当前位置:文档之家› CSY-2000 系列传感器与检测技术实验台

CSY-2000 系列传感器与检测技术实验台

CSY-2000 系列传感器与检测技术实验台
CSY-2000 系列传感器与检测技术实验台

CSY-2000 系列传感器与检测技术实验台

说明书

一、实验台的组成

CSY-2000 系列传感器与检测技术实验台由主机箱、温度源、转动源、振动源、传感器、相应的实验模板、数据采集卡及处理软件、实验台桌等组成。

1、主机箱:提供高稳定的±15V、±5V、+5V、±2V-±10V(步进可调)、+2V-+24V(连续可调)直流稳压电源;音频信号源(音频振荡器)1KHz~10KHz(连续可调);低频信号源(低频振荡器)1Hz~30Hz(连续可调);气压源0-20KPa(可调);温度(转速)智能调节仪;计算机通信口;主机箱面板上装有电压、频率转速、气压、计时器数

显表;漏电保护开关等。其中,直流稳压电源、音频振荡器、低频振荡器都具有过载切断保护功能,在排除接线错误后重新开机恢复正常工作。

2、振动源:振动台振动频率1Hz-30Hz 可调(谐振频率9Hz 左右)。

转动源:手动控制0-2400 转/分;自动控制300-2400 转/分。

温度源:常温-180℃。

3、传感器:基本型有电阻应变式传感器、扩散硅压力传感器、差动变压器、电容式位移传感器、霍尔式位移传感器、霍尔式转速传感器、磁电转速传感器、压电式传感器、电涡流传感器、光纤传感器、光电转速传感器(光电断续器)、集成温度(AD590)传感器、K 型热电偶、

E型热电偶、Pt100 铂电阻、Cu50 铜电阻、湿敏传感器、气敏传感器共十八个。

增强型:基本型基础上可选配扭矩传感器、超声位移传感器、PSD位置传感器、CCD 电荷耦合器件、光栅位移传感器、红外热释电传感器、红外夜视传感器、指纹传感器等。

4、实验模板:基本型有应变式、压力、差动变压器、电容式、霍尔式、压电式、电涡流、光纤位移、温度、移相/相敏检波/低通滤波共十块模板。增强型增加与选配传感器配套的实验模板。

5、数据采集卡及处理软件,另附。

6、实验台:尺寸为1600×800×750mm,实验台桌上预留了计算机及示波器安放位置。

二、电路原理

实验模板电路原理已印刷在模板的面板上,实验接线图参见文中的具体实验内容。

三、使用方法

1、开机前将电压表显示选择旋钮打到2V 档;电流表显示选择旋钮打到200mA 档;步进可调直流稳压电源旋钮打到±2V 档;其余旋钮都打到中间位置。

2、将AC 220V 电源线插头插入市电插座中,合上电源开关,数显表显示0000,表示实验台已接通电源。

3、做每个实验前应先阅读实验指南,每个实验均应在断开电源的状态下按实验线路接好连接线(实验中用到可调直流电源时,应在该电源调到实验值后再接到实验线路中),检查无误后方可接通电源。

4、合上调节仪(温度开关)电源开关,调节仪的PV 显示测量值;SV显示设定值。

5、合上气源开关,气泵有声响,说明气泵工作正常。

6、数据采集卡及处理软件使用方法另附说明。

四、仪器维护及故障排除

1、维护

⑴防止硬物撞击、划伤实验台面;防止传感器及实验模板跌落地面。

⑵实验完毕要将传感器、配件、实验模板及连线全部整理好。

2、故障排除

⑴开机后数显表都无显示,应查AC 220V 电源有否接通;主机箱侧面AC 220V 插座中的保险丝是否烧断。如都正常,则更换主机箱中主机电源。

⑵转动源不工作,则手动输入+12V 电压,如不工作,更换转动源;如工作正常,应查调节仪设置是否准确;控制输出V o 有无电压,如无电压,更换主机箱中的转速控制板。

⑶振动源不工作,检查主机箱面板上的低频振荡器有无输出,如无输出,更换信号板;如有输出,更换振动源的振荡线圈。

⑷温度源不工作,检查温度源电源开关有否打开;温度源的保险丝是否烧断;调节仪设置是否准确。如都正常,则更换温度源。

五、注意事项

1、在实验前务必详细阅读实验指南。

2、严禁用酒精、有机溶剂或其它具有腐蚀性溶液擦洗主机箱的面板和实验模板面板。

3、请勿将主机箱的电源、信号源输出端与地(⊥)短接,因短接时间长易造成电路故障。

4、请勿将主机箱的±电源引入实验模板时接错。

5、在更换接线时,应断开电源,只有在确保接线无误后方可接通电源。

6、实验完毕后,请将传感器及实验模板放回原处。

7、如果实验台长期未通电使用,在实验前先通电十分钟预热,再检查按一次漏电保护按钮是否有效。

8、实验接线时,要握住手柄插拔实验线,不能拉扯实验线。

实验一金属箔式应变片―单臂电桥性能实验

实验学时:2 学时

实验类型:(验证)

实验要求:(必修)

一、实验目的:

了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:

电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L 为电阻丝长度相对变化。金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥输出电压Uo1= EKε/4。

三、需用器件与单元:

主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘、砝码、4 21位数显万用表(自备)。

四、实验步骤:

应变传感器实验模板说明:

