当前位置:文档之家› 数列求和(复习+练习+习题+同步练习)

数列求和(复习+练习+习题+同步练习)

数列求和(复习+练习+习题+同步练习)
数列求和(复习+练习+习题+同步练习)

一、选择题

1.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n -

1),…的前n 项之和为( )

A .2n -1

B .n ·2n -n

C .2n +

1-n

D .2n +

1-n -2

答案 D

解析 记a n =1+2+22+…+2n -

1=2n -1

∴S n =2·(2n -1)2-1

-n =2n +

1-2-n

2.数列{a n }、{b n }满足a n b n =1,a n =n 2+3n +2,则{b n }的前10项之和为( ) A.13 B.512 C.12 D.712

答案 B

解析 b n =1a n =1(n +1)(n +2)=1n +1-1

n +2

S 10=b 1+b 2+b 3+…+b 10

=12-13+13-14+14-15+…+111-112=12-112=512

3.已知等差数列公差为d ,且a n ≠0,d ≠0,则1a 1a 2+1a 2a 3+…+1a n a n +1可化简为( )

A.nd

a 1(a 1+nd ) B.n a 1(a 1+nd ) C.d a 1(a 1+nd ) D.n +1

a 1[a 1+(n +1)d ] 答案 B

解析 ∵1a n a n +1=1d (1a n -1

a n +1

)

∴原式=1d (1a 1-1a 2+1a 2-1a 3+…+1a n -1

a n +1)

=1d (1a 1-1a n +1)=n

a 1·a n +1

,选B 4.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2008的值为( )

A.20052006

B.20062007

C.20072008

D.20082009

答案 D

解析 直线与x 轴交于(

2n ,0),与y 轴交于(0,2n +1

), ∴S n =12·2n ·2n +1=1n (n +1)=1n -1

n +1,

∴原式=(1-12)+(12-13)+…+(12008-1

2009)

=1-12009=2008

2009

二、填空题

5.(1002-992)+(982-972)+…+(22-12)=____________. 答案 5050 解析 原式

=100+99+98+97+…+2+1=100×(100+1)

2=5050

6.S n =122-1+142-1+…+1(2n )2-1

=________. 答案

n

2n +1

解析 通项a n =1(2n )2

-1=1(2n -1)(2n +1)=12(12n -1-1

2n +1) ∴S n =12(1-13+13-15+…+12n -1-12n +1)

=12(1-12n +1)=n 2n +1

7.(2010·《高考调研》原创题)某医院近30天每天因患甲型H1N1流感而入院就诊的人数依次构成数列{a n },已知a 1=1,a 2=2,且满足a n +2-a n =1+(-1)n (n ∈N *),则该医院30天内因患甲型H1N1流感而入院就诊的人数共有________.

答案 255

解析 当n 为偶数时,由题易得a n +2-a n =2,此时为等差数列;当n 为奇数时,a n +2-a n

=0,此时为常数列,所以该医院30天内因患甲型H1N1流感而入院就诊的人数总和为S 30=15+15×2+15×142

×2=255.

三、解答题

8.(2010·重庆卷,文)已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.

(1)求通项a n 及S n ;

(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及其前n 项和T n .

解析 (1)因为{a n }是首项为a 1=19,公差为d =-2的等差数列,所以a n =19-2(n -1)=-2n +21.

S n =19n +n (n -1)

2

·(-2)=-n 2+20n .

(2)由题意知b n -a n =3n -

1,所以b n =3n -

1+a n =3n -

1-2n +21.T n =S n +(1+3+…+3n -

1)=

-n 2

+20n +3n -1

2

.

9.已知数列{a n }中,a 1=1,a 2=2,a n +2=a n q 2,(q ≠0) 求和:1a 1+1a 2+…+1

a 2n

.

解 由题意得1a 2n -1=1a 1

q 2-2n ,1a 2n =1a 2q 2-

2n ,于是

1a 1+1a 2+…+1a 2n =(1a 1+1a 3+…+1a 2n -1)+(1a 2+1a 4+…+1a 2n )=1a 1(1+1q 2+1q 4+…+1q 2n -2)+1

a 2(1+1q 2+1q 4+…+1q 2n -2)=32(1+1q 2+1q 4+…+1

q

2n -2).

当q =1时,1a 1+1a 2+...+1a 2n =32(1+1q 2+1q 4+ (1)

2n -2)=32n ,

当q ≠1时,1a 1+1a 2+...+1a 2n =32(1+1q 2+1q 4+ (1)

2n -2)=32(1-q -

2n 1-q -2)=32[q 2n -1

q 2n -2(q 2-1)].

故1a 1+1a 2+…+1

a 2n =?

??

3

2

n , (q =1)32[q 2n

-1

q 2n -2(q 2-1)

], q ≠1.

