2c,d,f).After 108days incubation,DOC was 0.73^0.14and C KSO was 0.62^0.065of initial values when averaged over all samples.The greatest variation following incu-bation was observed in C mic .The average C mic at day 42was only 0.43^0.13of the initial content,and less than 0.10^0.0057after 108days incubation.Changes in the average TOC during incu-bation were not significant (Fig.2b).At the end of the incubation,average TOC was 0.94^0.19of the initial content.Soil respiration rate consistently declined with time (Fig.2e).The association between respiration rate and C mic during the incubation suggests that the variation in microbial biomass may be a major cause of the temporal changes in soil respiration.The response of soil basal respiration to temperature was notaffected by the depletion of labile C during the incubation.Q 10values averaged for all samples were in the range 2.01–2.30for the whole incubation period (Fig.2a).There is no significant change in Q 10for soil basal respiration with incubation time,despite the fact that Q 10was more variable during the later stages of incubation.As time progressed,the resistant C component contributed a greater portion of the total soil basal respiration owing to the depletion of labile C pools (Supplementary Fig.2).The Q 10value for soil basal respiration should gradually decrease if resistant C is significantly different from labile pools and insensitive to temperature variation (Supplementary Fig.3).A constant Q 10for soil basal respiration suggests that the temperature dependence of resistant C is not significantly different from that for labile pools.In most incubation experiments,soil samples have been sepa-rately incubated at different but constant temperatures 12,14,15.Three different methods have been used to estimate SOM decomposition and its temperature sensitivity:the total mass loss 3,17,the time required for a given percentage of mass loss 17,and the soil respir-ation rate 14,18.A decline in soil respiration rate was commonly observed as incubation times increased 14,17,19,20.This decline is expected to be greater at higher than at lower temperatures because of the greater depletion and degradation of C pools 21.Temperature sensitivity is likely to be underestimated if turnover rate is derived from studies of total mass loss for a given time period or from respiration rates at different constant temperatures,owing to the higher decline in C turnover rate at higher temperature.If Q 10is estimated using the time required for a given percentage of mass loss,the value will be overestimated.In this case,temporal effects on estimated C turnover rate are more pronounced at lower temperatures than at higher temperatures.Data of total mass loss from soil incubations longer than one year were used to support the opinion that decomposition rates of organic matter in mineral soil do not vary with temperature 4.Estimated C turnover rates from a long-term incubation will be significantly different from those occurring in the field,owing to the quick decline in soil microbial biomass and respiration rate during incubation.In such exper-iments,the temperature sensitivity of SOM decomposition may have been seriously biased or underestimated because respiration rates at all temperatures are close to zero at the later stage of incubation.In soil warming experiments,the observed decline of warming effects on SOM decomposition with time 11does not necessarily mean that the decomposition of resistant C is less sensitive to elevated temperature than the labile component.Provided that the increase in net primary production (NPP)due to warming islessFigure 1Soil carbon components,respiration rate and associated Q 10values with respect to soil depth and sampling method (four replicates for each sample).Respiration rate was an average of data measured at 208C in days 3and 5.The Q 10value was estimated with soil respiration rates under changing temperature for the period of days 3–10.All values are normalized against that of surface root-free sample.Soil respiration rate is significantly related to concentrations of C pools owing to soil depth andsampling method,but Q 10does not change with respiration rate or C concentrations.Error bars indicate standard deviation.DOC,dissolved organic carbon;TOC,total organiccarbon.Figure 2Variations in respiration rate and soil carbon pools with increasing incubation time.Values are averages of all four samples,and normalized by initial values.a ,Q 10value;b ,TOC;c ,DOC;d ,K 2SO 4-extracted C;e ,respiration rate at 208C;and f ,microbial biomass C.Error bars are standard deviation.Respiration rate declined rapidly owing to the depletion of labile components (DOC,C KSO and C mic ),but the Q 10value of soil respiration remained unchanged.letters to natureNATURE |VOL 433|6JANUARY 2005|/nature58© 2005Nature Publishing Groupthan the increase in SOM decomposition rate,a decline in warming effect on SOM decomposition is always expected.In the long-term, the microbial community may become acclimated to warming with changed activities.The contribution of this acclimation is not yet clear.For long-term climate change,the response of the resistant pool of SOM plays a critical role in regulating soil C stocks.Given the predicted climate change in Europe in the next century,the greatest loss of SOM is expected in soils where the present mean annual temperature(MAT)is less than48C,and this net release of SOM will gradually decrease with MAT gradient(Fig.3a–c).(This predicted climate change is climate forcing according to the implementation by the Hadley Centre Climate Model(HadCM3) of the Intergovernmental Panel on Climate Change(IPCC)A1FI (world market–fossil fuel intensive)emission scenario22.)With a moderate change in the temperature sensitivity of the resistant C pool(humus pool of the Rothamsted Carbon Model23only),from Q10¼2.98to about2.58(at108C),sensitivity induced change will significantly reduce the net SOM release in temperate soils(present MAT.48C).By2100,the reduction in SOM loss could be up to 46%in arable soil,37%in grassland,and32%in forest for regions where the present MAT is greater than158C(Fig.3d).At the global scale,this reduction will be large enough to change our prediction of the magnitude and spatial pattern of SOM stocks in the future.Our study does not support the opinion that resistant C pools are significantly less responsive to temperature variation than labile C pools.A MethodsSoil samples(intact and root-free)were collected from a middle-aged plantation of Sitka spruce(Picea sitchensis)in Scotland(568370N,38480W).Mineral soils were collected from four locations in the site at depths of0–10,20–30cm.Root-free samples were made by sieving soil through a2mm mesh to remove plant detritus,root and gravel.For each depth,approximately600–800g soil was taken and packed into a chamber to the original bulk density.Intact soil samples(,10£10cm)were taken next to each root-free sample, following the method of ref.5.Soil samples were analysed to determine TOC24,DOC25and C KSO26.C mic was determined by fumigation extraction26.Samples(16in total)were incubated in the laboratory using a programmable water bath(developed in The University of Edinburgh,UK).Temperature was changed commonly between4and448C (continuously increased from the lowest to the highest with a step of48C and then decreased,reaching a new temperature within two hours).Each temperature was held for about9h.Before and after each round of temperature change,soils were kept at208C for a few days.Soil moisture contents were monitored and adjusted accordingly by adding water at the surface of the soil sample,and fresh air was continuously passed through each chamber during the incubation.Respired CO2was measured with an infrared gas analyser in differential mode,logged every second for7min for each chamber,but only the average over the last four minutes was used.The16chambers were measured sequentially,and four rounds of measurement were made before changing to another temperature.During each round of temperature change,the mean respiration rate at a given temperature was an average of values measured at that temperature when the temperature was increasing and decreasing(Supplementary Fig.1).Mean respiration rates at different temperatures werefitted with an exponential model5ðR¼a exp½ln Q10ðT=10Þ Þto calculate the Q10 value.More information about data analysis is included in the Supplementary Methods, which also explain how we assessed contributions of the resistant C pool to the total SOM decomposition and its Q10.Received30July;accepted22October2004;doi:10.1038/nature03138.1.Lenton,T.M.&Huntingford,C.Global terrestrial carbon storage and uncertainties in its temperaturesensitivity examined with a simple model.Glob.Change Biol.9,1333–1352(2003).2.Liski,J.,Ilvesniemi,H.,Ma¨kela¨,A.&Westman,C.J.CO2emissions from soil in response to climaticwarming are overestimated—The decomposition of old soil organic matter is tolerant of temperature.Ambio28,171–174(1999).3.Thornley,J.H.M.&Cannell,M.G.R.Soil carbon storage response to temperature:a hypothesis.Ann.Bot.87,591–598(2001).4.Giardina,C.P.&Ryan,M.G.Evidence that decomposition rates of organic carbon in mineral soil donot vary with temperature.Nature404,858–861(2000).5.Fang,C.&Moncrieff,J.B.The dependence of soil CO2efflux on temperature.Soil Biol.Biochem.33,155–165(2001).6.Sanderman,J.,Amundson,R.G.&Baldocchi,D.D.Application of eddy covariance measurements tothe temperature dependence of soil organic matter mean residence time.Glob.Biogeochem.Cycles17, doi:10.1029/2001GB001833(2003).7.Schlesinger,W.H.&Andrews,J.A.Soil respiration and the global carbon cycle.Biogeochemistry48,7–20(2000).8.Jobba´gy,E.G.&Jackson,R.B.The vertical distribution of soil organic carbon and its relation toclimate and vegetation.Ecol.Appl.10,423–436(2000).9.Rustad,L.E.et al.A meta-analysis of the response of soil respiration,net nitrogen mineralization,andaboveground plant growth to experimental ecosystem warming.Oecologia126,543–562(2001). 10.Peterjohn,W.T.,Melillo,J.M.&Bowles,S.T.Soil warming and trace gasfluxes:experimental designand preliminaryflux results.Oecologia93,18–24(1993).11.Peterjohn,W.T.et al.Response of trace gasfluxes and N availability to experimentally elevated soiltemperature.Ecol.Appl.4,617–625(1994).12.Dalias,P.,Anderson,J.M.,Bottner,P.&Couˆteaux,M.-M.T emperature responses of carbonmineralization in conifer forest soils from different regional climates incubated under standard laboratory conditions.Glob.Change Biol.6,181–192(2001).13.Trumbore,S.E.,Chadwick,O.A.&Amundson,R.Rapid exchange between soil carbon andatmospheric carbon dioxide driven by temperature change.Science272,393–396(1996).14.Winkler,J.P.,Cherry,R.S.&Schlesinger,W.H.The Q10relationship of microbial respiration in atemperate forest soil.Soil Biol.Biochem.28,1067–1072(1996).15.MacDonald,N.W.,Zak,D.R.&Pregitzer,K.S.Temperature effects on kinetics of microbialrespiration and net nitrogen and sulfur mineralization.Soil Sci.Soc.Am.J.59,233–240(1995). 16.Ross,D.J.&Tate,K.R.Microbial C and N,and respiratory activity,in litter and soil of a southernbeech(Nothofagus)forest:distribution and properties.Soil Biol.Biochem.25,477–483(1994). 17.Reichstein,M.,Bednorz,F.,Broll,G.&Ka¨tterer,T.T emperature dependence of carbon mineralisation:conclusions from a long-term incubation of subalpine soil samples.Soil Biol.Biochem.32,947–958 (2000).18.Fierer,N.,Allen,A.S.,Schimel,J.P.&Holden,P.A.Controls on microbial CO2production:acomparison of surface and subsurface soil horizon.Glob.Change Biol.9,1322–1332(2003).19.Lovell,R.D.&Jarvis,S.C.Soil microbial biomass and activity in soil from different grasslandmanagement treatments stored under controlled conditions.Soil Biol.Biochem.30,2077–2085 (1998).20.Lomander,A.,Ka¨tterer,T.