实验模板中的R1、R2、R3、R4 为应变片,没有文字标记的5 个电阻符号下面是空的,其中4 个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。

1、根据图1〔应变式传感器(电子秤传感器)已装于应变传感器模板上。传感器中4 片应变片和加热电阻已连接在实验模板左上方的R1、R

2、R

3、R4 和加热器上。传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。当传感器托盘支点受压时,R1、R3 阻值增加,R2、R4 阻值减小,可用四位半数显万用进行测量判别。常态时应变片阻值为350Ω,加热丝电阻值为50Ω左右。〕安装接线。

2、放大器输出调零:将图1 实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(Vi=0);调节放大器的增益电位器RW3大约到中间位置(先逆时针旋到底,再顺时针旋转2 圈);将主机箱电压表的量程切换开关打到2V 档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4,使电压表显示为零。

3、应变片单臂电桥实验:拆去放大器输入端口的短接线,将暂时脱开的引线复原(见图1 接线图)。调节实验模板上的桥路平衡电位器R W1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g (或500 g)砝码加完。记下实验结果填入表1 画出实验曲线。

图1应变片单臂电桥性能实验安装、接线示意图

表 1

20 40 60 80 100 120 140 160 180 200 重量

(g)

4 7 11 14 17 21 24 28 31 3

5 电压

(mv)

4、根据表1 计算系统灵敏度S=ΔU/ΔW(ΔU 输出电压变化量,ΔW

重量变化量)和非线性误差δ,δ=Δm/y FS ×100%式中Δm 为输出值(多次测量时为平均值)与拟合直线的最大偏差:y FS 满量程输出平均值,此处为200g(或500g)。实验完毕,关闭电源。

五、思考题:

单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以。

实验六差动变压器的性能实验

实验学时:2 学时

实验类型:(验证)

实验要求:(必修)

一、实验目的:

了解差动变压器的工作原理和特性。

二、基本原理:

差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据

内外层排列不同,有二段式和三段式,本实验采用三段式结构。当差动变压器随着被测体移动时差动变压器的铁芯也随着轴向位移,从而使初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动电势输出。其输出电势反映出被测体的移动量。

三、需用器件与单元:

主机箱、差动变压器、差动变压器实验模板、测微头、双踪示波器。

四、实验步骤:

附:测微头的组成与使用

测微头组成和读数如图9—1 测微头读数图

图9-1测位头组成与读数

测微头组成:测微头由不可动部分安装套、轴套和可动部分测杆、微分筒、微调钮组成。

测微头读数与使用:测微头的安装套便于在支架座上固定安装,轴套上的主尺有两排刻度线,标有数字的是整毫米刻线(1mm/格),另一排是半毫米刻线(0.5mm/格);微分筒前部圆周表面上刻50 等分的刻线(0.01mm/格)。

用手旋转微分筒或微调钮时,测杆就沿轴线方向进退。微分筒每转过1 格,测杆沿轴方向移动微小位移0.01毫米,这也叫测微头的分度值。测微头的读数方法是先读轴套主尺上露出的刻度数值,注意半毫米刻线;再读与主尺横线对准微分筒上的数值、可以估读1/10 分度,如图9—1 甲读数为3.678mm,不是3.178mm;遇到微分筒边缘前端与主尺上某条刻线重合时,应看微分筒的示值是否过零,如图9—1 乙已过零则读2.514mm;如图9—1 丙未过零,则不应读为2mm,读数应为1.980mm。

测微头使用:测微头在实验中是用来产生位移并指示出位移量的工具。一般测微头在使用前,首先转动微分筒到10mm处(为了保留测杆轴向前、后位移的余量),再将测微头轴套上的主尺横线面向自己安装到专用支架座上,移动测微头的安装套(测微头整体移动)使测杆与被测体连接并使被测体处于合适位置(视具体实验而定)时再

拧紧支架座上的紧固螺钉。当转动测微头的微分筒时,被测体就会随测杆而位移。

1、将差动变压器和测微头(参照附:测微头使用)安装在实验模板的支架座上,差动变压器的原理图已印刷在实验模板上,L1 为初级线圈;L

2、L3 为次级线圈;*号为同名端,如下图9-2。

2、按图9—2 接线,差动变压器的原边L1的激励电压必须从主机箱中音频振荡器的Lv 端子引入,检查接线无误后合上总电源开关,调节

音频振荡器的频率为4-5KHz(可用主机箱的频率表输入Fin

来监测);调节输出幅度峰峰值为Vp-p =2V (可用示波器监测:X 轴为0.2ms/div)。

3、松开测微头的安装紧固螺钉,移动测微头的安装套使示波器第二通道显示的波形Vp-p 为较小值(变压器铁芯大约处在中间位置),拧紧紧固螺钉,仔细调节测微头的微分筒使示波器第二通道显示的波形Vp-p为最小值(零点残余电压)并定为位移的相对零点。这时可以左右位移,假设其中一个方向为正位移,另一个方向位移为负,从Vp-p 最小开始旋动测微头的微分筒,每隔0.2mm(可取10—25 点)从示波器

上读出输出电压Vp-p 值,填入下表9,再将测位头退回到Vp-p 最小处开始反方向做相同的位移实验。在实验过程中请注意:⑴从Vp-p 最小处决定位移方向后,测微头只能按所定方向调节位移,中途不允许回调,否则,由于测微头存在机械回差而引起位移误差;所以,实验时每点位移量须仔细调节,绝对不能调节过量,如过量则只好剔除这一点继续做下一点实验或者回到零点重新做实验。⑵当一个方向行程实验结束,做另一方向时,测微头回到Vp-p 最小处时它的位移读数有变化(没有回到原来起始位置)是正常的,做实验时位移取相对变化量△X为定值,只要中途测微头不回调就不会引起位移误差。

