当前位置:文档之家› 太阳能光伏生产质量管理系统

太阳能光伏生产质量管理系统

太阳能光伏生产质量管理系统
太阳能光伏生产质量管理系统

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy

Operated by the Alliance for Sustainable Energy, LLC

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at https://www.doczj.com/doc/8318554674.html,/publications.

Updated Proposal for a Guide for Quality Management

Systems for PV Manufacturing: Supplemental Requirements to ISO 9001-2008

Govind Ramu,1 Masaaki Yamamichi,2 Wei Zhou,3 Alex Mikonowicz,4

Sumanth Lokanath,5 Yoshihito Eguchi,6 Paul Norum,7 and Sarah Kurtz 8

1

SunPower 2

National Institute of Advanced Industrial Science and Technology (AIST) 3

Trina Solar 4

Powermark 5

First Solar 6

Mitsui Chemical 7

Amonix 8

National Renewable Energy Laboratory

Technical Report NREL/TP-5J00-63742 March 2015

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy

Operated by the Alliance for Sustainable Energy, LLC

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at https://www.doczj.com/doc/8318554674.html,/publications.

National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401

303-275-3000 ? https://www.doczj.com/doc/8318554674.html,

Updated Proposal for a Guide for Quality Management

Systems for PV Manufacturing: Supplemental Requirements to ISO 9001-2008

Govind Ramu,1 Masaaki Yamamichi,2 Wei Zhou,3 Alex Mikonowicz,4

Sumanth Lokanath,5 Yoshihito Eguchi,6 Paul Norum,7 and Sarah Kurtz 8

1

SunPower 2

National Institute of Advanced Industrial Science and Technology (AIST) 3

Trina Solar 4

Powermark 5

First Solar 6

Mitsui Chemical 7

Amonix 8

National Renewable Energy Laboratory

Prepared under Task No. SS13.5510

Technical Report NREL/TP-5J00-63742 March 2015

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

This report is available at no cost from the National Renewable Energy

Laboratory (NREL) at https://www.doczj.com/doc/8318554674.html,/publications.

Available electronically at https://www.doczj.com/doc/8318554674.html,/scitech

Available for a processing fee to U.S. Department of Energy

and its contractors, in paper, from:

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831-0062

phone: 865.576.8401

fax: 865.576.5728

email: mailto:reports@https://www.doczj.com/doc/8318554674.html,

Available for sale to the public, in paper, from:

U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

phone: 800.553.6847

fax: 703.605.6900

email: orders@https://www.doczj.com/doc/8318554674.html,

online ordering: https://www.doczj.com/doc/8318554674.html,/help/ordermethods.aspx

Cover Photos: (left to right) photo by Pat Corkery, NREL 16416, photo from SunEdison, NREL 17423, photo by Pat Corkery, NREL 16560, photo by Dennis Schroeder, NREL 17613, photo by Dean Armstrong, NREL 17436, photo by Pat Corkery, NREL 17721.

Acknowledgments

The international efforts that contributed to this work were primarily provided by volunteers from the companies and national laboratories. This support is deeply appreciated. The portion of this work completed at the National Renewable Energy Laboratory was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308.

Acronyms

ASQ American Society for Quality

AIST National Institute of Advanced Industrial Science and Technology ESD electrostatic discharge

FMEA failure modes and effects analysis

IEC International Electrotechnical Commission

ISO International Organization for Standardization

JRC Joint Research Centre

NREL National Renewable Energy Laboratory

PFMEA process failure modes and effects analysis

PV photovoltaic

QA quality assurance

QMS quality management system

STC standard test conditions

DMAIC Define-Measure-Analyze-Improve-Control

PDCA Plan-Do-Check-Act

Executive Summary

The goal of this Technical Specification is to provide a guideline for manufacturers of photovoltaic (PV) modules to produce modules that, once the design is proven to meet the quality and reliability requirements, replicate the design on an industrial scale without compromising its consistency with the requirements.

From 1996 to 2014, the PV industry grew by a factor of almost 500, resulting in annual PV module production of about 40 gigawatts (GW). With an annual investment in PV around $100 billion, the industry has become highly motivated to ensure quality of that investment, with special emphasis on the quality of the PV modules, because these are the most expensive parts of the system to replace and the extent of the modules' power output degradation in the field significantly impacts the return on investment.

The International PV Module Quality Assurance Task Force (PVQAT) was formed in 2011 to develop standards that can help customers quickly assess a PV product’s ability to withstand regional stresses and to gain confidence that purchased PV products will be of consistent quality. Reliability is neither defined, nor covered, by the existing International Electrotechnical Commission (IEC) standards. Module design qualification to those standards does not imply the PV module’s reliability. Therefore, PVQAT set the goal to establish guidelines dealing with all relevant influences on the module, such as raw materials and components, process parameter sets and their control, reasonable test sequences, training of the staff, etc.

Task Group #1 of PVQAT has focused on the requirements of a quality management system (QMS) used to guide the manufacture of PV modules in maintaining module quality consistency. While ISO 9001 is used as an international standard for documenting QMSs, it addresses generic elements of a QMS and does not cover specific details of interest to the PV industry. Starting in the fall of 2011, Task Group #1 began to write a PV-specific supplement to ISO 9001 that would strengthen the QMS by incorporating known requirements for PV. An early draft of this supplement was accepted by IEC Technical Committee 82 (TC82) as a New Work Item Proposal. TC82 is currently preparing a Draft Technical Specification for vote (DTS) (IEC 62941 TS), and once the document is fully adopted through the standards process, it will become a Technical Specification that can be used by the community as the standard basis for audits of PV module manufacturers. The recent formation of IECRE (the IEC System for Certification to Standards Relating to Equipment for Use in Renewable Energy Applications) under IEC’s Conformity Assessment Board will provide a direct vehicle for utilization of this Technical Specification as IECRE creates the capability to complete an inspection of a PV system and its constituent components to ensure that it was designed, installed, and operated correctly for the system design and local climate.

This report summarizes the recommendations identified by Task Group #1 and provides the community with a way to begin benefitting from the more robust QMSs, even before the standards process is completed. Community experience in implementing this draft standard will also provide essential feedback for the standardization process to help ensure that the adopted standard is optimally useful. In that context, the community is encouraged to use the contents of this report and to provide feedback to PVQAT and the IEC/ISO standards organizations. We are

interested in positive and negative experiences with the application of the recommendations herein.

Key requirements in the proposed standard include:

?Focus on the organization’s control of the PV module’s design to align the expected lifetime with its relationship to the organization’s warranty. Warranty claims must be

addressed by product and process design or by financial means

?Requirement to ensure the manufacturer has considered potential failure modes (e.g., through a Failure Modes and Effects Analysis, FMEA) and has taken steps to address

those in the design, production, application and delivery process

?Requirement to obtain IEC product certification and implement an ongoing reliability test program that monitors PV modules’ performance for compliance with standards and the stated design lifetime

?Requirement to improve product traceability through the entire supply chain to enact positive control of the product for recalls and warranty claims

?Design of a manufacturing process that will ensure conformance to the design intent for performance, lifetime, and warranty

?Special processes, such as control of solderability, electrostatic discharge (ESD) control, and assignment of PV module power rating.

Table of Contents

Acknowledgments (iii)

Acronyms (iv)

Executive Summary (v)

Introduction: Motivation (1)

Methodology (2)

Recommendations to Supplement ISO 9001-2008 (4)

Goal of This Technical Specification (4)

4 Quality management system (4)

4.1 General requirements (4)

4.2 Documentation requirements (4)

4.2.1 General (4)

4.2.2 Quality manual (4)

4.2.3 Control of documents (4)

4.2.4 Control of records (4)

5 Management responsibility (5)

6 Resource management (5)

6.1 Provision of resources (5)

6.2 Human resources (5)

6.3 Infrastructure (5)

6.4 Work environment (5)

7 Product realization (5)

7.1 Planning of product realization (5)

7.2 Customer-related processes (6)

7.2.1 Determination of requirements related to the product (6)

7.2.2 Review of requirements related to the product (6)

7.2.3 Customer communication (7)

7.3 Design and development (7)

7.3.1 Design and development planning (7)

7.3.2 Design and development inputs (7)

7.3.3 Design and development outputs (8)

7.3.4 Design and development review (9)

7.3.5 Design and development verification (9)

7.3.6 Design and development validation (9)

7.3.7 Control of design and development changes (9)

7.4 Purchasing (10)

7.4.1 Purchasing process (10)

7.4.2 Purchasing information (11)

7.4.3 Verification of purchased product (11)

7.5 Control of production and service provision (11)

7.5.1 Control of production and service provision (12)

7.5.2 Validation of processes for production and services provisions (13)

7.5.3 Identification and traceability (14)

7.5.4 Customer property (14)

7.5.5 Preservation of product (14)

7.6 Control of monitoring and measuring equipment (14)

8 Measurement, analysis, and improvement (15)

8.1 General (15)

8.2 Monitoring and measurement (15)

8.2.1 Customer satisfaction (15)

8.2.2 Internal audit (16)

8.2.3 Monitoring and measurement of processes (16)

8.2.4 Monitoring and measurement of product (17)

8.3 Control of nonconforming product (17)

8.4 Analysis of data (18)

8.5 Improvement (18)

8.5.1 Continual improvement (18)

8.5.2 (and 8.5.3) Corrective and preventive action (18)