10.数列{a n }的前n 项和为S n =10n -n 2,求数列{|a n |}的前n 项和. 解析 易求得a n =-2n +11(n ∈N *). 令a n ≥0,得n ≤5;令a n <0,得n ≥6. 记T n =|a 1|+|a 2|+…+|a n |,则: (1)当n ≤5时, T n =|a 1|+|a 2|+…+|a n |

=a 1+a 2+…+a n =S n =10n -n 2. (2)当n ≥6时, T n =|a 1|+|a 2|+…+|a n |

=a 1+a 2+a 3+a 4+a 5-a 6-a 7-…-a n

=2(a 1+a 2+a 3+a 4+a 5)-(a 1+a 2+a 3+a 4+a 5+a 6+…+a n ) =2S 5-S n =n 2-10n +50.

综上,得T n =?

????

-n 2+10n (n ≤5时);

n 2-10n +50 (n ≥6时).

11.已知数列{a n }为等比数列.

T n =na 1+(n -1)a 2+…+a n ,且T 1=1,T 2=4 (1)求{a n }的通项公式. (2)求{T n }的通项公式. 解析 (1)T 1=a 1=1

T 2=2a 1+a 2=2+a 2=4,∴a 2=2 ∴等比数列{a n }的公比q =a 2

a 1=2

∴a n =2n -

1

(2)解法一:

T n =n +(n -1)·2+(n -2)·22+…+1·2n -

1①

2T n =n ·2+(n -1)22+(n -2)23+…+1·2n ② ②-①得

T n =-n +2+22+…+2

n -1

+2n

=-n +2(1-2n )

1-2

=-n +2n +

1-2=2n +

1-n -2 解法二:

设S n =a 1+a 2+…+a n ∴S n =1+2+…+2n -

1=2n -1

∴T n =na 1+(n -1)a 2+…+2a n -1+a n =a 1+(a 1+a 2)+…+(a 1+a 2+…+a n )

=S 1+S 2+…+S n =(2-1)+(22-1)+…+(2n -1) =(2+22

+ (2)

)-n =2(1-2n )

1-2

-n

=2n +

1-n -2

12.设数列{a n }是公差大于0的等差数列,a 3,a 5分别是方程x 2-14x +45=0的两个实根. (1)求数列{a n }的通项公式;

(2)设b n =a n +1

2

n +1,求数列{b n }的前n 项和T n .

解 (1)因为方程x 2-14x +45=0的两个根分别为5、9,所以由题意可知a 3=5,a 5=9,所以d =2,所以a n =a 3+(n -3)d =2n -1.

(2)由(1)可知,b n =a n +12

n +1=n ·1

2n ,

∴T n =1×12+2×122+3×123+…+(n -1)×12n 1+n ·1

2n ①,

∴12T n =1×122+2×123+…+(n -1)×12n +n ·1

2

n +1 ②, ①-②得,12T n =12+122+123+…+12n -1+12n -n ·1

2n +1=1-n +22n +1,所以T n =2-n +22n .

13.已知数列{a n }的首项a 1=23,a n +1=2a n

a n +1,n =1,2,….

(1)证明:数列{1

a n -1}是等比数列;

(2)求数列{n

a n

}的前n 项和S n .

解 (1)∵a n +1=2a n a n +1,∴1a n +1=a n +12a n =12+12·1a n ,∴1a n +1

-1=12(1a n -1),又a 1=23,∴1

a 1-1

=12.∴数列{1a n -1}是以12为首项,1

2

为公比的等比数列. (2)由(1)知1a n -1=12·12n -1=12n ,即1a n =12n +1,∴n a n =n

2n +n .

设T n =12+222+323+…+n

2n .①

则12T n =122+223+…+n -12n +n

2n +1.② ①-②得

12T n =12+122+…+12n -n 2n +1=12(1-1

2n )1-12-n 2

n +1=1-12n -n

2n +1, ∴T n =2-12n -1-n

2n ,又1+2+3+…+n =n (n +1)2,

∴数列{n

a n }的前n 项和S n =2-2+n 2n +n (n +1)2=n 2+n +42-n +22n .

(完整word版)等差数列基础练习题

等差数列·基础练习题 一、填空题 1. 等差数列8,5,2,…的第20项为___________. 2. 在等差数列中已知a 1=12, a 6=27,则d=___________ 3. 在等差数列中已知13 d =-,a 7=8,则a 1=_______________ 4. 2()a b +与2 ()a b -的等差中项是________________- 5. 等差数列-10,-6,-2,2,…前___项的和是54 6. 正整数前n 个数的和是___________ 7. 数列{}n a 的前n 项和2 3n S n n -=,则n a =___________ 二、选择题 8. 若lg 2,lg(21),lg(23)x x -+成等差数列,则x 的值等于( ) A.0 B. 2log 5 C. 32 D.0或32 9. 在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为( ) A.84 B.72 C.60 . D.48 10. 在等差数列{}n a 中,前15项的和1590S = ,8a 为( ) A.6 B.3 C.12 D.4 11. 等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20下昂的和等于 A.160 B.180 C.200 D.220 12. 在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( ) A.45 B.75 C.180 D.300 13. 设n S 是数列{}n a 的前n 项的和,且2 n S n =,则{}n a 是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,且是等比数列 D.既不是等差数列也不是等比数列 14. 数列3,7,13,21,31,…的通项公式是( ) A. 41n a n =- B. 32 2n a n n n =-++ C. 2 1n a n n =++ D.不存在