&Andre´n,O.Carbon dioxide evolution from top-and subsoil as affected bymoisture and constant andfluctuating temperature.Soil Biol.Biochem.30,2017–2022(1998). 21.Grisi,B.,Grace,C.,Brookes,P.C.,Benedetti,A.&Dell’abate,M.T.Temperature effects on organicmatter and microbial biomass dynamics in temperate and tropical soils.Soil Biol.Biochem.30, 1309–1315(1998).22.IPCC.Special Report on Emissions Scenarios(Cambridge Univ.Press,Cambridge,UK,2000).23.Coleman,K.&Jenkinson,D.S.in Evaluation of Soil Organic Matter Models Using Existing Long-TermDatasets(eds Powlson,D.S.,Smith,P.&Smith,J.U.)237–246(NATO ASI Series I Vol.38,Springer, Heidelberg,1996).24.Allen,S.E.,Grimshaw,H.M.,Parkingson,J.A.&Quarmby,C.Chemical Analysis of EcologicalMaterials137–139(Blackwell Scientific,Oxford,1974).25.Martin-Olmedo,P.&Rees,R.M.Short-term N availability in response to dissolved organic-carbonfrom poultry manure,alone or in combination with cellulose.Biol.Fert.Soils29,386–393(1999).26.O¨hlinger,R.in Methods in Soil Biology(eds Schinner,F.et al.)56–58(Springer,Berlin,1995). Supplementary Information accompanies the paper on /nature. Acknowledgements We thank M.Wattenbarch and C.Zhang for assistance with the modelling. The pan-European modelling used data sets arising from the EU-funded ATEAM project. Competing interests statement The authors declare that they have no competingfinancial interests.Correspondence and requests for materials should be addressed to C.F.(c.fang@).Figure3Changes in soil C by2100for European soils.The baseline(solid lines in a–c)was from the original Roth-C model23projection(Q10¼2.98at108C for all C pools).Thetemperature sensitivity of humus was changed to80%of the original value(Q10¼2.58at108C,dashed lines in a–c).The loss of soil C is an average of all grid cells(21,976cellsat100£100resolution)according to present MAT.The percentage of net soil C loss withmodified Q10¼2.58for humus is relative to baseline decreases with MAT gradient(d).SOM,soil organic matter.letters to natureNATURE|VOL433|6JANUARY2005|/nature59©2005Nature Publishing Group。
深海氧同位素mis阶段表深海氧同位素(Oxygen Isotopes)mis阶段表主要是一种地质学家主要用于监测深海氧含量变化的定量手段,其分析方法就是测定深海层内氧同位素含量,并使用特定的模型模拟产均变化趋势。
第一个测量深海氧含量的mis阶段表始于1897年,其中氧同位素含量的测量分别在深海层的固体物质中提取不同的重水素(d18O)和轻水(dD)分布。
此后,随着技术发展,还增加了大量的深海研究测量点以增加测量精度。
不同类型氧同位素含量测量样品的 MIS阶段表如下所示:
(1)粉尘气溶胶:粉尘气溶胶中,d18O含量呈负倒U型曲线,在海水中空气/水界面呈最大值,随着温度下降,变化范围更小。
(2)石油:石油氧同位素分布呈正态分布,d18O碳的含量范围较大,其中轻的碳含量为-22 ‰,重的碳含量约为5 ‰。
(3)温湿空气:氧同位素的含量一般为-22 ‰~-10 ‰,随着海洋区域温度的升高,液相中的碳氧也会随之上升、下降;不同所测海
面及河口气溶胶d18O值也会有所不同,以西北太平洋区及太平洋中海沿岸湿空气中d18O含量为例,其变化范围为-22 ‰~-6 ‰。
(4)海水:深海固体物质以及海水中溶液中氧同位素d18O变化范围为-19 ‰~-5 ‰,其中太平洋深海区为-19 ‰~-11 ‰,东太平洋深海区之间的d18O含量稍有不同,在西太平洋深海海域,深海快速移动的深海脉冲(DIPC)对氧同位素的改变有最大的影响,其d18O含量变化范围为-26 ‰~-18 ‰。
总而言之,通过MIS阶段表,地质学家可以更准确地监测深海氧含量变化,并研究不同深海区域之间的变化过程,为深海交换研究提供物质及能量的基本信息。
International Alloy DesignationsandChemical Composition LimitsforWrought Aluminum andWrought Aluminum Alloys1525 Wilson Boulevard, Arlington, VA 22209With Support for On-line Access From:A luminum E xtruders C ouncilA luminium F ederation of S outh A fricaA ustralian A luminium C ouncil L td.E uropean A luminium A ssociationJ apan A luminium A ssociationA lro S.A, R omaniaRevised: February 2009Supersedes: April 2006© Copyright 2009, The Aluminum Association, Inc.Unauthorized reproduction and sale by photocopy or any other method is illegal.Use of the InformationThe Aluminum Association has used its best efforts in compiling the information contained in this publication. Although the Association believes that its compilation procedures are reliable, it does not warrant, either expressly or impliedly, the accuracy or completeness of this information. The Aluminum Association assumes no responsibility or liability for the use of the information herein.All Aluminum Association published standards, data, specifications and other material are reviewed at least every five years and revised, reaffirmed or withdrawn. Users are advised to contact The Aluminum Association to ascertain whether the information in this publication has been superseded in the interim between publication and proposed use.CONTENTSPage FOREWORD (i)SIGNATORIES TO THE DECLARATION OF ACCORD ..................................... ii-iii REGISTERED DESIGNATIONS AND CHEMICAL COMPOSITION LIMITS .... 1-13 Footnotes .. (14)TABLE OF NOMINAL DENSITIES FOR ACTIVE ALLOYS ............................. 15-20 TABLE OF INACTIVE ALLOY DESIGNATIONS ............................................. 21-22 Table of Chemical Composition Limits for Inactive Original Alloys (23)CROSS REFERENCES OF INTERNATIONAL DESIGNATIONS— DECLARATION OF ACCORD (DOA) TO ISO (24)RECOMMENDATION TO THE DECLARATION OF ACCORD (25)Footnotes (26)Appendix A—Use of Designations (27)Appendix B—Deactivation of Registered Alloys (27)Appendix C—General Guidelines for Determining Compliancewith "Sale of Alloy" and "Commercial Quantity" forPurposes of Registering Wrought Aluminum andWrought Aluminum Alloys (27)DECLARATION OF ACCORD (28)FOREWORDL isted herein are designations and chemical composition limits for wrought aluminum and wrought aluminum alloys registered with The Aluminum Association. Numerical designations are assigned in accordance with the Recommendation—International Designation System for Wrought Aluminum and Wrought Aluminum Alloys, which is printed on pages 25 through 27. Additions may be made in accordance with the rules outlined in the Declaration of Accord printed on page 28, and alloys will be deleted when no longer in commercial use (see table of inactive alloys printed on pages 21-22).S ince the International Designation System for Wrought Aluminum and Wrought Aluminum Alloys is based on USA's national standard "American National Standard Alloy and Temper Designation System for Aluminum ANSI H35.1," the system limits introduction of experimental alloy compositions to USA registrations. An experimental alloy registered by USA under this system is indicated by the prefix "X" and is subject to the following rules:1. A composition shall not be designated as experimental ("X") for more than five years.2. During its experimental status, the registering organization may request changes in thecomposition limit of the alloy, provided that it does not invalidate any assigned designation.3. The "X" is dropped when the alloy is no longer experimental.4. An experimental composition that is inactivated shall retain the prefix "X" for the duration ofits inactive status. If reactivated, the "X" shall be removed.S ome of the registered alloys may be the subject of patent or patent applications, and their listing herein is not to be construed in any way as the granting of a license under such patent right.A list of the organizations that are signatories to the Declaration of Accord on the Recommendation is printed on pages ii-iii.SIGNATORIES TO THE DECLARATION OF ACCORDThe following organizations are signatories to the Declaration of Accord on an International Alloy Designation System for Wrought Aluminum and Wrought Aluminum Alloys which is printed on page 28 of this publication.The Aluminum Association Inc. USA 1525 Wilson BoulevardSuite 600Arlington, VA 22209USAAFA Association Francaise de l’Aluminium FRANCE 17, rue Hamelin75016 ParisFRANCEAll-Russian Institute of Aviation Materials (VIAM) RUSSIA 17 Radio Ulitza105005 MoscowRUSSIAwww.viam.ruAlro S.A. ROMANIA 116 Pitesti Street230048 SlatinaROMANIAwww.alro.roAluminium Association of Canada CANADA 1010 Sherbrooke Street West, Suite 1600Montreal, Quebec H3A2R7CANADAwww.aac.aluminium.qc.caAluminium Center Belgium BELGIUM Z.I. Research Park 3101731 ZellikBELGIUMwww.aluminiumcenter.beAluminium Federation Limited UK National Metalforming Centre47 Birmingham RoadWest Bromwich B70 6PYUNITED KINGDOMAluminium Federation of South Africa SOUTH AFRICA P. O. Box 423Isando, 1600REPUBLIC OF SOUTH AFRICA.zaAluminium – Verband Schweiz SWITZERLAND Hallenstrasse 15PostfachCH-8024 ZurichSWITZERLANDwww.alu.chAssociacão Brasileira do Aluminio—ABAL BRAZIL Rua Humberto 1, No. 220-4o.AndarSao Pãulo-SPCEP 04018-030BRAZIL.brAssociation for the Dutch NETHERLANDS Metallurgic Industry (VNMI)P.O. Box 190NL-2700 AD ZoetermeerNETHERLANDSwww.vnmi.nlAssomet - Associazione Nazionale ITALY Industrie Metalli non FerrosiVia dei Missaglia, 97I-20142 MilanoITALYwww.assomet.itAustralian Aluminium Council Limited AUSTRALIA Level 1, Dickson SquareP. O. Box 63Dickson, ACT 2602AUSTRALIA.auAustrian Non-Ferrous Metals Federation AUSTRIA Wiedner Hauptstrasse 63/3317Postfach 338A-1045 ViennaAUSTRIAwww.nemetall.atCentro Nacional de Investigaciones SPAIN Metalurgicas (CENIM)Avenida Gregorio del Amo, 8Ciudad Universitaria28040 MadridSPAINwww.cenim.csic.esChina Nonferrous Metals Techno-Economic CHINA Research InstituteNo. 9 Xizhang Hutong, Xizhimennei StreetBejing, 100035PEOPLES REPUBLIC OF CHINAEuropean Aluminium Association EAA Avenue de Broqueville, 12B-1150 BrusselsBELGIUMiiEuropean Organization for ASD-STAN Aerospace Standardization270, Avenue de Tervuren1150, BrusselsBELGIUMGesamtverband der Aluminium- GERMANY industrie e.V. (GDA)Am Bonneshof 5D-40474 DusseldorfGERMANYwww.aluinfo.deInstitute of Non-Ferrous Metals POLAND Light Metals Divison32-050 SkawinaUl. Pilsudskiego 19POLANDwww.imn.gliwice.plInstituto Mexicano del Alumino, A.C. MEXICO Francisco PetrarcaNo. 133 Piso 9MEXICO, 11560, DF.mx IRAM-Instituto Argentino De ARGENTINA NormalizacionPeru 556C1068AABBuenos AiresARGENTINA.arJapan Aluminium Association JAPAN Tsukamoto-Sozan Building2-15, Ginza 4-ChomeChuo-ku, Tokyo 104-0061JAPANwww.aluminum.or.jpSwedish Aluminium Association SWEDEN Aluminiumriket SverigeFramtidsvagen 21ASE-351 96 VaxjoSWEDENSignatories (Continued)iiiCALCULATED NOMINAL DENSITIES FOR ACTIVEWROUGHT ALUMINUM AND WROUGHT ALUMINUM ALLOYSDensity is dependent upon composition and nominal density is determined by computation rather than by a weight method. The values shown below have been computed in accordance with the Aluminum and Aluminum Alloy Density Calculation Procedure appearing on pages 2-12 and 2-13 of Aluminum Standards and Data. These calculated densities are nominal values and should not be specified as engineering requirements but may be used in calculating nominal values for weight per unit length, weight per unit area, covering area, etc.Limiting the expression of nominal density to the number of decimal places indicated is based on the fact that composition variations are discernible from one cast to another for most alloys. The expression of nominal density to more decimal places than allowed by the following implies higher precision than is justified and should not be used.1. Alloys listed below which have a minimum aluminum content of 99.35% or greater have nominal densityvalues which are rounded in the US customary system (lbs/in3) to the nearest multiple of 0.0005 and in the metric system [(kg/m3) x 103] to the nearest multiple of 0.005.2. Alloys listed below which have a minimum aluminum content of less than 99.35% have nominal densityvalues which are rounded in the US customary system (lbs/in3) to the nearest multiple of 0.001 and in the metric system [(kg/m3) x 103] to the nearest multiple of 0.01.The US customary (lbs/in3) unit values are derived from metric values and subsequently rounded and are not to be back-converted to metric values.Density Designation lbs/in.3(kg/m3) x 103 1050 0.0975 2.7051050A 0.0975 2.7051060 0.0975 2.7051065 0.0975 2.7001070 0.0975 2.7001070A 0.0975 2.7001080 0.0975 2.7001080A 0.0975 2.7001085 0.0975 2.7001090 0.0975 2.7001098 0.0975 2.7001100 0.098 2.711100A 0.098 2.711200 0.098 2.701200A 0.098 2.711300 0.098 2.711110 0.098 2.701120 0.098 2.711230 0.098 2.701230A 0.098 2.701235 0.0975 2.7051435 0.0980 2.7101145 0.0975 2.7001345 0.0975 2.7051445 0.0975 2.7001150 0.0975 2.7051350 0.0975 2.7051350A 0.0975 2.7001450 0.0975 2.7051370 0.0975 2.7001275 0.0975 2.7051185 0.0975 