9 Proposed Implementation (18)

References (20)

About the Authors (21)

Annex A: Correspondence between ISO 9001:2008 and IEC 62941 (23)

Annex B: Related Standards (26)

Annex C: Terms and Definitions for the PV Industry (28)

Annex D: Example Checklist (31)

Introduction: Motivation

From 1996 to 2014 the photovoltaic (PV) industry grew by a factor of almost 500, resulting in annual PV module production of about 40 gigawatts (GW). With an annual investment in PV of about $100 billion, the PV community has become highly motivated to ensure quality of that investment. Because PV module prices fell by a factor of about three between 2009 and 2012, manufacturers have been universally pressured to cut costs. There is some concern within the community that some manufacturers may be reducing costs by paying less attention to quality and reliability requirements. Even for the manufacturers who are conscientious, it is difficult to determine whether a PV module will have a lifetime that will meet the warranty (typically 25 years). For those who are less conscientious, the possibility of premature failure can be considered an unacceptable risk.

The International PV Module Quality Assurance Forum was held in July of 2011 in San Francisco, organized and sponsored by the National Institute of Advanced Industrial Science and Technology (AIST), the National Renewable Energy Laboratory (NREL), the European Commission Joint Research Centre (JRC), and the SEMI PV Group. About 160 individuals representing PV manufacturers, PV customers, test laboratories, and government organizations attended the Forum. The participants agreed that improved standards are needed to differentiate PV module durability in different climate zones and in various mounting configurations. In addition to the need for accelerated tests that match the intended use conditions, the participants highlighted the need to be able to communicate the strength of the quality management program used by the factory. Although factories use QMSs, there has been no simple way to differentiate a strong QMS from a weak one. The International PV Module Quality Assurance Task Force (PVQAT) was formed at the Forum to develop standards that can help customers quickly assess a PV product’s ability to withstand regional stresses and to gain confidence that purchased PV products will be of consistent quality. Five task groups were formed to address the manufacturing consistency (Task Group #1) issues and need for accelerated tests (Task Groups #2–5). Since then, seven additional task groups have been formed to help discuss the communication of the testing results, as well as address other issues.

In 2014, IECRE was formed under IEC’s Conformity Assessment Board to certify quality of renewable energy (RE) systems, including wind, PV, and marine systems. IECRE is committed to creating a standard method for verifying PV system quality. One critical piece of that method is the assurance of the consistent quality of the PV modules that are installed in the system. With the targeted plan of implementation through IECRE, Task Group #1 of PVQAT has focused on the requirements of a QMS used to guide manufacture of PV modules. While ISO 9001 is used as a standard for documenting and implementing QMSs, it addresses generic elements of a QMS and does not touch on specific details of interest to the PV industry. Starting in the fall of 2011, Task Group #1 began to write a PV-specific supplement to ISO 9001 that would strengthen the QMS by incorporating known requirements for PV. This was accepted by IEC Technical Committee 82 (TC82) as a New Work Item Proposal in 2014 and a draft technical specification (DTS) for vote is being prepared for submission in spring 2015. Once the document is fully adopted through the standards process, it will become a Technical Specification (IEC 62941TS) that can be used by the community as the standard basis for audits of PV modules.

In the meantime, this report summarizes the work of Task Group #1 and provides the community with a mechanism to begin benefitting from more robust QMSs, even before the standards process is completed. Community experience gained by implementing this draft will also provide essential input into the standards process to help ensure that the adopted standard is optimally useful. In that context, the community is encouraged to use the contents of this report and to provide feedback to PVQAT and to IEC. We are interested in the positive and negative experiences with application of the recommendations herein.

This report is an update from a report published in 2013. It is intended to document the progress made in 2013, 2014, and early 2015.

Methodology

There have been a large number of participants in Task Group #1 (about 200). The participants have represented different continents, requiring optimization of the working method. A task leader was set as coordinator and four regional task groups were formed in Europe, the Americas, Japan, and China. International participation was encouraged, but the formation of regional teams allowed more convenient scheduling of meetings and, in some cases, aided in communication by allowing participants to speak in their native language. The four regional groups separated the various chapters and began to develop a set of suggested recommendations. Fig. 1 indicates an example of activities by regional groups when drafting the new proposal (the y-axis represents the percentage while the x-axis represents the section considered).

Fig. 1. Example of contribution of regions on chapters of the proposal

The four drafts were then merged to identify and resolve the differences. Each regional group leader was asked to participate, via online teleconference, in an alignment meeting by the coordinator. In 2014, the merged draft was submitted as a New Work Item Proposal to IEC

TC82, and PVQAT continued to support the IEC TC82 committee’s formal development of the standard.

The method for implementing the proposed QMS was discussed at length by both Task Group #1 and representatives of ISO and IEC to identify the “smoothest” way to introduce it into the community. Although this question has been quite controversial, in 2013 and 2014, there was convergence on the concept of forming IECRE under the IEC Conformity Assessment Board. IECRE is beginning to create a process that will provide a verification of PV system quality, including considerations for the design, installation, and operation. This report includes discussion of one small aspect of overall system quality: were the PV modules manufactured consistently with the intended quality?

This report is designed to help the reader understand the recommendations that are intended to eventually be approved by the participating countries of IEC TC82.

Recommendations to Supplement ISO 9001-2008

Goal of This Technical Specification

The goal of this Technical Specification is to provide a guideline for manufacturers of PV modules to produce modules that, once the design has proven to meet the quality and reliability requirements, replicate such design in an industrial scale without compromising its consistency with the requirements.

This Technical Specification is meant to be used in assessment audits of the PV module manufacturer’s QMS, and to form a common basis for audits by various certifying bodies. Such assessments should audit the entire set of materials, components, and processing.

The larger the diversity of products from a manufacturer, the more materials and material combinations must be controlled. All changes in the design, materials, or processes applied must be considered.

For the convenience of the reader, the relevant section numbers from ISO 9001-2008 are indicated. Note that no supplementary recommendations are proposed for many of the sections.

4 Quality management system

4.1 General requirements

No supplementary requirements.

4.2 Documentation requirements

4.2.1 General

No supplementary requirements.

4.2.2 Quality manual

No supplementary requirements.

4.2.3 Control of documents

No supplementary requirements.

4.2.4 Control of records

Record retention

Records related to design, qualification, engineering changes, monitoring, and measurement of manufacturing processes and products, final testing, and customer details that are necessary to secure the warranty condition and that are defined by the organization, shall be retained for a necessary period.

NOTE: Records should also include Certificates of Conformity (CoC) and

Certificates of Conformity Analysis (CoA) of key materials identified by the

organization.

5 Management responsibility

No supplementary requirements.

6 Resource management

6.1 Provision of resources

Product warranty system

The organization shall determine and provide the resources needed to maintain the product warranty system, including provision for after-sales service and for identifying cause of failure and any appropriate follow-up actions such as adjustment to quality control plan or warranty recall.

Succession planning

The organization shall plan for succession for key functions that affect customer satisfaction, quality, reliability, safety, and performance.

6.2 Human resources

No supplementary requirements.

6.3 Infrastructure

No supplementary requirements.

6.4 Work environment

ESD safe environmental area

The organization shall identify the electrostatic discharge (ESD) sensitive materials and components and shall determine an ESD safe environmental area and maintain an ESD safe environment at the raw material storage, processing, assembly areas, packaging, and shipping.

NOTE: ESD requirement should consider ANSI/ESD S20.20, IEC/TS62916 or

equivalent standard.

7 Product realization

7.1 Planning of product realization

In planning product realization, the organization shall also determine the following, as appropriate:

a)Product certification requirements,

b)Design lifetime aligned with the stated warranty under specific conditions and a documented

method to ensure compliance to stated warranty by a combination of product reliability and after-sales services,

c)Recycling requirements at the end of the modules’ lifetime,

d)Quality assurance and control measures to be applied to production to meet requirements of

the applicable PV standards, and

e)Packaging, storage, and transportation requirements.

Customer requirements and references to related technical specifications, as applicable, shall be included in the planning of product realization as a component of the quality plan.

