当前位置:文档之家› 二维与三维机织复合材料力学性能的实验研究

二维与三维机织复合材料力学性能的实验研究

二维与三维机织复合材料力学性能的实验研究
二维与三维机织复合材料力学性能的实验研究

编织复合材料的细观结构与力学性能

3D编织复合材料的细观结构与力学性能 摘要归纳、梳理三维编织复合材料细观结构表征方面较有代表性的单胞模型,分析、比较各结构模型的优缺点,从理论分析与试验测试两方面总结三维编织复合材料刚度和强度性能的研究成果与进展,探讨细观结构表征与力学性能预报中存在的主要问题,并展望今后的研究重点与发展方向。 关键词三维编织复合材料;细观结构;力学性能 Microstructure and Mechanical Properties of 3D Braided Composites ABSTRACT Typical unit cell models on microstructure of 3D braided composites were summarized. Advantages and disadvantages of various models were compared. Developments of research on mechanical properties of 3D braided composites were introduced from theoretical analysis and experimental test perspectives. Finally, problems in the present study were discussed and further development trend is prospected KEYWORDS 3D braided composites; Microstructure; Mechanical properties 1 引言 三维编织复合材料是20世纪80年代为满足航空航天部门对高性能材料的需求而研发出的先进结构材料,具有高度整体化的空间互锁网状结构,可有效避免传统层合复合材料的分层破坏,冲击韧性、损伤容限与抗疲劳特性优异,结构可设计性强,能够实现异形件的净尺寸整体成型,因此在结构材料领域倍受关注。 力学性能是三维编织复合材料结构设计的核心,直接关系应用安全性与可靠性,细观结构是影响力学性能的关键,正确描述细观结构是准确预测宏观力学性能的必要前提。细观结构表征与力学性能预报一直是三维编织复合材料的研究重点,具有重要的理论价值与实践意义。 2 三维编织复合材料的细观结构单胞模型 Ko[1]首次提出“纤维构造”术语,定义出图1所示的立方体单胞模型,单胞由四根不计细度的直纱线组成,纱线沿体对角线方向取向并相交于立方体中心,模型大致描述出了编织体内部的纱线分布情况。

三维四向编织-三维五向编织碳_环氧复合材料实验研究_百汇总

第16卷 1999年第4期 10月复合材料学报ACT A M AT ERIA E COM PO SIT A E SIN ICA V ol.16No.4Octo ber 1999收修改稿、初稿日期:1998-09-25,1998-08-25 三维四向编织碳/环氧复合材料实验研究 宝君杜 严勇摘要讨论了三维四向编织碳/环氧复合材料力学性能研究的实验方法。通过实验得到了弹性 常数及反映材料非线性行为的力学性能指标随编织角的变化规律,并分析讨论了编织参数对该类 材料破坏模式的影响作用。 关键词编织复合材料,力学性能,实验研究 中图分类号T B332 复合材料力学性能的实验研究在复合材料的开发与应用中发挥着重要作用。尤其是在材料设计研究中,实验研究对于评价加工工艺及原材料性能对复合材料性能的影响具有十分重要的意义。迄今已有许多种实验方法,其中有些方法比较简单,已经制定了标准;然而,有些实验方法涉及复合材料固有的复杂性,尚不够成熟,有待进一步进行研究。三维编织复合材料是近几年开发研制的新型复合材料,在航空航天等高科技领域具有广阔的应用前景。其性能表征及测试方法都未形成成熟的标准,需要进一步进行研究探讨。 A .