2.700Density Designation lbs/in.3(kg/m3) x 103 1285 0.0975 2.7001385 0.0975 2.7001188 0.0975 2.7001190 0.0975 2.7001290 0.0975 2.7001193 0.0975 2.7001198 0.0975 2.7001199 0.0975 2.7002001 0.102 2.822002 0.099 2.732004 0.102 2.822005 0.102 2.832006 0.099 2.742007 0.102 2.822007A 0.102 2.81+2007B 0.102 2.81 2008 0.098 2.722009 0.099 2.752010 0.098 2.722011 0.102 2.832011A 0.102 2.822111 0.102 2.832111A 0.102 2.832111B 0.102 2.832012 0.102 2.822013 0.099 2.732014 0.101 2.802014A 0.101 2.802214 0.101 2.802015 0.102 2.832016 0.101 2.792017 0.101 2.79Density Designation lbs/in.3(kg/m3) x 103 2017A 0.101 2.792117 0.099 2.752018 0.102 2.822218 0.101 2.812618 0.100 2.762618A 0.100 2.772219 0.103 2.842319 0.103 2.842419 0.102 2.842519 0.102 2.822021 0.103 2.842022 0.101 2.802023 0.100 2.772024 0.100 2.782024A 0.100 2.772124 0.100 2.782224 0.100 2.772224A 0.100 2.782324 0.100 2.772424 0.100 2.772524 0.100 2.782025 0.101 2.812026 0.100 2.772027 0.101 2.792028 0.102 2.83+2028A 0.101 2.80+2028B 0.102 2.81+2028C 0.102 2.82 2030 0.102 2.812031 0.100 2.772032 0.100 2.762034 0.101 2.792036 0.100 2.752037 0.099 2.742038 0.099 2.732039 0.101 2.812139 0.102 2.812040 0.102 2.81+2041 0.103 2.84+2044 0.102 2.81+2045 0.102 2.82 2050 0.098 2.702056 0.100 2.782090 0.093 2.592091 0.093 2.582094 0.098 2.722095 0.098 2.702195 0.098 2.712196 0.095 2.632097 0.096 2.652197 0.095 2.642297 0.096 2.65Density Designation lbs/in.3(kg/m3) x 103 2397 0.096 2.652098 0.097 2.702198 0.097 2.692099 0.095 2.632199 0.095 2.643002 0.098 2.703102 0.098 2.713003 0.099 2.733103 0.099 2.733103A 0.098 2.723103B 0.098 2.733203 0.098 2.733403 0.099 2.733004 0.098 2.723004A 0.098 2.713104 0.098 2.723204 0.098 2.713304 0.098 2.723005 0.098 2.733005A 0.099 2.733105 0.098 2.723105A 0.098 2.713105B 0.098 2.723007 0.098 2.723107 0.098 2.723207 0.098 2.713207A 0.098 2.723307 0.098 2.723009 0.099 2.733010 0.098 2.723110 0.098 2.723011 0.099 2.733012 0.098 2.72+3012A 0.098 2.72 3013 0.099 2.743014 0.099 2.753015 0.098 2.723016 0.098 2.723017 0.099 2.733019 0.099 2.733020 0.099 2.733025 0.098 2.723026 0.098 2.723030 0.098 2.723130 0.098 2.714004 0.096 2.654104 0.096 2.654006 0.098 2.714007 0.099 2.744008 0.096 2.674009 0.097 2.704010 0.096 2.67Density Designation lbs/in.3(kg/m3) x 103 4013 0.098 2.714014 0.097 2.704015 0.098 2.71+4015A 0.098 2.71+4115 0.098 2.72 4016 0.099 2.734017 0.098 2.724018 0.096 2.674019 0.099 2.744020 0.098 2.714026 0.099 2.734032 0.097 2.684043 0.097 2.694043A 0.097 2.694343 0.097 2.684643 0.097 2.694044 0.097 2.674045 0.096 2.674145 0.099 2.744145A 0.099 2.744046 0.096 2.664047 0.096 2.664047A 0.096 2.664147 0.096 2.665005 0.098 2.705005A 0.097 2.695205 0.097 2.705305 0.097 2.695505 0.097 2.695605 0.097 2.695006 0.098 2.715106 0.098 2.715010 0.098 2.715110 0.097 2.695110A 0.098 2.705210 0.097 2.695310 0.097 2.695016 0.097 2.705017 0.097 2.695018 0.096 2.675018A 0.097 2.675019 0.096 2.655019A 0.096 2.655119 0.096 2.655119A 0.096 2.655021 0.097 2.685022 0.096 2.665023 0.095 2.64+ 5024 0.096 2.65 5026 0.097 2.695027 0.096 2.655040 0.098 2.72Density Designation lbs/in.3(kg/m3) x 103 5140 0.098 2.715041 0.097 2.675042 0.096 2.675043 0.098 2.725049 0.097 2.705149 0.097 2.695249 0.097 2.705349 0.097 2.705449 0.097 2.705050 0.097 2.695050A 0.097 2.695150 0.097 2.685051 0.097 2.695051A 0.097 2.695151 0.097 2.685251 0.097 2.695251A 0.097 2.695351 0.097 2.685451 0.097 2.685052 0.097 2.685252 0.096 2.675352 0.097 2.675154 0.096 2.665154A 0.096 2.675154B 0.096 2.67+ 5154C 0.096 2.66 5254 0.096 2.665354 0.097 2.695454 0.097 2.695554 0.097 2.695654 0.096 2.665654A 0.096 2.665754 0.097 2.675954 0.096 2.665056 0.095 2.645356 0.096 2.645356A 0.096 2.645456 0.096 2.665456A 0.096 2.665456B 0.096 2.665556 0.096 2.665556A 0.096 2.655556B 0.096 2.655556C 0.096 2.665257 0.097 2.705457 0.097 2.695557 0.097 2.705657 0.097 2.695058 0.097 2.675059 0.096 2.665070 0.097 2.685180 0.097 2.70Density Designation lbs/in.3(kg/m3) x 103 5180A 0.097 2.705082 0.096 2.655182 0.096 2.655083 0.096 2.665183 0.096 2.665183A 0.096 2.665283 0.096 2.655283A 0.096 2.655283B 0.096 2.665383 0.096 2.665483 0.096 2.665086 0.096 2.665186 0.096 2.665087 0.096 2.665187 0.096 2.665088 0.096 2.656101 0.097 2.706101A 0.097 2.696101B 0.097 2.706201 0.097 2.696201A 0.097 2.696401 0.097 2.696501 0.098 2.706002 0.097 2.706003 0.097 2.706103 0.098 2.706005 0.097 2.706005A 0.098 2.706005B 0.097 2.706005C 0.098 2.706105 0.097 2.706205 0.098 2.716006 0.098 2.706106 0.098 2.706206 0.098 2.716306 0.097 2.706008 0.098 2.706009 0.098 2.716010 0.098 2.716110 0.098 2.716110A 0.098 2.716011 0.099 2.736111 0.098 2.716012 0.099 2.746012A 0.099 2.746013 0.098 2.716113 0.098 2.716014 0.098 2.706015 0.097 2.696016 0.098 2.706016A 0.098 2.706116 0.097 2.70Density Designation lbs/in.3(kg/m3) x 103 6018 0.099 2.746019 0.098 2.716020 0.099 2.736021 0.098 2.726022 0.097 2.696023 0.099 2.736024 0.098 2.726025 0.097 2.706026 0.099 2.74+6028 0.099 2.74 6033 0.099 2.736040 0.099 2.73+6041 0.099 2.73+6042 0.098 2.72+6043 0.098 2.72 6151 0.098 2.716351 0.098 2.716351A 0.098 2.716451 0.098 2.706951 0.098 2.706053 0.097 2.696056 0.098 2.726156 0.098 2.726060 0.097 2.706160 0.097 2.706260 0.098 2.706360 0.098 2.706460 0.097 2.706560 0.098 2.706061 0.098 2.706061A 0.098 2.706261 0.098 2.706162 0.097 2.706262 0.098 2.726262A 0.098 2.726063 0.097 2.706063A 0.097 2.706463 0.097 2.696463A 0.097 2.696763 0.097 2.696963 0.097 2.70+6064 0.098 2.72+6064A 0.098 2.72 6065 0.098 2.726066 0.098 2.726069 0.098 2.706070 0.098 2.716081 0.097 2.706181 0.097 2.696181A 0.098 2.706082 0.098 2.706082A 0.098 2.70Density Designation lbs/in.3(kg/m3) x 103 6182 0.098 2.716091 0.097 2.706092 0.098 2.707003 0.101 2.807004 0.100 2.777204 0.100 2.787005 0.100 2.777108 0.100 2.787108A 0.101 2.787009 0.101 2.807010 0.102 2.827012 0.101 2.817014 0.101 2.797015 0.100 2.777016 0.100 2.787116 0.101 2.787017 0.100 2.767018 0.101 2.797019 0.100 2.767019A 0.100 2.757020 0.100 2.787021 0.101 2.787022 0.100 2.777122 0.100 2.767023 0.100 2.787024 0.100 2.777025 0.100 2.777026 0.100 2.787028 0.100 2.777029 0.100 2.777129 0.100 2.787229 0.100 2.777030 0.101 2.797031 0.099 2.747032 0.102 2.827033 0.101 2.797034 0.105 2.907035 0.099 2.75+7035A 0.099 2.75 7036 0.104 2.887136 0.104 2.88+7037 0.103 2.85 7039 0.099 2.747040 0.102 2.827140 0.102 2.83+7041 0.101 2.80 7046 0.102 2.827046A 0.102 2.817049 0.103 2.847049A 0.103 2.847149 0.103 2.847249 0.103 2.84Density Designation lbs/in.3(kg/m3) x 103 7349 0.103 2.857449 0.103 2.857050 0.102 2.837050A 0.102 2.827150 0.102 2.837250 0.102 2.827055 0.103 2.86+7155 0.104 2.87 7056 0.104 2.877060 0.103 2.857064 0.103 2.857068 0.103 2.857168 0.103 2.867072 0.098 2.727075 0.101 2.817175 0.101 2.807475 0.101 2.817076 0.102 2.847178 0.102 2.837278 0.102 2.837278A 0.102 2.827081 0.102 2.837085 0.103 2.857090 0.103 2.857093 0.103 2.867095 0.104 2.898005 0.098 2.718006 0.099 2.748007 0.100 2.768008 0.099 2.748010 0.098 2.728011 0.098 2.718011A 0.098 2.718111 0.098 2.718211 0.098 2.728112 0.098 2.728014 0.099 2.738015 0.098 2.728016 0.098 2.728017 0.098 2.718018 0.098 2.728019 0.106 2.928021 0.098 2.738021A 0.098 2.728021B 0.098 2.728022 0.102 2.838023 0.099 2.748024 0.088 2.438025 0.098 2.71+8026 0.099 2.73 8030 0.098 2.718130 0.098 2.71Density Designation lbs/in.3(kg/m3) x 103 8040 0.098 2.718050 0.099 2.738150 0.098 2.738076A 0.098 2.718176 0.098 2.718077 0.098 2.708079 0.098 2.728090 0.092 2.548091 0.092 2.548093 0.092 2.55Density Designation lbs/in.3(kg/m3) x 103PREVIOUSLY ASSIGNED BUT PRESENTLY INACTIVE ALLOY DESIGNATIONS12DATEDESIGNATION RECLASSIFIED103081988-05-23103582005-04-13104082005-04-13104582005-04-131130 1966-09-091330 1964-12-181135 1997-02-031335 1966-09-091245 1966-09-091250 1988-05-231055 1988-05-231160 1958-04-22(Superseded by 1060)1260 2005-04-131360 1965-12-091165 1966-07-121170 1997-02-031270 1966-07-12107581988-05-231175 1997-02-031180 1997-02-031187 1958-09-10(Superseded by 1188)1095 1988-05-231197 1958-09-10(Superseded by 1199)109981965-12-09200381997-11-28X231681965-03-31X2119 1966-03-072020 1974-11-012225 1966-07-12204882005-04-132053 1983-11-09208082005-06-02X209682000-12-083303 1997-02-033205 1965-11-05300682005-04-133008 1996-03-153018 1998-01-164001 1965-11-054101 1965-11-054002 1981-05-29X4003 1975-01-27X4005 1977-06-01401182005-06-024012 1965-11-054543 1997-02-03DATEDESIGNATION RECLASSIFIED4245 1968-08-19(Redesignated 4048)404882005-04-13X5002 1963-06-035004 1967-04-265105 1960-04-285405 1966-07-125007 1968-05-135008 1968-05-135009 1968-05-135011 1967-04-26X5012 1970-06-305013 1996-10-02501481997-11-28X5015 1968-08-19X5020 1977-08-04X5220 1962-01-11502582005-06-025034 1973-08-095039 1975-11-245250 2005-04-135050B 1996-03-155152 1963-06-03X5452 1971-06-175552 1997-02-035652 2005-04-135053 1968-08-19X5153 1967-04-265854 1996-10-02X5055 1956-10-195155 1971-07-145056A141992-02-215357 2005-04-135757 1963-05-145857 1963-06-105957 1963-06-03X508081963-10-225280 1996-10-02X5084 1965-04-27X5184 1965-04-27X5085 1977-08-04X5090 1977-07-18509182000-04-26600181955-07-086301 2005-04-13600482005-04-13600782005-04-13601781997-02-03PREVIOUSLY ASSIGNED BUT PRESENTLY INACTIVE ALLOY DESIGNATIONS12 (continued)DATE DESIGNATION RECLASSIFIED605181963-12-12X6251 1965-03-316253 2002-05-22X6161 1963-06-03606281964-09-04X6163 1964-12-186263 1955-07-126363 1964-12-186563 1967-04-266663 1967-04-266863 1996-10-02X6064181965-03-31X6067 1974-11-016071 1966-07-126090 1992-06-01700181997-02-037002 1966-07-127104 1988-05-23X7006 1963-09-10X710681980-04-16X7007 1972-02-16700882005-04-13 7109 1996-03-15701181999-06-17701381997-02-037027 1996-06-26X7038 1967-04-267139 1966-09-097146 1997-02-037051 1996-10-027070 1988-05-23X7272 1965-03-317472 1997-02-03X7275 1963-06-03727782000-11-067079 1989-03-22 7179 1989-06-06X7279 1963-06-03X7080 1971-01-04709181997-02-03 800181997-02-03X8002 1964-12-18X8003 1964-12-188004 1996-10-02800982000-06-198212 1967-04-268013 1971-11-01802082005-04-138DATE DESIGNATION RECLASSIFIED8177 1997-02-03828082005-04-13X8380 1964-12-18X8480 1964-12-18808181997-02-03X8090A 1989-01-13X8092 1991-10-24X8192 1991-10-24CROSS REFERENCE OF INTERNATIONAL DESIGNATIONS DECLARATION OF ACCORD (DOA) TO ISO*DOA DESIGNATIONFORMER ISODESIGNATIONDOADESIGNATIONFORMER ISODESIGNATIONDOADESIGNATIONFORMER ISODESIGNATION1050A Al99.5 3105 AlMn0.5Mg0.5 6101 E-AlMgSi1350 E-Al99.5 4043 AlSi5 6101A E-AlMgSi(A) 1060 Al99.6 4043A AlSi5(A) 6005 AlSiMg1070A Al99.7 4047 AlSi12 6005A AlSiMg(A)1370 E-Al99.7 4047A AlSi12(A) 6351 AlSi1Mg0.5Mn 1080A Al99.8(A) 5005 AlMg1(B) 6060 AlMgSi1100 Al99.0Cu 5019 AlMg5 6061 AlMg1SiCu1200 Al99.0 5050 AlMg1.5(C) 6262 AlMg1SiPb2011 AlCu6BiPb 5251 AlMg2 6063 AlMg0.7Si2014 AlCu4SiMg 5052 AlMg2.5 6063A AlMg0.7Si(A) 2014A AlCu4SiMg(A) 5154 AlMg3.5 6181 AlSi1Mg0.82017 AlCu4MgSi 5154A AlMg3.5(A) 6082 AlSi1MgMn2017A AlCu4MgSi(A) 5454 AlMg3Mn 7005 AlZn4.5Mg1.5Mn 2117 AlCu2.5Mg 5554 AlMg3Mn(A) 7010 AlZn6MgCu2219 AlCu6Mn 5754 AlMg3 7020 AlZn4.5Mg1 2024 AlCu4Mg1 5056 AlMg5Cr 7049A AlZn8MgCu2030 AlCu4PbMg 5356 AlMg5Cr(A) 7050 AlZn6CuMgZr 3003 AlMn1Cu 5456 AlMg5Mn1 7075 AlZn5.5MgCu 3103 AlMn1 5083 AlMg4.5Mn0.7 7475 AlZn5.5MgCu(A) 3004 AlMn1Mg1 5183 AlMg4.5Mn0.7(A) 7178 AlZn7MgCu3005 AlMn1Mg0.5 5086 AlMg4*Source: ISO 209-1.NOTE: This table is included for informational purposes only. ISO 209-1 has been withdrawn and replaced by ISO 209 which references the Teal Sheets as the normative reference and the source for international alloy designations.The Aluminum Association RECOMMENDATION 15 December 1970 1525 Wilson Boulevard INTERNATIONAL DESIGNATION SYSTEM Revised March 2008 Arlington, VA 22209 FOR WROUGHT ALUMINUM AND WROUGHT ALUMINUM ALLOYSU.S.A.This Recommendation is based on the numerical designation system for wrought aluminum and wrought aluminum alloys which was adopted in the U.S.A. in 1954, andbecame its national standard in 1957. This Recommendation was officially adopted by the International Signatories of the Declaration of Accord on December 15, 1970.Designations in accordance with this Recommendation may be used by any country, but there is no obligation to use them. For use, see Appendixes A, B, and C.A numerical designation assigned in conformance with this Recommendation should only be used to indicate an aluminum or an aluminum alloy having chemicalcomposition limits identical to those registered with the Signatories to the Declaration of Accord on an International Alloy Designation System for Wrought Aluminum andWrought Aluminum Alloys.1. ScopeThis recommendation describes a four-digit numerical system for designating wroughtaluminum and wrought aluminum alloys.2. Alloy GroupsThe first of the four digits in the designation indicates the alloy group as follows:Aluminum, 99.00 percent and greater (1xxx)Aluminum alloys grouped by major alloying elements1,2,3Copper (2xxx)Manganese (3xxx)Silicon (4xxx)Magnesium (5xxx)Magnesium and Silicon (6xxx)Zinc (7xxx)Other elements (8xxx)Unused series (9xxx)3. 