NOTE 1: With changing requirements from the market place and with emerging

new technology in the PV industry, the development and launch of new products

should meet requirements of the product warranty as well as customers’ needs. A

complete product life-cycle management process may be required.

NOTE 2: The product certification may depend on the application and

geographies where the modules will be installed.

NOTE 3: The recycling requirements should comply with the geographies where

the modules will be installed.

7.2 Customer-related processes

7.2.1 Determination of requirements related to the product

The organization shall determine product warranty workmanship and power degradation and its relationship to design lifetime under specified and intended use conditions.

The organization shall incorporate requirements arising from applicable previous failure information, customer complaints, competitive analysis, supplier feedback, and other internal inputs. The organization shall maintain traceability to these requirements.

The organization shall establish a method for specifying the nameplate power of a module with an allowed tolerance and the measurement uncertainty at standard test conditions per IEC 61215, IEC 61646, or IEC 62108 (see section 7.5.1 and 7.6 for control of solar simulators).

7.2.2 Review of requirements related to the product

The organization shall ensure that all modified product not covered by the retest guidelines as defined in IEC/TS 62915 is qualified to all related type designs and that the modified product is evaluated for impact on the warranty.

The organization shall identify and document all limitations on product application.

The organization shall identify critical areas for ESD control, where appropriate.

7.2.3 Customer communication

The organization shall also determine and implement effective arrangements for communicating with customers in relation to the following:

a)Safety, workmanship warranty, output power warranty, and installation guidelines including

electrical and mechanical installation instruction,

b)Application notes detailing specific attention and care needed to secure design lifetime of

installed modules,

c)The definition of a warrantable defect or safety critical defect and the rules or process to

manage stated defects, and

d)Product recall notices.

7.3 Design and development

7.3.1 Design and development planning

The organization shall include production processes in the design and development planning. The organization shall also determine:

a)The responsibilities and authorities for a project design and development team,

b)The requirements for design FMEAs as defined in IEC60812 or equivalent, reliability testing,

design lifetime, and product specification generation, and

c)The requirements for process FMEAs as defined in IEC60812 or equivalent, specifications,

layouts, control plan, and work instructions.

7.3.2 Design and development inputs

The inputs shall also include the following:

a)Functional, performance, and safety requirements, including design lifetime, power,

maintainability, durability, transportation, timing, and costs, and including the materials requirements defined in IEC 61730-1,

b)Identification of product, traceability, and packaging requirements,

c)Requirements for proper handling of product and components for ESD, and

d)Lessons learned from previous designs.

NOTE: The organization may consider application of the IEC draft standard on

transportation testing IEC 62759 when designing packaging materials.

Manufacturing Process Design Inputs

The organization shall identify, document, and review the manufacturing process design input requirements, including the following:

a)Product design output data,

b)Targets for productivity, process capability and cost,

c)Customers’ requirements, if any, and

d)Lessons learned from previous developments.

NOTE: The manufacturing process design includes the use of error-proofing

methods and Statistical Process Control methods to a degree appropriate to the

magnitude of the problems and commensurate with the risks encountered. Organization manufacturing feasibility

The organization shall investigate, conduct risk analysis, confirm and document the manufacturing feasibility at the necessary scale of the proposed products in the contract review where applicable.

The organization shall manage the risks prior to manufacturing transfer.

7.3.3 Design and development outputs

Design and development outputs shall also include the following:

a)Specify an installation manual for safe and proper installation and use,

b)Include design FMEAs as defined in IEC60812, or equivalent, which are to be updated

during design reviews, and a related design qualification/verification and reliability test plan, and

c)Define characteristics of the product that cannot be fully verified later by nondestructive

methods and the designated means to control those characteristics for adequate product performance.

Manufacturing process design outputs

The manufacturing process design output shall be expressed in terms that can be verified against manufacturing process design input requirements and validated. The manufacturing process design output shall include data for quality and reliability including the following:

a)Specifications and drawings,

b)Manufacturing process flow chart/layout,

c)Manufacturing process FMEAs as defined in IEC60812 or equivalent risk management tool,

d)Control plan (see 7.5.1),

e)Work instructions,

f)Process approval acceptance criteria,

g)An ESD protection plan,

h)Error-proofing methods, as appropriate,

i)Methods for product identification and traceability,

j)Methods for detection and feedback of product/manufacturing process nonconformities, and k)Process for handling raw materials from the time of their receipt.

NOTE: Process FMEAs (PFMEAs), or equivalent, should cover the process from

material receipt to product delivery, and where appropriate, installation and

maintenance.

7.3.4 Design and development review

No supplementary requirements.

7.3.5 Design and development verification

No supplementary requirements.

7.3.6 Design and development validation

The organization shall include standard requirements from applicable IEC and national standards for validation of the design.

Performance testing activities, including durability of prototype modules, shall be monitored for timely completion and conformance to requirements. Performance testing shall conform to a product and process approval procedure, including a reliability test plan similar to applicable standards. As a minimum, prototyped or pre-production PV modules shall be tested according to IEC 61215, IEC61646, IEC61730, IEC/TS 62915, or IEC 62108.

Although services may be outsourced, the organization shall be responsible for the qualification of subcontracted services, including ongoing technical oversight and confirmation of test results.

NOTE: Product approval should be subsequent to the verification of the

manufacturing process. This product and manufacturing process approval

procedure should also be applied to suppliers of key materials.

7.3.7 Control of design and development changes

The organization shall implement a change management system for materials and processes to ensure all changes adhere to defined internal and external qualification and certification requirements such as IEC/TS 62915.

Traceability of changes shall be documented and maintained in the organization’s QMS.

All design and development changes shall be evaluated for risks and documented in the appropriate FMEA as defined in IEC60812 or equivalent.

Qualification, safety and reliability tests shall be documented.

NOTE: The conditions of qualification, safety and reliability tests should be

defined by taking into the consideration the specified condition required by

IEC61215, IEC61646, IEC/TS62915, IEC 62108, or equivalent.

Such changes shall not be released to customers before applicable tests are verified to be satisfactory. Certification of the change may be necessary prior to release to a customer. If the change has impact to form, fit, function, safety, performance, or decrease in reliability of the product, notification to the appropriate customer is required.

7.4 Purchasing

7.4.1 Purchasing process

Materials, components, and subassemblies that have a safety, performance, or reliability implication on the finished product and that are purchased from or prepared by suppliers require a level of control adequate to ensure that the overall risks are minimal.

The organization shall define a process for the supplier’s notification of changes and ensure that the supplier maintain traceability of relevant changes. It is the responsibility of the organization or the manufacturer to ensure that the components, subassemblies and assemblies completed by subcontractors meet the quality plans, including relevant safety and certification requirements. The organization shall complete the following actions to ensure their suppliers can meet product requirements by doing the following:

a)Set up a QMS

b)Evaluate the quality performance of key materials and audit the supplier of key materials on

a regular basis,

c)Ensure that materials used in the product conform with material specifications provided by

the organization,

d)Periodically carry out onsite audits to check that:

?the material produced is conformal with applicable organization or manufacturer specifications;

?the supplier has the capability to deliver the goods on time; and

?the supplier maintains product quality consistently, notifies and seeks approval when there is any change of products, process, and manufacturing location, or significant

process excursion that may affect form, fit, function, reliability, or performance.

e)Urge the supplier to improve its quality performance if necessary, and

f)Apply methods for incoming inspections and preparation of raw materials.

NOTE: QMS requirements for key materials may include ISO 9001 compliance.

7.4.2 Purchasing information

Purchasing information shall also describe the requirements for materials/component traceability.

7.4.3 Verification of purchased product

The organization shall have a consistent process to assure the quality of key materials using an appropriate combination of the following methods:

a)Receipt and review of certificate of conformance or analysis,

b)Evaluation of statistical data of purchased products and key materials

c)Receiving inspection or testing such as statistical sampling based on performance,

d)Product evaluation or material analysis by an independent laboratory or testing facility,

e)Evidence of supplier inspections when the supplier has been delegated inspection authority

based on the history of product conformance to requirements, and

f)When a deficiency is identified, the organization shall take appropriate steps (for example, an

out-of-control action plan (OCAP)) until supplier performance meets the purchase

requirements.

NOTE: Statistical sampling may be based on ANSI/ASQ Z1.4, Z1.9 or equivalent

national standards.

7.5 Control of production and service provision

The organization shall determine methods to monitor the performance and accuracy of the equipment used in the product realization process.

The organization shall create definitions of product problems and determine rules and processes to minimize the impact of the problem.

The organization shall inspect the product in-process in addition to performing a final inspection to ensure that the requirements of the product specification are met and defective products are prevented from release.