数列求和7种方法(方法全,例子多)

数列求和的基本方法和技巧(配以相应的练习) 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+=

2、等比数列求和公式:??? ??≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1 log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11) 21 1(2 1--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n

数列求和(基础+复习+习题+练习)

数列求和(基础+复习+习题+练习)

夫学须静也,才须学也,非学无以广才, 非志无以成学.——诸葛亮 301 课题:数列求和 考纲要求: 掌握等差、等比数列的求和公式及其应用;掌握常见的数列求和方法(公式法、倒序相加、错位相减,分组求和、拆项、裂项求和等求和方法). 教材复习 1. 基本公式法:()1等差数列求和公式:()()1 1 122 n n n a a n n S na d +-==+ ()2等比数列求和公式:()111, 11,111n n n na q S a q a a q q q q =?? =-?-=≠? --? () 3()() 2221 121216 n n n n +++=++L ; () 4()233331 12314n n n ++++= +??? ?L ; ()50122n n n n n n C C C C ++++=L . 2. 错位相消法:给12n n S a a a =+++L 各边同乘以一个适 当的数或式,然后把所得的等式和原等式相减,对应项相互抵消,最后得出前n 项和n S .

夫学须静也,才须学也,非学无以广才, 非志无以成学.——诸葛亮 302 一般适应于数列{}n n a b 的前n 向求和,其中{}n a 成 等差数列,{}n b 成等比数列。 3. 分组求和:把一个数列分成几个可以直接求和 的数列,然后利用公式法求和。 4. 拆项(裂项)求和:把一个数列的通项公式分 成两项差的形式,相加过程中消去中间项,只剩下有限项再求和. 常见的拆项公式有: ()1若{}n a 是公差为d 的等差数列, 则111111n n n n a a d a a ++?? =- ??? ; () 2()()1 111212122121n n n n ?? =- ?-+-+?? ; ()3()()()()()1111 122112n n n n n n n ??=-?? +++++?? ; () 41 a b a b a b = -+;() 51 1n n k n k n = +++; ()611m m m n n n C C C -+=-;()7()!1!!n n n n ?=+-;()811, 1 ,2 n n n S n a S S n -=?=?-? ≥

2022高三统考数学文北师大版一轮:第五章第四节 数列求和

第四节 数列求和 授课提示:对应学生用书第98页 [基础梳理] 1.等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1 +n (n -1)2 d . 2.等比数列的前n 项和公式 S n =??? na 1,q =1, a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1. 3.数列求和方法 (1)公式法求和: 使用已知求和公式求和的方法,即等差、等比数列或可化为等差、等比数列的求和方法. (2)错位相减法: 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的. (3)倒序相加法: 如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. (4)分组求和法: 一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. (5)并项求和法: 一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 1.先看数列通项特点,再想求和方法. 2.常见的拆项公式 (1)若{a n }为各项都不为0的等差数列,公差为d (d ≠0), 则1a n ·a n +1=1d (1a n -1a n +1 ); (2)1n (n +k )=1k (1n -1 n +k ); (3)1 n +n +1 =n +1-n ; (4)log a (1+1 n )=log a (n +1)-log a n (a >0且a ≠1). 3.一些常见数列的前n 项和公式

等差数列求和及练习题(整理)

等差数列求和 引例:计算1+2+3+4+……+97+98+99+100 一、有关概念: 像1、2、3、4、5、6、7、8、9、……这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,……,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。这个固定的数就叫做“公差”。 二、有关公式: 和=(首项+末项)×项数÷2 末项=首项+公差×(项数-1) 公差=(末项-首项)÷(项数-1) 项数=(末项-首项)÷公差+1 三、典型例题: 例1、聪明脑筋转转转: 判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。 判断首项末项公差项数 (1)1、2、4、8、16、32. ()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()() 例2、已知等差数列1,8,15,…,78.共12项,和是多少?(博易P27例2)

(看ppt,推出公式) 例3、计算1+3+5+7+……+35+37+39 练习2:计算下列各题 (1)6+10+14+18+22+26+30 (3)1+3+5+7+……+95+97+99 (2)3+15+27+39+51+63 (4)2+4+6+8+……+96+98+100 (3)已知一列数4,6,8,10,…,64,共有31个数,这个数列的和是多少? 例5、有一堆圆木堆成一堆,从上到下,上面一层有10根,每向下一层增加一根,共堆了10层。这堆圆木共有多少根?(博易P27例3)(看ppt) 练习3: 丹丹学英语单词,第一天学了6个单词,以后每一天都比前一天多学会一个,最后一天学会了26个。丹丹在这些天中共学会了多少个单词? 等差数列求和练习题 一、判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项 及公差写出来,如果不是请打“×”。 判断首项末项公差 1. 2、4、6、8、10、12、14、16.()()()() 2. 1、3、6、8、9、11、12、14. ()()()() 3. 5、10、15、20、25、30、35. ()()()() 4. 3、6、8、9、12、16、20、26.()()()() 二、请计算下列各题。 (1)3+6+9+12+15+18+21+24+27+30+33 (2)4+8+12+16+20+24+28+32+36+40 (3)求3、6、9、12、15、18、21、这个数列各项相加的和。 (4)2+4+6+8+……+198+200 ★(5)求出所有三位数的和。 (其他作业:练习册B 1题、4题、6题)