1xxx GroupThe designation assigned shall be in the 1xxx group whenever the minimum aluminumcontent is specified as 99.00 percent and greater. In the 1xxx group, the last two of the fourdigits in the designation indicate the minimum aluminum percentage4. These digits are thesame as the two digits to the right of the decimal point in minimum aluminum percentagewhen it is expressed to the nearest 0.01 percent. The second digit in the alloy designationindicates alloy modifications in impurity limits or alloying elements. If the second digit in thedesignation is zero, it indicates unalloyed aluminum having natural impurity limits; integers 1through 9, which are assigned consecutively as needed, indicate special control of one ormore individual impurities or alloying elements.4. 2xxx-8xxx GroupsThe alloy designation in the 2xxx through 8xxx groups is determined by the alloying element(Mg2Si for 6xxx alloys) present in the greatest mean percentage. If the greatest meanpercentage is common to more than one alloying element, choice of group will be in order ofgroup sequence Cu, Mn, Si, Mg, Mg2Si, Zn or Others. In the 2xxx through 8xxx alloy groupsthe last two of the four digits in the designation have no special significance but serve only toidentify the different aluminum alloys in the group. The second digit in the alloy designationindicates the original alloy5 and alloy modifications; integers 1 through 9, which are assignedconsecutively, indicate alloy modifications.5. ModificationsA modification of the original alloy 5 is limited to any one or a combination of the following:(a) Change of not more than the following amounts in the arithmetic mean of thelimits for an individual alloying element or combination of elements expressedas an alloying element or both:Arithmetic Mean of Limits for Alloying Elements in Original Alloy Maximum ChangeUp through 1.0 percent 0.15Over 1.0 through 2.0 percent 0.20Over 2.0 through 3.0 percent 0.25Over 3.0 through 4.0 percent 0.30Over 4.0 through 5.0 percent 0.35Over 5.0 through 6.0 percent 0.40Over 6.0 percent 0.50To determine compliance when maximum and minimum limits are specified for a combination of two or more elements in one alloy composition, the arithmetic mean of such combination is compared to the sum of the mean values of the same individual elements, or any combination thereof, in another alloy composition.(b) Addition or deletion of not more than one alloying element with limits having anarithmetic mean of not more than 0.30 percent, or addition or deletion of not morethan one combination of elements expressed as an alloying element with limitshaving a combined arithmetic mean of not more than 0.40 percent.(c) Substitution of one alloying element for another element serving the samepurpose.(d) Change in limits for impurities expressed singly or as a combination.(e) Change in limits for grain refining elements.(f) Maximum iron or silicon limits of 0.12 percent and 0.10 percent, or less,respectively, reflecting high purity base metal.An alloy should not be registered as a modification if it meets the requirements for a national variation.6. National VariationsNational variations of wrought aluminum and wrought aluminum alloys registered by another country in accordance with this Recommendation are identified by a serial letter after the numerical designation. The serial letters are assigned in alphabetical sequence starting withA for the first national variation registered, but omitting I, O, and Q.A national variation has composition limits which are similar but not identical to a modificationor an original alloy registered by another country, with differences such as:(a) Differences in arithmetic mean of limits for an individual alloying element orcombination of elements expressed as an alloying element, or both, notexceeding the following amounts:Arithmetic Mean of Limits for AlloyingElements in Original Alloy or ModificationMaximumDifferenceUp through 1.0 percent 0.15Over 1.0 through 2.0 percent 0.20Over 2.0 through 3.0 percent 0.25Over 3.0 through 4.0 percent 0.30Over 4.0 through 5.0 percent 0.35Over 5.0 through 6.0 percent 0.40Over 6.0 percent 0.50To determine compliance when maximum and minimum limits are specified for acombination of two or more elements in one alloy composition, the arithmetic mean ofsuch combination is compared to the sum of the mean values of the same individualelements, or any combination thereof, in another alloy composition.(b) Substitution of one alloying element for another element serving the samepurpose.(c) Different limits of impurities except for low iron. Iron maximum of 0.12 percent orless, reflecting high purity base metal, should be considered an alloy modification.See 5(f).(d) Different limits on grain refining elements.(e) Inclusion of a minimum limit for iron or silicon, or both.An alloy meeting these requirements should not be registered as a new alloy or alloymodification.See footnotes on page 2625See footnotes on page 14.。
2024/040(01):0159 0177ActaPetrologicaSinica 岩石学报doi:10.18654/1000 0569/2024.01.09于太极,王璞臖,高有峰等.2024.松辽盆地西缘突泉地区晚侏罗世过铝质流纹岩和英云闪长玢岩的发现:从蒙古 鄂霍茨克洋闭合到陆陆碰撞的地质记录.岩石学报,40(01):159-177,doi:10.18654/1000-0569/2024.01.09松辽盆地西缘突泉地区晚侏罗世过铝质流纹岩和英云闪长玢岩的发现:从蒙古 鄂霍茨克洋闭合到陆陆碰撞的地质记录于太极1,2 王璞臖2 高有峰2,3 张艳2 陈崇阳4YUTaiJi1,2,WANGPuJun2 ,GAOYouFeng2,3,ZHANGYan2andCHENChongYang41 辽宁工程技术大学安全科学与工程学院,葫芦岛 1251052 吉林大学地球科学学院,长春 1300613 吉林大学古生物学与地层研究中心,长春 1300264 吉林师范大学旅游与地理科学学院,四平 1360001 CollegeofSafetyScienceandEngineering,LiaoningTechnicalUniversity,Huludao125105,China2 CollegeofEarthSciences,JilinUniversity,Changchun130061,China3 ResearchCenterofPaleontologyandStratigraphy,JilinUniversity,Changchun130026,China4 CollegeofTourismandGeographicSciences,JilinNormalUniversity,Siping136000,China2023 06 25收稿,2023 11 02改回YuTJ,WangPJ,GaoYF,ZhangYandChenCY 2024 DiscoveryoftheLateJurassicperaluminousrhyolitesandtonaliteporphyritesintheTuquanareaalongthewesternmarginoftheSongliaoBasin:GeologicalrecordsfromclosureoftheMongol OkhotskOceantocontinentalcollisionbetweentheSiberianplateandtheErguna Songliaoblock.ActaPetrologicaSinica,40(1):159-177,doi:10.18654/1000 0569/2024.01.09Abstract ThesoutheastwardsubductionoftheMongol OkhotskOcean,oceanicclosure,andcontinentalcollisionwereimportantregionaltectoniceventsintheLateMesozoicofNortheastAsia Theyarecloselyrelatedtomagmaticactivity,metamorphism,basinformationandorogenyinthearea AccuratelydefiningthespatiotemporalrangeoftheinterrelatedgeologicalprocessesoftheabovethreeeventsisaprerequisiteforunderstandingthetectonicsoftheregionintheLateMesozoic However,itisdifficulttoconductthiskindofinvestigationasitisdifficulttofindsuitablegeologicalrecordsrelatedtotheseevents WediscoveredperaluminousrhyolitesandtonaliteporphyritesintheTuquanareaalongthewesternmarginoftheSongliaoBasin Thesesamplesareprobablyrelatedtotheoceanicclosureandcontinentalcollision ThezirconLA ICP MSU Pbdatingresultsshowthattheircrystallizationagesare156±1Maand155±1Ma,respectively,indicatingtheyaretheproductsofLateJurassicmagmaticevents Theyarecalc alkalineperaluminousrockswithhighaluminumsaturationindexA/CNK(1 32~2 13)andlowcontentofMgO+FeOT(0 96%~3 37%)andlowratioofFeOT/MgO(2 84~5 02).Thin sectionworkshowsthattheycontainhighaluminummineralssuchassericite Corundummolecules(3 77%~9 65%)appearinCIPWstandardmineralcalculation,andtheserhyolitesandtonaliteporphyritesaremappedinthegeochemicaldiagramsrelatedtotheS I M Aclassificationschemeofgranites TheseresultsshowthecharacteristicsofS typegranites ThelowratiosofRb/Sr(0 35~0 55)andRb/Ba(0 08~0 26)ofrhyolitesandtonaliteporphyritesindicatethattheprimarymagmaofrhyolitesandtonaliteporphyriteswereoriginatedfrompoorargillaceousarenaceousrocks Zirconsaturationtemperaturecalculationshowsthatthemagmaticcrystallizationtemperaturesofrhyolitesandtonaliteporphyritesrangefrom837℃to876℃,andthesampleshavehighratioofAl2O3/TiO2(38 41~61 36),thesetemperaturesarelowerthantheformationtemperatureofA typegranite(900℃).TheserhyolitesandtonaliteporphyritesarericheninlargeionlithophileelementssuchasRb,Ba,K,andlackhigh 本文受国家自然科学基金项目(41790453、41472304、42102129、41972313)和国家重点研发计划(2019YFC0605402)联合资助 第一作者简介:于太极,男,1988年生,讲师,从事岩石学和构造地质学研究,E mail:yutj1988@126 com通讯作者:王璞臖,男,1959年生,教授,博士生导师,主要从事盆地地质和火山岩储层、沉积学和火山学的研究与教学,E mail:wangpj@jlu edu cnfieldstrengthelementssuchasNb,Ta,P,Ti TheyalsoshowlowcontentsofY(5 29×10-6~19 75×10-6),Nb(7 44×10-6~8 50×10-6),Sr(60 6×10-6~154 9×10-6)andYb(0 53×10-6~2 40×10-6),showingarcmagmaticproperties IntheR1 R2majorelementtectonicdiscriminationdiagram,thesamplesaremainlyprojectedwithintherangeofcollisionalandorogenicperiods TheNb Ydiagramshowsthatthesamplesaredottedinvolcanicarcsandsyn collisiongranites TheRb/10 Hf Ta×3diagramshowsthatthesamplesarelocatedintheregionsofvolcanicarcsandcollisiontypegranite TheSr Ybdiagramsindicatethatrhyolitesandtonaliteporphyriteswereformedinthestageofcrustalthickening ThetectonicdiscriminationfortherhyolitesandtonaliteporphyritesintheTuquanareaissuggestedthattheLateJurassicintheareawasaperiodofthevolcanicarcandcontinentalcrustcollisionenvironments ItimpliesthattheirformationisrelatedtooceaniccrustsubductionandcontinentalcollisionduringtheclosureprocessoftheMongol OkhotskOcean Theratioofrhyolites(La/Yb)Nrangefrom6 62to8 77,indicatingadepthof40~46kminthesourcearea Theratiooftonaliteporphyrites(La/Yb)Nrangefrom7 93to13 39,indicatingadepthof44~55kminthesourcearea Theseresultsindicatethatacontinuousthickeningprocessofthecrustat156±1Mato155±1Ma Thesecharacteristicsofrhyolitesandtonaliteporphyritesprovidekeyigneousrockevidenceforevolutionfromoceanicsubductiontocontinentalcollision Combinedwiththeregionalgeologicaldata,thetectonic magmaticevolutionmodeloftheMongol OkhotskOceanfromthesubductionandclosuretothecontinentalcollisionisconstructed Inthispaper,theinfluencerangeoftheMongol OkhotskOceantectonicsystemreachedtheTuquanareainthewesternmarginoftheSongliaoBasin,theMongol OkhotskOceanwasclosedat156±1Ma,andthestudyareaat155±1Mawasatthestageofcontinentalcollisionandcrustthickeningafteroceanclosure Keywords SongliaoBasin;Rhyolite;Tonaliteporphyrite;Peraluminous;LateJurassic;ClosureoftheMongol OkhotskOcean;CollisionbetweentheSiberianplateandErguna Songliaoblock摘 要 蒙古 鄂霍茨克洋南向俯冲、大洋闭合和陆 陆碰撞是东北亚地区晚中生代的重要区域构造事件,它与本区的岩浆活动、变质作用、成盆和造山作用都密切相关。
