当前位置:文档之家› 电力电子与电机拖动实验设备采购数量及技术要求

电力电子与电机拖动实验设备采购数量及技术要求

电力电子与电机拖动实验设备采购数量及技术要求
电力电子与电机拖动实验设备采购数量及技术要求

附件:电力电子与电机拖动实验设备采购数量及技术要求

二、电力电子、电机拖动实验台技术要求

(一)总体要求

(1) 实验台采用实验平台+模块化设计,积木组合式结构。

(2) 定时报警记录仪具有设定实验时间、定时报警、切断电源、过压和过流保护等功能,为学生实验操作提供安全保护,为教师管理设备提供帮助。

(3) 实验台提供的实验内容全面,既有经典的晶闸管调速实验项目,也有现在常用的PWM方式交直流调速实验。

(4) ★实验设备所能开设的实验内容要求能涵盖《电机学》、《电机拖动》、《电机控制》、《继电接触控制》、《工厂电气控制》、《半导体变流技术》、《电力电子技术》、《电力拖动自动控制系统》、《交直流调速》等课程实验大纲。

(5) ★实验台可扩展PLC、伺服、驱动等自动控制方面的实验内容。

(二)性能参数

(1) 输入电源:三相四线(或三相五线)380V/50Hz。

(2) 交流电源输出:三相交流,相电压0~250V/3A连续可调,线电压0~430V连续可调,带交流电压表监控电压输出。

(3) 直流电源输出:提供一路220V/0.5A直流励磁电源,提供一路40~240V/2.5A直流电枢电源。

(4) 整机容量:<1.5KV A。

(5) 工作条件:

温度:-10℃~+40℃

相对湿度:≤85%(25℃)

(三)每套实验台组成与技术要求

(四)开设实验内容

本次采购设备包括《电力电子技术》、《电机拖动》和《交直流调速》三大部分的实验内容,实验指导书按三部分做成分册:

★电力电子实验内容:

1. 正弦波同步移相触发电路实验;

2. 锯齿波同步移相触发电路实验;

3. 单相半波整流电路实验;

4. 单相桥式半控整流电路实验;

5. 三相半波可控整流电路实验;

6. 三相桥式半控整流电路实验;

7. 单相交流调压电路的性能研究;

8. 三相交流调压电路实验;

9. 直流斩波电路的性能研究。

★电机拖动实验内容:

1.认识实验;

2.直流发电机;

3.直流电动机实验;

4.直流他励电动机机械特性;

5.单相变压器的并联运行;

6.三相变压器的并联运行;

7.三相异步电动机的起动与调速;

8.异步电机的M-S曲线测绘;

9.三相异步电机点动和自锁控制线路;

10.三相异步电机的正反转控制线路;

11.三相异步电机的Y-△降压起动控制线路;

12.三相异步电机的顺序控制线路;

13.三相异步电机的能耗制动;

14.工作台自动往返循环控制线路;

15.两地控制线路;

16.车床电气控制线路;

17.电动葫芦电气控制线路。

★交直流调速实验内容:

1. 晶闸管直流调速系统主要单元的调试;

2. 单闭环不可逆直流调速系统实验;

3. 逻辑无环流可逆直流调速系统实验。

三、数字示波器技术参数

1、双通道+外触发,带宽100MHz;

2、单通道实时采样率1GSa/s,等效采样率25GSa/s;

3、单通道存储深度1M;

4、TFT彩色液晶屏,配备按键背光功能;

5、标配接口:USB Device 接口支持与电脑直接通讯;USB Host支持USB存储驱动器、系统直接升级和PictBridge打印机;;RS-232, P/F Out;

6、触发功能:边沿、视频、脉宽、斜率、交替;

7、可调节波形显示亮度,可调节触发灵敏度;

8、交替触发功能:可对两路不同信号分别设置触发;

9、内置硬件频率计(6位);

10、嵌入式按键帮助功能;

11、提供正版电路仿真软件NI Multisim学生版和虚拟仪器开发软件NI LabVIEW学生版。

四、数字万用表技术参数

1、4位半高精度数字万用表带自恢复功能

2、技术指标

直流电压DCV:

量程:200mV,2V/20V/200V,1000V;

分辨力:0.01mV,0.1mV/1mV/10mV,100mV;

准确度:±(0.05%+3),±(0.1%+3),±(0.15%+5)。

交流电压ACV:

量程:2V,20V/200V,750V;

分辨力:0.1mV,1mV/10mV,100mV;

准确度:±(0.5%+10),±(0.6%+10),±(0.8%+15)。

投标现场提供产品实验指导书(带★必须满足)。

电力电子技术实验指导书

实验一单结晶体管触发电路及示波器使用 班级学号姓名 同组人员 实验任务 一.实验目的 1.熟悉单结晶体管触发电路的工作原理及各元件的作用。 2.掌握单结晶体管触发电路的调试步骤和方法。 3.详细学习万用表及示波器的使用方法。 二.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMCL—05E组件 4.MEL—03A组件 5.双踪示波器(自备) 6.万用表(自备) 7. 电脑、投影仪 三.实验线路及原理 将NMCL—05E面板左上角的同步电压输入接SMCL-02的U、V输出端,触发电路选择单结晶体管触发电路,如图1所示。 图1单结晶体管触发电路图 四.注意事项 双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外

壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。 五.实验内容 1.实验预习 (1)画出晶闸管的电气符号图并标明各个端子的名称。 (2)简述晶闸管导通的条件。 (3)示波器在使用两个探针进行测量时需要注意的问题。 2. 晶闸管特性测试 请用万用表测试晶闸管各管脚之间的阻值,填写至下表。 + A K G - A K G 3.单结晶体管触发电路调试及各点波形的观察 按照实验接线图正确接线,但由单结晶体管触发电路连至晶闸管VT1的脉冲U GK不接(将NMCL—05E面板中G、K接线端悬空),而将触发电路“2”端与脉冲输出“K”端相连,以便观察脉冲的移相范围。 合上主电源,即按下主控制屏绿色“闭合”开关按钮。这时候NMCL—05E内部的同步变压器原边接有220V,副边输出分别为60V(单结晶触发电路)、30V(正弦波触发电路)、7V(锯齿波触发电路),通过直键开关选择。 合上NMCL—05E面板的右下角船形开关,用示波器观察触发电路单相半波整流输出(“1”),梯形电压(“3”),梯形电压(“4”),电容充放电电压(“5”)及单结晶体管输出电压(“6”)和脉冲输出(“G”、“K”)等波形,并绘制在下图相应位置。

电力电子技术实验四

实验四三相桥式全控整流电路实验 一、实验目的 (1)熟悉三相桥式全控整流电路的工作原理。 (2)熟悉三相桥式全控整流电路的组成及其工作特点。 二、实验所需仪器 三、实验线路及原理 1、实验线路及原理 如图4-1所示,三相时RL1分RL2合RL3分。三相可控整流电路任意时刻必须有两只晶闸管同时导通,才能形成负载电流,其中一只在共阳极组,另一只在共阴极组,晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT2、VT4、VT6。编号如图示,晶闸管的导通顺序为VT1-VT6-VT3-VT2-VT5-VT4。 图4-1 三相桥式全控整流电路 2、电路仿真模型

uCA v +-uC uBC v + -uB uAB v + - uA powergui Continuous Voltage Measurement v + - Universal Bridge g A B C + -Synchronized 6-Pulse Generator alpha _deg AB BC CA Block pulses Series RLC Branch Scope Current Measurement i + -Constant 1 30 Constant 0id ud 图4-2 三相桥式全控整流电路仿真模型 四、实验内容及方法 1、三相桥式全控整流电路的仿真 (1)建立图4-2所示电路仿真模型,输入电源电压幅值为310V ,频率为50Hz ,注意电源为三相对称电源,u A 为参考相量,即其初相角为0°,负载为电阻性负载,其电阻值为300Ω。试给出控制角分别为60°和90°时输出电压的仿真波形。 (2)建立图4-2所示电路仿真模型,输入电源电压幅值为310V ,频率为50Hz ,注意电源为三相对称电源,u A 为参考相量,即其初相角为0°,负载为电阻电感负载,其电阻值为300Ω,电感L=1.0H 。试给出控制角分别为60°和90°时输出电压的仿真波形。 (3)若是负载为反电动势负载,电路仿真模型如何建立?对于三相桥式半控整流电路的仿真模型又是如何建立? *上述三个仿真实验步骤在实验课前完成,实验时,由老师抽查的学生演示并运行做好的电路仿真。在演示时回答老师的提问或完成老师所指定的操作。 2、三相桥式全控整流电路实验 (4)合上电源开关S1、S2。 (5)点击显示屏,点击相控整流实验,点击三相桥式全控整流实验,点击电路原理图,了解三相桥式全控整流电路工作原理。 (6)点击返回,点击开环实验,点击相控触发角,改变触发角的大小。 (7)观测触发角为0时Q1管(测试点TPG1-TPK2)的触发脉冲波形,并记录之。 (8)观测触发角为10%时输出电压波形,从图上观测控制角为多少,并记录此时输出电压波形和用万用表观测的输出电压大小。 (9)观测触发角为30%时输出电压波形,从图上观测控制角为多少,并记录此时输出电压波形和用万用表观测的输出电压大小。 **做实验时应将观测的实验波形用U 盘保存并COPY 给老师,所以每一组实验时至少要带一个U 盘。 五、思考题 (1) 三相桥式全控整流电路对触发脉冲有什么要求?其移相范围是多少?

电力电子技术A实验讲义

实验四三相半波可控整流电路的研究一.实验目的 了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作情况。 二.实验线路与原理 三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。 实验线路见图4-1。 1) 电源控制屏位于MEL-002T; 2) L平波电抗器位于NMCL-331挂件; 3) 可调电阻R位于NMEL-03/4挂件 4) G给定(Ug)位于NMCL-31调速系统控制单元中; 5) Uct位于NMCL-33F挂件; 6) 晶闸管位于NMCL-33F挂件。 图4-1 三.实验内容

1.研究三相半波可控整流电路供电给电阻性负载时的工作情况。 2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作情况。 四.实验设备与仪表 1.教学实验台主控制屏 2.触发电路与晶闸主回路组件 3.电阻负载组件 4.示波器 五.注意事项 整流电路与三相电源连接时,一定要注意相序。 六.实验方法 1. 三相半波可控整流电路带电阻性负载。 合上主电源,接上电阻性负载R。 ⑴改变给定电压U g,观察在不同触发移相角α(30°、60°)时,可控整流电路的输出电压U d的波形,并记录相应的U d、I d 值。 ⑵改变给定电压U g,当α=30°时,记录晶闸管A、K间端电压U VT=f(t)的波形。 2. 三相半波可控整流电路带电阻—电感性负载。 接入的电抗器L=700mH。 ⑴改变给定电压U g,观察在不同触发移相角α(30°、60°)时,可控整流电路的输出电压U d的波形,并记录相应的U d、I d 值。 ⑵改变给定电压U g,当α=30°时,记录晶闸管的端电压U VT=f(t)(电阻性负载、电阻—电感性负载)、I d=f(t)(电阻—电感性负载)的波形。 实验方法的具体内容,可参照表4进行。 七. 实验报告