高二数学数列中裂项求和测试题

数列中裂项求和的几种常见模型 数列问题是高考的一大热点,而且综合性较强,既注重基础知识的掌握,又注重数学思想与方法的运用。而此类问题大多涉及数列求和,所以数列求和方法是学生必须掌握的,主要的求和方法有:公式法、拆项重组法、并项求和法,裂项相消法、错位相加法、倒序相加法等等,而裂项相消法是其中较为基础、较为灵活的一种,也是出现频率最高,形式最多的一种。下面就例举几种裂项求和的常见模型,以供参考。 模型一:数列{}n a 是以d 为公差的等差数列,且 ) ,3,2,1(0,0 n a d n ,则 )1 1(111 1 n n n n a a d a a 例1已知二次函数()y f x 的图像经过坐标原点,其导函数为' ()62f x x ,数列 {}n a 的前n 项和为n S ,点(,)()n n S n N 均在函数()y f x 的图像上。 (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设11n n n b a a ,n T 是数列{}n b 的前n 项和,求使得20 n m T 对所有n N 都成立的最小正整数m ; (2006年湖北省数学高考理科试题) 解:(Ⅰ)设这二次函数f(x)=ax 2 +bx (a ≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x -2,得 a=3 , b=-2, 所以 f(x)=3x 2 -2x. 又因为点(,)()n n S n N 均在函数()y f x 的图像上,所以n S =3n 2 -2n. 当n ≥2时,a n =S n -S n -1=(3n 2 -2n )- )1(2)132 n n ( =6n -5. 当n =1时,a 1=S 1=3×12 -2=6×1-5,所以,a n =6n -5 (n N ) (Ⅱ)由(Ⅰ)得知13 n n n a a b = 5)1(6)56(3 n n =)1 61 561(21 n n ,

数列求和常见的7种方法

数列求与得基本方法与技巧 一、总论:数列求与7种方法: 利用等差、等比数列求与公式 错位相减法求与 反序相加法求与 分组相加法求与 裂项消去法求与 分段求与法(合并法求与) 利用数列通项法求与 二、等差数列求与得方法就是逆序相加法,等比数列得求与方法就是错位相减法, 三、逆序相加法、错位相减法就是数列求与得二个基本方法。 数列就是高中代数得重要内容,又就是学习高等数学得基础。在高考与各种数学竞赛中都占有重要得地位、数列求与就是数列得重要内容之一,除了等差数列与等比数列有求与公式外,大部分数列得求与都需 要一定得技巧、下面,就几个历届高考数学与数学竞赛试题来谈谈数列求与得基本方法与技巧、 一、利用常用求与公式求与 利用下列常用求与公式求与就是数列求与得最基本最重要得方法。 1、等差数列求与公式: 2、等比数列求与公式: 3、4、 5、 [例1]已知,求得前n项与。 解:由 由等比数列求与公式得(利用常用公式) ===1- [例2]设S n=1+2+3+…+n,n∈N*,求得最大值、 解:由等差数列求与公式得, (利用常用公式) ∴= == ∴当,即n=8时, 二、错位相减法求与 这种方法就是在推导等比数列得前n项与公式时所用得方法,这种方法主要用于求数列{an·bn} 得前n项与,其中{a n}、{bn}分别就是等差数列与等比数列。 [例3]求与:………………………① 解:由题可知,{}得通项就是等差数列{2n—1}得通项与等比数列{}得通项之积 设………………………。②(设制错位)

①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列得求与公式得: ∴ [例4] 求数列前n 项得与、 解:由题可知,{}得通项就是等差数列{2n}得通项与等比数列{}得通项之积 设…………………………………① ………………………………② (设制错位) ①—②得 (错位相减) ∴ 三、反序相加法求与 这就是推导等差数列得前n项与公式时所用得方法,就就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个。 [例5] 求证: 证明: 设…………………………、。 ① 把①式右边倒转过来得 (反序) 又由可得 ………….。……、. ② ①+②得 (反序相加) ∴ [例6] 求得值 解:设…………、 ① 将①式右边反序得 ………….。② (反序) 又因为 ① +②得 (反序相加) )89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++???++++=S =89 ∴ S=44、5 题1 已知函数 (1)证明:; (2)求得值。 解:(1)先利用指数得相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明得结论可知, 两式相加得: 所以、 练习、求值:

求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和 112342421 {},1(1,2,3,)3 (1),,{}.(2)n n n n n n a n S a a S n a a a a a a a +===+++L L 数列的前项为且,求的值及数列的通项公式求 1112 {},1(1,2,).:(1){ };(2)4n n n n n n n n a n S a a S n n S n S a +++== ==L 数列的前项和记为已知,证明数列是等比数列 *121 {}(1)()3 (1),; (2):{}. n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列 11211 {},,.2n n n n a a a a a n n +==++ 已知数列满足求 练习1 练习2 练习3 练习4