The organization shall provide technical support to customers on how to use the product, guide customers in trouble-shooting where applicable, and prevent any safety risks.

The organization shall include a statement of the tolerance and the measurement uncertainty of the power measurement on the label of the produced module and, if applicable, refer to the name of the PV institute that issued the reference device calibration certificate.

如何建立完整的质量管理系统

如何建立完整的质量管理系统 不确定性 做品质管理的最大的难点:可能就是生产中的不确定性。所谓不确定性,就是导致生产异常的各类因素。人机料法环测,每一项都有一大堆的因素,已知的、未知的、可控的、不可控的、来影响产品最终的质量。 所谓过错,分为“无知之错”和“无能之错”。无知之错,就是指以前没见过,在目前的认知中,无法提前预知,毫无征兆地出现的问题,是难以避免的。无能之错,则是指粗心大意造成的问题,是可以避免的。 而品质管理,对外是提升产品质量,树立公司形象;对内,就是最大限度的减少生产中的不确定性。 我们可以从现实生活中一些其他行业的做法来寻找控制质量的思路和方法。当今社会,追求错误越少越好,标准最高的应该是:飞行,建造摩天大楼和医疗三个行业。相比于前两者,医疗所面对的不确定性更大更多。有数据显示:人的身体会以13000中不同的方式出现问题;而目前的药物仅仅只有6000多种,4000多种治疗手段,而且每一种都有不同的使用要求、风险、注意事项。即便只是最简单的加减法,还有3000多种,我们人类无法预测和治疗。而目前我们的做法是什么呢? 1、培养大批的医生---就是专业看病的。 2、研究新的治疗手段 3、收集整理大量的医疗案例来学习 我不是医生,但是想来也就是这3种办法。 培养大批的医生和我们的熟练工是同样性质的。医生是专业看病的,而熟练工就是专门做这个工序的。大量的实战经验,长时间的操作,才能形成一个熟练工。当你在车间巡检,发现某些岗位更换了操作人员,你应该小心。也许这是一个不确定性。 研究新的治疗手段就是针对“无知之错”。生产中也时常会出现一些“突然”的异常问题,超出检验员的水准和认知。对于此类问题,领导切不可随意责备检验员。而是应该运用更科学的办法,来培训检验员。问题不可怕,面对问题不知道如何处理才可怕。先进的检验工具和手法,更科学的抽样统计方法有助于解决此类“无知之错”。

光伏电站施工强条实施规章制度表

隆兴连山区家屯南山20兆瓦 光伏发电项目 施工强制性条文执行计划 2017 年 3 月15 日

批准:____________ ________年____月____日审核:____________ ________年____月____日编写:____________ ________年____月____日

为贯彻落实国家电网科〔2009〕642 号关于《输变电工程建设标准强制性条文实施管理规程》通知的要求,强化电力建设贯彻执行国家质量安全法律法规和强制性技术标准力度,确保电力建设工程施工质量安全,编制施工强制性条文实施计划应包括如下部分: 1、工程概况 1.1工程名称:隆兴连山区家屯南山20兆瓦光伏发电项目 1.2 工程地点:市连山区石灰窑乡家屯村南山 1.3 工程规模 山地集中式20兆瓦光伏发电站 2、编制目的 为了在电力工程建设中强化贯彻执行国家质量安全法律法规和强制性技术标准的力度,规质量行为,确保工程建设的质量与安全,以及本工程顺利的达标投产、创优,特制定本实施计划。 3、编制依据 1)《建设工程质量管理条例》(国务院令第279号) 2)《建设工程安全生产管理条例》(国务院令第393号) 3)《生产安全事故报告和调查处理条例》(国务院令第493号) 4)《特种设备安全监察条例》(国务院令第373号) 5)《电气装置安装工程接地装置施工及验收规》 GB 50170—2006 6)《关于开展电力工程建设标准强制性条文实施情况检查的通知》(国家电监会办公厅、建设部办公厅电输(2006)8号) 7) 《输变电工程建设标准强制性条文实施管理规程》国家电网科〔2009〕642 号 8)《电力工程达标投产管理办法》(中国电力建设企业协会,2006年版) 4、施工强条实施组织机构 4.1组织机构 施工项目部负责实施《电力工程建设标准强制性条文施工项目部实施计划》.组织机构如下: 项目经理:

工程质量管理制度-规范

工程质量管理制度 第一节施工现场工程质量管理制度总则 一、施工现场工程质量管理严格按照施工规范要求层层落实,保证每道工序的施工质量符合验收标准。坚持做到每个分项、分部工程施工质量自检自查,严格执行“三检”制度;不符合要求的不处理好决不进行下道工序的施工,实行“质量一票否决”制。 二、隐蔽工程施工前,经自检合格后报监理查验,经监理工程师查验合格后通知质监站进行验收,合格后方可进入下道工序的施工。 三、严格把好材料质量关,不合格的材料不准使用,不合格的产品不准进入施工现场。工程施工前及时做好工程所需的材料复试,材料没有检验证明,不得进入隐蔽工程的施工。 四、建立健全工程技术资料档案制度,专人负责整理工程技术资料,认真按照工程竣工验收资料要求,根据工程进度及时作好施工记录、自检记录和隐蔽工程验收签证记录。将自检资料和工程质量控制资料分类整理保管好,随时接受上级部门的检查。 五、对违反工程质量管理制度的人,将按不同程度给予批评处理和罚款教育,并追究其责任,对发生事故的当事人和责任人,将按关规定程序追究其责任并做出处理: 1、在公司及工程部组织的周巡检过程中,发现项目部各施工工序存在质量、安全等问题的,或项目部未按照正常工作流程报验的,现场口头通报,要求整改;再次检查依然存在问题的,由工程部起草并经公司批准审核后下发质量、安全整改通知,同时对项目第一责任人、总工及直接负责人分别处以2000元-5000元罚款。 2、针对下发的质量、安全整改通知的具体事项,项目部在规定整改期限内未做任何处理、处理措施应付了事及处理不彻底的或在施工时接连出现重大质量、安全事故情况的,由公司总经理在总经理办公会进行公开通报并要求整改,并对项目第一责任人、总工及直接负责人分别处以5000元-10000元罚款。 3、项目部对总经理办公会提出的整改要求仍拒不落实,则由公司法人对项目第一责任人进行约谈。

光伏电站质量问题及全流程质量管理

光伏电站质量问题及全流程质量管理 近年来,光伏电站凭借其清洁、高效、灵活的应用优势,使其得到越来越多人的关注,这也使我们大力推动光伏电站建设。与此同时,由于我们对光伏电站的建设经验不足,光伏电站在建设过程中频繁出现质量问题,从而降低了光伏电站的建设质量。对于光伏电站来说,其涉及到诸多环节,任何环节的管理不到位,都可能会出现质量问题。为此,本文对光伏电站的质量问题进行分析,并以全流程角度阐述了光伏电站的质量管理。 标签:光伏电站;质量问题;质量管理 随着自然能源的日益枯竭,人们对电力资源需求的不断增加,使人们迫切需要通过可再生能源来转化电能,从而在满足电力需求的同时,还能够保护人类的自然生态环境。太阳能作为一种可再生能源,利用太阳能来转化为电能,已经受到越来越多人的关注,光伏电站便是将太阳能转化为电能的一种重要发电设施。近年来,我国大力开展光伏电站建设,但由于我国相比于其他发达国家,在光伏电站建设的经验积累上存在很大不足,致使光伏电站在建设中经常出现各种质量问题。而要解决这些质量问题,就必须要对光伏电站建设的各个环节进行严格的管理,这对于提高我国光伏电站建设质量有着十分重要的意义。 一、光伏电站质量问题分析 由于光伏电站的发电效果受到当地日照条件的很大影响,因此光伏电站的建设地点主要分布在我国西部地区。光伏电站在建设过程中主要存在以下质量问题:其一,是设计质量问题,由于在制定光伏电站建设方案时,没有对当地的环境进行充分的考虑,或是在光伏电站建设中,没有对设计细节进行充分的考虑,都会造成光伏电站在建设中出现质量问题;其二,是设备质量问题,在光伏电站建设中,所使用的设备经常存在“以次充好”的现象,即使是厂家所提供的设备,也往往很难保证其自身质量;其三,是施工质量问题,在光伏电站施工中,所使用的设备及材料质量较差,无法满足光伏电站的建设要求,同时,所采用的施工工艺不够精细,致使光伏电站在施工过程中存在很多质量隐患。而且在施工管理中,没有专业的人员来进行质量管理工作,更没有对施工质量进行严格的检查,这也导致光伏电站容易出现质量问题。 二、光伏电站全流程质量管理研究 为了提高光伏电站的施工质量,避免质量问题的出现,就必须要对光伏电站进行全流程化的质量管理,不能放过任何一个环节。 (一)设计阶段中的光伏电站质量管理 在设计阶段中,施工单位必须要对供应商、技术方案、质量规范、材料清单、设计资料、设备选型等进行严格的评审,确保各个方面的评审工作能够顺利通过,