图9-2差动变压器性能实验安装、接线图

4、实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压大小。根据表9 画出Vop-p-X 曲线,作出位移为±1mm、±3mm时的灵敏度和非线性误差。实验完毕,关闭电源。

表 9

正行程

编号 1 2 3 4 5 6 7 8 9 10

V(mv) 420 560 700 850 950 1100 1250 1400 1500 1650 X(mm) 10.200 10.400 10.600 10.800 11.000 11.200 11.400 11.600 11.800 12.000 编号11 12 13 14 15 16 17 18 19 20

V(mv) 1800 1900 21000 23000 24000 25000 26000 27000 29000 30000 X(mm) 12.200 12.400 12.600 12.800 13.000 13.200 13.400 13.600 13.800 14.000

反行程

编号 1 2 3 4 5 6 7 8 9 10

V(mv)160 25 110 260 400 520 660 800 950 1100 X(mm)9.800 9.600 9.400 9.2000 9.000 8.800 8.600 8.400 8.200 8.000 编号11 12 13 14 15 16 17 18 19 20

V(mv)1200 1350 1500 1650 1750 1900 11000 12000 13000 15000 X(mm)7.800 7.600 7.400 7.200 7.000 6.800 6.600 6.400 6.200 6.000

五、思考题:

1、用差动变压器测量振动频率的上限受什么影响?

2、试分析差动变压器与一般电源变压器的异同?

实验八直流激励时霍尔式传感器位移特性实验

实验学时:2 学时

实验类型:(验证)

实验要求:(必修)

一、实验目的:

了解霍尔式传感器原理与应用。

二、基本原理:

根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中运

动时,它的电势会发生变化,利用这一性质可以进行位移测量。

三、需用器件与单元:

主机箱、霍尔传感器实验模板、霍尔传感器、测微头。

四、实验步骤:

1、霍尔传感器和测微头的安装、使用参阅实验九。按图14 示意图

接线(实验模板的输出VO1接主机箱电压表的Vin),将主机箱上

的电压表量程(显示选择)开关打到2v档。

2、检查接线无误后,开启电源,调节测微头使霍尔片处在两磁钢的

中间位置,再调节RW1 使数显表指示为零。

图14 霍尔传感器(直流激励)位移实验接线示意图

3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始

点,再反方向调节测微头每增加0.2mm 记下一个读数(建议做4mm位

移),将读数填入表14。

表 14

正向行程

编号 1 2 3 4 5 6 7 8 9 10

X(mm)10.000 10.100 10.200 10.300 10.400 10.500 10.60

10.700 10.800 10.900

V(mv)0 0.003 0.007 0.010 0.013 0.017 0.020 0.024 0.027 0.031 编号11 12 13 14 15 16 17 18 19 20

X(mm)11.000 11.100 11.200 11.300 11.400 11.500 11.60

11.700 11.800 11.900

V(mv) 0.035 0.038 0.042 0.047 0.051 0.055 0.059 0.064 0.068 0.073 编号21 22 23 24 25 26 27 28 29 30

X(mm)12.000 12.100 12.200 12.300 12.400 12.500 12.60

12.700 12.800 12.900

V(mv)0.079 0.083 0.088 0.093 0.096 0.100 0.103 0.105 0.107 0.109 反向行程

编号 1 2 3 4 5 6 7 8 9 10

X(mm)10.000 9.900 9.800 9.700 9.600 9.500 9.400 9.300 9.200 9.100 V(mv)0 -0.37 -0.100 -0.164 -0.217 -0.285 -0.356 -0.424 -0.483 -0.554 编号11 12 13 14 15 16 17 18 19 20

X(mm)9.000 8.900 8.800 8.700 8.600 8.500 8.400 8.300 8.200 8.100 V(mv)-0.624 -0.671 -0.759 -0.817 -0.891 -0.977 -1.046 -1.113 -1.183 -1.266 编号21 22 23 24 25 26 27 28 29 30

X(mm)8.000 7.900 7.800 7.700 7.600 7.500 7.400 7.300 7.200 7.100 V(mv)-1.343 -1.414 -1.483 -1.565 -1.634 -1.693 -1.745 -1.795 -1.842 -1.920

作出V-X 曲线,计算不同测量范围时的灵敏度和非线性误差。实

验完毕,关闭电源。

五、思考题:

本实验中霍尔元件位移的线性度实际上反映的是什么量的变化?