112{},,,.31n n n n n a a a a a n += =+ 已知数列满足求 1 11511{},,().632n n n n n a a a a a ++==+ 已知数列中,求 1 11{}:1,{}. 31n n n n n a a a a a a --==?+ 已知数列满足,求数列的通项公式 练习8 等比数列 {}n a 的前n 项和S n =2n -1,则 2 232221n a a a a ++++Λ 练习9 求和:5,55,555,5555,…,5(101)9n -,…; 练习5 练习6 练习7

练习10 求和: 111 1447(32)(31) n n +++ ??-?+ L 练习11 求和: 111 1 12123123n ++++= +++++++ L L 练习12 设{} n a 是等差数列, {} n b 是各项都为正数的等比数列,且11 1 a b == ,35 21 a b += , 5313 a b += (Ⅰ)求{} n a , {} n b 的通项公式;(Ⅱ)求数列 n n a b ?? ?? ??的前n项和n S.

数列求和精选难题易错题含答案

数列求和精选难题易错 题含答案

数列求和精选难题易错 题含答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

1、数列{an}的前n项和记为Sn,a1=t,点在直线y=2x+1上,。 (1)若数列{an}是等比数列,求实数t的值; (2)设bn=nan,在(1)的条件下,求数列{bn}的前n项和Tn; (3)设各项均不为0的数列{cn}中,所有满足的整数的个数称为这个数列的”,令(),在(2)的条件下,求数列的“积异号数”。解:(1)由题意,当时,有 两式相减,得即:() 当时,是等比数列,要使时是等比数列, 则只需,从而得出 (2)由(1)得,等比数列的首项为,公比, ① 可得② 得 (3)由(2)知, ,, ,数列递增 由,得当时,数列的“积异号数”为1。 2、已知数列{an}的前n项和为Sn,满足. (Ⅰ)求数列{an}的通项公式an;

(Ⅱ)令,且数列{bn}的前n项和为Tn满足,求n的最小 值; (Ⅲ)若正整数m,r,k成等差数列,且,试探究:am,ar,ak能否成等比数列证明你的结论. 解:(Ⅰ)∵, 由,∴, 又,∴数列是以为首项,为公比的等比数列, ∴,即; (Ⅱ), ∴ , ∴,即n的最小值为5; (Ⅲ)∵, 若,,成等比数列, 即 由已知条件得,∴, ∴, ∴上式可化为, ∵,∴, ∴, ∴为奇数,为偶数, 因此不可能成立, ∴,,不可能成等比数列. 3、设等差数列{an}的前n项和为Sn,公比是正数的等比数列{bn}的前n项和为Tn,已知a1=1,b1=3,a2+b2=8,T3-S3=15 (1)求{an},{bn}的通项公式。 (2)若数列{cn}满足求数列{cn}

数列求和基本解法

专题讲座一 《数列求和题的基本思路和常用方法》 数列求和是?数列?一章中的一个重要内容,是高考考试中的常见题型这类试题形式变化多样,但于思路不清、找不准方法常常又具有一定的规律可循.而多数考生在解题时由出现种种错误,导致解题失败.现给出几种数列求和的不同方法,并就题例分述如下. 1. 公式法:很多求和问题可以利用(等差、等比)数列的前n 项和公式解决,在具体问题 中记住并熟练应用下列几个常用公式: ①()211+=∑=n n k n k ; ②()2 112n k n n =-∑=;③()121 +=∑=n n k n k ④()()∑=++=n k n n n k 12 12161 ; ⑤()2 1 3 21? ? ? ???+=∑=n n k n k 例如: 已知数列{}n a 的通项公式为2102+-=n n a n ,求其前n 项和n S 解: n S ()()()[] 2102210221101222+-+++?-++?-=n n ( )()[]n n n 2321103212 222++++-++++= ()()()()()123 1 21512161+-=++-++= n n n n n n n n n 2. 折项分组法:把一不能直接求和的数列的每一项分解成几个可以求和的 新数列,分别求和. 例如:已知数列{}n a 的通项公式为?? ? ??-=n n n a 212,求其前n 项和n S 解 : ()n n n S 2 1 12815413211-+???+++=()[] 12531-+???+++=n + (n 214121+???++)=12 12 +-n n 此方法常用于解形如数列{}n n b a +的前n 项和(其中{}n a 是等差数列,{}n b 是等比数列). 3. 裂项相消法:把数列的每一项拆为两项之差,求和时使大部分项能“正”、 “负”相消, 变为求有限几项的和.常用裂项公式为: ① ()() )11(11 b x a x b a b x a x ----= --;②1 11)1(1+-=+n n n n ; ③ ( ) b a b a b a --= +11;④ ()()()()()()?? ????++- ++=++321 21121211n n n n n n n ;