工程质量管理制度和措施

工程质量管理制度和措施 建立质量保证体系,充分发挥各部门、环节的保证作用,确保工程质量目标的实现。 质量管理实行全员、全方位、全过程的管理,从施工一开始就要注重提高每个参建人员质量意识,每道工序、每个项目都要坚持按规范、按程序、一丝不苟的进行,绝不允许留下任何质量隐患。 制定质量目标,开展目标管理。我们对该工程制定的目标是:一次检查合格率达标100%,优良率95%以上,争创省、部级优良工程。 一、建立健全质量检查制度 质量检查实行自检→抽检→验收签证→存档。施工过程中每道工序,每个项目都严格按以上程序进行,项目部质量管理组织机构,定期或不定期的组织质量检查,实行奖优罚劣。充分发挥工地试验室作用,用科学的数据指导施工,在施工过程中,我们要加强试验人员及试验设备,保证对原材料、成品、半成品的及时检验,并及时反映质量动态,消除隐患,避免事故的发生。并加强计量器具管理。 1、项目部和试验室负责所有试验器材的鉴定与管理。 2、现场计量管理器具必须有专人保管、专人使用。

3、损坏的计量器具必须及时申报修理调换,不得带病工作。 4、计量器具按要求定期进行校对、鉴定。 二、工程质量奖罚制度 1、遵循“谁施工、谁负责”原则,对各施工队进行全面质量管理和追踪管理,逐级签订质量目标责任书。 2、凡各施工队在施工过程中违反操作规程,不按图纸施工,屡教不改或者发生质量事故,项目部有权对其进行处罚,处罚形式为停工、罚款直至驱逐出场。 3、凡各施工队在施工过程中,按规范施工、质量优良,项目部对其进行奖励,奖励形式为表扬、表彰、奖金。 4、项目部在实施奖罚时,以平常检查、抽查、业主大检、监理工程师评价等形式作为依据。 三、质量保证措施 项目经理与各施工队共同制定全段工程质量目标,提出要求,明确任务,落到实处。 施工队制定管理段工作创优措施,分期实行计划,落实任务,确保全段质量全优。 各施工作业班组,要根据自己的创优任务,拟定项目工程具体的分项实施计划,责任到人、严格要求、全员保证、精益求精。 主要措施:

项目部工程施工质量管理制度

项目部工程施工质量管理制度 目录 1、总则------------------------------------------------------------------------------------------------〈2〉 2、质量管理组织机构及职责要求-----------------------------------------------------------------〈2〉 3、项目质量责任制度--------------------------------------------------------------------------------〈3〉 4、工程质量“三检”制度-----------------------------------------------------------------------------〈4〉 5、分项分部单位工程验收、评定制度-----------------------------------------------------------〈5〉 6、隐蔽工程检查验收制度--------------------------------------------------------------------------〈5〉 7、图纸会审设计变更制度--------------------------------------------------------------------------〈5〉 8、技术复核制度--------------------------------------------------------------------------------------〈6〉 9、材料采购、检验制度-----------------------------------------------------------------------------〈6〉 10、混凝土、砂浆试块制作、养护、试压制度-------------------------------------------------〈7〉 11、工程质量奖罚制度-------------------------------------------------------------------------------〈7〉 12、工地学习制度-------------------------------------------------------------------------------------〈7〉 13、质量事故报告制度--------------------------------------------------------------------------------〈8〉 14、施工测量双检制度--------------------------------------------------------------------------------〈8〉 15、开工报告审批制度--------------------------------------------------------------------------------〈8〉 16、技术交底制度--------------------------------------------------------------------------------------〈9〉 17、工程试验检测制度--------------------------------------------------------------------------------〈9〉 18、质量教育制度--------------------------------------------------------------------------------------〈9〉 19、附则--------------------------------------------------------------------------------------------------〈10〉

质量管理体系及五大工具知识

质量管理体系及16949五大工具知识 二〇一一年三月 质量管理体系及16949五大工具知识 1、我公司为什么要实施16949:2009《质量管理体系汽车生产件及相关服务件组织执行9001:2008的具体要求》? 1)贯彻、实施16949规范是汽车整车厂对供方的普遍要求。

2)16949:2009内容上增加了一些适合汽车行业特点的要求, 如进行潜在失效模式及后果分析、防错等。 3)9000标准中可能存在的一些薄弱环节得到加强,如采用手 册,帮助企业建立策划新产品设计和开发的步骤。 4)使企业的质量管理体系更加完善。引入持续改进的概念、采 用潜在失效模式和后果分析()等。 5)引入了一些新的质量理念,如实行过程控制,而不是产品控 制。 2、八项质量管理原则的内容是什么? 以顾客为关注焦点;领导作用;全员参与;过程方法;管理的系统方法;持续改进;基于事实的决策方法;与供方互利的关系。 3、我公司的质量方针是什么? 质量方针:以顾客满意为宗旨,全员参与持续改进,打造“潍 柴”驰名品牌。 4、16949:2009的结构。 包含:9001:2008的内容;增加了适合汽车及相关服务件组织的79个条款;先期产品质量策划和控制计划、潜在失效模式及后果分析、测量系统分析、统计过程控制、生产件批准程序等五本手册。 5、什么是?(先期产品质量策划和控制计划)为什么 进行?分几个阶段?各阶段主要任务是什么? 是一种系统的方法,用于确定并建立保证产品满足顾客需求的 必需步骤。 因为采用了多方论证的方式,利用不同职能人员的集体智慧, 通过早期策划,找出以后可能出现的质量问题,并采取预防措施, 最大限度的减少变差和浪费,以最经济、最合理的资源配置生产, 满足顾客要求。 分为五个阶段:计划和项目的确定,产品设计和开发,过程设

制造系统中的质量管理范文

质量管理研究综述 质量管理的发展经历了从质量检验到全面质量管理的转变,与此同时产生了大量的质量管理理念和技术。本节在简要回顾质量管理发展历史的基础上,着重研究了现代质量管理理念和方法及主要研究成果。 质量管理的发展从二十世纪初的质量检验到四五十年代的统计质量控制,到六十年代后的全面质量管理,一般认为已经经历了这三个阶段: 1)质量检验阶段 科学管理的出现引起了生产的专业化分工,专职的检验人员出现了,质量检验人员根据产品的技术标准,利用各种测试手段,对已经生产出来的产品和半成品进行检查以防不合格品流入到下个工序或出厂。这一时期的质量管理主要是进行质量的检验工作,对过程的理解不深入当作黑箱处理,尤其局限于事后检验,不能预防废品的产生,隐私不能减少因废品而造成的损失。在这一阶段控制图理论、抽样检验表、小样本统计学这三种方法先后得到发展,奠定了统计质量管理的基础。 2)统计质量控制阶段 统计质量控制使用数理统计的方法控制整个生产过程的质量。强调对生产制造过程的预防性控制,使质量管理由单纯依靠质量检验事后把关,发展到突出质量的预防性控制和事后检验相结合的工序管理,成为生产过程质量控制的强有力工具。但由于这个阶段过于强调数理统计方法,又没有适合的工具解决质量管理的统计技术问题,影响了质量管理方法的普及。 3)全面质量管理阶段 随着生产力的发展,单一的对工序的统计质量管理已经不能满足需要,质量管理需要更加广泛的理论和技术体系。费根堡姆于1961年出版了《全面质量管理》一书,主张应改变单纯强调数理统计方法的偏见,把统计方法的应用与改善组织管理密切结合起来,建立一套完整的质量管理体系,以保证经济的产出可满足用户要求的产品。这一思想最终发展成为全面质量管理(Total Quality Management)。国际标准中定义全面质量管理“以质量为中心建立在全员参与上的一种管理方法,其目的在于长期获得顾客满意从而使组织成员和社会的获得利益。”将质量管理工作拓展到企业的各个方面,包括质量在内的所有管理目标为对象,并强调最高管理层强有力的领导和对全员教育及培训的必要性。TQM涉及管理学中的运筹学、系统工程学、价值工程学、生产管理、项目管理、成本管理、和组织行为学等以及统计学、实验设计、信息技术等多种技术和学科。 4)信息时代的质量管理 九十年代后出现的6sigma质量管理、零缺陷等方法和随着信息技术的发展出现的集成质量管理可以看作第四个阶段,从质量管理的发展可以总结出一些规律和特点,质量管理的发展基本上同制造的发展相一致,连续质量改进、集成质量管理将成为今后质量管理的重点。这~集成质量管理包括从设计制造到服务的全过程生命周期,体现了并行工程、全面质量管理的思想和信息技术的优势。事实上,质量管理的研究随着制造系统的发展逐渐深入,产生了一系列重要的研究成果。其中以连续质量改进和集成质量管理系统最为典型。 连续质量改进 Juran提出了质量活动的三个部分:质量计划、质量控制、质量改进。近年来连续质量改进成为了质量研究和实践的一个热点。连续质量改进从制造业的发展来看是必然的,一方面企业追求效率和效益的提高是竞争导致的必然趋势,另一方