实验十压电式传感器测振动实验

实验学时:2 学时

实验类型:(验证)

实验要求:(选修)

一、实验目的:

了解压电传感器的测量振动的原理和方法。

二、基本原理:

压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。

三、需用器件与单元:

主机箱、差动变压器实验模板、振动源、示波器。

四、实验步骤:

1、按图18 所示将压电传感器安装在振动台面上(与振动台面中心的磁钢吸合),振动源的低频输入接主机箱中的低频振荡器,其它连线按图示意接线。

2、合上主机箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察低通滤波器输出的波形。

3、用示波器的两个通道同时观察低通滤波器输入端和输出端波形;在振动台正常振动时用手指敲击振动台同时观察输出波形变化。

4、改变振动源的振荡频率(调节主机箱低频振荡器的频率),观察输出波形变化。实验完毕,关闭电源。

图18压电传感器振动实验安装、接线示意图实验十一电涡流传感器位移实验

实验学时:2 学时

实验类型:(验证)

实验要求:(必修)

一、实验目的:

了解电涡流传感器测量位移的工作原理和特性。

二、基本原理:

通过交变电流的线圈产生交变磁场,当金属体处在交变磁场时,根据电磁感应原理,金属体内产生电流,该电流在金属体内自行闭合,并呈旋涡状,故称为涡流。涡流的大小与金属导体的电阻率、导磁率、厚度、线圈激磁电流频率及线圈与金属体表面的距离x等参数有关。电涡流的产生必然要消耗一部分磁场能量,从而改变激磁线线圈阻抗,涡流传感器就是基于这种涡流效应制成的。电涡流工作在非接触状态(线圈与金属体表面不接触),当线圈与金属体表面的距离x以外的所有参数一定时可以进行位移测量。

三、需用器件与单元:

主机箱、电涡流传感器实验模板、电涡流传感器、测微头、被测体(铁圆片)。

四、实验步骤:

1、观察传感器结构,这是一个平绕线圈。测微头的读数与使用可参阅实验九;根据图19 安装测微头、被测体、电涡流传感器并接线。

2、调节测微头使被测体与传感器端部接触,将电压表显示选择

开关切换到20V 档,检查接线无误后开启主机箱电源开关,记下电

压表读数,然后每隔0.1mm 读一个数,直到输出几乎不变为止。将

数据列入表19。

表19 电涡流传感器位移X 与输出电压数据

X(mm) 5.000 5.100 5.200 5.300 5.400 5.500 5.600 5.700 5.800 5.900 V(v) 5.31 5.51 5.66 5.81 5.96 6.10 6.23 6.36 6.47 6.60 X(mm) 6.000 6.100 6.200 6.300 6.400 6.500 6.600 6.700 6.800 6.900 V(v) 6.71 6.82 6.93 7.02 7.12 7.21 7.30 7.40 7.47 7.55 X(mm) 7.000 7.100 7.200 7.300 7.400 7.500 7.600 7.700 7.800 7.900 V(v) 7.63 7.70 7.69 7.76 7.84 7.90 7.96 8.02 8.07 8.13 X(mm) 8.000 8.100 8.200 8.300 8.400 8.500 8.600 8.700 8.800 8.900 V(v) 8.19 8.23 8.28 8.32 8.37 8.41 8.45 8.49 8.52 8.55 X(mm) 9.000 9.100 9.200 9.300 9.400 9.500 9.600 9.700 9.800 9.900 V(v) 8.58 8.61 8.64 8.67 8.70 8.72 8.74 8.76 8.78 8.81 X(mm) 10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90 V(v) 8.83 8.85 8.86 8.88 8.90 8.92 8.93 8.95 8.96 8.97 X(mm) 11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90 V(v) 8.99 9.00 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.08 X(mm) 12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.90 V(v) 9.09 9.09 9.10 9.11 9.11 9.12 9.13 9.13 9.14 9.15 X(mm) 13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80 13.90

V(v) 9.15 9.16 9.17 9.17 9.18 9.18 9.19 9.19 9.20 9.20 X(mm) 14.00 14.10 14.20 14.30 14.40 14.50 14.60 14.70 14.80 14.90 V(v) 9.20 9.21 9.21 9.22 9.22 9.22 9.22 9.23 9.23 9.23 X(mm) 15.00

V(v) 9.24

3、根据表19 数据,画出V-X 曲线,根据曲线找出线性区域及进

行正、负位移测量时的最佳工作点(即曲线线性段的中点),试计算测

量范围为1mm 与3 mm 时的灵敏度和线性度(可以用端基法或其它拟

合直线)。

实验完毕,关闭电源。

图19电涡流传感器安装、按线示意图

五、思考题:

1、电涡流传感器的量程与哪些因素有关,如果需要测量±5mm 的量

传感器与检测技术(知识点总结)

传感器与检测技术(知识点总结) 一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。③基本转换电路是将该电信号转换成便于传输,处理的电量。 二、传感器的分类 1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。 2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器; ③光栅式传感器)。 3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。

4、按工作原理分类主要是有利于传感器的设计和应用。 5、按传感器能量源分类(1)无源型:不需外加电源。而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。 6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。其代码“1”为高电平,“0”为低电平。 三、传感器的特性及主要性能指标 1、传感器的特性主要是指输出与输入之间的关系,有静态特性和动态特性。 2、传感器的静态特性是当传感器的输入量为常量或随时间作缓慢变化时,传感器的输出与输入之间的关系,叫静态特性,简称静特性。表征传感器静态特性的指标有线性度,敏感度,重复性等。 3、传感器的动态特性是指传感器的输出量对于随时间变化的输入量的响应特性称为动态特性,简称动特性。传感器的动态特