数列求和习题及答案.docx

§ 数列求和 ( : 45 分 分: 100 分) 一、 ( 每小 7 分,共 35 分 ) * 1 1.在等比数列 {a n } ( n ∈ N ) 中,若 a 1= 1, a 4= 8, 数列的前 10 和 ( ) A . 2- 18 B . 2- 19 2 2 C . 2- 1 10 D . 2- 1 11 2 2 2.若数列 {a n } 的通 公式 a n =2n + 2n - 1, 数列 {a n } 的前 n 和 ( ) n 2 n + 1 2 A . 2 + n -1 B . 2 + n - 1 C . 2n + 1+ n 2- 2 D . 2n + n - 2 3.已知等比数列 {a n } 的各 均 不等于 1 的正数, 数列 {b } 足 b = lg a , b = 18,b = 12, n n n 3 6 数列 {b n } 的前 n 和的最大 等于 ( ) A . 126 B . 130 C . 132 D . 134 4.数列 {a } 的通 公式 n - 1 ·(4 n - 3) , 它的前 100 之和 S 等于 ( ) n a = ( - 1) n 100 A . 200 B .- 200 C . 400 D .- 400 5.数列 1·n , 2(n -1),3(n -2) ,?, n ·1的和 ( ) n(n + 1)(n + 2) n(n + 1)(2n + 1) n(n + 2)(n + 3) n(n + 1)(n + 2) 二、填空 ( 每小 6 分,共 24 分 ) 6.等比数列 {a } 的前 n 和 n 2 2 2 S =2 - 1, a + a +?+ a = ________. n n 1 2 n 7.已知数列 {a } 的通 a 与前 n 和 S 之 足关系式 S = 2- 3a , a = __________. n n n n n n 8.已知等比数列 {a } 中, a 1= 3,a 4= 81,若数列 {b } 足 b =log 3a , 数列 的前 n n n n n 1 b b n + 1 n 和 S = ________. n 9. 关于 x 的不等式 x 2- x<2nx (n ∈ N * ) 的解集中整数的个数 a n ,数列 {a n } 的前 n 和 S n , S 100 的 ________. 三、解答 ( 共 41 分 ) 10. (13 分 ) 已知数列 n n 和, 于任意的 * {a } 的各 均 正数, S 其前 n n ∈N 足关系式 2S n = 3a n -3. (1) 求数列 {a } 的通 公式; n (2) 数列 {b } 的通 公式是 b = 1 ,前 n 和 T ,求 : 于任意的 n n n log 3a n ·log 3a n + 1 正数 n , 有 T n <1. } 足 a + a + a = 28,且 a + 2 是 a , a 的等差 11. (14 分) 已知 增的等比数列 {a n 2 3 4 3 2 4

数列求和测试题练习题

数列求和 测试题 A 级 基础题 1.数列{1+2n -1}的前n 项和S n =________. 2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=________. 3.数列112,314,518,71 16,…的前n 项和S n =________. 4.已知数列{a n }的通项公式是a n =1n +n +1 ,若前n 项和为10,则项数n = ________. 5.数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且a 20+b 20=60.则{a n +b n }的前20项的和为________. 6.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2 n =________. 7.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列? ??????? ? ?1b n b n +1的前n 项和S n =________. 二、解答题(每小题15分,共45分) 8.已知{a n }为等差数列,且a 3=-6,a 6=0. (1)求{a n }的通项公式; (2)若等比数列{b n }满足b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前n 项和公式. 9.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式; (2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .

10.已知首项不为零的数列{a n }的前n 项和为S n ,若对任意的r ,t ∈N *,都有 S r S t =? ????r t 2 . (1)判断{a n }是否是等差数列,并证明你的结论; (2)若a 1=1,b 1=1,数列{b n }的第n 项是数列{a n }的第b n -1项(n ≥2),求b n ; (3)求和T n =a 1b 1+a 2b 2+…+a n b n . B 级 创新题 1.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列???? ? ? 1a n 的前5项和为________. 2.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结 果可化为________. 3.数列1, 11+2,1 1+2+3 ,…的前n 项和S n =________. 4.在等比数列{a n }中,a 1=1 2,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________. 5.已知S n 是等差数列{a n }的前n 项和,且S 11=35+S 6,则S 17的值为________. 6.等差数列{a n }的公差不为零,a 4=7,a 1,a 2,a 5成等比数列,数列{T n }满足条件T n =a 2+a 4+a 8+…+a 2n ,则T n =________. 7.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13. (1)求{a n },{b n }的通项公式; (2)求数列???? ?? a n b n 的前n 项和S n .