B .Macander 等人[1]于1986进行了一组实验,结果表明,三维编织物能大幅度地提高 复合材料强度和刚度。Fukuta [2]对Carbon/epo xy 三维三向、三维四向及层合板材料冲击后的 压缩强度进行了比较研究。比较发现,三维编织复合材料的冲击压缩强度较层合材料高,说明 其具有优秀的强度保持性。L .W .Gause 等[3]通过实验证实良好的抗损坏性是复合材料三维编 织结构所具有的突出特点。F .K .Ko [4~5]用玻纤/环氧和碳纤/PEEK 完成了类似实验。佐藤等[6]对火箭喷管用石墨材料、二维C /C 复合材料、三维C /C 复合材料的热冲击强度及其断裂韧性进行了实验研究。实验结果发现,二维C/C 复合材料由于纤维强化面内和层合方向存在各向异性,导致层间剥离破坏。而三维C/C 复合材料的热冲击破坏韧性是AT J 石墨的19倍以上,显示出其具有非常卓越的抗热冲击性能。孙慧玉等[7]对编织复合材料的力学性能也进行了实验研究。 为了探讨三维四向编织复合材料力学性能与编织参数间的关系及编织复合材料力学性能的实验研究方法,以碳/环氧三维四向编织复合材料为对象进行了拉伸及压缩实验,得到了有关实验数据,并对实验结果进行了分析讨论。 1实验原理及方法 利用岛津DSS-10T 材料试验机对试件进行加载,采用汉中中原电测仪器厂BA120-5AA-C15%应变计,通过KYOW A-DPM 613A 型动态应变仪测量其变形。 (南京鑫鼎纤维材料有限公司,210044 试件材料为三维四向碳/环氧编织复合材料,由天津纺织工学院复合材料研究所研制。基体材料为T DE -85#环氧树脂,增强纤维为T 300碳纤维,纤维束规格为12K ,采用树脂传递模塑(RT M 工艺制成。

山大复合材料结构与性能复习题参考答案.doc

1、简述构成复合材料的元素及其作用 复合材料由两种以上组分以及他们之间的界面组成。即构成复合材料的元素包括基体相、增强相、界面相。 基体相作用:具有支撑和保护增强相的作用。在复合材料受外加载荷时,基体相一剪切变形的方式起向增强相分配和传递载荷的作用,提高塑性变 形能力。 增强和作用:能够强化基体和的材料称为增强体,增强体在复合材料中是分散相, 在复合材料承受外加载荷时增强相主要起到承载载荷的作用。 界面相作用:界面相是使基体相和增强相彼此相连的过渡层。界面相具有一定厚度,在化学成分和力学性质上与基体相和增强相有明显区别。在复 合材料受外加载荷时能够起到传递载荷的作用。 2、简述复合材料的基本特点 (1)复合材料的性能具有可设计性 材料性能的可设计性是指通过改变材料的组分、结构、工艺方法和工艺参数来调节材料的性能。显然,复合材料中包含了诸多影响最终性能、可调节的因素,赋予了复合材料的性能可设计性以极大的自由度。 ⑵ 材料与构件制造的一致性 制造复合材料与制造构件往往是同步的,即复合材料与复合材料构架同时成型,在采用某种方法把增强体掺入基体成型复合材料的同时?,通常也就形成了复合材料的构件。 (3)叠加效应 叠加效应指的是依靠增强体与基体性能的登加,使复合材料获得一?种新的、独特而又优于个单元组分的性能,以实现预期的性能指标。 (4)复合材料的不足 复合材料的增强体和基体可供选择地范围有限;制备工艺复杂,性能存在波动、离散性;复合材料制品成本较高。

3、说明增强体在结构复合材料中的作用能够强化基体的材料称为增强体。增强体在复合材料中是分散相。复合材料中的增强体,按几何形状可分为颗 粒状、纤维状、薄片状和由纤维编制的三维立体结构。喑属性可分为有机增强体 和无机增强体。复合材料中最主要的增强体是纤维状的。对于结构复合材料,纤 维的主要作用是承载,纤维承受载荷的比例远大于基体;对于多功能复合材料, 纤维的主要作用是吸波、隐身、防热、耐磨、耐腐蚀和抗震等其中一种或多种, 同时为材料提供基本的结构性能;对于结构陶瓷复合材料,纤维的主要作用是增 加韧性。 4、说明纤维增强复合材料为何有最小纤维含量和最大纤维含量 在复合材料中,纤维体积含量是一个很重要的参数。纤维强度高,基体韧性好,若加入少量纤维,不仅起不到强化作用反而弱化,因为纤维在基体内相当于裂纹。所以存在最小纤维含量,即临界纤维含量。若纤维含量小于临界纤维量,则在受外载荷作用时,纤维首先断裂,同时基体会承受载荷,产生较大变形,是否断裂取决于基体强度。纤维量增加,强度下降。当纤维量大于临界纤维量时,纤维主要承受载荷。纤维量增加强度增加。总之,含量过低,不能充分发挥复合材料中增强材料的作用;含量过高,由于纤维和基体间不能形成一定厚度的界面过渡层, 无法承担基体对纤维的力传递,也不利于复合材料抗拉强度的提高。 5、如何设才计复合材料 材料设计是指根据对?材料性能的要求而进行的材料获得方法与工程途径的规划。复合材料设计是通过改变原材料体系、比例、配置和复合工艺类型及参数,来改变复合材料的性能,特别是是器有各向异性,从而适应在不同位置、不同方位和不同环境条件下的使用要求。复合材料的可设计性赋予了结构设计者更大的自由度,从而有可能设计出能够充分发掘与应用材料潜力的优化结构。复合材料制品的设计与研制步骤可以归纳如下: 1)通过论证明确对于材料的使用性能要求,确定设计目标 2)选择材料体系(增强体、基体) 3)确定组分比例、几何形态及增强体的配置 4)确定制备工艺方法及工艺参数