生态毒理学报Asian Journal of Ecotoxicology第17卷第2期2022年4月V ol.17,No.2Apr.2022㊀㊀基金项目:广西自然科学基金重点项目(2018GXNSFDA281016)㊀㊀第一作者:刘士龙(1993 ),男,博士研究生,研究方向为动物生态毒理学,E -mail:150****************㊀㊀*通讯作者(Corresponding author ),E -mail:*************DOI:10.7524/AJE.1673-5897.20210220005刘士龙,周雪梦,Wambura M.Mtemi,等.废弃矿山周边灰眶雀鹛(Alcippe morrisonia )羽毛中汞含量分布特征[J].生态毒理学报,2022,17(2):272-277Liu S L,Zhou X M,Wambura M M,et al.Residue and distribution of mercury in feathers of Grey -cheeked Fulvetta (Alcippe morrisonia )around aban -doned mine [J].Asian Journal of Ecotoxicology,2022,17(2):272-277(in Chinese)废弃矿山周边灰眶雀鹛(Alcippe morrisonia )羽毛中汞含量分布特征刘士龙,周雪梦,Wambura M.Mtemi ,潘金城,蒋爱伍*广西森林生态与保育重点实验室,广西大学林学院,南宁530005收稿日期:2021-02-20㊀㊀录用日期:2021-06-12摘要:汞是一种强烈的神经毒素,能导致生物体的不可逆损伤㊂本研究检测了广西大新铅锌矿废弃矿山周边灰眶雀鹛(Al -cippe morrisonia )初级飞羽㊁次级飞羽㊁尾羽和胸羽的汞残留量㊂汞在4类羽毛中的分布模式为:尾羽>次级飞羽>初级飞羽>胸羽,尾羽中汞浓度显著高于其他3种羽毛,且尾羽与初级飞羽的汞含量呈显著正相关关系㊂因此,尾羽可能是监测鸟类汞污染的最佳选择㊂与其他污染地区雀形目鸟类相比,灰眶雀鹛具有较强的汞富集能力,灰眶雀鹛可以作为热带和亚热带森林中汞污染监测的良好指示物种㊂由于灰眶雀鹛对森林鸟类混合群维持具有重要作用,因此今后需加强汞污染对鸟类群落影响的研究㊂关键词:汞;灰眶雀鹛;尾羽;指示物种;核心种文章编号:1673-5897(2022)2-272-06㊀㊀中图分类号:X171.5㊀㊀文献标识码:AResidue and Distribution of Mercury in Feathers of Grey-cheeked Fulvetta (Alcippe morrisonia )around Abandoned MineLiu Shilong,Zhou Xuemeng,Wambura M.Mtemi,Pan Jincheng,Jiang Aiwu *Guangxi Key Laboratory of Forest Ecology and Conservation,College of Forestry,Guangxi University,Nanning 530005,ChinaReceived 20February 2021㊀㊀accepted 12June 2021Abstract :Mercury is a potent neurotoxin that can cause irreversible damage to organisms.We measured the mer -cury concentrations in primary feathers,secondary feathers,tail feathers,and down feathers from Grey -cheeked Fulvettas (Alcippe morrisonia )living in Daxin lead -zinc mine tailings,Guangxi,Southern China.We found the mercury distribution pattern in the four types of feathers to be:tail feathers>secondary feathers>primary feathers>down feathers.The tail feathers were significantly positively correlated with primary flight feathers in the Hg con -centrations.Therefore,tail feathers may be the best choice for mercury pollution monitoring in paring with passerine birds in other polluted areas,Grey -cheeked Fulvetta has a strong mercury accumulation capacity,and it may be a good indicator species for mercury pollution monitoring in tropical and subtropical forests.In addition,Grey -cheeked Fulvetta is the nuclear species of bird mixed -species flocks in tropical and subtropical forests,which always lead birds in foraging and vigilance.Therefore,understanding the effects of mercury pollution on Grey -第2期刘士龙等:废弃矿山周边灰眶雀鹛(Alcippe morrisonia)羽毛中汞含量分布特征273㊀cheeked Fulvetta is of great importance to the bird community maintenance.Keywords:mercury;Grey-cheeked Fulvetta;tail feather;bioindicator;nuclear species㊀㊀汞作为一种全球分布的持久性污染物,具有强烈的生物毒性,能对人类和野生动物产生严重危害[1-2]㊂汞对鸟类的影响也受到广泛关注㊂鸟类长期接触汞会对其繁殖㊁行为和生存产生严重影响[3-4]㊂例如,卵中汞残留超过1.8μg㊃kg-1能够导致卵质量下降㊁畸形以及孵化率㊁生长率和雏鸟成活率的降低[5]㊂汞可能是导致冬季迁徙海鸟大规模死亡的重要因素[6]㊂甲基汞还会影响鸟类的警戒行为,从而增加被捕食风险[7]㊂因此,充分了解汞污染对鸟类的影响对维持生态系统平衡具有重要意义㊂鸟类是生态系统的重要组成部分,与环境关系十分密切,是较好的环境质量监测指示生物[8-9]㊂雀形目鸟类在鸟纲中类群最为丰富,野外种群数量多,样本易于采集;同时雀形目留鸟的活动范围小且相对稳定,不仅能反映当地的环境污染状况,还可以揭示当地的环境变化对人类健康产生的影响㊂近年来,越来越多的生态毒理学家推荐使用雀形目留鸟监测环境重金属污染[10-12]㊂灰眶雀鹛(Alcippe morrisonia)是广泛居留于中国西南和亚洲南部森林中的雀形目鸟类,以多种昆虫为食,数量丰富,易于研究和采集[13-14]㊂灰眶雀鹛在鸟类混合群中常被视为 核心种 ,经常带领混合群中的鸟类进行觅食和警戒[15-16],因此研究汞污染对灰眶雀鹛的影响可能对了解森林鸟类群落的维持具有重要意义㊂本文分析了广西大新铅锌矿废弃矿区周边灰眶雀鹛初级飞羽㊁次级飞羽㊁尾羽和胸羽中的汞含量及分布特征,以检验灰眶雀鹛作为环境污染指示物种的可行性,以及何种类型的羽毛能较好地反映当地的汞污染水平㊂同时,也将为研究汞污染对森林鸟类群落的影响提供科学依据㊂1㊀材料与方法(Materials and methods)1.1㊀研究区域概况大新铅锌矿区(22ʎ58ᶄ15ᵡN,107ʎ17ᶄ28ᵡE)位于广西大新县三合村,海拔418m㊂该地区属于亚热带海洋性季风气候,潮湿多雨㊂矿区从1955年正式开采,开采期长达40余年,2001年底,因环境污染和资源枯竭,停止开采[17]㊂原矿区生产期间,对采矿产生的废水㊁尾矿未得到有效处理,使矿区周边的水土和农作物受到严重的重金属污染,也严重影响了野生动物及周边部分群众的身体健康㊂1.2㊀样品采集与汞测定2018年1月,采用雾网法[18]在废弃矿区周边的森林中对灰眶雀鹛进行抓捕采样,共捕获灰眶雀鹛成鸟12只㊂采样点位于废弃矿区的排水池约50m 处,由于喀斯特地表水较少,该水源几乎为该区域野生动物的唯一永久性地表水源㊂捕获后,收集其初级飞羽㊁次级飞羽㊁尾羽和胸羽,取样完成后将其放飞㊂本研究测得的汞含量均为样本的总汞浓度㊂鸟类羽毛中富集的汞90%以上是总汞[19],因此,检测总汞可以代表鸟类的污染水平㊂对羽毛样本进行编号后,再用丙酮㊁蒸馏水㊁去离子水对羽毛进行清洗,以去除外源污染物,然后置于温度为60ħ的恒温烘干箱中进行烘干;羽毛样本用电子天平(精度为0.001g)进行称量,放入到DMA-80直接测汞仪(意大利Milestone公司)中进行检测,其最低检出限为0.2μg㊃kg-1㊂1.3㊀质量控制采用标准曲线㊁空白对照和标准物质(IAEA-086)对试验过程进行质量控制,同时每检测10个羽毛样本后检测一次标准物质,以确保数据的精确性㊂空白检测结果为0.00μg㊃kg-1㊂总汞标准物质为人发(IAEA-086),参考值为534~612μg㊃kg-1,仪器检测结果为(597.46ʃ63.55)μg㊃kg-1(n=5),在正常范围内,羽毛样品检测结果可靠㊂1.4㊀数据分析对所有灰眶雀鹛羽毛的汞浓度值进行单样本K-S检验,符合正态分布后,对4种羽毛的汞浓度值进行单因素方差分析和Spearman相关分析,数据分析均使用SPSS20.0完成㊂2㊀结果与讨论(Results and discussion)2.1㊀灰眶雀鹛羽毛样品中汞的残留量灰眶雀鹛尾羽样品中的汞浓度为415.18 ~1805.21μg㊃kg-1,平均汞浓度为(894.46ʃ389.91)μg ㊃kg-1;次级飞羽样品中汞浓度为520.97~1260.91μg ㊃kg-1,汞浓度均值为(771.45ʃ251.90)μg㊃kg-1;初级飞羽样品中汞浓度340.57~1066.44μg㊃kg-1,平均汞浓度为(739.43ʃ202.68)μg㊃kg-1;胸羽样品中汞浓度为164.28~970.88μg㊃kg-1,汞浓度均值为(687.43ʃ264.13)μg㊃kg-1(表1)㊂274㊀生态毒理学报第17卷单因素方差分析检验结果显示,灰眶雀鹛尾羽中的汞浓度值显著高于其他3种羽毛样品(表2),但初级飞羽㊁次级飞羽和胸羽之间无显著差异㊂Spearman相关性分析结果显示(表2),灰眶雀鹛尾羽与初级飞羽(r2=0.538,P=0.035)以及次级飞羽与初级飞羽(r2=0.687,P=0.007)样品中汞浓度呈显著相关性㊂汞在灰眶雀鹛羽毛中的富集模式为:尾羽>次级飞羽>初级飞羽>胸羽㊂本研究结果与其他研究结果基本一致[20-21]㊂鸟类体内的汞多通过食物摄取,在生长过程中,体内积累的汞会释放到羽毛里,与羽毛中的角蛋白牢固结合,并通过周期性换羽将体内积累的汞排出体外,这是大多数鸟类排出汞的有效机制[22]㊂灰眶雀鹛4种羽毛中汞的分布规律有所不同,可能与换羽季节及换羽顺序的不同有关㊂研究发现,同为雀形目鸟类的黄腹山鹪莺(Prinia fla-viventris)和纯色山鹪莺(Prinia inornata)每年都换羽2表1㊀灰眶雀鹛4种羽毛中汞浓度Table1㊀Mercury levels in four kinds of feathers of Grey-cheeked Fulvettas统计参数Parameters初级飞羽Primary feathers次级飞羽Secondary feathers尾羽Tail feathers胸羽Down feathers平均值/(μg㊃kg-1)Mean/(μg㊃kg-1)739.43771.45894.46687.43标准差/(μg㊃kg-1)Standard deviation/(μg㊃kg-1)202.68251.9389.91264.13极大值/(μg㊃kg-1)Maximum/(μg㊃kg-1)1066.441260.911805.21970.88极小值/(μg㊃kg-1)Minimum/(μg㊃kg-1)340.57520.97415.18164.28样本平均质量/gAverage weight/g0.0040.0050.0050.045样本数Sample size12121212表2㊀灰眶雀鹛4种羽毛间汞浓度差异性及Spearman相关性分析Table2㊀Difference and Spearman correlation analysis of mercury levels in four typesof feathers from Grey-cheeked Fulvettas羽毛Feathers差异性Difference相关性CorrelationF P r2P初级飞羽-次级飞羽Primary-Secondary feathers0.0920.7650.685**0.007初级飞羽-尾羽Primary-Tail feathers6.4940.018*0.538*0.035初级飞羽-胸羽Primary-Chest feathers0.160.6930.2450.222次级飞羽-尾羽Secondary-Tail feathers12.9230.002**0.3360.143次级飞羽-胸羽Secondary-Chest feathers0.0350.852-0.2450.222尾羽-胸羽Tail-Chest feathers10.3810.004**0.2380.228注:*P<0.05㊁**P<0.01表示显著相关㊂Note:*P<0.05,**P<0.01represent significant correlation.第2期刘士龙等:废弃矿山周边灰眶雀鹛(Alcippe morrisonia)羽毛中汞含量分布特征275㊀次,分别在春季和秋季,其中秋季换羽为完全换羽,时间是8月到12月,尾羽的换羽时间要晚于初级飞羽和次级飞羽,次级飞羽的换羽时间晚于初级飞羽, 2种鸟的换羽模式基本相似[23-24]㊂由于分类地位较为接近,该换羽模式可以作为灰眶雀鹛换羽模式的参考㊂尾羽换羽时间相对较晚,因此,尾羽可能会富集更多的汞,这种换羽模式可能是造成汞在灰眶雀鹛羽毛中分布不同的原因㊂2.2㊀与其他雀形目鸟类相比不同鸟种对汞的富集程度存在差异㊂邹发生等[25]测定了广东白云山地区白头鹎(Pycnonotus sinensis)羽毛㊁肝脏和肌肉中汞的残留量,汞在白头鹎各组织中的平均值分别为499㊁158和1μg㊃kg-1;张培勤和周英梅[26]分析了太原南郊区树麻雀(Passer montanus)初级飞羽㊁次级飞羽㊁背羽㊁腹羽㊁尾羽和胸肌中的汞浓度,汞在6种组织中平均含量分别为262.8㊁233.3㊁212.4㊁189.0㊁218.1和30.14μg㊃kg-1㊂与山西太原和广东白云山地区相比,广西大新地区灰眶雀鹛羽毛中富集更高浓度的汞㊂Costa等[27]研究了工业区周边森林中大山雀(Parus major)成鸟羽毛和粪便中的汞残留量㊂与灰眶雀鹛相比,其平均汞含量较低㊂与Tsipoura等[28]的研究相比,灰眶雀鹛尾羽中平均汞浓度也高于红翅黑鹂(Agelaius phoeniceus)㊂鸟类组织中的重金属浓度可以反映出鸟类所处环境中重金属背景值的高低[24]㊂广西大新铅锌矿区地表水中汞浓度为0.077μg㊃kg-1,土壤中汞浓度高达5.762μg㊃kg-1,超过‘土壤环境质量标准“(GB15628 2018)的11.3倍[29],因此,灰眶雀鹛羽毛中较高的汞浓度可能与当地环境背景值有关㊂2.3㊀灰眶雀鹛与汞污染监测灰眶雀鹛是中国西南部和亚洲南部森林中常见的留鸟,活动范围小,食性多样,以多种昆虫为食[13],处于食物链中较高的位置,其体内的汞可通过生物放大在体内富集㊂灰眶雀鹛是食虫性鸟类,与其他植食性鸟类相比,食虫鸟类对汞具有较强的富集能力[30],使用灰眶雀鹛监测亚热带森林中的汞污染具有一定的可行性㊂灰眶雀鹛尾羽中汞浓度显著高于其他3类羽毛,且尾羽中的汞浓度与初级飞羽呈显著正相关,与胸羽中汞浓度也呈现负相关趋势㊂因此,尾羽可能是监测鸟类汞污染的最佳选择㊂尽管灰眶雀鹛羽毛中的汞浓度(1.8μg㊃g-1)没有达到影响繁殖的阈值(5μg㊃g-1)[31],但是,汞污染对鸟类行为的影响也同样重要㊂对于小型雀形目鸟类,即使汞浓度(3μg㊃g-1)低于阈值也会对身体状况产生不良影响[32]㊂同样,汞污染还会增加鸟类的冒险行为[33]㊂灰眶雀鹛作为热带和亚热带森林中鸟类混合群的 核心种 ,对鸟类混合群落起到凝聚作用[34],该区域较高的汞污染是否影响到灰眶雀鹛的领导和警戒行为尚有待于进一步研究㊂通讯作者简介:蒋爱伍(1978 ),男,博士,副教授,主要研究方向为动物生态毒理学㊂参考文献(References):[1]㊀Abeysinghe K S,Qiu G L,Goodale E,et al.Mercuryflow through an Asian rice-based food web[J].Environ-mental Pollution,2017,229:219-228[2]㊀朱艾嘉,许战洲,柳圭泽,等.黄海常见鱼类体内汞含量的种内和种间差异研究[J].环境科学,2014,35(2): 764-769Zhu A J,Xu Z Z,Liu G Z,et al.Inner-and inter-speciesdifferences of mercury concentration in common fishesfrom the Yellow Sea[J].Environmental Science,2014,35(2):764-769(in Chinese)[3]㊀Cristol D A,Mojica E K,Varian-Ramos C W,et al.Molt-ed feathers indicate low mercury in bald eagles of theChesapeake Bay,USA[J].Ecological Indicators,2012, 18:20-24[4]㊀Seewagen C L.Threats of environmental mercury tobirds:Knowledge gaps and priorities for future research[J].Bird Conservation International,2010,20(2):112-123 [5]㊀Burger J,Gochfeld M.Risk,mercury levels,and birds:Relating adverse laboratory effects to field biomonitoring[J].Environmental Research,1997,75(2):160-172[6]㊀Fort J,Lacoue-Labarthe T,Nguyen H L,et al.Mercury inwintering seabirds,an aggravating factor to winterwrecks?[J].The Science of the Total Environment,2015, 527-528:448-454[7]㊀Heinz G H.Methylmercury:Reproductive and behavioraleffects on three generations of mallard ducks[J].TheJournal of Wildlife Management,1979,43(2):394[8]㊀Markowski M,Kaliński A,Skwarska J,et al.Avian feath-ers as bioindicators of the exposure to heavy metal con-tamination of food[J].Bulletin of Environmental Contam-ination and Toxicology,2013,91(3):302-305[9]㊀Eens M,Pinxten R,Verheyen R F,et al.Great and bluetits as indicators of heavy metal contamination in terrestri-al ecosystems[J].Ecotoxicology and Environmental Safe-ty,1999,44(1):81-85[10]㊀潘超,郑光美,张正旺,等.北京城区麻雀体内污染物276㊀生态毒理学报第17卷的研究[J].北京师范大学学报:自然科学版,2001,37(6):820-824Pan C,Zheng G M,Zhang Z W,et al.Studies on contam-inations in tree sparrow(Passer montanus)in Beijing[J].Journal of Beijing Normal University:Natural Science,2001,37(6):820-824(in Chinese)[11]㊀邹发生,杨琼芳,谢美琪.广州市白云山4种雀形目鸟类重金属残留分析[J].农村生态环境,2005,21(1):51-54Zou F S,Yang Q F,Xie M Q.Heavy metal residues intissues of four species of Passeriformes at Baiyunshan,Guangzhou City,China[J].Rural Eco-Environment,2005,21(1):51-54(in Chinese)[12]㊀Dauwe T,Lieven B,Ellen J,et al.Great and blue tit feath-ers as biomonitors for heavy metal pollution[J].Ecologi-cal Indicators,2002,1(4):227-234[13]㊀Jiang A W,Zhou F,Liu N F.Significant recent ornitho-logical records from the limestone area of south-westGuangxi,South China,2004-2012[J].Forktail,2014(30):122-129[14]㊀Zou F S,Lim H C,Marks B D,et al.Molecular phyloge-netic analysis of the Grey-cheeked Fulvetta(Alcippe mor-risonia)of China and Indochina:A case of remarkable ge-netic divergence in a species [J].Molecular Phyloge-netics and Evolution,2007,44(1):165-174[15]㊀Chen C C,Hsieh position and foraging behaviourof mixed-species flocks led by the Grey-cheeked Fulvettain Fushan Experimental Forest,Taiwan,China[J].Ibis,2002,144(2):317-330[16]㊀Shieh B.Song structure and microgeographic variation ina population of the Grey-cheeked Fulvetta(Alcippe mor-risonia)at Shoushan nature park,southern Taiwan,China[J].Zoological Studies,2004,43:132-141[17]㊀吕晶晶,张新英,吴玉峰,等.广西大新县铅锌矿区某屯耕地土壤重金属污染特征及评价[J].广西师范学院学报:自然科学版,2013,30(4):51-54Lv J J,Zhang X Y,Wu Y F,et al.Characteristics and as-sessment of heavy metal pollution in the arable soil fromthe village of Daxin lead zinc mining area[J].Journal ofGuangxi Teachers Education University:Natural ScienceEdition,2013,30(4):51-54(in Chinese)[18]㊀邹发生,陈桂珠.雾网在森林鸟类群落研究中的应用[J].应用生态学报,2003,14(9):1557-1560Zou F S,Chen G Z.Application of mist net in studies offorest bird communities[J].Chinese Journal of AppliedEcology,2003,14(9):1557-1560(in Chinese)[19]㊀Ma Y J,Zheng W,An Y X,et al.Mercury contaminationin terrestrial predatory birds from Northeast China:Impli-cations for species and feather type selection for biomoni-toring[J].Ecological Indicators,2021,130:1-9[20]㊀郭东龙,周梅素,席玉英,等.重金属汞在鸟体羽毛组织中的含量及分布规律[J].动物学报,2001,47(S1):139-143Guo D L,Zhou M S,Xi Y Y,et al.Preliminary studies onthe level and distribution of mercury in feathers of birds[J].Acta Zoologica Sinica,2001,47(S1):139-143(inChinese)[21]㊀Furness R W,Muirhead S J,Woodburn ing birdfeathers to measure mercury in the environment:Relation-ships between mercury content and moult[J].Marine Pol-lution Bulletin,1986,17(1):27-30[22]㊀邹发生,杨琼芳,李艳红,等.广州黄埔区夜鹭和池鹭体内汞浓度和分布特性[J].应用生态学报,2005,16(2):390-392Zou F S,Yang Q F,Li Y H,et al.Mercury concentrationand its distribution in Nycticorax nycticorax and ChineseArdeola bacchus fledglings at Huangpu District of Guang-zhou City,China[J].Chinese Journal of Applied Ecology,2005,16(2):390-392(in Chinese)[23]㊀丁志锋,唐思贤,张建新,等.黄腹山鹪莺成鸟的秋季换羽[J].动物学杂志,2007,42(6):28-33Ding Z F,Tang S X,Zhang J X,et al.Autumn moultingof the adults of yellow-bellied Prinia,Prinia flaviventris[J].Chinese Journal of Zoology,2007,42(6):28-33(inChinese)[24]㊀丁志锋,李凯,唐思贤,等.两种山鹪莺的春季换羽及尾羽变化[J].动物学杂志,2015,50(4):493-498Ding Z F,Li K,Tang S X,et al.Spring moulting and tailchanges of two wren warbler species[J].Chinese Journalof Zoology,2015,50(4):493-498(in Chinese)[25]㊀邹发生,杨琼芳,崔昆燕.广州市白云山雀形目鸟体内汞㊁砷与硒残留分析[J].