传感器与检测技术题库

《传感器与检测技术》题库 一、名词解释 二、单项选择题 3.某采购员分别在三家商店购买100 kg大米.10 kg苹果.1 kg巧克力,发现均缺少约0.5 kg,但该采购员对卖巧克力的商店意见最大,在这个例子中,产生此心理作用的主要因素是 B 。 A.绝对误差 B.示值相对误差 C.满度相对误差 D.精度等级 4.在选购线性仪表时,必须在同一系列的仪表中选择适当的量程。这时必须考虑到应尽量使选购的仪表量程为欲测量的 C 左右为宜。 A.3 倍 B.1.0 倍 C.1.5 倍 D.0.75 倍 5.用万用表交流电压档(频率上限仅为 5 kHz)测量频率高达500 kHz.10 V左右的高频电压,发现示值还不到 2 V,该误差属于B 。 A.系统误差 B.粗大误差 C.随机误差 D.动态误差 6.用万用表交流电压档(频率上限仅为5 kHz)测量5号干电池电压,发现每次示值均为1.8 V,该误差属于 A 。 A.系统误差 B.粗大误差 C.随机误差 D.动态误差 7.重要场合使用的元器件或仪表,购入后需进行高、低温循环老化试验,其目的是为了 D 。

A.提高精度 B.加速其衰老 C.测试其各项性能指标 D. 提高可靠性 8.有一温度计,它的测量范围为0~200 ℃,精度为0. 5级,试求 该表可能出现的最大绝对误差为 A 。 A.1℃ B.0.5℃ C.10℃ D.200℃ 9.有一温度计,它的测量范围为0~200 ℃,精度为0.5 级,当示值 为20 ℃时的示值相对误差为 B A.1℃ B.5% C.1% D.10% 10.有一温度计,它的测量范围为0~200 ℃,精度为0.5 级,当示 值为100 ℃时的示值相对误差为 C 。 A. 1℃ B.5% C. 1% D.10% 11.欲测240 V左右的电压,要求测量示值相对误差的绝对值不大于 0.6%,若选用量程为 250 V电压表,其精度应选 B 级。 A. 0.25 B.0.5 C. 0.2 D.1.0 12.欲测240 V左右的电压,要求测量示值相对误差的绝对值不大于 0.6%,若选用量程为 300 V,其精度应选 C 级。 A.0.25 B. 0.5 C. 0.2 D.1.0 13.欲测240 V左右的电压,要求测量示值相对误差的绝对值不大于

传感器性能指标

一、测量仪表的基本性能 1、精确度 (1)精密度δ 它表明仪表指示值的分散性,即对某一稳定的被测量,由同一个测量者,用同一个仪表,在相当短的时间内,连续重复测量多次,其测量结果(指示值)的分散程度。δ愈小,说明测量愈精密。 例如,某温度仪表的精密度δ=0.5℃,即表示多次测量结果的分散程度不大于0.5℃。精密度是随机误差大小的标志,精密度高,意味着随机误差小。 但是必须注意,精密度与准确度是两个概念,精密度高不一定准确。 (2)准确度ε 它表明仪表指示值与真值的偏离程度。 例如,某流量表的准确度ε=0.3m3/s,表示该仪表的指示值与真值偏离0.3m3/s。准确度是系统误差大小的标志,准确度高,意味着系统误差小。同样,准确度高不一定精密。(3)精确度τ 它是精密度与准确度的综合反映,精确度高,表示精密度和准确度都比较高。在最简单的情况下,可取两者的代数和,即τ=δ+ε。精确度常以测量误差的相对值表示。 2、稳定性 (1)稳定度 指在规定时间内,测量条件不变的情况下,由于仪表自身随机性变动、周期性变动、漂移等引起指示值的变化。一般以仪表精密度数值和时间长短一起表示。 例如,某仪表电压指示值每小时变化1.3V,则稳定性可表示为1.3mV/h。 (2)影响量 测量仪表由外界环境变化引起指示值变化的量,称为影响量。它是由温度、湿度、气压、振动、电源电压及电源频率等一些外界环境影响所引起的。说明影响量时,必须将影响因素与指示值偏差同时表示。 例如,某仪表由于电源电压发生变化10%而引起其指示值变化0.02mA,则应写成 0.02mA/U±10%。 二、传感器的分类和性能指标 1、传感器的分类

《传感器与检测技术》全套教案

!知识目标:掌握接近开关的基本工作原理,了解各种接近开关的环境特性及使用方法,掌握应用接近开 T丨关进行工业 技术检测的方法 教学■ 口h I能力目标:对不同接近开关进行敏感性检测,使用霍尔接近开关完成转动次数的测量。 目标! i素质目标: ■ ■ ■ W ■?Fr??T??* 教学 重点 .■该学…t 难点i接近开关的基本工作原理 I ---一一 ^—--十一- ——一一-一-一一--- —一-- . - — - - _-一- --- 教学]理实一体千 輕丨实物讲解手段!小组讨论、协作 接近开关的应用 教学! 学时丨10 教学内容与教学过程设计 1理论学习〗 项目一开关量检测 任务一认识接近开关 一、霍尔效应型接近开关 1.霍尔效应 霍尔效应的产生是由于运动电荷在磁场作用下受到洛仑兹力作用的结果。把N型半导体薄片放在磁场中,通以固定方向的电流i图1-2霍尔效应 么半导体中的载流子(电子)将沿着与电流方向相反的方向运动。 如图1-2所示,i || (从a点至b点),那\ I讲解霍尔效应基i本原 理,及霍尔电 I动势。 2.霍尔元件 霍尔元件的结构简单,由霍尔片、四根引线和壳体组成,如图1-3 所示。 图1-3 霍尔元件