复合材料的性能和应用

摘要:近年来,各种复合材料制备技术日益更新,从陶瓷基复合材料、金属基复合材料到聚合物基复合材料,各种制备技术都得到了很大改善,使得复合材料的性能和应用得到了显著提高。本文综述陶瓷基复合材料、金属基复合材料、聚合物基复合材料等几种重要的研究方法以及应用。 关键词:先进,复合材料,制造技术。 正文:一·陶瓷基复合材料 工程陶瓷的开发是目前国内外甚为重视的新型材料研究领域。纯陶瓷材料因其脆性,不能满足苛刻条件下的使用要求。因此,目前广泛采取增韧技术来提高陶瓷的使用性能。纤维和晶须增韧陶瓷是一类有效的方法。用纤维来增韧陶瓷的技术是十年代以后开始的,最初是用碳纤维增强陶瓷,八十年代以来又开发了用陶瓷纤维和晶须增韧陶瓷,增韧效果不断取得进展,增韧技术也不断有所创新。连续纤维增强陶瓷基复合材料是最有前途的高温结构材料之一,以其优异的高韧性、高强度得到世界各国的高度重视。 连续纤维补强陶瓷基复合料(Continuous Fiber Reinforced Ceramic Matrix Composites,简称CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用.20世纪70年代初,科学家在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。随着纤维制备技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料的制备技术日渐成熟。 由于纤维增强陶瓷基复合材料有着优异的高温性能、高韧性、高比强、高比模以及热稳定性好等优点,能有效地克服对裂纹和热震的敏感性[5-6],因此,在重复使用的热防护领域有着重要的应用和广泛的市场。连续纤维增韧陶瓷基复合材料具有类似金属的断裂行为,对裂纹不敏感,不会发生灾难性破坏。其耐高温和低密度特性,使其成为发展先进航空发动机、火箭发动机和空天飞行器防热结构的关键材料。 二·金属基复合材料 金属基复合材料具有比强度高,比刚度高,耐热,耐磨,导热,导电,尺寸稳定等优点,是一种很有发展前途的新材料,金属基复合材料广泛应用于制造航空抗天零部件,也用于制造各种民用产品。 按基体分,金属基复合材料分为:铝基、镁基、钛基、锌基、铁基、铜基等金属基复合材料;按增强材料分,可分为:纤维增强金属基复合材料;其纤维有C、SiC、Si3N4、B4C、Al2O3等纤维;粒子增强金属基复合材料,增强粒子有:Al2O3、TiC、SiC、Si3N4、BN、SiC、MgO等。 纤维增强金属基复合材料的制造方法: (1)叠层加压法:工艺过程是:将金属(合金)箔片或纤维增强金属片按要求剪裁,并一层一层的进行叠层,然后加热加压进行成型和连接,一般是在真空或气体中进行。适于这种方法的材料有铝、钛、铜、高温合金,其增强纤维随需要而定。为了改善连接性能,有事在两片之间加入中间金属或在待连接表面涂覆或沉积一层中间金属。 (2)辊轧成型连接法:其主要的基材是铝、钛箔片,增强纤维主要是B、C、SiC、Si3N4等,有时在基材表面要涂覆一层低熔点的中间金属,增强纤维表面要预先浸沾铝或经物理气相沉积(PVI)、化学气相沉积(CVI)处理。 (3)钎焊法:在增强纤维与基材之间加入箔状、粉末状或膏状的钎料,经真空钎焊或保护钎焊而成。钎焊法可以制造管材、型材、叶片等。 (4)热等静压法:如图2所示,其工艺过程是:将纤维与基材进行叠层并装入一模具中,