电力电子技术实验

《电力电子技术》实验指导书 指导教师:王跃鹏李向丽 燕山大学电气工程学院 应用电子实验室 二零零四年七月

实验一 锯齿波同步移相触发电路实验 一、实验目的 1、加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 2、掌握锯齿波同步触发电路的调试方法。 二、实验内容 1、锯齿波同步触发电路的调试。 2、锯齿波同步触发电路各点波形观察、分析。 三、实验线路及原理 锯齿波同步移相触发电路主要由脉冲形成和放大、锯齿波形成、同步移相等环节组成。 四、实验设备及仪器 1、MCL-Ⅲ型交流调速系统实验台 2、MCL-32组件 3、MCL-31组件 4、MCL-05组件 5、双踪示波器 五、实验方法 1、将MCL-05面板上左上角的同步电压接入MCL-32的U 、V 端,并将MCL-31的“g U ”和“地”端分别接入MCL-05的“ct U ”和“7”端,“触发电路选择”拨向“锯齿波”。 2、合上主电路电源开关,并打开MCL-05面板右下角的电源开关,用示波器观察各观测孔的电压波形,示波器的地线接于“7”端。 同时观测“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。 观察“3”~“5”孔波形,调节RP1,使3”的锯齿波刚出现平顶,记下各波形的幅值与宽度。 六、实验报告 整理,描绘实验中记录的各点波形。

实验二 单相桥式全控整流电路实验 一、实验目的 1、了解单相桥式全控整流电路的工作原理。 2、研究单相桥式全控整流电路在电阻负载、阻感负载时的工作特点。 二、实验内容 1、单相桥式全控整流电路供给电阻负载。 2、单相桥式全控整流电路供给阻感负载。 三、实验线路及原理 单相桥式全控整流电路的实验线路如图2-1所示,其工作原理可参见“《电力电子技术》(第四版,王兆安、黄俊编)”教材。 四、实验设备及仪器 1、MCL-Ⅲ型交流调速系统实验台 2、MCL-32组件 3、MCL-31组件 4、MCL-05组件 5、双踪示波器 五、实验方法 1、单相桥式全控整流电路供给电阻负载。 按照图2-1接线,接上电阻负载(采用MEL-03上的两只900Ω的电阻并联),并将负载电阻调至最大,短接平波电抗器。合上主电路电源,调节给定电压g u 的大小,观察不同α角时的整流电路的输出电压波形)(t f u d =,以及晶闸管的端电压波形)(t f u T =。 2、单相桥式全控整流电路供给阻感负载。 按照图2-1接线,接上阻感负载(电感选择700mH ,电阻采用MEL-03上的两只900Ω的电阻并联),并将负载电阻调至最大。合上主电路电源,调节给定电压g u 的大小,观察不同α角时的整流电路的输出电压波形)(t f u d =,以及晶闸管的端电压波形 )(t f u T =。 六、实验报告

电力电子技术实验指导书最新版

电力电子技术实验指导书 第一章概述 一、电力电子技术实验内容与基本实验方法 电力电子技术是20世纪后半叶诞生和发展的一门新技术,广泛应用于工业领域、交通运输、电力系统、通讯系统、计算机系统、能源系统及家电、科研领域。 电力电子技术课程既是一门技术基础课程,也是一门实用性很强的应用型课程,因此实验在教学中占有十分重要的位置。 电力电子技术实验课的主要内容为:电力电子器件的特性研究,重点是开关特性的研究;电力电子变换电路的研究,包括:三相桥式全控整流电路(AC/DC 变换)、SPWM逆变电路(DC/AC变换)、直流斩波电路(DC/DC变换)、单相交流调压电路(AC/AC变换)四大类基本变流电路。 电力电子技术实验借助于现代化的测试仪器与仪表,使学生在实验的同时熟悉各种仪器的使用,以进一步提高实验技能。 波形测试方法是电力电子技术实验中基本的、常用的实验方法,电力电子器件的开关特性依据波形测试而确定器件的工作状态及相应的参数;电力电子变换电路依据波形测试来分析电路中各种物理量的关系,确定电路的工作状态,判断各个器件的正常与否。因此,掌握不同器件、不同电路的波形测试方法,可以使学生进一步掌握电力电子电路的工作原理以及工程实践的方法。