生态环境,2004,13(3):320-322,372Zou F S,Yang Q F,Cui K Y.Mercury,arsenic and seleni-um residual levels in tissues of several species of Passeri-formes in Baiyushan,Guangzhou,China[J].Ecology andEnvironment,2004,13(3):320-322,372(in Chinese) [26]㊀张培勤,周英梅.重金属汞在树麻雀体内不同组织和器官中分布规律的研究[J].山西大学学报:自然科学版,1998,21(3):272-275Zhang P Q,Zhou Y M.Distribution of mercury in tissuesand organs of tree sparrow[J].Journal of Shanxi Univer-sity:Natural Science Edition,1998,21(3):272-275(inChinese)[27]㊀Costa R A,Eeva T,Eira C,et al.Assessing heavy metalpollution using Great Tits(Parus major):Feathers and ex-第2期刘士龙等:废弃矿山周边灰眶雀鹛(Alcippe morrisonia)羽毛中汞含量分布特征277㊀crements from nestlings and adults[J].EnvironmentalMonitoring and Assessment,2013,185(6):5339-5344 [28]㊀Tsipoura N,Burger J,Feltes R,et al.Metal concentrationsin three species of passerine birds breeding in the Hack-ensack Meadowlands of New Jersey[J].EnvironmentalResearch,2008,107(2):218-228[29]㊀李淑.铅锌矿区重金属污染分析与生态恢复研究:以大新铅锌矿为例[D].桂林:桂林理工大学,2009:20-32Li S.Analysis of heavy metal pollution and ecologicalrestoration in lead-zinc mining area:A case study of Dax-in lead-zinc mine[D].Guilin:Guilin University of Tech-nology,2009:20-32(in Chinese)[30]㊀He C,Su T P,Liu S L,et al.Heavy metal,arsenic,andselenium concentrations in bird feathers from a region inSouthern China impacted by intensive mining of nonfer-rous metals[J].Environmental Toxicology and Chemistry,2019,39(2):371-380[31]㊀Burger J,Gochfeld M.Metal levels in feathers of12spe-cies of seabirds from midway atoll in the northern PacificOcean[J].The Science of the Total Environment,2000, 257(1):37-52[32]㊀Jackson A K,Evers D C,Etterson M A,et al.Mercuryexposure affects the reproductive success of a free-livingterrestrial songbird,the Carolina wren(Thryothorus lu-dovicianus)[J].The Auk,2011,128(4):759-769[33]㊀Kobiela M E,Cristol D A,Swaddle J P.Risk-taking be-haviours in zebra finches affected by mercury exposure[J].Animal Behaviour,2015,103:153-160[34]㊀Jiang D M,Sieving K E,Meaux E,et al.Seasonal chan-ges in mixed-species bird flocks and antipredator informa-tion[J].Ecology and Evolution,2020,10(12):5368-5382Ң。
Transitional time of oceanic to continental subduction in the Dabie orogen:Constraints from U –Pb,Lu –Hf,Sm –Nd and Ar –Ar multichronometric datingHao Cheng a ,b ,⁎,Robert L.King c ,Eizo Nakamura b ,Jeffrey D.Vervoort c ,Yong-Fei Zheng d ,Tsutomu Ota b ,Yuan-Bao Wu e ,Katsura Kobayashi b ,Zu-Yi Zhou aaState Key Laboratory of Marine Geology,Tongji University,Shanghai 200092,ChinabInstitute for Study of the Earth's Interior,Okayama University at Misasa,Tottori 682-0193,Japan cSchool of Earth and Environmental Sciences,Washington State University,Pullman,Washington 99164,USA dCAS Key Laboratory of Crust-Mantle Materials and Environments,School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China eState Key Laboratory of Geological Processes and Mineral Resources,Faculty of Earth Sciences,China University of Geosciences,Wuhan 430074,Chinaa b s t r a c ta r t i c l e i n f o Article history:Received 22August 2008Accepted 9January 2009Available online 8February 2009Keywords:Continental subduction Dabie EclogiteGeochronologyOceanic subduction Tectonic transitionWe investigated the oceanic-type Xiongdian high-pressure eclogites in the western part of the Dabie orogen with combined U –Pb,Lu –Hf,Sm –Nd and Ar –Ar geochronology.Three groups of weighted-mean 206Pb/238U ages at 315±5,373±4and 422±7Ma are largely consistent with previous dates.In contrast,Lu –Hf and Sm –Nd isochron dates yield identical ages of 268.9±6.9and 271.3±5.3Ma.Phengite and amphibole Ar –Ar total fusion analyses give Neoproterozoic apparent ages,which are geologically meaningless due to the presence of excess 40Ar.Plagioclase inclusions in zircon cores suggest that the Silurian ages likely represent protolith ages,whereas the Carboniferous ages correspond to prograde metamorphism,based on the compositions of garnet inclusions.Despite weakly-preserved prograde major-and trace element zoning in garnet,a combined textural and compositional study reveals that the consistent Lu –Hf and Sm –Nd ages of ca.270Ma record a later event of garnet growth and thus mark the termination of high-pressure eclogite –facies metamorphism.The new U –Pb,Lu –Hf and Sm –Nd ages suggest a model of continuous processes from oceanic to continental subduction,pointing to the onset of prograde metamorphism prior to ca.315Ma for the subduction of oceanic crust,while the peak eclogite –facies metamorphic episode is constrained to between ca.315and 270Ma.Thus,the initiation of continental subduction is not earlier than ca.270Ma.©2009Elsevier B.V.All rights reserved.1.IntroductionSubduction zones are essential to the dynamic evolution of the earth's surface due to plate tectonics.Subduction of oceanic and continental crust eventually leads to closure of backarc basins and arc-continent and continent-continent collisions (O'Brien,2001;Ernst,2005;Zheng et al.,2008),forming various types of high-pressure (HP)and ultrahigh-pressure (UHP)metamorphic rocks.Subduction of oceanic lithosphere causes a complex continuum of diagenetic and metamorphic reactions;many kilometres of oceanic lithosphere are ultimately consumed prior to the subsequent continental slab subduction and collision.Subducted continental slabs that detach from the oceanic lithosphere that was dragging them into the mantle are expected to rapidly rise to Moho depths because of their positive buoyancy.Thus,studying subducted oceanic crust in subduction zones can provide clues to the incorporation rate of supercrustal materialinto the mantle and can shed light on the initiation of successive continental subduction.Determining a geochronological framework for determining the sequence and duration of oceanic to continental subduction and HP and UHP metamorphism plays an essential role in this respect.Zircon has long been recognized as a promising geochronometer of the U –Pb decay system because of its refractory nature,commonly preserved growth zones and mineral inclusions within a single grain.Recent developments in analytical techniques allow us to unravel a wealth of information contained in zircons with respect to their growth history and thus the prograde and retrograde metamorphic evolution of the host rock (Gebauer,1996;Wu et al.,2006;Zheng et al.,2007).The Lu –Hf garnet technique has been applied to constrain the prograde and high-temperature histories of metamorphic belts (e.g.,Duchêne et al.,1997;Blichert-Toft and Frei,2001;Anczkiewicz et al.,2004,2007;Lagos et al.,2007;Kylander-Clark et al.,2007;Cheng et al.,2008a )because of its high closure temperature (Dodson,1973;Scherer et al.,2000)and the fact that garnet strongly partitions Lu over Hf,resulting in a high parent/daughter ratio (Otamendi et al.,2002).Combined with Sm –Nd age determination,the Lu –Hf garnet geochronometer can potentially be used to estimate the duration ofLithos 110(2009)327–342⁎Corresponding author.State Key Laboratory of Marine Geology,Tongji University,Shanghai 200092,China.Tel.:+862165982358;fax:+862165984906.E-mail address:chenghao@ (H.Cheng).0024-4937/$–see front matter ©2009Elsevier B.V.All rights reserved.doi:10.1016/j.lithos.2009.01.013Contents lists available at ScienceDirectLithosj ou r n a l h o m e pa g e :ww w.e l s ev i e r.c o m/l o c a t e /l i t h o sFig.1.Simpli fied geologic map of the Huwan mélange area (b)in southern Dabie orogen (a),modi fied after Ye et al.(1993)and Liu et al.(2004b),showing the sample localities for the Xiongdian eclogite.References:asterisk,this study;[1],Ratschbacher et al.(2006);[2],Jahn et al.(2005);[3],Liu et al.(2004a);[4],Eide et al.(1994);[5],Webb et al.(1999);[6],Xu et al.(2000);[7],Ye et al.(1993);[8],Sun et al.(2002);[9],Jian et al.(1997);[10],Jian et al.(2000);[11],Gao et al.(2002);[12],Li et al.(2001);[13],Wu et al.(2008).amp —amphibole;brs —barroisite;phen —phengite;zrn —zircon.328H.Cheng et al./Lithos 110(2009)327–342garnet growth,which either reflects early prograde metamorphism (Lapen et al.,2003),exhumation(Cheng et al.,2009)or a particular garnet growth stage(Skora et al.,2006).Dating the exhumation of high-pressure(HP)and ultra-high-pressure(UHP)metamorphic rocks by conventional step-heating Ar–Ar technique was largely hampered and discredited due to the presence of excess/inherited argon(Li et al.,1994;Kelley,2002).However,the Ar–Ar geochron-ometer remains irreplaceable in constraining the exhumation of HP/ UHP metamorphic rocks because of its intermediate closure tempera-ture.Nevertheless,timing must be integrated with textures and petrology in order to quantify the dynamics of geological processes, whichever geochronological method is used.During the past two decades,considerable progress has been made in constraining the prograde metamorphism and exhumation of HP/ UHP metamorphism of the Dabie–Sulu orogen by a variety of geochronological methods,indicating a Triassic collision between the South China and North China Blocks(e.g.,Eide et al.,1994;Ames et al., 1996;Rowley et al.,1997;Hacker et al.,1998;Li et al.,2000,2004; Zheng et al.,2004).The initiation of continental subduction is pinned to ca.245Ma(Hacker et al.,2006;Liu et al.,2006a;Wu et al.,2006; Cheng et al.,2008a),but the exact time is poorly constrained.On the other hand,thefingerprints of early continental subduction may not be preserved in continental-type metamorphic rocks due to the succes-sive high-temperature prograde and retrograde overprints.Alterna-tively,the timing of initiation of continental subduction subsequent to the termination of oceanic subduction may be registered in the HP/ UHP eclogites,whose protoliths are of oceanic origin.Currently,the only outcropping candidate is the Xiongdian HP eclogite in the western part of the Dabie orogen(Li et al.,2001;Fu et al.,2002).However,U–Pb zircon ages ranging from216±4to449±14Ma have been obtained for the Xiongdian eclogite(Jian et al.,1997;Sun et al.,2002;Gao et al., 2002);the geological significance of this age spread is controversial. Efforts to clarify the geochronological evolution of the Xiongdian eclogite were hampered by a much older Sm–Nd garnet-whole-rock isochron of533±13Ma(Ye et al.,1993)and the fact that further Sm–Nd and Rb–Sr analyses failed to produce mineral isochrons(Li et al., 2001;Jahn et al.,2005),although oxygen isotopic equilibrium was largely attained(Jahn et al.,2005).Here,we present a combined U–Pb,Lu–Hf,Sm–Nd,Ar–Ar and oxygen multi-isotopic and mineral chemical study of the Xiongdian eclogite.The differences in these systems,in conjunction with chemical profiles in garnet porphyroblasts and zircons,provide a window into the time-scales of the oceanic subduction and sub-sequent exhumation.2.Geochronological background and sample descriptionsThe Qinling–Dabie–Sulu orogen in east-central China marks the junction between the North and South China Blocks(Cong,1996; Zheng et al.,2005).The western part of the Dabie orogen,usually termed the West Dabie and sometimes the Hong'an terrane,is separated from the Tongbaishan in the west by the Dawu Fault and from the East Dabie by the Shangma fault in the east(Fig.1a).It contains a progressive sequence of metamorphic zones characterized by increasing metamorphic grade,from transitional blueschist–greenschist in the south,through epidote–amphibolite and quartz eclogite,to coesite eclogite in the north(e.g.,Zhou et al.,1993;Hacker et al.,1998;Liu et al.,2004b,2006b).The Xiongdian eclogites crop out in the northwestern corner of the West Dabie,in the Xiongdian mélange within the Huwan mélange after the definition of Ratschba-cher et al.