树脂基复合材料的力学性能

树脂基复合材料的力学性能 力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。 单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。 单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表

复合材料力学性能表征(教学资料)

复合材料力学性能表征(characterization of mechanical properties of composites) 力学性能包括拉伸、压缩、弯曲、剪切、冲击、硬度、疲劳等,这些数据的取得必须严格遵照标准。试验的标准环境条件为:温度23℃±2℃,相对湿度45%~55%,试样数量每项试验不少于5个。 此检测方法适用于树脂基复合材料,金属基复合材料力学性能可参考此方法进行。 拉伸拉伸试验是对尺寸符合标准的试样,在规定的试验速度下沿纵轴方向施加拉伸载荷,直至其破坏。通过拉伸试验可获得如下材料的性能指标: 式中P为最大载荷,N;b,h分别为试样的宽度和厚度,mm。 式中△L为试样破坏时标距L0内的伸长量,mm;L0为拉伸试样的测量标距,mm。 拉伸弹性模量Et 式中△P为载荷一形变曲线上初始直线段的载荷增量,N;△L为与△P相对应的标距L0内的变形增量,mm。 由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测以下项目: σL:∥纤维方向的拉伸强度; σT:⊥纤维方向的拉伸强度; EL:∥纤维方向的拉伸模量; ET:⊥纤维方向的拉伸模量。 应力-应变曲线记录拉伸过程中应力-应变变化规律的曲线,用于求取材料的力学参数和分析材料拉伸破坏的机制。 压缩对标准试样的两端施加均匀的、连续的轴向静压加载荷,直至试样破坏,以获得有关压缩性能的参数,若压缩试验中试样破坏或达最大载荷时的压缩应力为P(N),试样横截面积为F(mm2),则压缩强度σc为:

由压缩试验中应力-应变曲线上初始直线段的斜率,即应力与应变之比,可求出压缩弹性模量(MPa)。 由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测 σL:∥纤维方向的压缩强度; σT:⊥纤维方向的压缩强度; EL:∥纤维方向的压缩模量; ET:上纤维方向的压缩模量。 弯曲复合材料在弯曲试验中受力状态比较复杂,拉、压、剪、挤压等力同时对试样作用,因而对成型工艺配方,试验条件等因素的敏感性较大。用弯曲试验作为筛选试验是简单易行的方法。 复合材料的弯曲试验一般采用三点加载简支梁法,即将标准试样放在两支点上,在中间施加载荷,使试样变形直至破坏。材料的弯曲强度σ f为: 式中P为破坏载荷,N(或挠度为1.5倍试样厚度时的载荷);l为跨度,mm;b,h分别为试样的宽度和厚度,mm。 弯曲弹性模量Ef是指比例极限内应力与应变的比值,可按下式计算: 式中△P为载荷,N(或挠度曲线上使直线段产生弯曲的载荷增量);△f为与△P对应的试样跨距中点处的挠度增量。 剪切复合材料的特点之一是层间剪切强度低,并且层问剪切形式复杂,因此剪切试验对于复合材料的质量控制特别重要。层问剪切强度测试方法有直接剪切法和短梁弯曲法等。 (1)直接剪切法。试样的形式和尺寸如图,对试样的A、C面以一定的加载速度施加剪切,直至试样破坏。试样破坏时单位面积上所承受的载荷值为层间剪切强度τs。 式中Pb为破坏载荷,N;b,h分别为受剪面的宽度和高度,mm。