本讲义参考理论课的内容顺序编排而成,按照学生掌握知识的规律循序渐进,旨在加强学生实验基本技能的训练、实现方法的掌握;培养和提高学生的工程设计与应用能力。 由于编者水平有限,难免有疏漏之处,恳请各位读者提出批评与改进意见。 二、实验挂箱介绍与使用方法 (一)MCL—07挂箱电力电子器件的特性及驱动电路 MCL—07挂箱由GTR驱动电路、MOSFET驱动电路、IGBT驱动电路、PWM 发生器、主电路等部分组成。 1、GTR驱动电路:内含光电耦合器、比较器、贝克箝位电路、GTR功率器件、串并联缓冲电路、保护电路等。可对光耦特性(延迟时间、上升时间、下降时间),贝克电路对GTR导通关断特性的影响,不同的串、并联电路对GTR开关特性的影响以及保护电路的工作原理进行分析和研究。 2、MOSFET驱动电路:内含高速光耦、比较器、推挽电路、MOSFET功率器件等。可以对高速光耦、推挽驱动电路、MOSFET的开启电压、导通电阻R ON、跨导g m、反相输出特性、转移特性、开关特性进行研究。 3、IGBT电路驱动:采用富士IGBT专用驱动芯片EXB841,线路典型,外扩保护电路。可对EXB841的驱动电路各点波形以及IGBT的开关特性进行研究。 本挂箱的特点: (1)线路典型,有助于对基本概念的理解,力求通过实验,使学生对自关断器件的特性有比较深刻的理解。

电力电子技术实验-打印的

电力电子技术实验-打印的-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

实验一单结晶体管触发电路实验 一、实验目的 (1) 熟悉单结晶体管触发电路的工作原理及各元件的作用。 (2) 掌握单结晶体管触发电路的调试步骤和方法。 序号型号备注 1 DJK01 电源控制屏该控制屏包含“三相电源输出” 等几个模块。 2 DJK0 3 晶闸管触发电路该挂件包含“单结晶体管触发电 路”等模块。 3 双踪示波器自备 图1-8 单结晶体管触发电路原理图 由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再经稳压管V1、V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压Up时,单结晶体管V6导通,电容通过脉冲变压器原边放电,脉冲变压器副边输出脉冲。同时由于放电时间常数很小,C1两端的电压很快下降到单节晶体管的谷点电压Uv使V6关断,C1再次充电,周而复始,在电容c1两端呈现锯齿波形,在脉冲变压器副边输出尖脉冲。在一个梯形波周期内,V6可能导通、关断多次,但对晶闸管的触发只有第一个输出脉冲起作用。电容C1的充电时间常数由等效电阻等决定,调节RP1改变C1的充电时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。单结晶体管触发电路的个点波形略。 四、实验内容 (1) 单结晶体管触发电路的调试。

(2) 单结晶体管触发电路各点电压波形的观察。 五、思考题 (1) 单结晶体管触发电路的振荡频率与电路中 C1 的数值有什么关系 答:在一个梯形波周期内,V6可能导通、关断多次,但对晶闸管的触发只有 第一个输出脉冲起作用。电容C1的充电时间常数由等效电阻等决定,调节RP1 改变C1的充电时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。(2) 单结晶体管触发电路的移相范围能否达到180° 答:能 六、实验方法 (1) 单结晶体管触发电路的观测 将 DJK01 电源控制屏的电源选择开关打到“直流调速”侧 , 使输出线 电压为 200V (不能打到“交流调速”侧工作,因为 DJK03 的正常工作电源电压为220V ± 10% ,而“交流调速”侧输出的线电压为 240V 。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“ DZSZ-1 型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到 220V 左右,然后才能将电源接入挂件),用两根导线将 200V 交流电压接到 DJK03 的“外接220V ”端,按下“启动”按钮,打开 DJK03 电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察单结晶体管触发电路,经半波整流后“ 1 ”点的波形,经稳压管削波得到“ 2 ”点的波形,调节移相电位器 RP1 ,观察“ 4 ”点锯齿波的周期变化及“ 5 ”点的触发脉冲波形;最后观测输出的“ G 、K ”触发电压波形,其能否在30° ~ 170° 范围内移相 (2) 单结晶体管触发电路各点波形的记录

电力电子技术仿真实验指导书

《电力电子技术实验》指导书 合肥师范学院电子信息工程学院

实验一电力电子器件 仿真过程: 进入MATLAB环境,点击工具栏中的Simulink选项。进入所需的仿真环境,如图所示。点击File/New/Model新建一个仿真平台。点击左边的器件分类,找到Simulink和SimPowerSystems,分别在他们的下拉选项中找到所需的器件,用鼠标左键点击所需的元件不放,然后直接拉到Model平台中。 图 实验一的具体过程: 第一步:打开仿真环境新建一个仿真平台,根据表中的路径找到我们所需的器件跟连接器。

提取出来的器件模型如图所示: 图 第二步,元件的复制跟粘贴。有时候相同的模块在仿真中需要多次用到,这时按照常规的方法可以进行复制跟粘贴,可以用一个虚线框复制整个仿真模型。还有一个常用方便的方法是在选中模块的同时按下Ctrl键拖拉鼠标,选中的模块上会出现一个小“+”好,继续按住鼠标和Ctrl键不动,移动鼠标就可以将模块拖拉到模型的其他地方复制出一个相同的模块,同时该模块名后会自动加“1”,因为在同一仿真模型中,不允许出现两个名字相同的模块。 第三步,把元件的位置调整好,准备进行连接线,具体做法是移动鼠标到一个器件的连接点上,会出现一个“十字”形的光标,按住鼠标左键不放,一直到你所要连接另一个器件的连接点上,放开左键,这样线就连好了,如果想要连接分支线,可以要在需要分支的地方按住Ctrl键,然后按住鼠标左键就可以拉出一根分支线了。 在连接示波器时会发现示波器只有一个接线端子,这时可以参照下面示波器的参数调整的方法进行增加端子。在调整元件位置的时候,有时你会遇到有些元件需要改变方向才更方便于连接线,这时可以选中要改变方向的模块,使用Format菜单下的Flip block 和Rotate

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

电力电子技术实验(课程教案)