—H ■ ——= H H H —H ■ ■ H H H H — H I 3.霍尔原件的性能参数 1)额定激励电流 2)灵敏度KH 3)输入电阻和输出电阻 4)不等位电动势和不等位电阻 5)寄生直流电动势 6)霍尔电动势温度系数 4.霍尔开关 霍尔开关是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,可把磁输入信号转换成实际应用中的电信号,同时具备工业场合实际应用易操作和可靠性的要求。 图1-6霍尔开关 5.霍尔传感器的应用 1)霍尔式位移传感器 霍尔元件具有结构简单、体积小、动态特性好和寿命长的优点,有功功率及电能 参数的测量,也在位移测量中得到广泛应用。 1-7 霍尔式位移传感器的工作原理图 2)霍尔式转速传感器 图1-8所示的是几种不同结构的霍尔式转速传感器。 图1-8 几种霍尔式转速传感器的结构 3)霍尔计数装置 图1-9所示的是对钢球进行计数的工作示意图和电路图。当钢球通过霍尔开关传感器 时,传感器可输出峰值20 mV的脉冲电压,该电压经运算放大器(卩A741)放大后,驱动半导 蒞H尤 {牛 吐n惑坳强屢曲同的传黑 器 霜晦疋件 \ -Av 骷]罰腋的怖楞传想 器 雷耳朮件 At 畑铀构柑同的拉牌传感盟 1 了解霍尔传感器 I i的应用。 它不仅用于磁感应强度、 U) 2

传感器与检测技术复习资料

传感器与检测技术复习资料(总6页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

第一章 by YYZ 都是老师上课给的应该全都有了。 1.传感器是一种以一定精确度把被测量(主要是非电量)转换为与之有确定 关系、便与应用的某种物理量(主要是电量)的测量装置。 2.传感器的组成:信号从敏感元件到转换元件转换电路。 3.敏感元件:它是直接感受被测量,并输出与被测量成确定关系的某一物理 量的元件。 4.转换元件:敏感元件的输出就是它的输入,它把输入转换成为电路参数。 5.转换电路:将电路参数接入转换电路,便可转换为电量输出。 6.误差的分类:系统误差(测量设备的缺陷),随机误差(满足正态分 布),粗大误差。 7.系统误差:在同一条件下,多次测量同一量值时绝对值和符号保持不变, 按一定规律变化的误差称为系统误差。材料、零部件及工艺的缺陷,标准测量值,仪器刻度的标准,温度,压力会引起系统误差。 8.随机误差:绝对值和符号以不可预定的变化方式的误差。仪表中的转动部 件的间隙和摩擦,连接件的弹性形变可引起随机误差,随机误具有随机变量的一切特点。 9.粗大误差:超出规定条件下的预期的误差。粗大误差明显歪曲测量结果, 应该舍去不用。 10.精度:反映测量结果与真值接近度的值。 11.精度可分为准确度、精密度、精确度。 12.准确度:反映测量结果中系统误差的影响程度。 13.精密度:反映测量结果中随机误差的影响程度。 14.精确度:反映测量结果中系统误差和随机误差综合的影响程度,其定量特 征可以用测量的不确定度(或极限误差)表示。 15.精密度高的准确度不一定高,准确度高的精密度不一定高,但精确度高, 则精密度和准确度都高。

传感器与检测技术题库

一、选择题 1.传感器的线性范围愈宽,表明传感器工作在线性区域内且传感器的(A) A.工作量程愈大C.精确度愈高 B.工作量程愈小D.精确度愈低 2.属于传感器动态特性指标的是(B) A.固有频率C.阻尼比 B.灵敏度D.临界频率 3.封装在光电隔离耦合器内部的是(D) A两个光敏二极管 C一个光敏二极管和一个光敏三极管B两个发光二极管 D一个发光二极管和一个光电三极管 4.适合在爆炸等极其恶劣的条件下工作的压力传感器是(B) A.霍尔式C.电感式 B.涡流式D.电容式 5.当某晶体沿一定方向受外力作用而变形时,其相应的两个相对表面产生极性相反的电荷,去掉外力时电荷消失,这种现象称为(D) A压阻效应B应变效应C霍尔效应D压电效应 6.热电偶式温度传感器的工作原理是基于(B) A.压电效应C.应变效应 B.热电效应D.光电效应 7.矿灯瓦斯报警器的瓦斯探头属于(A) A.气敏传感器C.湿度传感器 B.水份传感器D.温度传感器 8.高分子膜湿度传感器用于检测(D) A.温度C.绝对湿度 B.温度差D.相对湿度 9.下列线位移传感器中,测量范围最大的类型是(B) A自感式B差动变压器式C电涡流式D变极距电容式10. ADC0804是八位逐次逼近型的(B) A.数/模转换器C.调制解调器 B.模/数转换器D.低通滤波器 11.热电偶的热电动势包括(A) A接触电势和温差电势B接触电势和非接触电势