复合材料力学性能实验复习题new要点

复合材料力学性能实验复习题 1.力学实验方法的内涵? 是以近代力学理论为基础,以先进的科学方法为手段,测量应变、应力等力学量,从而正确真实地评价材料、零部件、结构等的技术手段与方法; 是用来解决“物尽其用”问题的科学方法; 2.力学实验的主要任务,结合纤维增强复合材料加以阐述。 面向生产,为生产服务;面对新技术新方法的引入,研究新的测试手段;面向力学,为力学的理论建设服务。 3.对于单向层合板而言,需要几组实验来确定其弹性模量和泊松比?如何确定实验方案? 共需五组实验,拉伸0/90两组,压缩0/90两组,剪切试验一组。 4.单向拉伸实验中如何布置应变片? 5.单向压缩实验中如何布置应变片? 6.三点弯曲实验中如何布置应变片? 7.剪切实验中如何布置应变片? 8.若应变片的粘贴方向与实样应变方向不一致,该如何处理? 9.若加载方向与材料方向不一致,该如何处理?(这个老师给了) 10.纤维体积含量的测试方法? 密度法、溶解法 11.评价膜基结合强度的实验方法? 划痕法、压痕法、刮剥法、拉伸法、黏结剂法、涂层直接加载法、激光剥离法、弯曲法。 12.简述试样机械加工的规范? 试样的取位区(距板材边缘30mm以上,最小不得小于20mm) 试样的质量(气泡、分层、树脂富集、皱褶、翘曲、错误铺层) 试样的切割(保证纤维方向和铺层方向与试验要求相符) 试样的加工(采用硬质合金刀具或砂轮片加工,防止试样产生分层、刻痕和局部挤压等机械损伤) 试样的冷却(采用水冷,禁止油冷) 13.纤维增强复合材料在拉伸试验中的几种可能破坏模式及其原因? 所有纤维在同一位置破坏,材料吸收断裂能量很小,材料断裂韧性差; 纤维在基体中拔出,吸收断裂能量很大,材料韧性增加并伴随界面开裂; 介于以上两者之间。 14.加强片的要求? 材料硬度低,便于夹具的咬合;材料的强度高,保证载荷能传递到试样上,且在试样发生破坏前本身不发生破坏。

复合材料的结构及作用

复合材料的结构及作用 一、复合材料的结构及作用 是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。 复合包装材料一般由基层、功能层和热封层组成。 a.基层也是材料的外层,从商品对包装性能的要求出发,外层应具有良好的光学性能、良好的印刷适性、耐磨、耐热、一定的强度和刚度,这样使包装外观具有极佳的表现力,增加了对消费者的吸引力; b.功能层也是材料的中间层,从商品对包装性能的要求出发,应具有很高的阻隔性以及特殊性能,如防潮性、阻气性、阻氧性、保香性、耐化学性、防紫外线、防静电、防锈等,使内装物得到保护,延长其货架寿命,这是包装功能性的体现; c.热封层也是材料的内层,从商品对包装性能的要求出发,内层与内装物直接接触,起适应性、耐渗透性要好,特别的包装食品的复合材料,内层还应符合食品安全的要求,卫生、无毒、无味,要对其进行封合,因此还要有良好的热封性和粘合性。 复合包装一般要满足以下性能: a.强度性能,包括抗张(拉伸)强度,范围一般在40-100MPa,撕裂强度,范围一般在 0.3-3N,破裂强度范围一般在30-50MPa,热封强度范围一般在20-80N/20mm,另外根据不同使用场合,还要求刚性、耐磨性、断裂伸长率; b.阻隔性能,包括透气性能(透空气、O2、CO2、N2)、防潮性能、透湿性能、透光性能(尤其对特定波长的光线)、保香性能; c.耐候与稳定性能,包括抗油性能、抗化学介质、耐温性能、耐候性能、抗降解性能; d.加工性能,包括自动化包装适性、印刷适性、防静电性能、热收缩与尺寸稳定性; e.安全卫生性能,包括材料成分是否安全,细菌微生物的种类和含量多少,其它一些影响安全卫生的成分; f.其它性能,包括光学性能、透明度、白度、光泽度、废弃物处理的难易、展示性等。 被包物不同,对复合包装材料性能的要求也不同,应从被包物对包装功能的要求出发,选择和设计复合包装材料,使用最少的材料,达到保护内装物的目的,节约成本和资源。二、举例说明 聚乳酸/纳米碳管防静电复合材料。此材料是以纳米碳管为导电料通过球磨和密炼2种方法添加到聚乳酸基体中制备的防静电复合材料。具体工艺流程如下:纳米碳管的纯化处理(p-CNT)——纳米碳管功能化(f-CNT)——球磨法或密炼法混合——热压——成型。 聚乳酸可以看做复合材料的基层,是复合材料的基材框架。PLA是一种新型的生物可降解材料,有较好的生物相容性,属于环境友好型材料,符合绿色环保的要求,并且具有良好的透气性及拉伸强度,但抗冲击性能差,对热不稳定。