课程教案 课程名称:电力电子技术实验 任课教师:张振飞 所属院部:电气与信息工程学院 教学班级:电气1501-1504班、自动化1501-1504自动化卓越1501 教学时间:2017-2018学年第一学期 湖南工学院

课程基本信息

1 P 实验一、SCR、GTO、MOSFET、GTR、IGBT特性实验 一、本次课主要内容 1、晶闸管(SCR)特性实验。 2、可关断晶闸管(GTO)特性实验(选做)。 3、功率场效应管(MOSFET)特性实验。 4、大功率晶体管(GTR)特性实验(选做)。 5、绝缘双极性晶体管(IGBT)特性实验。 二、教学目的与要求 1、掌握各种电力电子器件的工作特性测试方法。 2、掌握各器件对触发信号的要求。 三、教学重点难点 1、重点是掌握各种电力电子器件的工作特性测试方法。 2、难点是各器件对触发信号的要求。 四、教学方法和手段 课堂讲授、提问、讨论、演示、实际操作等。 五、作业与习题布置 撰写实验报告

2 P 一、实验目的 1、掌握各种电力电子器件的工作特性。 2、掌握各器件对触发信号的要求。 二、实验所需挂件及附件 三、实验线路及原理 将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载 电阻R串联后接至直流电源的两端,由DJK06上的给定为新器件提供触 发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得 在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负 载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电 压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07 挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后 调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压 器调节的直流电压源。 实验线路的具体接线如下图所示:

电力电子技术实验报告

实验一 DC-DC 变换电路的性能研究 一、实验目的 熟悉Matlab 的仿真实验环境,熟悉Buck 电路、Boost 电路、Cuk 电路及单端反激变换(Flyback )电路的工作原理,掌握这几种种基本DC-DC 变换电路的工作状态及波形情况,初步了解闭环控制技术在电力电子变换电路中的应用。 二、实验内容 1.Buck 变换电路的建模,波形观察及相关电压测试 2.Boost 变换电路的建模,波形观察及相关电压测试; 3.Cuk 电路的建模,波形观察及电压测试; 4.单端反激变换(Flyback )电路的建模,波形观察及电压测试,简单闭环控制原理研究。 (一)Buck 变换电路实验 (1)电感电容的计算过程: V V 500=,电流连续时,D=0.4; 临界负载电流为I= 20 50 =2.5A ; 保证电感电流连续:)1(20D I f V L s -?= =5 .210002024.0-150????) (=0.375mH 纹波电压 0.2%= s s f LCf D V ?8-10) (,在由电感值0.375mH ,算出C=31.25uF 。 (2)仿真模型如下: 在20KHz 工作频率下的波形如下:

示波器显示的六个波形依次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形。 在50KHz工作频率下的波形如下: 示波器显示的六个波形一次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形; 建立仿真模型如下:

(3)输出电压的平均值显示在仿真图上,分别为49.85,49.33; (4)提高开关频率,临界负载电流变小,电感电流更容易连续,输出电压的脉动减小,使得输出波形应更稳定。 (二)Boost 变换电路实验 (1)电感电容的计算过程: 升压比M= S V V 0=D -11,0V =15V,S V =6V,解得D=60%; 纹波电压0.2%=s c f f D ? ,c f RC 1=,s f =40KHz,求得L=12uH,C=750uf 。 建立仿真模型如下:

浙大电力电子技术实验在线课后复习

您的本次作业分数为:98分单选题 1.【全部章节】三相桥式全控整流电路电感性负载实验中,关于整流电压ud描述正确的是? ? A 一个周期内,整流电压ud由6个波头组成 ? B 触发角为30°时,整流电压ud会出现瞬时值为零的点 ? C 移相范围是60° ? D 触发角为60°时,整流电压ud平均值为零 ? 单选题 2.【全部章节】自关断器件及其驱动与保护电路实验中,PWM信号占空比与直流电动机电枢电压及转速关系是? ? A 占空比越大,电枢电压越大,转速越小 ? B 占空比越大,电枢电压越小,转速越大 ? C 占空比越大,电枢电压越大,转速越大

? D 占空比越小,电枢电压越大,转速越大 ? 单选题 3.【全部章节】单相桥式半控整流电路实验中,能够用双踪示波器同时观察触发电路与整流电路波形?为什么? ? A 能 ? B 不能,因为示波器两个探头地线必须接在等电位的位置上 ? C 不能,因为示波器量程不足以观察整流电路波形 ? D 不能,因为示波器无法同时观察低压与高压信号 ? 单选题 4.【全部章节】关于锯齿波同步移相触发器描述错误的是

? A 多个触发器联合使用可以提供间隔60°的双窄脉冲? B 可以提供强触发脉冲 ? C 有同步检测环节,用于保证触发电路与主电路的同步? D 移相范围为30°到150° ? 单选题 5.【全部章节】关于“单管整流”现象的描述,错误的是? A 输出电流为单向脉冲波,含有很大的直流分量 ? B “单管整流”会危害电机、大电感性质的负载 ? C 此时电路中只有一个晶闸管导通 ? D 只在负载功率因数角小于触发角时出现 ?