(2006),in analogy to the terms of the Sujiahe mélange(Jian et al.,1997)and Huwan shear zone(Sun et al.,2002).The Huwan mélange consists of eclogite,gabbro,amphibolite,marble,and quartzite.The eclogitic metamorphic peak for the Xiongdian eclogite is estimated at600–730°C,1.4–1.9GPa(Fu et al.,2002),550–570°C,∼2.1GPa(Liu et al.,2004b)and540–600°C,∼2.0GPa(Ratschbacher et al.,2006),followed by retrogression at530–685°C and∼0.6GPa (Fu et al.,2002).Except for the Xiongdian eclogite,consistent Triassic metamorphic ages have been obtained for other eclogites across the West Dabie (Webb et al.,1999;Sun et al.,2002;Liu et al.,2004a;Wu et al.,2008). This indicates that West Dabie is largely a coherent part of an HP–UHP belt elsewhere in the Dabie–Sulu orogenic belt.Geochronological debate is limited to the Xiongdian eclogite(Fig.1b).U–Pb zircon ages ranging from ca.216to ca.449Ma have been obtained for the Xiongdian eclogite.Jian et al.(1997)reported ca.400,ca.373and 301±0.6Ma ages by ID–TIMS method.Weighted-mean SHRIMP ages range from335±2to424±5Ma(Jian et al.,2000).The Silurian U–Pb zircon ages were interpreted as the age of the protolith,while the Carboniferous ages mark high-pressure metamorphism(Jian et al., 1997,2000).Weighted-mean206Pb/238U SHRIMP U–Pb zircons ages of 433±9,367±10and398±5Ma were interpreted as the protolith age,while323±7and312±5Ma likely date the high-pressure metamorphism(Sun et al.,2002).A Triassic age of216±4Ma together with449±14and307±14Ma weighted-mean206Pb/238U SHRIMP U–Pb zircon ages appear to argue for the involvement of the Triassic subduction in the Xiongdian eclogite(Gao et al.,2002).A garnet-whole-rock Sm–Nd isochron of533±13Ma(Ye et al.,1993)was interpreted to reflect the high-pressure metamorphism age.Several Table1Chemical compositions of the Xiongdian eclogite from the western Dabie.Sample number DB17DB18(Major oxides in%)SiO254.5452.45 TiO20.370.43 Al2O314.6212.35 Fe2O38.7710.15 MnO0.150.16 MgO 6.669.91 CaO10.3510.26 Na2O 2.88 2.65 K2O0.600.28 P2O50.060.05 Cr2O3⁎6601118 NiO⁎137247 L.O.I0.87 1.28 Total99.95100.11 (Trace elements in ppm)Li27.627.0 Be0.560.47 Rb9.7813.8 Sr178130Y12.612.7 Cs0.89 3.67 Ba86552.4 La 2.21 1.77 Ce 5.97 5.12 Pr0.880.80 Nd 4.35 4.10 Sm 1.25 1.26 Eu0.470.39 Gd 1.53 1.52 Tb0.280.29 Dy 1.83 1.91 Ho0.410.42 Er 1.14 1.19 Tm0.190.19 Yb 1.31 1.34 Lu0.200.20 Pb 6.44 1.85 Th0.050.07 U0.110.06 Zr28.828.2 Nb 1.19 1.77 Hf0.870.88 Ta0.050.08⁎In ppm.329H.Cheng et al./Lithos110(2009)327–342Sm –Nd and Rb –Sr analyses failed to produces isochrons (Li et al.,2001;Jahn et al.,2005),which was believed to be due to unequilibrated isotopic systems despite the fact that oxygen isotopic equilibrium was largely attained (Jahn et al.,2005).Phengite 40Ar/39Ar ages of ca.430–350Ma have been explained as the retrograde metamorphic age (Xu et al.,2000).The 310±3Ma phengite 40Ar/39Ar age (Webb et al.,1999)is likely geologically meaningless due to the concave-upward age spectrum,indicating the presence of excess argon.Collectively,existing geochronology provides an apparently con flicting picture for the Xiongdian eclogites.The timing of the oceanic crust subduction and exhumation essentially remains to be resolved.The two eclogites examined in this study were selected based on their mineral assemblages,inclusion types and geological context (Fig.1).The one (DB17)from the east bank of the river to the east of Xiongdian village is a coarse-grained and strongly foliated banded eclogite,composed mainly of garnet,omphacite and phengite.A second (DB18)eclogite was sampled about 50m to the north of DB17and is strongly foliated with a similar mineralogy assemblage but smaller garnet grains.3.MethodsSample preparation,mineral separation and chemical procedures for isotope analysis,instrumentation and standard reference materials used to determine whole rock and bulk mineral compositions,in situ major and trace element analyses (Institute for Study of the Earth's Interior,Okayama University at Misasa,Japan),zircon U –Pb isotope and trace element analyses (China University of Geosciences in Wuhan),Lu –Hf and Sm –Nd isotope analyses (Washington State University),Ar –Ar isotope analyses (Guangzhou Institute of Geo-chemistry,Chinese Academy of Sciences)and oxygen isotope analyses (University of Science and Technology of China)are described in the Appendix .4.Results4.1.Bulk chemical compositionThe Xiongdian eclogites are mainly of basaltic composition,but they show a wide range of major and trace element abundances.Despite the high SiO 2(52–58%)and low TiO 2(0.32–0.43%)contents,Fig.2.Whole rock chemical analysis data.(a)Chondrite-normalized REE distribution patterns of the Xiongdian eclogites.(b)Primitive-mantle-normalized spidergrams of the Xiongdianeclogites.Fig.3.Backscattered-electron images and rim-to-rim major-element compositional zoning pro files of representative garnets in the matrix and as inclusions in zircon.Amp —amphibole;Ap —apatite;Cal —calcite;Cpx —clinopyroxene;Zo —zoisite;Phen —phengite;Omp —omphacite;Qtz —quartz;Zrn —zircon.330H.Cheng et al./Lithos 110(2009)327–342they have MgO=5.1–9.9%,Cr=430–1118ppm,Ni=88–247ppm (Table 1;Li et al.,2001;Fu et al.,2002;Jahn et al.,2005).In contrast to existing LREE-enriched chondritic REE patterns,our samples have rather flat REE patterns around ten times more chondritic abundances with small,both negative and positive Eu anomalies (Fig.2a).Rubidium is depleted and Sr displays enrichment with respect to Ce.Both negative and no Nb anomalies relative to La were observed (Fig.2b).The N-MORB-normalized value of Th is around 0.5,lower than previous reported values of up to 25(Li et al.,2001).4.2.Petrography and mineral compositionThe Xiongdian eclogites occur as thin layers intercalated with dolomite –plagioclase gneiss and phengite –quartz schist (Fu et al.,2002),mainly consisting of garnet,omphacite,epidote (clinozoisite),phengite and minor amphibole,quartz and kyanite (Fig.3).Zircons were observed both as inclusions in garnet porphyroblasts and in the matrix.The samples have similar mineral assemblages,but differ in modal compositions.Omphacite (X Jd =0.46–0.48)is unzoned.Phengite has 3.30–3.32Si apfu and ∼0.4wt.%TiO 2.Garnets range in size from 0.5to 5mm in diameter,either as porphyroblasts or as coalesced polycrystals,mostly with idioblastic shapes with inclusions of quartz,calcite,apatite and omphacite (Fig.3).Garnet is largely homogeneous (Prp 24–25Alm 49–50Grs 24–25Sps 1.5–1.9),but shows a slightly Mn-enriched core (Fig.3d;Table 2).HREEs in large garnet porphyroblasts,such as Yb and Lu,display weak but continuous decreases in concentration from core to rim (Fig.4a),mimicking the MnO zoning pattern,which could be explained by their high af finity for garnet and likely arises from an overall Rayleigh distillation process during early garnet growth (Hollister,1966;Otamendi et al.,2002).However,the limited variation in MREE concentrations,such as Sm and Nd,in garnet with respect to the weak zoning in HREE (Fig.4a)might be explained by growth in an environment where MREEs are not limited and continuously supplied by the breakdown of other phases.Hafnium has a fairly flat pro file (Table 3),re flecting its incompatible character in garnet and absence of Hf-competing reactions involved in garnet growth.Two distinct domains can be de fined in the large garnet porphyroblasts based on the chemical zoning and the abundance of inclusions.These zones are an inclusion-rich core with richer Mn and HREE and an inclusion-free rim with poorer Mn and HREE (Fig.3d).The inclusion-free rim for individual garnet has a rather similar width of 200–250μm (Fig.3).Although concentrations of Nd (0.22–0.41ppm)and Sm (0.33–0.48ppm)vary within single garnet grains,the Sm/Nd ratios (0.8–2.2)are consistentTable 2Representative major-element data of the garnets,omphacites,phengites,amphiboles and zoisites.(wt.%)Grt Omp RimCore Inclusions-in-zircon Rim Core SiO 238.6838.6438.6638.5338.6538.6637.8637.7555.9356.1256.1356.20TiO 20.050.060.050.050.050.050.050.080.120.110.110.11Al 2O 321.9221.9422.0721.9921.9921.8421.6821.8611.2611.2211.3311.26FeO ⁎22.9823.0523.0623.1623.0523.1124.4224.33 4.25 4.23 4.32 4.27MnO 0.680.720.790.880.750.680.990.930.030.020.030.02MgO 6.37 6.38 6.28 6.31 6.36 6.35 4.23 4.748.158.027.968.13CaO 9.108.949.028.929.038.9910.579.5013.2213.3613.3213.34Na 2O 0.030.030.030.030.030.030.020.01 6.65 6.41 6.39 6.42K 2O 0.000.000.000.000.000.000.000.000.000.000.000.00Total 99.8099.7799.9699.8799.9199.7199.8299.2199.6099.6099.7099.87O.N.12121212121212126666Si 2.986 2.984 2.981 2.975 2.980 2.988 2.958 2.962 1.996 2.010 2.010 2.007Al 1.994 1.997 2.006 2.001 1.999 1.990 1.997 2.0210.4740.4730.4780.474Ti 0.0030.0030.0030.0030.0030.0030.0030.0050.0030.0030.0030.003Fe 2+ 1.486 1.491 1.489 1.499 1.489 1.496 1.596 1.5990.1270.1270.1290.128Mn 0.0440.0470.0520.0580.0490.0440.0660.0620.0010.0010.0010.001Mg 0.7330.7350.7220.7260.7310.7320.4930.5540.4340.4280.4250.433Ca 0.7530.7400.7450.7380.7460.7440.8850.7980.5060.5130.5110.511Na 0.0040.0050.0050.0050.0050.0050.0030.0020.4600.4450.4430.445K0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000Phn Amp Zo RimCore Rim Core Mantle Core SiO 248.8649.0949.3349.0147.0847.0746.7246.7539.0538.9239.0239.02TiO 20.400.410.410.400.220.220.220.220.130.130.130.12Al 2O 329.0328.6829.0129.1912.6612.8112.5812.6228.5528.2128.7328.62FeO ⁎ 1.99 1.99 2.00 1.9711.6011.4811.4611.36 6.01 6.01 6.03 6.07MnO 0.000.000.000.010.100.090.090.090.050.050.060.05MgO 2.79 2.77 2.78 2.8012.2012.4712.4412.300.070.060.070.07CaO 0.010.010.010.019.9710.0910.0710.1024.1023.8624.1324.14Na 2O 0.930.920.920.91 2.79 2.77 2.82 2.830.000.000.000.00K 2O 10.009.919.819.780.480.470.470.470.000.000.000.00Total 94.0293.7894.2894.0997.0997.4996.8896.7697.9697.2498.1698.09O.N.111111112323232312.512.512.512.5Si 3.302 3.323 3.318 3.304 6.831 6.800 6.799 6.809 3.008 3.019 3.000 3.003Al 2.313 2.288 2.300 2.319 2.164 2.182 2.158 2.167 2.592 2.579 2.603 2.596Ti 0.0200.0210.0210.0200.0240.0240.0240.0240.0070.0070.0070.007Fe 2+0.1120.1130.1130.111 1.407 1.387 1.394 1.3830.3870.3900.3880.390Mn 0.0000.0000.0000.0000.0120.0120.0120.0120.0040.0040.0040.004Mg 0.2820.2800.2790.282 2.639 2.686 2.699 2.6700.0070.0070.0070.008Ca 0.0010.0010.0010.001 1.550 1.562 1.570 1.577 1.989 1.983 1.988 1.990Na 0.1220.1210.1200.1190.7840.7770.7950.7980.0000.0000.0000.000K0.8620.8550.8420.8410.0890.0870.0880.0880.0000.0000.0000.000⁎Total iron;concentrations reported as wt.%.331H.Cheng et al./Lithos 110(2009)327–342with those obtained by ID-MC-ICPMS (1.9–2.4)within error (Fig.5a),indicating that the Nd isotopic analyses in this study are essentially unaffected by MREE-rich inclusions,likely due to ef ficient mineral picking and/or concentrated H 2SO 4pre-leaching.The consistent Hf concentrations of 0.10–0.13ppm within single grains with those (0.11–0.13ppm)by ID-MC-ICPMS indicates the Hf-rich phases were essentially removed during digestion (Fig.5b).The overall Lu concentration slightly skews towards the garnet rim because of the weak zoning pattern and the spherical geometry effect,i.e.,the outershells dominate the volume of Lu (Cheng et al.,2008a ).The 0.90–0.93ppm Lu contents by ID-MC-ICPMS apparently resemble those of the garnet rim,which could be readily explained by the spherical geometry effect.However,we interpret this with caution because individual garnet porphyroblasts could have different zoning patterns and the individual Lu pro file might not be representative of the population of garnet grains,although the chemical zoning center (nucleation site)coincides with the geometric center (Fig.3d),suggesting asymmetric garnet growth.In addition,biased mineral hand-picking should be considered (Cheng et al.,2008a,b ).Moreover,since the thin-section preparation method for this study cannot ensure that the real center of the garnet was exposed,the observed zoning here likely only represents a minimum zoning of particular garnet porphyroblasts.4.3.Estimation of P –T conditionsMetamorphic peak P –T conditions of 2.2GPa and 620°C for the DB17Xiongdian eclogite (Fig.6)are evaluated on the basis of recent cali-brations of the assemblage garnet+omphacite+phengite+kyanite+quartz,according to the dataset of Holland and Powell (1998).Higher P –T values of 2.4GPa and 650°C are calculated with the calibrations of Krogh Ravna and Terry (2004).While a temperature of 620±29°C is estimated by quartz –garnet O isotope thermometer (Zheng,1993),Ti-in-zircon thermometer (Watson et al.,2006;Ferry and Watson,2007)gives similar value of 695±22°C.Zr-in-rutile thermometer (Watson et al.,2006;Ferry and Watson,2007)yields a lower value of 634–652°C and a similar temperature of 683–701°C (Fig.6)when using the pressure-dependent calibration of Tomkins et al.