玻璃钢复合材料的性能对比

复合材料聚合物的性能对比 聚合物复合材料的性能解释 1. 1 拉伸性能 拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。对于如高压容器、高压管、叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。 对于不同的聚合物复合材料,拉伸性能试验方法是不同。对于普通的,用国标 GB/T1447 进行测试;对于缠绕成型的,用国标 GB/T1458 进行测试;对于定向纤维增强的,用国标 GB/T33541 进行测试;对于拉挤成型的,用国标GB/T13096-1 进行测试。使用最多的是 GB/T1447 。 国标 GB/T1447 ,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带 R 型、直条型及哑铃型。使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试样破坏。用破坏载荷除以试样横截面面积则为拉伸强度。从测出的应力--------------------------- 应变曲线的直线段的斜率则为弹性模量,试样横向应变 与纵向应变比为泊松比。破坏时的应变称为断裂伸长率。 单位面积上的力,称为应力,通常用 MPa (兆帕)表示, 1MPa 相当于 1N/mm2 的应力。应变是单位长度的伸长量,是没有量刚(单位)的。 不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:1:1 玻璃钢,拉伸强度为(200-250 )MPa ,弹性模量为(10-16 )GPa;4:1 玻璃钢,拉伸强度为(250-350 )MPa ,弹性模量为(15-22 )GPa ;单向纤维的玻璃钢(如缠绕),拉伸强度大于800MPa ,弹性模量大于 24GPa ; SMC 材料,拉伸强度为( 40-80 ) MPa ,弹性模量为( 5-8 )GPa ;DMC 材料,拉伸强度为( 20-60 ) MPa ,弹性模量为( 4-6 )GPa。 1.2 弯曲性能 一般产品普遍存在弯曲载荷,弯曲性能是很重要的,同时,往往用弯曲性能来进行原材料,成型工艺参数,产品使用条件因素等的选择。 弯曲性能,一般采用国标 GB/T1449 进行测试;对于拉挤材料,用国标 GB/T13096.2 进行测试;对于单向纤维增强的,用国标 GB/T3356 进行测试。测试弯曲性能的试样一般是矩形截面积的长条,简称为矩形梁。采用当中加载的三点弯曲法。梁的横截面的上表面承压缩应力,梁下表面承受拉伸应力,横截面积上还要承受剪切应力,中性层剪应力最大,因此梁所承受弯曲时,其应力状态是很复杂的,破坏形式也是多种的。原材料品种、性能及成型工艺参数对弯曲性能很敏感,试验方法和试样尺寸同样也很敏感,为了达到材料弯曲破坏,国标对试样的跨(跨度或支距)高(试样厚度)比( l/h )有一定要求,一般要求 l/h >16,对于单向纤维增强的材料,要求l/h >32。 由于弯曲性能的复杂性及对各因素的敏感性,对于上述不同材料的弯曲性能,或大于 1.1 节中拉伸性能,或小于 1.1 节中的拉伸性能。在正常成型工艺情况下,一般弯曲强度略大于拉伸强度,弯曲弹性模量略小于拉伸弹性模量。 1. 3 压缩性能