电力电子技术实验指导书

景德镇陶瓷学院 机械电子工程学院 电子电子技术 实验指导书 专业:自动化 实验室:A1栋408 二零一五年六月制 实验一单结晶体管触发电路及单相半波可控整流电 路实验 一.实验目的 1.熟悉单结晶体管触发电路的工作原理及各元件的作用。 2.掌握单结晶体管触发电路的调试步骤和方法。 3.对单相半波可控整流电路在电阻负载及电阻电感负载时工作情况作全面分析。 4.了解续流二极管的作用。

二.实验内容 1.单结晶体管触发电路的调试。 2.单结晶体管触发电路各点波形的观察。 3.单相半波整流电路带电阻性负载时特性的测定。 4.单相半波整流电路带电阻—电感性负载时,续流二极管作用的观察。 三.实验线路及原理 将单结晶体管触发电路的输出端“G”“K”端接至晶闸管VT1的门阴极,即可构成如图4-1所示的实验线路。 四.实验设备及仪器 1.MCL系列教学实验台主控制屏 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ) 3.MCL—33(A)组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)4.MCL—05组件或MCL—05A组件 5.MEL—03三相可调电阻器或自配滑线变阻器 6.二踪示波器 7.万用表 五.注意事项 1.双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。 2.为保护整流元件不受损坏,需注意实验步骤:

#电力电子技术实验一、二、三

实验一锯齿波同步触发电路实验 一、实验目的 1、加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 2、掌握锯齿波同步移相触发电路的调试方法。 二、实验主要仪器与设备: 三、实验原理 锯齿波同步移相触发电路的原理图如图1-1所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见电力电子技术教材中的相关内容。 图1-1 锯齿波同步移相触发电路原理图 图1-1中,由V3、VD1、VD2、C1等元件组成同步检测环节,其作用是利用同步电压U T来控制锯齿波产生的时刻及锯齿波的宽度。由V1、V2等元件组成的恒流源电路,当V3截止时,恒流源对C2充电形成锯齿波;当V3导通时,电容C2通过R4、V3放电。调节电位器RP1可以调节恒流源的电流大小,从而改变了锯齿波的斜率。控制电压U ct、偏移电压U b 和锯齿波电压在V5基极综合叠加,从而构成移相控制环节,RP2、RP3分别调节控制电压U ct和偏移电压U b的大小。V6、V7构成脉冲形成放大环节,C5为强触发电容改善脉冲的前

沿,由脉冲变压器输出触发脉冲,电路的各点电压波形如图1-2所示。 本装置有两路锯齿波同步移相触发电路,I和II,在电路上完全一样,只是锯齿波触发电路II输出的触发脉冲相位与I恰好互差180°,供单相整流及逆变实验用。 电位器RP1、RP2、RP3均已安装在挂箱的面板上,同步变压器副边已在挂箱内部接好,所有的测试信号都在面板上引出。 图1-2 锯齿波同步移相触发电路各点电压波形(α=90°) 四、实验内容及步骤

1、实验内容: (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 2、实验步骤: (1) 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V±10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围 将控制电压U ct调至零(将电位器RP2顺时针旋到底),用示波器观察同步电压信号和“6”点U6的波形,调节偏移电压U b(即调RP3电位器),使α=170°,其波形如图1-3所示。 图1-3锯齿波同步移相触发电路 (3)调节U ct(即电位器RP2)使α=60°,观察并记录U1~U6及输出“G、K”脉冲电压的波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器的“V/DIV”和“t/DIV”微调旋钮旋到校准位置)。

电力电子技术及电机控制实验指导书 第一章

第三章电力电子技术实验 本章节介绍电力电子技术基础的实验内容,其中包括单相、三相整流及有源逆变电路,直流斩波电路原理,单相、三相交流调压电路,单相并联逆变电路,晶闸管(SCR)、门极可关断晶闸管(GTO)、功率三极管(GTR)、功率场效应晶体管(MOSFET)、绝缘栅双极性晶体管(IGBT)等新器件的特性及驱动与保护电路实验。 实验一单结晶体管触发电路实验 一、实验目的 (1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。 (2)掌握单结晶体管触发电路的调试步骤和方法。 二、实验所需挂件及附件 单结晶体管触发电路的工作原理已在1-3节中作过介绍。 四、实验内容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察。 五、预习要求 阅读本教材1-3节及电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。 六、思考题 (1)单结晶体管触发电路的振荡频率与电路中C1的数值有什么关系? (2)单结晶体管触发电路的移相范围能否达到180°? 七、实验方法 (1)单结晶体管触发电路的观测 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察单结晶体管触发电路,经半波整流后“1”点的波形,经稳压管削波得到“2”点的波形,调节移相电位器RP1,观察“4”点锯齿波的周期变化及“5”点的触发脉冲波形;最后观测输出的“G、K”触发电压波形,其能否在30°~170°范围内移相? (2)单结晶体管触发电路各点波形的记录

电力电子技术实验指导书

电力电子技术实验指导书郑州轻工业学院 电气工程实验中心 2006年3月

目录 BZT—Ⅲ B型变流、交直流调速实验装置简介及实验操作注意事项 (2) 实验一单相半控桥可控整流电路的研究 (5) 实验二三相桥式全控整流电路的研究 (8) 实验三单相交流调压电路的研究 (13) 实验四 IGBT直流斩波电路的研究 (17) 实验五 DC/AC单相半桥SPWM逆变电路性能研究 (21)