(完整版)数列求和练习题(含答案)

2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n (n +1) ,则S 5等于( ) A .1 B.5 6 C.16 D.130 B [∵a n =1n (n +1)=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.(2016·广东中山华侨中学3月模拟)已知等比数列{a n }中,a 2·a 8=4a 5,等差数列{b n }中,b 4+b 6=a 5,则数列{b n }的前9项和S 9等于( ) A .9 B .18 C .36 D .72 B [∵a 2·a 8=4a 5,即a 25=4a 5,∴a 5=4, ∴a 5=b 4+b 6=2b 5=4,∴b 5=2, ∴S 9=9b 5=18,故选B.] 已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n = 1 a n a n +1 ,求数列{b n }的前n 项和. [解] (1)由已知得???? ? 2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×9 2d =10a 1+45d =100, 解得??? a 1=1, d =2, 3分 所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1.5分 (2)b n = 1(2n -1)(2n +1)=12? ?? ??1 2n -1-12n +1,8分 所以T n =12? ? ???1-13+13-15+…+12n -1-12n +1 =12? ????1-12n +1=n 2n +1 .12分

等差数列求和基础题

等 差数列求和基础题 一.选择题 1. 等差数列{}n a 的前n 项和为n S ,若142,20,a S ==则6S = A.16 B.24 C.36 D.42 2. 设等差数列{}n a 的前n 项和为n S ,若111a =-,376a a +=-,则当n S 取最小值时, n 等于 A.8 B.7 C.6 D.9 3. 已知n S 是等差数列{}n a 的前n 项和,且63S =,1118S =,则9a 等于 A.3 B.5 C.8 D.15 4. 已知等差数列{a n }前n 项的和为S n , 2 3 3= a , S 3=9,则a 1= A. 23 B.2 9 C.-3 D.6 5. 已知等差数列{}n a 中,256,15a a ==,若2n n b a =,则数列{}n b 的前5项和为 A. 90 B. 45 C. 30 D. 186 6. 等差数列}{n a 的前n 项和为n S ,若119717,170a a a S ++=则的值为 A.10 B.20 C.25 D.30 7. 设等差数列{a n }前n 项和为S n . 若a 1= -11,a 4+a 6= -6 ,则当S n 取最小值时,n 等于 A.6 B. 7 C.8 D.9 8. 设等差数列{}n a 的前n 项和为n S ,246a a +=,则5S 等于 A.10 B.12 C.15 D.30 9. 已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S = A.138 B.135 C.95 D.23 10. 记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d = A.2 B.3 C.6 D.7 11. 已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于

求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和 1 练习1数列佝}的前n项为S n,且a =1, a ni=-S n(n =1,2,3,) 3 (1) 求a2,a3, a4B值及数列{a n}的通项公式. (2) 求a2a4一-玄 n ■ 2 练习2 数列{a n}的前n项和记为S n,已知a^1, 3n1 6(n = 1,2,…)?证明: n (1) 数列{§L}是等比数列; n (2) S n 1 = 4a n 1 * 练习3 已知数列{a n}的前n项为S n,S n = —@n -1)(门,N ) 3 (1)求耳忌 ⑵求证:数列{a n}是等比数列.

1 1 已知数列{a n }满足 @ = — ,a n1 =a n ? - ,求a n . 2 n +n 练习5 已知数列 {an } 满足?岭…&an,求歸 5 1 1 n * 练习6已知数列?}中,印 ,a n 1 a n - H),求a n . 6 3 2 练习7已知数列{a n }满足:a n 色^ , a , =1,求数列{a n }的通项公式 3色」+1 { } 2 十2十2+…十2 等比数列 {a n } 的前n 项和S n = 2n - 1,则a1 a 2 a 3 a n 5 (10n -1) 练习 9 求和:5, 55, 555, 5555,…,9 练习4 练习

练习10 求和: + +… + 1 4 4 7 (3n - 2) (3n 1) ’ 1 1 1 1 练习11 求和: 1 2 12 3 12 3 n 练习12 设 {a n } 是等差数列, {b n } 是各项都为正数的等比数列,且 = b^=1 , fa 1 a 5 b 3 =13 (I)求 {a n } , { b n } 的通项公式;(H)求数列? 的前门项和S n . Sb = 21

三年级奥数等差数列求和习题及标准答案

三年级奥数等差数列求和习题及答案

————————————————————————————————作者:————————————————————————————————日期:

计算(三)等差数列求和 知识精讲 一、定义:一个数列的前n 项的和为这个数列的和。 二、表达方式:常用n S 来表示 。 三:求和公式:和=(首项+末项)?项数2÷,1()2n n s a a n =+?÷。 对于这个公式的得到可以从两个方面入手: (思路1)1239899100++++++L 11002993985051=++++++++L 1444444442444444443 共50个101 ()()()() 101505050=?= (思路2)这道题目,还可以这样理解: 2349899100 1009998973212101101101101101101101 +++++++=+++++++=+++++++L L L 和=1+和倍和 即,和 (1001)100 2 10150 5050=+?÷=?=。 四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的 平均数,也等于首项与末项和的一半;或者换句话说,各项和等于 中间项乘以项数。 譬如:① 48123236436922091800+++++=+?÷=?=L (), 题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209?; ② 65636153116533233331089++++++=+?÷=?=L (), 题中的等差数列有33项,中间一项即第17项的值是33,而和恰等 于3333?。 例题精讲: 例1:求和: (1)1+2+3+4+5+6 = (2)1+4+7+11+13= (3)1+4+7+11+13+ (85)

数列通项及求和测试题(含答案)