金属基复合材料的种类与性能

金属基复合材料的种类与性能 摘要:金属基复合材料科学是一门相对较新的材料科学,仅有40余年的发展历史。金属基复合材料的发展与现代科学技术和高技术产业的发展密切相关,特备是航天、航空、电子、汽车以及先进武器系统的迅速发展对材料提出了日益增高的性能要求,除了要求材料具有一些特殊的性能外,还要具有优良的综合性能,有力地促进了先进复合材料的迅速发展。单一的金属、陶瓷、高分子等工程材料均难以满足这些迅速增长的性能要求。金属基复合材料正是为了满足上述要求而诞生的。 关键词:金属;金属基复合材料;种类;性能特征;用途 1. 金属基复合材料的分类 按增强体类型分 1.1.1颗粒增强复合材料 颗粒增强复合材料是指弥散的增强相以颗粒的形式存在,其颗粒直径和颗粒间距较大,一般大于1μm。 1.1.2层状复合材料 这种复合材料是指在韧性和成型性较好的金属基材料中含有重复排列的高强度、高模量片层状增强物的复合材料。片曾的间距是微观的,所以在正常比例下,材料按其结构组元看,可以认为是各向异性的和均匀的。 层状复合材料的强度和大尺寸增强物的性能比较接近,而与晶须或纤维类小尺寸增强物的性能差别较大。因为增强物薄片在二维方向上的尺寸相当于结构件的大小,因此增强物中的缺陷可以成为长度和构件相同的裂纹的核心。 由于薄片增强的强度不如纤维增强相高,因此层状结构复合材料的强度受到了限制。然而,在增强平面的各个方向上,薄片增强物对强度和模量都有增强,这与纤维单向增强的复合材料相比具有明显的优越性。 1.1.3纤维增强复合材料 金属基复合材料中的一维增强体根据其长度的不同可分为长纤维、短纤维和晶须。长纤维又叫连续纤维,它对金属基体的增强方式可以以单项纤维、二维织物和三维织物存在,前者增强的复合材料表现出明显的各向异性特征,第二种材料在织物平面方向的力学性能与垂直该平面的方向不同,而后者的性能基本是个向同性的。连续纤维增强金属基复合材料是指以高性能的纤维为增强体,金属或他们的合金为基体制成的复合材料。纤维是承受载荷的,纤维的加入不但大大改变了材料的力学性能,而且也提高了耐温性能。 短纤维和晶须是比较随机均匀地分散在金属基体中,因而其性能在宏观上是各向同性的;在特殊条件下,短纤维也可以定向排列,如对材料进行二次加工(挤压)就可达到。 当韧性金属基体用高强度脆性纤维增强时,基体的屈服和塑性流动是复合材料性能的主要特征,但纤维对复合材料弹性模量的增强具有相当大的作用。 按基体类型分 主要有铝基、镁基、锌基、铜基、钛基、镍基、耐热金属基、金属间化合物基等复合材料。目前以铝基、镁基、钛基、镍基复合材料发展较为成熟,已在航天、航空、电子、汽车等工业中应用。在这里主要介绍这几种材料 1.2.1铝基复合材料 这是在金属基复合材料中应用最广的一种。由于铝合金基体为面心立方结构,因此具有良好的塑性和韧性,再加之它所具有的易加工性、工程可靠性及价格低廉等优点,为其在工程上应用创造了有利条件。再制造铝基复合材料时通常并不是使用纯铝而是铝合金。这主要是由于铝合金具有更好的综合性能。

力学性能是材料最重要的性能树脂基复合材料具有比强度.

力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,

高性能复合材料发展现状与发展方向

8 高性能复合材料发展现状与发展方向 8.1 国内复合材料发展现状与发展方向 复合材料学界较普遍认为我国复合材料发展中亟待研究解决下列问题: (1)在发展复合材料新品种的同时,注意发展复合材料构件的制造技术,特别是先进制造技术; (2)在研究复合材料构件无损检测方法的同时,加紧研究制定无损评价标准。 其中有五个问题是研究重点: ①增强纤维的研制、生产与供应; ②复合材料低成本生产技术; ③新工艺、新设备的研制与发展; ④复合材料生产环境及回收利用; ⑤国际大环境与市场经济条件下我国复合材料发展的对策。 8.1.1 航天功能复合材料的现状与展望 (1)引言 《美国国防部关键技术计划》指出:“下一代复合材料结构的研究将侧重于材料的多功能性能方面”。 20世纪90年代初、中期,美国用于这方面的研究经费为(1.7~1.8)亿美元/年。 功能复合材料的成功应用,使先进战略导弹弹头的有效载荷与结构重量之比大幅度提高(达到4:1),并实现了小型化、被动滚控和强突防。同时具有全天候能力和百米级命中精度。 (2)航天高技术对功能复合材料的要求 1)军事对抗要求 航天高技术对功能复合材料的军事对抗要求包括: ①生存性(全天候、突防、隐身、探测—透波); ②小型化、轻质化(结构—功能一体化、多功能一体化); ③高精度(稳定外形)。 2)环境要求 航天高技术对功能复合材料的环境要求(即生存性要求)包括: ①防热; ②抗热应力; ③抗侵蚀; ④耐空间原子氧; ⑤耐高低温交变; ⑥耐空间辐射 ⑦阻尼减震。 (3)航天功能复合材料的研究方向与主要研究内容 航天功能复合材料的研究方向包括:防热功能复合材料、透波和多功能复合材料、功能复合材料的加工技术和功能复合材料测试评价技术。 ①防热功能复合材料主要研究内容 防热功能复合材料的研究内容主要包括:先进碳/碳复合材料技术、先进碳/酚醛防热复合材料技术、低成本、碳/碳复合材料、新型防热复合材料探索和防热复合材料修补技术; 探索研究防热复合材料现场诊断与损伤预警。 ②透波、多功能复合材料主要研究内容