(2007)at 2.2GPa.Calibration 1uses updated versions of the thermodynamic dataset and activity models in the programs THERMOCALC3.26and AX (Holland,Powell,1998;latest updated dataset;Powell et al.,1998)by using an avPT calculation in the simpli fied model system NCKFMASH with excess SiO 2and H 2O.Calibration 2uses thermobarometry based on the database of Holland and Powell (1998)and activity models for garnet (Ganguly et al.,1996),clinopyroxene (Holland and Powell,1990)and phengite (Holland and Powell,1998).Analyses of garnet,omphacite and phengite (Table 2)were processed according to the two calibrations.Calibration 3uses mineral O isotope compositions (Table 4)to estimate temperature based on the quartz –garnet O isotope thermometer (Zheng,1993).Calibrations 4and 5use Ti contents in zircon by LA-ICPMS and Zr concentration of rutile by SIMS (Table 5)to temperature estimations based on the Ti-in-zircon and Zr-in-rutile thermometers,respectively (Watson et al.,2006;Ferry and Watson,2007;Tomkins et al.,2007).The assemblage of garnet –omphacite –kyanite –phengite –quartz is representative of metamorphic peak conditions of theXiongdianFig.4.Chondrite-normalized REE patterns (Sun and McDonough,1989)of zircons,garnets and omphacite from Xiongdian eclogite (a)and REE distribution patterns between zircon and garnet (b).The equilibrium D REE(Zrn/Grt)values of Rubatto (2002),Whitehouse and Platt (2003)and Rubatto and Hermann (2007)are presented for comparison.Table 3SIMS Sm,Nd,Hf and Lu concentration pro files of the garnets in Figs.4and 5.(ppm)RimCore Cpx Li 0.93 1.140.880.840.890.980.750.520.990.580.690.870.670.7522.1Sr 0.100.130.120.120.100.100.100.120.110.120.130.100.110.1033.5Y 45.646.846.647.346.447.148.350.052.053.553.155.354.657.80.92Hf 0.110.130.120.120.110.110.120.120.120.100.110.100.100.100.41La 0.010.020.020.010.000.000.010.010.010.010.010.010.020.010.02Ce 0.040.050.050.060.050.040.040.040.050.030.040.040.050.030.12Pr 0.010.020.030.020.020.020.020.020.020.020.030.020.020.020.03Nd 0.390.330.280.380.350.270.220.280.340.310.270.410.280.260.36Sm 0.450.360.380.440.470.410.480.450.450.410.340.330.420.410.31Eu 0.270.270.270.280.300.240.280.280.250.300.290.240.250.220.22Gd 1.85 1.96 1.75 1.80 1.85 1.78 1.85 1.84 1.93 1.82 1.57 1.92 1.69 1.530.65Dy 5.68 5.86 5.58 6.18 5.87 5.84 5.79 6.19 6.46 6.40 5.50 6.91 6.09 6.400.26Er 3.74 4.13 4.04 4.25 4.23 4.16 3.76 4.15 4.65 4.99 4.53 4.98 4.63 5.200.06Yb 4.10 4.18 4.01 3.86 4.23 4.11 4.49 4.34 4.97 5.19 5.19 5.65 5.10 5.690.12Lu0.900.910.880.840.840.891.131.151.281.261.261.331.321.420.01332H.Cheng et al./Lithos 110(2009)327–342eclogite.A partly-calibrated thermobarometer is de fined by the three reactions of 3Celadonite +1Pyrope +2Grossular =3Muscovite +6Diopside,2Kyanite+3Diopside =1Pyrope +1Grossular +2Quartz,and 3Celadonite +4Kyanite=3Muscovite +1Pyrope +4Quartz.An intersection point of 2.2GPa and 620°C is de fined and therefore independent of commonly-used Fe –Mg exchange thermometers.This offers an advantage with regards to garnet –clinopyroxene,which is prone to retrograde reactions and problems stemming from ferric iron estimation of omphacite (Li et al.,2005).Results are plotted according to the calibrations mentioned above.The three reactions and intersection points are shown according to programs of calibrations 1–5in Fig.6.4.4.Oxygen isotopic dataThe O isotope compositions of minerals for the two eclogites are presented in Table 4.When paired with quartz for isotope geothermo-metry,garnet,omphacite,phengite,kyanite,zoisite and amphibole yield temperatures of 620±29,563±35,567±43,508±31,404±28and 685±39°C for eclogite DB17,respectively.Because these temperatures are concordant with rates of O diffusion and thus closure temperatures in the mineral assemblage garnet +omphacite +kyanite+phengite+quartz (Zheng and Fu,1998),representative of metamorphic peak conditions,a continuous resetting of O isotopes in the different mineral-pair systems is evident during cooling (Giletti,1986;Eiler et al.,1993;Chen et al.,2007).Quartz –garnet pairs from eclogite DB17give temperatures of 620±29°C,which are consistent with those calibrated by the THERMOCALCmethod,indicating that O isotope equilibrium was achieved and preserved during eclogite –facies recrystallization (Fig.7a).This is also evidenced by the apparent equilibrium fractionation between garnet and omphacite (Fig.7b).In contrast,equilibrium fractionation was not attained between garnets and omphacites in eclogite DB18.The calculated quartz –amphibole pair temperature of 685±39°C is distinctly higher than the 508±31°C from the quartz –zoisite pair.Because oxygen diffusion in amphibole is faster than in zoisite and kyanite (Zheng and Fu,1998),amphibole exchanges oxygen isotopes with water faster than zoisite during retrogression.Consequently,the O isotope temperature increases for the quartz –amphibole pair,whereas the quartz –zoisite temperature decreases relative to the formation temperature.In this regard,the retrograde metamorphism of amphibolite –facies should take place at a temperature between ∼685and ∼508°C.On the other hand,the low quartz –kyanite pair temperature (404±28°C)could be interpreted as a result of in fluence by retrogressive metamorphism without a clear geologicalmeaning.Fig.5.Sm/Nd versus Nd and Lu/Hf versus Hf plots for garnet and whole rock.ID:data obtained by the isotope dilution method using MC-ICPMS.IMS:data obtained by ion microprobe.bombWR —whole rock by bomb-digestion,savWR —whole rock by Savillex-digestion.Error bars for both IMS and ID methods are signi ficantly smaller than thesymbols.Fig.6.Peak P –T estimates of the Xiongdian eclogite.Reactions of py +2gr +3cel =6di +3mu;3di+2ky =py+gr +2q;and 3cel +4ky =py +3mu +4q and intersection points are plotted according to the calibrations of Holland and Powell (1998,latest updated dataset)in solid lines and Krogh Ravna and Terry (2004)in dashed lines.Coesite quartz equilibrium is also shown (Holland and Powell,1998).Abbreviations:alm —almandine,gr —grossular,py —pyrope,cel —celadonite,mu —muscovite,di —diopside,jd —jadeite,coe —coesite.Temperatures estimated by quartz –garnet oxygen isotope thermometry (Zheng,1993),Ti-in-zircon and Zr-in-rutile thermometries (Watson et al.,2006;Tomkins et al.,2007)are also shown.Table 4Oxygen isotope data of minerals for the Xiongdian eclogite.Sample number Mineral δ18O (‰)Pair Δ18O (‰)T 1(°C)T 2(°C)DB17Quartz 12.86,12.66Phengite 10.26,10.14Qtz –Phn 2.57567±43Garnet 8.83,8.85Qtz –Grt 3.93620±29605±22Omphacite 9.64,9.56Qtz –Omp 3.17563±35574±28Zoisite 9.31,9.43Qtz –Zo 3.40508±31494±21Amphibole 9.83,9.60Qtz –Amp 3.06685±39Kyanite 9.36,–Qtz –Ky3.41404±28WR 9.85,9.91DB18Garnet 9.74,9.59Omphacite 8.58,8.48Omp –Grt −1.14WR10.15,9.99T 1and T 2were calculated based on the theoretical calibrations of Zheng (1993)and Matthews (1994),respectively,with omphacite (Jd 45Di 55).Uncertainty on the temperature is derived from error propagation of the average reproducibility of ±15‰for δ18O (‰)values in the fractionation equations.333H.Cheng et al./Lithos 110(2009)327–342。
arXiv:astro-ph/0601256v1 12 Jan 2006Sendproofsto:J.MelendezPreprinttypesetusingLATEXstyleemulateapjv.6/22/04
PERMITTEDOXYGENABUNDANCESANDTHETEMPERATURESCALEOFMETAL-POORTURN-OFFSTARS
JorgeMel´endez1DepartmentofAstronomy,CaliforniaInstituteofTechnology,MC105–24,Pasadena,CA91125,USAResearchSchoolofAstronomy&Astrophysics,Mt.StromloObservatory,CotterRd.,WestonCreek,ACT2611,Australia
NataliyaG.Shchukina,IrinaE.VasiljevaMainAstronomicalObservatory,NationalAcademyofSciences,27ZabolotnogoStreet,Kiev03680,UkraineandIv´anRam´ırez1DepartmentofAstronomy,UniversityofTexasatAustin,RLM15.306,TX78712-1083,USASendproofsto:J.Melendez
ABSTRACTWeusehighqualityVLT/UVESpublisheddataofthepermittedOItripletandFeIIlinestodetermineoxygenandironabundancesinunevolved(dwarfs,turn-off,subgiants)metal-poorhalostars.ThecalculationshavebeenperformedbothinLTEandNLTE,employingeffectivetemperaturesobtainedwiththenewinfraredfluxmethod(IRFM)temperaturescalebyRam´ırez&Mel´endez,andsurfacegravitiesfromHipparcosparallaxesandtheoreticalisochrones.AnewlistofaccuratetransitionprobabilitiesforFeIIlines,tiedtotheabsolutescaledefinedbylaboratorymeasurements,hasbeenused.Interstellarabsorptionhasbeencarefullytakenintoaccountbyemployingreddeningmaps,stellarenergydistributionsandStr¨omgrenphotometry.Wefindaplateauintheoxygen-to-ironratioovermorethantwoordersofmagnitudeinironabundance(−3.2<[Fe/H]<−0.7),withamean[O/Fe]=0.5dex(σ=0.1dex),independentofmetallicity,temperatureandsurfacegravity.Theflat[O/Fe]ratioismainlyduetotheuseofadequateNLTEcorrectionsandthenewIRFMtemperaturescale,which,formetal-poorF/earlyGdwarfsishotterthanmostTeffscalesusedinpreviousstudiesoftheOItriplet.AccordingtothenewIRFMTeffscale,thetemperaturesofturn-offhalostarsstronglydependonmetallicity,aresultthatisinexcellentqualitativeandquantitativeagreementwithstellarevolutioncalculations,whichpredictthattheTeffoftheturn-offat[Fe/H]=−3isabout600-700Khigherthanthatat[Fe/H]=−1.RecentdeterminationsofHαtemperaturesinturn-offstarsareinexcellentrelativeagreeementwiththenewIRFMTeffscaleinthemetallicityrange−2.7<[Fe/H]<−1,withazeropointdifferenceofonly61K.Subjectheadings:Atomicdata-stars:PopulationII-stars:fundamentalparameters-stars:at-mospheres-stars:abundances-Sun:abundances-ISM:cosmicrays-Galaxy:halo
1.INTRODUCTIONTheimportanceoftheoxygenabundanceinmetal-poorstarshasbeenstronglyemphasizedintheliter-ature,aswellastheproblemsrelatedtoitsdetermi-nation.Thereiscurrentlynoconsensusastowhetherthe[O/Fe]ratioinhalostarsisapproximatelyconstant([O/Fe]≈0.4-0.5)orsteeplyincreaseswithdecreasing[Fe/H]([O/Fe]≈-0.35[Fe/H]).Thediscrepancyisduetoproblemsinthemodelingofthedifferentspectralfea-turesusedtoestimatetheoxygenabundance,whichareveryhardtodetectinthesamestar.Duetoitshighexcitationpotential,thepermittedOItripletat0.77µmismainlyobservedinFGdwarfsandsubgiants,beingveryfaint(yetdetectable)inmetal-poorearlyKstars.Thelowexcitationpotentialfor-Electronicaddress:jorge@mso.anu.edu.auElectronicaddress:shchukin@mao.kiev.ua,vasil@mao.kiev.uaElectronicaddress:ivan@astro.as.utexas.edu1AffiliatedwiththeSeminarioPermanentedeAstronom´iayCienciasEspacialesoftheUniversidadNacionalMayordeSanMar-cos,Perubiddenlines[OI]at0.63µmaredetectedingiantsandcoolsubgiants,andbarelydetectableindwarfs.Molec-ularOHlinesareobservedintheultraviolet(electronictransitionsat0.3µm)andintheinfrared(vibrational-rotationallinesat1.5and3µm).Bothobservationsaredifficult:theUVOHlinesareclosetotheatmosphericcutoffandmostCCDshavelowsensitivityintheUV,whiletheweakIROHlinesrequireextremelyhighS/N.TheUVOHlinesarerelativelystrongandobservedinFGKmetal-poorstars,whiletheveryweakIROHlinesareonlyobservedincoolstarswithTeff<5000K.Theobservedspectrabythemselvesdonotallowadirectmeasurementoftheoxygenabundance,soacare-fulmodelingmustbeperformed.Sincethespectralfea-turesaresensitivetobotheffectivetemperatureandsur-facegravity,reliableatmosphericparametersmustbeused.TheanalysisiscomplicatedbythepresenceofbothNLTE(mainlyaffectingtheOItriplet)andgran-ulation(crucialforthemolecularOHlines)effects.Analysesoftheforbidden[OI](e.g.Barbuy1988;Snedenetal.1991)andinfraredOHlines(Mel´endez,