C非接触电势和温差电势D温差电势和汤姆逊电势 12. 为了进行图像处理,应当先消除图像中的噪声和不必要的像素,这一过程称为(C) A 编码 B 压缩 C 前处理 D 后处理 13热敏电阻式湿敏元件能够直接检测(B) A相对湿度B绝对湿度C温度D温度差 14衡量在同一工作条件下,对同一被测量进行多次连续测量所得结果之间的不一致程度的指标是(A) A.重复性C.线性度 B.稳定性D.灵敏度 15热电偶传感器通常利用电桥不平衡原理进行补偿,其作用是(C) A扩大量程B提高灵敏度C确保测量精度D提高测量速度 16.便于集成化的有源带通滤波器由运算放大器和(A) A RC网络组成 B LC网络组成 C RL网络组成 D RLC网络组成 17.在下列传感器中,将被测物理量的变换量直接转换为电荷变化量的是(A)A压电传感器B电容传感器C电阻传感器D电感传感器 18.灵敏度高,适合测量微压,频响好,抗干扰能力较强的压力传感器是(A) A.电容式C.电感式 B.霍尔式D.涡流式 19.适合于使用红外传感器进行测量的被测物理量是(D) A厚度B加速度C转速 D 温度 20.欲检测金属表面裂纹采用的传感器是(B) A压磁式B电涡流式C气敏式D光纤式 21.相邻信号在导线上产生的噪声干扰称为(B) A电火花干扰B串扰C共模噪声干扰D差模噪声干扰

传感器动态和静态主要技术指标

传感器动态和静态主要技术指标 技术指标是表征一个产品性能优劣的客观依据。看懂技术指标,有助于正确选型和使用该产品。 传感器的技术指标分为静态指标和动态指标两类。静态指标主要考核被测静止不变条件下传感器的性能,具体包括分辨力、重复性、灵敏度、线性度、回程误差、阈值、蠕变、稳定性等。 动态指标主要考察被测量在快速变化条件下传感器的性能,主要包括频率响应和阶跃响应等。 由于传感器的技术指标众多,各种资料文献叙述角度不同,使得不同人有不同的理解,甚至产生误解和歧义。为此,以下针对传感器的几个主要技术指标进行解读:1、分辨力与分辨率: 定义:分辨力(ResoluTIon)是指传感器能够检测出的被测量的最小变化量。分辨率(ResoluTIon)是指分辨力与满量程值之比。 解读1:分辨力是传感器的最基本的指标,它表征了传感器对被测量的分辨能力。传感器的其他技术指标都是以分辨力作为最小单位来描述的。 对于具有数显功能的传感器以及仪器仪表,分辨力决定

了测量结果显示的最小位数。例如:电子数显卡尺的分辨力是0.01mm,其示指误差为±0.02mm。 解读2:分辨力是一个具有单位的绝对数值。例如,某温度传感器的分辨力为0.1℃,某加速度传感器的分辨力是0.1g等。 解读3:分辨率是与分辨力相关而且极为相似的概念,都表征了传感器对被测量的分辨能力。 二者主要区别在于:分辨率是以百分数的形式表示传感器的分辨能力,它是相对数,没有量纲。例如上述温度传感器的分辨力为0.1℃,满量程为500℃,则其分辨率为0.1/500=0.02%。2、重复性: 定义:传感器的重复性(Repeatability)是指在同一条件下、对同一被测量、沿着同一方向进行多次重复测量时,测量结果之间的差异程度。也称重复误差、再现误差等。 解读1:传感器的重复性必须是在相同的条件下得到的多次测量结果之间的差异程度。如果测量条件发生变化,测量结果之间的可比性消失,不能作为考核重复性的依据。 解读2:传感器的重复性表征了传感器测量结果的分散性和随机性。而产生这种分散性和随机性的原因,是因为传感器内部和外部不可避免地存在各种各样的随机干扰,导致传感器的最终测量结果表现为随机变量的特性。 解读3:重复性的定量表述方法,可以采用随机变量的

传感器与检测技术期末考试重点

填空20/选择20/大题35/分析15/计算10 第零章 1.传感器的定义:传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常有敏感元件和转换元件组成 2.传感器的组成:传感器有敏感元件和转换元件组成。但是由于传感器输出信号一般都很微弱,需要有信号调节与转换电路将其放大或变换为容易传输、处理、记录和显示的形式 3.传感器按能量关系分类:能量转换型传感器(热电偶、压电式、光电池、磁电),传感器直接将被测量的能量转换为输出量的能量;能量控制型传感器,由外部给传感器能量,而由被测量来控制输出的能量 第一章 4.非线性误差:在采用直线拟合线性化时,输入输出的校正曲线与其拟合直线之间的最大偏差,通常用相对误差γL来表示,γL=±ΔLmax/y FS×100%(ΔLmax 非线性最大偏差,y FS满量程输出) 5.静态灵敏度:传感器输出的变化量Δy与引起该变化量Δx之比,k=Δy/Δx 6.温度稳定性(温度漂移):指传感器在外界温度变化情况下输出量发生的变化 第二章 7.线性电位器的理想空载特性应具有严格的线性关系 8.电阻应变片的工作原理(P31设计题):基于电阻应变效应,即在导体产生接卸变形时,他的电阻值响应发生变化 9.测转速的传感器:电容式、霍尔式、光电式、电涡流式和磁电感应 10.电阻丝的灵敏系数:k0=ΔR/R=(1+2μ)-Δρ/(ρε) 11.电阻丝拉伸比例极限内,电阻的相对变化与应变成正比,即k0=1.7-3.6,ΔR/R≈k0ε,ε=Δl/l 12.金属丝式电阻应变片组成:敏感栅、基层和盖成、黏结剂、引线。其中敏感