复合材料力学性能的试验评价方法及其标准化动向

复合材料力学性能的试验评价方法及其标准化动向 王瑞杨连贺王建坤 (天津纺织工学院 300160) 摘要:复合材料力学性能的试验评价方法及其标准化是关系到加速复合材料的发展和扩大应用领域的重要课题。本文综述了复合材料力学性能的试验评价方法及其标准化的现状,分析了现行试验方法及标准中存在的问题和国际研究动向,提出了我国今后对复合材料试验方法及标准化研究和开发方向的建议。 关键词:复合材料力学特性试验方法标准化 1 前言 树脂基复合材料作为一种新型材料,以其轻量、耐腐蚀及良好的力学性能等而倍受青睐。由于其优良的特性,复合材料的研究和应用得到了广泛的关注,目前已被广泛应用于航空航天、电子、超导、汽车及建筑等领域。为了进一步扩大复合材料的应用领域,作为材料性能和安全可靠性保证的手段,试验技术和评价方法的研究是必不可少的。 复合材料力学性能的试验与评价在复合材料的开发与应用中发挥着极其重要的作用,尤其是在材料设计中。试验与评价在优化加工工艺、分析组分材料性能对复合材料整体性能的影响及降低材料成本等方面均具有十分重要的意义。高性能复合材料的设计与加工,需要充分把握复合材料的力学性能,从而明确开发目标与既用材料的差别,以确立高性能复合材料的开发方针。同时,为了根据使用条件和环境合理准确地设计复合材料,需要可靠和真实的复合材料力学性能数据、设计数据,来源于可靠的测试评价方法,因而复合材料力学性能的测试与评价方法的确立是正确设计复合材料,确保力学性能和使用质量、扩大应用范围的重要研究课题。在制定复合材料的试验方法与标准时,特别需要考虑的是与国际标准的接轨,以促进复合材料产品的市场发展,将我国的标准化运作同国际组织的标准化研究逐步衔接起来,使测试标准更加规范,消除贸易上的技术障碍,有效地促进信息交流和共享。实验方法的标准化也是复合材料发展和应用中必须解决的问题,具有重要的经济效益和社会效益。 2 试验、评价方法与标准化现状 2.l 特性评价的物理意义 与通常的金属材料及其它结构材料相比,复合材料具有无延伸性和异向性显著的特点,因此与通常的金属材料不同,存在三个问题:(1)在夹持部无因塑性变形而引起的缓和应力集中作用;(2)在测试部难以获得均匀的应力分布;(3)在应力传递部容易引起破坏等问题。目前,复合材料的力学特性试验与评价方法作为既定标准已不鲜见,但多数都存在上述问题。其中有些已历经修改而成为具有较高水平的“标准”,但同样存在不尽人意之处。理想的情况下,力学特性试验法应该是评价材料某一物理特性值的,但许多情况下都由于应力集中等影响而只能获得表现值,得不到材料的真实数据,因此在应用这些试验方法和标准时,必须充分理解和认识它们的物理意义。 2.2 评价方法存在的问题 关于复合材料力学性能的评价,迄今已有许多实验方法,其中有些方法比较简单,而且已经制定了标准。有些实验方法涉及复合材料固有的复杂性,尚不够

相关主题
文本预览
相关文档 最新文档