光伏发电项目质量控制计划

武汉普天屋顶330.99kWMp 光伏发电项目 质 量 控 制 计 划 编制单位: 编制人: 审核人: 编制日期: 使用范围 本质量控制计划适用于武汉普天工业园屋顶光伏发电项目的土建工程、安装工程、室外总体工程等全部设计图纸内容及文件合同所求的工作内容。

工程目标 1工期目标: 60天,满足合同要求,2015年5月日正式开工(待投资方正式书面通知),2015年7月日正式并网发电。 2质量、安全目标: 工程质量目标:确保一次性验收合格 安全目标:工程施工全过程安全生产无重大伤亡事故。 工程概况 2.1工程性质 2.1.1.工程名称:武汉普天工业园屋顶330.99kWp分布式光伏发电项目 2.1.2.工程地点:武汉市东湖开发区大学园路20号武汉普天工业园2号楼屋顶(东经114°23'27",北纬30°27'13") 2.1. 3.建设单位:上海普天能源科技有限公司 2.1.4.设计单位:武汉日新科技有限公司 2.1.5.施工单位:武汉鸿飞通信设备有限责任公司 2.2工程简况: 武汉普天工业园分布式光伏并网发电项目,位于湖北省武汉市东湖高新开发区大学园路20号武汉普天工业园2号楼屋顶,安装布置屋面光伏发电系统,光伏发电规模总计330.99kW (千瓦),规划平面图如下。 图1.1一号楼屋顶布置方案图 武汉普天工业园分布式光伏并网发电系统静态投资总计361.13万元。该发电系统总装机容量为330.99千瓦,建成后其光伏发电系统年均发电量约为30.458万度电。光伏系统所发电量绝大部分用于工业园的自身用电,盈余电量将反馈到市电电网。

质量管理 9.1总则 9.1.1质量方针 “公司以用优良产品和周到服务,满足顾客期望;用先进技术和科学管理,实现持续发展”。 9.1.2管理思想 按照一流管理、一流质量、一流速度、一流服务的管理思想,坚持以质量求速度,以质量求效益的原则,实现程序化的质量管理,争创优质工程。 工程进点后,现场项目部将进一步完善质量保证体系,编制详细的质量保证计划,进一步明确各分部分项工程的质量控制措施,加强过程管理,保证项目施工随时处于受控状态,实现工程的质量目标。 9.1.3质量验评依据 (1)现行规程、规范和规定; (2)业主有关技术质量的要求,不足部分按现行规程、规范和规定进行补充. 9.2质量目标 9.2.1建筑工程 单位工程优良率100% 分项工程优良率>98% 钢筋焊接一检合格率≥98.5% 砼强度合格率100% 砼生产水平优良级 9.2.2安装工程 安装分项工程一次检查合格率100%,优良率100%; 焊接接头一次检查合格率≥98.5%; 9.3主要人员质量职责 9.3.1总指挥

工程质量管理制度流程

工程质量管理 工程生产质量管理总目标 工程合格率100%,一年内无严重质量缺陷,十年内无重大质量事故,售后质量 投诉率小于5%。 第一条材料、设备进场报验时必须附产品合格证、检验证明、产品使用说明书等质保资料; 第二条材料、设备必须符合施工合同中材料、设备清单的要求,装饰材料必须与设计提供的样板相符; 第三条主要结构材料、装饰材料、砼、砂浆必须实行见证取样、试验送检制度; 第四条第一批主要材料进场,地区工程设计中心参加验收; 第五条原材料未经检查验收或检验不合格者,不得在工程上使用,由项目工程(监理)部通知限期退出现场; 第六条砼、砂浆、钢筋焊接必须在施工现场制作试件,项目工程(监理)部管理人员必须旁站监督。 第七条所有分项工程、工序(包括主体结构、装饰、景观、市政管线等)全面施工前,施工单位必须做“施工样板”,经验收合格后,方可大面积施工; 第八条施工样板在施工过程中实行旁站监督,项目工程(监理)部管理人员必须严格按照《集团工艺标准》对施工工艺过程进行验收; 第九条施工样板未经验收或验收不合格,禁止大面积施工; 第十条室内装饰工程大面积施工前,施工单位应在楼层内不同户型做有厅、室、厨房、卫生间的单元施工样板间(交楼标准),通过

施工样板间确定土建与水、电的工艺流程和整体综合标准,认真解决墙面和管线的渗漏现象; 第十一条项目设计代表、项目装饰设计师必须参加施工样板间的验收; 第十二条项目工程(监理)部管理人员必须对施工现场进行巡视,每天不少于两次。发现质量问题必须及时下达《工程质量整改通知单》,要求施工单位限期整改; 第十三条项目工程(监理)部应按照建设部《房屋建筑工程施工旁站监理管理办法(试行)》对有关部位进行旁站监督; 第十四条隐蔽工程验收应在分项工程验收的基础上按有关规定做好现场签证,严禁事后补签。分项工程的工序如防水分项的找平层、防水层、隔离层、保护层等必须办理分层隐蔽验收; 第十五条重要的分项、分部工程验收,地区工程设计中心必须参加; 第十六条分项(部)工程未经验收或验收不合格,不允许进入下一道工序施工; 第十七条工程管理部门必须严格执行集团《建筑施工成品保护管理规定》,对违反管理规定的行为及时进行处罚; 第十八条集团工程管理中心对各项目的工程验收情况进行抽查,核定地区、项目工程管理人员的验收资格; 第十九条出现质量问题(事故),各级工程管理部门必须按规定程序上报,隐瞒不报的必须追究有关人员责任; 第二十条工程质量问题(事故)处理完成,必须经工程管理部门验收;

企业如何建立生产制造质量管理系统

企业如何建立生产制造质量管理系统 关键词:生产制造质量管理系统 导语:生产制造质量管理系统分为三大阶段,即新产品导入阶段、生产制造准备阶段、生产制造阶段。每个阶段又包含若干内容,企业建立生产制造质量管理系统要从每个阶段的具体内容逐一做起。   企业建立生产制造质量管理系统,为企业设计开发的产品提供生产质量的保证,确保生产质量充分满足设计开发意图,达成顾客满意要求。那么,企业如何建立生产制造质量管理系统呢? 企业如何建立生产制造质量管理系统 生产制造质量管理系统分为三大阶段,即新产品导入阶段、生产制造准备阶段、生产制造阶段。每个阶段又包含若干内容,企业建立生产制造质量管理系统要从每个阶段的具体内容逐一做起。 生产制造质量管理系统——新产品导入阶段 1、试产准入审核; 2、试产前会议; 3、试产标准明确、来料检验、制作工艺流程图、制作作业

指导书、制作测试指导书、工位排布、人员培训、设备调试、工装夹具准备; 4、试产首末件确认、测试、检验、零件验证; 5、试产后总结; 6、试产问题跟踪、分析、验证和关闭。 生产制造质量管理系统——生产制造准备阶段 1、设备、仪器、工装夹具、耗材、计量器具的确定和配备; 2、零件确认资料的准备; 3、生产制造相关文档的准备; 4、生产制造方法、测试方法的确定; 5、生产制造流程、工序步骤的确定; 6、产品测试标准、检验标准的确定; 7、人员配备和技能的教育培训。 生产制造质量管理系统——生产制造阶段 1、零件质量管理 来料检验; 零件存储和管理; 发料、收料和转料; 2、生产制造过程质量管理

5S活动; 领料、上料、换料和退料质量管理; SMT和检验、生产测试和检验、组装和检验、组装测试和检验、包装和检验各过程质量管理; 维修和检验、维修测试和检验过程质量管理; IPQP巡检、过程审核、工程表更管理、不合格品处理、工装夹具和耗材管理、设备和仪器计量与校准。 3、出货质量管理 终检FQC; 出货检验OQC; 顾客验货。  