BZT—Ⅲ B型变流、交直流调速实验装置简介及 实验操作注意事项 一、概述 BZT—Ⅲ B型变流、交直流调速实验装置是华中师范大学机电厂研制生产的教学实验设备,该装置功能齐全,结构可靠,采用模块化设计,移动组合方便,面板布局直观。测试点用专门的接线端子引至面板,便于接线调试,测量及显示仪表全部采用三位半数显表。该装置供电力电子变流技术实验和交直流调速实验,也可供学生课程设计、毕业设计和有关科研使用。 二、总体结构 本装置外形尺寸为1550×800×780。实验桌上带有滑轮导轨的三个抽屉,分别装有实验所需的交直流电源、变压器、开关、熔断器及各种保护电路。各路交直流电源的输出端子都引到控制面板接线柱及台阶插座上,控制开关及可调旋纽也全部安装在面板上,并画有各个独立环节的电路原理图。实验电路全部画在各个模块面板上,接线柱、电位器也安装在电路相应的位置上,测试孔位置清晰、直观,通过模块和电源等共同构成相应的实验系统。 三、主要技术指标 (1)输入电源:三相四线 380V 50Hz (2)装置容量:10KVA (3)实验电源: 提供(a)三项四线制 380V交流电源。 (b)直流可调电源0―250V、8A。 (c)直流可调电源0―230V、8A。 (d)单相220V工作电源。 (e)直流稳压电源5V,1A;±15V,1A;30V,500mA (4)绝缘电阻:>5MΩ (5)漏电保护:漏电动作电流≥30mΑ 四、面板操作功能及操作方法 (1)面板操作功能说明: 1、漏电保护开关。 2、总电源开。 3、总电源关。 4、单相调压手柄。 5、三相电源(主电路) 开。6、三相电源(主电路)关。7、三相电路指示灯。8、三相电路输出指示灯。9、交流0―300V数字显示表。10、直流0―300V数字显示表。11、工作220V电源插座。12、交流380V/220V输出接线柱。13、急停开关。14、交流0―220V输出接线柱。15、直流0―220V输出接线柱。16、交直流可调电压输出开关。17、保险座(保险丝为10A)。18、

电力电子技术实验内容5

电力电子技术实验内容 实验一晶闸管的测试及导通关断条件测试实验 1.实验目的 (1)观察晶闸管的结构,掌握正确的晶闸管的简易测试方法; (2)验证晶闸管的导通条件及关断方法。 2.预习要求 (1)阅读电力电子技术教材中有关晶闸管的内容,弄清晶闸管的结构与工作原理; (2)复习晶闸管基本特征的有关内容,掌握晶闸管正常工作时的特性; 3.实验器材 (1)±5V、±12V直流稳压电源(双路)一台 (2)万用表一块 (3)晶闸管几个(用面板上的三相整流桥中的晶闸管) (4)DJDK-1型实验台 (5)灯泡12V/0.1A一个 (6)交流毫伏表一个 4.实验内容 (1)鉴别晶闸管的好坏; (2)晶闸管的导通条件测试; (3)晶闸管的关断方法的测试。 5.实验电路 图3-1 晶闸管的测试图3-2 晶闸管导通条件实验电路 图3-3 晶闸管的测试图3-4 晶闸管关断条件实验电路 6.实验内容及步骤 (1)鉴别晶闸管的好坏 见图3-1,用万用表的R×1K电阻档测试两只晶闸管的阳极(A)—阴极(K)、门极(G)—阳极(A)之间的正反向电阻,再用万用表的R×100K电阻档测量两只晶闸管的门极(G)—阴级(K)之间的正反向电阻,将测量数据填入下表,并鉴别晶闸管的好坏。

(2)晶闸管的导通条件(见图3-2) a)12V正向阳极电压,门极开路或接-5V电压,观察灯泡亮否,判断晶闸管是否导通; b)加12V反向阳极电压,门极开路或接-5V电压或接+5V电压,观察灯泡是否亮,判断晶闸管是否导通; c)阳极加12V正向电压,门极加+5V正向电压,观察灯泡亮否,判断晶闸管是否导通; d)灯亮后去掉门极电压,看灯泡亮否,再加-5V反向门极电压,看灯泡是否继续亮。 e)写出导通条件,说明门极作用。 (3)晶闸管关断条件实验(见图3-3、图3-4) a)按图8-5接线,接通12V电源电压,再在门极接通+5V电压使晶闸管导通,灯泡亮,接着断开门极电压; b)去掉12V阳极电压,观看灯泡是否亮; c)使晶闸管导通,然后断开门极电压,即打开K2,接着闭合K1,再打开K1,观察灯泡是否熄灭; d)再使晶闸管导通,断开门极电压,逐渐减小阳极电压,当电流表指针有某值逐渐降到零时,记下该值,即被测晶闸 管的维持电流,此时若再升高阳极电源电压,灯泡也不再发亮,说明晶管已关断; e)总结关断晶闸管的方法。 7.注意事项 用万用表测试闸管门极与阴极正反高电阻时,发现有的晶闸管正反向电阻很接近,这种现象并不能说明晶闸管已经损坏,只要正向电阻比反向电阻小些,该晶闸管就是好的。注:用万表表测试晶闸管门极与阴极电阻时,不能用R×10?档,以防损坏门极,一般用R×1K档测量; 8.实验报告要求 (1)回答实验中提出的问题; (2)总结简易判断晶闸管好坏的方法。 实验二正弦波同步移相触发电路实验 一.实验目的 1.熟悉正弦波同步触发电路的工作原理及各元件的作用。 2.掌握正弦波同步触发电路的调试步骤和方法。 二.实验内容 1.正弦波同步触发电路的调试。 2.正弦波同步触发电路各点波形的观察。 三.实验线路及原理 电路分脉冲形成,同步移相,脉冲放大等环节,具体工作原理可参见“电力电子技术”有关教材。 四.实验设备及仪器 1.教学实验台主控制屏