数列通项及求和 一.选择题: 2.已知数列{a n} 满足a1=1, 且, 且n∈N) , 则数列{ a n} 的通项公式为(?? ) A. ?? B.C.a n=n+2 ??? D.a n=( n+2)·3 n 3.数列的前项和记为,,则数列的通项公式是(?) A.???? B.????? C.???? D. 4.数列满足,且,则=??(??? ) A.10????????? B.11 C.12 ?? D.13 6.设各项均不为0的数列满足,若,则(?? ) A.??? B.2??? C.??? D.4 二.填空题: 8.已知数列的前项和为,,且满足,则_________. 9.若数列的前n项和,则数列的通项公式???????? ? 10.如果数列满足,则=_______. 11.若数列的前项和为,则该数列的通项公式????????? . 12.若数列的前项和为,则该数列的通项公式???????? . 13.已知数列的前项和为,且,则=?????? . 15.在数列中,=____________. 16.已知数列的前n项和,则的通项公式???????? ? 17.若数列的前n项和,则???? 。 18.已知数列满足,,则的最小值为________. 19.已知数列的前n项和为,且,则=___. 20.已知数列中,,前n项和为,且,则=_______

三.解答题: 25.已知等差数列的前n项和 (1)求数列的通项公式; (2)设,求数列的前n项和。 30.等差数列中, ? (1)求的通项公式 ? (2)设,求的前n项和 40.公差不为零的等差数列中,且成等比数列。 (1)求数列的通项公式; (2)设,求数列的通项公式 44.已知等差数列满足:,,的前n项和为. (1)求及; (2)令bn=(),求数列的前n项和. 36.已知数列的前项和为,且;数列满足,.. (Ⅰ)求数列和的通项公式; (Ⅱ)记,.求数列的前项和. 28.已知数列的前项和为,且, (1)求数列的通项公式 (Ⅱ)数列的通项公式,求其前项和为。 29.已知等比数列的公比且成等差数列. 数列的前项和为,且 . (Ⅰ)分别求出数列和数列的通项公式; (Ⅱ)设,求其前项和为。 32.设数列的前项和为,,且对任意正整数,点在直线上. 求数列的通项公式;

数列求和的七种基本方法

数列求和的七种基本方法 甘志国部分内容(已发表于 数理天地(高中),2014(11):14-15) 数列求和是数列问题中的基本题型,但具有复杂多变、综合性强、解法灵活等特点,本文将通过例题(这些例题涵盖了2014年高考卷中的数列求和大题)简单介绍数列求和的七种基本方法. 1 运用公式法 很多数列的前n 项和n S 的求法,就是套等差、等比数列n S 的公式,因此以下常用公式应当熟记: 22 1 231 123(1)2 135(21)12222111111122222 n n n n n n n n n -++++= ++++ +-=++++=-++++=- 还要记住一些正整数的幂和公式: 2 233332222)1(41 321)12)(1(6 1 321+=++++++= ++++n n n n n n n 例1 已知数列}{n a 的前n 项和232n n S n -=,求数列}{n a 的前n 项和n T . 解 由232n n S n -=,可得n a n 233-=,160≤?>n a n ,所以: (1)当16≤n 时,n T =232n n S n -=. (2)当17≥n 时, 512 322)()()(21616161817162121+-=-=--=+++++++=+++=n n S S S S S a a a a a a a a a T n n n n n 所以 2 2 32(1,2,,16) 32512 (17,) n n n n T n n n n * ?-=?=?-+≥∈??N 且 例2 求1)2(3)1(21?++-?+-?+?=n n n n S n . 解 设2 )1()1(k n k k n k a k -+=-+=,本题即求数列}{k a 的前n 项和.

等差数列综合练习题

一、等差数列选择题 1.在等差数列{}n a 中,10a >,81335a a =,则n S 中最大的是( ) A .21S B .20S C .19S D .18S 2.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .3斤 B .6斤 C .9斤 D .12斤 3.设等差数列{}n a 的前n 项和为n S ,公差1d =,且62 10S S ,则34a a +=( ) A .2 B .3 C .4 D .5 4.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45 B .50 C .60 D .80 5.已知数列{}n a 的前n 项和n S 满足() 12n n n S +=,则数列11n n a a +?????? 的前10项的和为 ( ) A . 89 B . 910 C .1011 D .11 12 6.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121 B .161 C .141 D .151 7.已知数列{}n a 中,132a = ,且满足()* 1112,22 n n n a a n n N -=+≥∈,若对于任意*n N ∈,都有 n a n λ ≥成立,则实数λ的最小值是( ) A .2 B .4 C .8 D .16 8.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( ) A .7 B .10 C .13 D .16 9.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13 B .14 C .15 D .16 10.设等差数列{}n a 的前n 项和为n S ,且71124a a -=,则5S =( ) A .15 B .20 C .25 D .30 11.已知数列{}n a 中,11a =,22a =,对*n N ?∈都有333 122n n n a a a ++=+,则10a 等于 ( ) A .10 B C .64 D .4 12.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( )

相关主题
文本预览
相关文档 最新文档