工程质量管理制度汇编.doc

工程质量管理制度汇编1 工程质量管理制度汇编 工程质量管理责任制 第一条建立分部负责人责任制。分部经理对工程质量负总责。分部负责人必须具备相应业务素质和组织能力,具备项目管理工作实际经验。分部人员素质、内部机构,必须满足工程技术、安全质量管理上的要求; 第二条建立工程质量分级责任制。分部经理应对承建工程负主要领导责任。分部必须严格依据设计图纸、客运专线施工技术指南、客运专线暂行技术标准、施工规范和施工合同组织施工。对承担重点、难点工程的施工质量要实行逐级负责制,各级管理负责人和技术负责人对施工质量负相应的法律责任和技术责任。分部要把质量责任分解落实到各个岗位和员工,形成全员、全方位、全过程质量管理责任体系; 第三条建立工程质量终身负责制。分部各有关人员要按各自职责对承建工程质量负终身责任。各级管理负责人和技术负责人、质监(检)人员、计量测试人员对工程质量负相应管理、监督和技术责任。凡发生重大质量事故,不管责任人调到哪里工作,也不管担任什么职务,都要追究其相应责任。 质量职责 1分部经理质量职责 1)、分部经理在工程质量上分别对上级负责;对本项目质量

管理工作负管理和领导责任; 2)、认真贯彻执行国家和上级颁布的工程质量管理方针、政策、法令、各种制度,认真落实《质量手册》、《程序文件》、质量目标和管理计划。针对工程特点,组织编制本工程《工程项目质量、安全、环境综合管理计划》及施工组织设计,确定项目创优目标,组织制定创优规划、创优措施和质量保证措施; 3)、组织质量检查,开展创优活动,推行全面质量管理,督促指导开展QC小组活动,严格执行质量奖惩规定,对质量问题,组织分析原因和制订整改措施。对质量低劣工程责令返修或返工; 4)、随时掌握工程质量情况,严格按施工程序办事,做到文明施工,杜绝偷工减料和粗制滥造; 5)、依法分包工程,依法使用外部劳务,支持质量监管人员的工作,严格督促职能部门加强对工程质量监管力度; 6)、正确处理质量与工期关系,组织均衡生产,当工期与质量发生矛盾时,要优先保证工程质量; 7)、从资金上充分保障质量奖罚、QC小组活动等质量管理工作的经费投入; 8)、对工程质量事故和出现的不合格工程承担领导责任。 2 分部总工程师质量职责 1)、协助分部经理制定项目质量管理方针、目标,规划和组

生产过程的质量管理

生产过程的质量管理 一、质量管理 1、质量 2000版ISO9000标准中质量的定义是:一组固有特性满足要求的程度。各类有形产品具有各自的使用要求,也具有不同的质量特性,总体来说,应具六个方面,不同产品有不同的侧重,不可能六个方面并存。 A、性能:为满足使用目的的所规定的功能,性能可分为使用性能和外观性能。 B、寿命:指产品将能使用的期限。 C、可信性:可信性包括可用性、可靠性、维修性和保障性。 D、适应性:是指产品适应外界环境变化的能力。 E、安全性:产品在储存、流通和使用过程中不发生由于产品的质量问题而导致人身伤亡。财产损失和对环境造成污染 的特性。 F、经济性:指产品制造和使用成本。 2、质量管理: 质量管理是指在质量方面进行的指挥、控制、组织和协调的所有活动。也可做以下解释: A、质量管理是为保证和提高产品质量而对各种影响因素进行计划、组织、协调和控制等各项工作总称;首要任务是 制定质量方针、质量目标并使之贯彻执行。 B、质量管理工作是通过质量策划、质量控制、质量保证和质量改进等活动来进行。 C、为实施质量管理,需要建立质量体系。 D、质量管理必须由最高管理者领导,它的实施涉及到组织中的所有成员。 3、质量控制与质量改进 质量控制是质量管理的一部份,致力于满足质量要求。 质量改进是质量管理的一部份,致力于增强满足质量要求的能力。 二、压铸件的质量与检验方法 1、压铸件质量 压铸件包括外观质量、内在质量和使用质量。 外观质量是指铸件表面粗糙度、表面质量、尺寸公差、形位公差和质量偏差等。 内在质量是指铸件的化学成份、物理和力学性能、金相组织以及在铸件内部存在的孔洞、夹杂物和裂纹等。 使用质量是指铸件能满足各种使用要求和工作的性能,如耐磨性、耐腐蚀性、和切削性、焊接性等。 2、质量标准 质量标准有国家标准(GB)、国际标准或企业标准,我国是国际标准化组织(ISO)的主要成员之一,国际标准可以等效地视为国家标准。 铸件质量标准有精度标准、表面质量标准和功能质量标准。 3、铸件缺陷 铸件缺陷有广义与狭义之分。广义的铸件缺陷是指铸件质量特征没达到分等标准(合格品、一等品、优等品),铸件生产厂质量管理差,产品质量得不到保证。狭义的铸件缺陷是铸件中可检测出的包括在GB 5611-85铸造名词术语标准中的全部名目。 铸件经检验后可分为合格品、返修品、废品三类。 铸件废品率P是铸件废品总量(内、外废)占合格品量W及内废量W1和外废量W2之和的百分比。 铸件缺陷率是有缺陷铸件数量与生产总量之比的百分数。缺陷率通常大于废品率。铸件缺陷数用计件表示。 4、铸件缺陷的检查方法 铸件缺陷检查普遍采用的有以下一些方法: 外观检查; 化学分析检查; 力学性能检测; 低倍检验(宏观检验); 金相检查; 无损检查。

光伏电站工程安全质量管理办法

光伏电站工程安全质量管理办法 为了进一步加强和规范工程管理部门对工程的管理,确保施工安全,现根据“电力建设安全健康与环境管理工作规定”等相关文件的要求,结合光伏项目以电气施工为主的实际,特制定本规定。 第1条严格工程的施工范围和施工单位资质的要求1.严格控制工程的施工范围。变送电工程的主要设备安装、调试等项目,施工方必须具备“送变电工程专业承包企业三级及以上资质”和“建筑业劳务分包企业资质”等相应电压等级的施工资质。 2.变电工程的主控楼等建筑项目可进行分包,但分包方必须具备“房屋建筑工程施工总承包企业三级及以上资质”或具有相应电压等级的“送变电工程专业承包企业资质”。 3.送变电工程的基础和土建工程可进行分包。但分包方必须具备“地基与基础工程专业承包企业三级及以上资质”和“土石方工程专业承包企业三级及以上资质”或具有相应电压等级的“送变电工程专业承包企业资质”。 第2条严格对施工单位安全资质审查,资质审查的内容: 1.有关部门颁发的营业执照和施工资质证书原件。 2.法人代表授权委托书。 3.由当地政府主管部门颁发的“安全生产许可证”;施工简

历和近三年安全施工记录。

4.安全施工的技术素质(包括负责人、工程技术人员和工人)及特种作业人员取证情况。 5.安全施工管理机构及其人员配备(10人以上的施工单位必须配有专职安全员,设有二级机构的分包单位必须有专职的安全管理机构)。 6.保证安全施工的机械(含起重机械安全准用证)、工(器)具及安全防护设施、用具的配备。 7.安全文明施工管理制度。 第3条加强施工合同的管理 1、工程管理部门与施工应依法签订施工合同,合同中应明确三点: 第一必须明确各自的安全施工责任。凡由施工方责任造成的伤亡事故,应由施工方承担全部经济损失。发生事故后必须按“四不放过”的原则调查处理,并按规定统计上报。 第二严禁施工方承担的工程项目分包。 第三明确施工方的队伍和人员必须是施工方自己的队伍和人员。 2、施工合同除应符合国家有关法律、法规和国家电网公司有关规定外,还必须符合公司与业主签订的有关工程施工总承包合同的要求。

施工现场质量管理制度(正式)

编订:__________________ 单位:__________________ 时间:__________________ 施工现场质量管理制度 (正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8650-14 施工现场质量管理制度(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1、项目经理必须对施工员及施工班组进行每一道工序的技术质量交底。 2、施工员必须牢固掌握工程的工艺流程及施工技术质量要求。 3、对景观艺术要一丝不苟、精益求精,要尊重自然规律,贴近自然,达到逼真效果。 4、认真做好工程前期准备工作,编制切实可行的施工组织设计。针对不同工程特点,制定相应的施工方案,并组织进行技术革新,从而保证施工技术的可行性及先进性。 5、施工技术的准备 在熟悉施工图纸的基础上,对图纸中的问题进行汇总,结合本公司的施工特点,提出具体的修正方案,报甲方及设计单位共同探讨,以达成一致,使得问题