15电力电子实验指导书

《电力电子技术》 实 验 指 导 书

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 二、实验所需挂件及附件 三、实验线路及原理 锯齿波同步移相触发电路的原理图参见挂件说明。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见挂件说明和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读电力电子技术教材中有关锯齿波同步移相触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为

220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽 度,并比较“3”点电压U 3和“6”点电压U 6 的对应关系。 (2)调节触发脉冲的移相范围 将控制电压U ct 调至零(将电位器RP2顺时针旋到底),用示波器观察同步电压 信号和“6”点U 6的波形,调节偏移电压U b (即调RP3电位器),使α=170°,其波 形如图2-1所示。 图2-1锯齿波同步移相触发电路 (3)调节U ct (即电位器RP2)使α=60°,观察并记录U 1 ~U 6 及输出“G、K” 脉冲电压的波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器的“V/DIV”和“t/DIV”微调旋钮旋到校准位置)。 (4)

电力电子技术实验指导书

电力电子技术实验指导书 河南机电职业学院 2010年4月

学生实验守则 一、学生进入实验室必须服从管理,遵守实验室的规章制度。保持实验室的安静和整洁,爱护实验室的一切设施,不做与实验无关的事情。 二、实验课前要按照教师要求认真预习实验指导书,复习教材中于实验有关的内容,熟悉与本次实验相关的在理论知识,同时写出实验预习报告,并经教师批阅后方可进行实验。 三、实验课上要遵守操作规程,线路连接好后,先自行检查,后须经指导教师检查后,才可接通电源进行实验。如果需更改线路,也要经过教师检查后才能接通电源继续实验。 四、学生实验前对实验所用仪器设备要了解其操作规程和使用方法,实验过程中按照要求记录实验数据。实验中有仪器损坏情况,应立即报告指导教师检查处理。凡因不预习或不按照使用方法误操作而造成设备损坏后,除书面检查外,还要按照规定进行赔偿。 五、注意实验安全,不要带电连接、更改或拆除线路。实验中遇到事故应立即关断电源并报告教师处理。 六、实验完成后,实验数据必须经教师签阅后,方可拆除实验线路。并将仪器、设备、凳子等按照规定放好,经教师同意后方可离开实验室。 七、实验室仪器设备不能擅自搬动、调换,更不能擅自带出实验室。 八、因故缺课的同学可以向实验室申请一次补做机会。无故缺课、无故迟到十五分钟以上或者早退的不予补做,该实验无成绩。

第一章电力电子技术实验的基本要求 和安全操作说明 《电子电力技术》是电气工程及其自动化、自动化等专业的三大电子技术基础课程之一,课程涉及面广,内容包括电力、电子、控制、计算机技术等。而实验环节是该课程的重要组成部分,通过实验,可以加深对理论的理解,培养和提高动手能力、分析和解决问题的独立工作能力。 1-1 实验的特点和要求 电力电子技术实验的内容较多、较新,实验系统也比较复杂,系统性较强。理论教学是实验教学的基础,要求学生在实验中应学会运用所学的理论知识去分析和解决实际系统中出现的各种问题,提高动手能力;同时通过实验来验证理论,促进理论和实际相结合,使认识不断提高、深化。通过实验,学生应具备以下能力: (1)掌握电力电子变流装置的主电路、触发和驱动电路的构成及调试方法,能初步设施和应用这些电路; (2)熟悉并掌握基本实验设备、测试仪器的性能和使用方法; (3)能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到的问题; (4)能够综合实验数据,解释实验现象,编写实验报告。 1-2 实验前的准备 实验准备即为实验的预习阶段,是保证实验能否顺利进行的必要步骤。每次实验前都应先进行预习,从而提高实验质量和效率,否则就有可能在实验时不知如何下手,浪费时间,完不成实验要求,甚至有可能损坏实验装置。因此,实验前应做到: (1)复习教材中与实验有关的内容,熟悉与本次实验相关的理论知识。 (2)阅读本教材中的实验指导,了解本次实验的目的和内容;掌握本次实验系统的工作原理和方法;明确实验过程中应注意的问题。 (3)写出预习报告,其中应包括实验系统的详细接线图、实验步骤、数据记录表格等。 (4)进行实验分组,一般情况下,电力拖动自动控制系统实验的实验小组为每组2~3人。 1-3 实验实施 在完成理论学习、实验预习等环节后,就可进入实验实施阶段。实验时要做到以下几点: (1)实验开始前,指导教师要对学生的预习报告作检查,要求学生了解本次实验的目的、内容和方法,只有满足此要求后,方能允许实验。 (2)指导教师对实验装置作介绍,要求学生熟悉本次实验使用的实验设备、仪器,明确这些设备的功能与使用方法。 (3)按实验小组进行实验,实验小组成员应进行明确的分工,以保证实验操作协调,记录数据准确可靠,各人的任务应在实验进行中实行轮换,以便实验参加者能全面掌握实验技术,提高动手能力。 (4)按预习报告上的实验系统详细线路图进行接线,一般情况下,接线次序为先主电路,后控制电路;先串联,后并联。在进行调速系统实验时,也可由2人同时进行主电路和控制电路的接线。 (5)完成实验系统接线后,必须进行自查。串联回路从电源的某一端出发,按回路逐项

相关主题
文本预览
相关文档 最新文档