能够在进场施工前得到最大限度的解决。 6、对原材料进行严格的验收。不合格的原材料坚决不用。 7、保证技术工人的相对稳定。对技术特别过硬的技术工人实行奖励。同时淘汰技术不合格的民工。 8、施工工艺是决定工程质量好坏的关键,有好的工艺,能使操作人员在施工过程达到事半功倍的效果。为了保证工艺的先进性及合理性,公司对于不太成熟的工艺安排专人进行试验,将成熟的工艺编制成作业指导书,并下发各施工员,施工员在现场指导生产时则依此为依据对工人进行书面交底,并由班组长签字接收。工艺交底包括工具及材料准备、施工技术要点、质量要求及检查方法、常见问题及预防措施。在施工时先交底后施工,严格执行工艺要求。 9、加强专项检查、及时解决问题。 9.1开展自检、互检活动,培养操做人员的质量意识。各工序完成后由班组长组织本班组人员,对本工序进行自检、互检,自检依据及方法严格执行技术

质量管理系统解决方案

山里田米糠油 质量管理系统解决方案

二O 一二年十月 一,前言 为了提高和改进山里田米糠油的质量管理体系的有效运行以及持续、稳定地提供给客户满意的产品,特制订这份管理手册,且会不断修改,完善管理容。望各部门认真落实执行。 自发放之日起施行。 董事长批示; 厂长签字:

二,目录 1、前言 2、目录 3、任命文 4,员工行为准则 5、质量管理目标 6、厂长质管科管理职责 7、质量管理职责 8、生产技术科质量管理 9,综合办管理职责(企业管理小组) 10、生产车间管理职责 11、生产过程质量管理及考核办法 12,生产技术流程 13、产品检验制度 14、带※号项目检验计划 15、生产设备管理制度 16、生产卫生管理制度 17、安全生产管理制度

18、计量器具及检测仪器周期检定管理制度 19、仓库管理制度 20、教育培训制度 21、技术文件管理制度 22、中断生产时车间管理制度 23、原辅材料采购及验收管理制度 24,生产车间中断生产时的产品质量管理制度 25、不合格产品管理制度 26、大米生产关键工序作业指导书 27、产品召回管理制度 28、服务全过程质量管理制度 29, 原粮管理职责 30, 原粮收购工作实施方案 31,原粮管理部安全保卫责任制度 32, 安全管理制度 33, 公司安全员制度 34,主管生产副厂长安全生产责任制 35, 主管原粮仓储副厂长安全生产责任制 36,各部门主管安全生产责任制 37,班(组)长安全生产责任制 38,员工安全生产责任制 39,特殊工种安全生产责任制度 40,中层主管任职安全责任制 41.安全防火制度

光伏工程质量通病监理细则

北控中信蔚县200兆瓦光伏发电项目 (一期50兆瓦) 质量通病防治控制细则 编制: 审核:

目录 一、工程项目概况 二、监理工作依据 三、阶段性建筑工程质量通病防治监理措施 四、施工过程中具体质量通病防治监理细则如下:(一)、混凝土结构质量通病预防措施 (二)、墙体抹灰质量通病预防措施 (三)、砌体质量通病预防措施 (四)、屋面防水预防措施 (五)、回填土质量通病与预防措施 (六)、门窗工程施工质量保证措施 (七)、涂料工程质量通病预防措施 (八)、给排水工程质量通病预防措施 (九)、光伏阵列安装质量通病及防止措施(十)、电气质量通病及防治措施

一、工程项目概况 二、监理工作依据 1、根据国家和省、市有关法律、法规和规范性文件,开展建筑工程质量通病防治监理工作。 2、国家施工质量验收规范、规程、施工技术标准、设计图及设计文件。 3、本工程地质勘察资料。 4、本工程设计图纸、设计变更洽商以及有关的设计文件。 5、相关部门批准的项目批文、规划红线、规划许可证、施工许可证等。 6、本工程建设监理合同和施工合同。 7、《建设工程强制性标准》(建筑、光伏发电部分)。 三、阶段性质量通病防治监理措施 (一)、开工准备阶段 1、根据“019号”文件精神,协助建设单位向施工单位下达《建筑工程质量通病防治任务书》。 2、审查施工单位提交的《建筑工程质量通病防治方案和施工措施》。 3、向建设单位提交《建筑工程质量通病防治监理细则》。(二)、工程实施阶段 1、定期召开工程例会,协调和解决施工过程中出现的问题。 2、严格工序交接验收,认真填写质量通病检查验收记录。 3、严格执行监理旁站制度,加强平行检验,发现问题及时处理。 4、做好质量通病防治专题记录,收集整理相关资料。

建设工程质量管理制度

建设工程质量管理制度 第一章总则 第一条 为了加强公司建设工程质量管理,切实落实“以质量求效益,以品牌求发展”的管理工作方针,建立质量管理网络,明确职责,使公司建设工程质量管理活动做到标准化、规范化、科学化,确保公司建设工程质量特制定管理制度。 第二条 本制度适用于公司投资开发修建的土木工程、建筑工程、园林工程、市政工程、线路管道、设备安装和装修工程等的质量管理工作。 第二章 质量管理组织体系 第三条 公司实行工程项目总经理领导下的总工程师、工程技术部的三级质量管理组织体系,以保证质量管理工作协调有效地进行。 第四条 公司工程项目总经理负责,对公司的工程质量、技术负责直接的主管领导责任。 第五条 总工程师协助工程项目总经理工程质量、技术,协调工程各专业之间技术矛盾,处理和解决重大技术问题和关键问题。 第六条 工程技术部在工程项目总经理领导下开展工程质量管理工作,向工地派出甲方现场代表和各专业技术工程师在现场管理工作,向工地派出甲方现场代表和各专业技术工程师在现场对质量进行控制,组织质量评价,研究和推广先进的质量管理控制方法,对工程质量负监督管理责任。

第七条甲方现场代表是工程质量管理的现场责任人,由土建结构工程师担任,在工程技术部领导下负责协调现场各专业技术工程师,监督参建单位包括勘察、设计、监理、施工和材料供应商的质量责任行为是否符合合同和规范要求,检查设计图纸质量、材料设备质量、隐蔽工程质量、工艺工序质量,输现场设计、技术变更和工程量收方事项。建立分部分项工程质量检查验收记录台帐,对工程质量负直接责任。第三章 第八条工程质量管理实行“质量第一,预防为主”的方针。第九条工程质量管理实行“计划、执行、检查、处理”( )循环工作方法,不断改进过程控制。 第十条工程质量管理标准 、符合公司制定的工程项目质量目标和《工程质量管理计划书》的要求。 、符合与勘察、设计、施工、监理、材料设备供应商签定的合同及补充协议的约定俗成和要求。 、符合经批准的设计施工图和技术文件的要求。 、符合工程建设各项规范和技术标准及政府部门有关质量管理的规章制度。 、保证按项目任务书、设计图、合同规定的数量、质量完成工程,顺利通过验收,交付使用,实现使用功能 第十一条工程质量管理按下列工作流程实施: 一、确定工程项目质量目标。

光伏发电项目管理制度汇编

嘉峪关西戈壁50兆瓦并网光伏发电项目施工管理制度汇编

编制人: 审核人: 批准人: 编制单位:中国能源建设集团东北电力第一工程公司

目录 第一章施工质量目标及保证措施 (2) 第二章文明施工及环境保护措施 (16) 第三章安全生产措施 (25)

第一章施工质量目标及保证措施 第一节施工质量目标 我公司积极响应国家建设部和省市政府关于进一步强化工程质量管理, 提高建筑工程质量水平的号召, 订出高标准、高要求的施工质量目标, 确保本工程质量达标。 第二节质量目标管理措施 为实现样板工程的目标, 我公司将在本工程项目执行ISO9001标准质量保证体系, 制定《施工组织设计和项目质量保证计划》、《质量记录》等质量体系文件, 在质量目标、基本的质量职责、合同评审、文件控制、物资采购的管理、施工过程的控制、检验和试验、标识的可追溯性、工程成品保护、质量审核、质量记录、统计技术与选定等与质量有关的各个方面, 规范与工程质量有关工作的具体做法。同时, 在项目部建立一个由项目经理领导的质量保证机构, 形成一个横到边、纵到底的项目质量控制网络, 使工程质量处于有效的监督控制状态。 一、树立质量第一的观点 质量决定企业的生命, 施工全过程必须树立“质量第一”的观点。 二、树立一切为用户的观点 为用户、业主服务要体现在产品质量上的高标准, 工作质量上的严要求,工程质量达到规定的质量标准。 三、树立预防为主的观点 提倡严格把关与事前控制相结合, 并以事前控制为主的方针,使工程质量在施工的全过程处于控制之中。 四、树立全面管理的观点 1、全过程的质量管理 为确保工程质量, 质量管理必须把所有影响工程质量的环节和因素进行严格控制, 形成一个综合性的质量保证体系。 2、全员的质量管理 明确项目各类人员的质量职责, 把所有人员的积极性和创造性充分调动起来, 关心工程

相关主题
文本预览
相关文档 最新文档