栅是应变片最重要的部分,一般采用栅丝直径为0.015-0.05mm 13.横向效应(丝式存在横向效应铂式不存在):沿应变片轴的应变εx比然引起应变片电阻的相对变化,而沿垂直于应变片轴向的横向应变εy,也会引起其电阻的相对变化 14.温度误差及其补偿:由于敏感栅温度系数α及栅丝与试件膨胀系数(βg及βs)之差异性而产生虚假应变输出有时会产生与真实应变同数量级的误差 15.直流电桥平衡条件:R1/R2=R3/R4,R1R4=R2R3,即为电桥相邻两臂电阻的比值相等,或相对两臂电阻的乘积相等 16.直流电桥电压灵敏度:全桥U0=UΔR/R;单桥U0=UΔR/(4R);半桥U0=U ΔR/(2R);差分电桥(半桥)优点:输出电压U0与ΔR1/R1成严格的线性关系,没有非线性误差,而且电桥灵敏度比单臂时提高一倍,还具有温度补偿作用17.应变片册立传感器:荷重、拉压力传感器的弹性元件可以做成柱式、筒式、环式及梁式。半/全桥分布(图P43) 第三章 18.电感式传感器:利用线圈自感或互感的变化来实现测量的一种装置,可以用来测量位移、振动、压力、流量、重量、力矩、应变等多种物理量 19.电感式传感器的核心部分是可变自感或可变互感,在被测量转换成线圈自感或互感的变化时,一般要利用磁场作为媒介利用铁磁体的某些现象。这类传感器的主要特征是具有线圈 20.L=W2u0S0/(2l)0(电感值与线圈匝数平方成正比/与空气隙有效截面积S0成正比/与空气隙长度l0成反比。 21.变极距型(非极距型)传感器非线性原因:气隙厚度发生变化。改善:1)使初始间隙尽量大;2)测范围Δl尽量小;3)尽量使用差动式 22.与截面型自感式传感器相比,气隙型的灵敏度高。但其非线性严重,自由行程小,制造装配困难。近年来使用逐渐减少 23.差分自感式传感器其灵敏度与单极式相比较提高了一倍,非线性大大减小 24.P50变压器电桥推导

《传感器与检测技术》试题及答案

《传感器与检测技术》试题 一、填空:(20分) 1,测量系统的静态特性指标主要有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性等。(2分) 2.霍尔元件灵敏度的物理意义是表示在单位磁感应强度相单位控制电流时的霍尔电势大小。 3、光电传感器的理论基础是光电效应。通常把光线照射到物体表面后产生的光电效应分为 三类。第一类是利用在光线作用下光电子逸出物体表面的外光电效应,这类元件有光电管、 光电倍增管;第二类是利用在光线作用下使材料部电阻率改变的光电 效应,这类元件有光 敏电阻;第三类是利用在光线作用下使物体部产生一定方向电动势的光生伏特效应,这类元 件有光电池、光电仪表。 4.热电偶所产生的热电势是两种导体的接触电势和单一导体的温差电势组成的,其表达式为 Eab (T ,To )=T B A T T B A 0d )(N N ln )T T (e k 0σ-σ?+-。在热电偶温度补偿中补偿导线法(即冷端延长线法)是在连接导线和热电偶之间,接入延长线,它的作用是将热电偶的参考端移 至离热源较远并且环境温度较稳定的地方,以减小冷端温度变化的影响。 5.压磁式传感器的工作原理是:某些铁磁物质在外界机械力作用下,其部产生机械压力,从 而引起极化现象,这种现象称为正压电效应。相反,某些铁磁物质在外界磁场的作用下会产 生机械变形,这种现象称为负压电效应。(2分) 6. 变气隙式自感传感器,当街铁移动靠近铁芯时,铁芯上的线圈电感量(①增加②减小③ 不变)(2分) 7. 仪表的精度等级是用仪表的(① 相对误差 ② 绝对误差 ③ 引用误差)来表示的(2分) 8. 电容传感器的输入被测量与输出被测量间的关系,除(① 变面积型 ② 变极距型 ③ 变 介电常数型)外是线性的。(2分) 9. 电位器传器的(线性),假定电位器全长为Xmax, 其总电阻为Rmax ,它的滑臂间的阻值 可以用Rx = (① Xmax/x Rmax,②x/Xmax Rmax ,③ Xmax/XRmax ④X/XmaxRmax )来计算, 其中电阻灵敏度Rr=(① 2p(b+h)/At , ② 2pAt/b+h, ③ 2A(b+b)/pt, ④ 2Atp(b+h)) 1、变面积式自感传感器,当衔铁移动使磁路中空气缝隙的面积增大时,铁心上线圈 的电感量(①增大,②减小,③不变)。 2、在平行极板电容传感器的输入被测量与输出电容值之间的关系中,(①变面积型, ②变极距型,③变介电常数型)是线性的关系。 3、在变压器式传感器中,原方和副方互感M 的大小与原方线圈的匝数成(①正比, ②反比,③不成比例),与副方线圈的匝数成(①正比,②反比,③不成比例),与回路中磁 阻成(①正比,②反比,③不成比例)。 4、传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置, 传感器通常由直接响应于被测量的敏感元件 和产生可用信号输出的转换元件以及相应的信 号调节转换电路组成。 5、热电偶所产生的热电热是由两种导体的接触电热和单一导体的温差电热组成。 2、电阻应变片式传感器按制造材料可分为① _金属_ 材料和②____半导体__体材 料。它们在受到外力作用时电阻发生变化,其中①的电阻变化主要是由 _电阻应变效应 形 成的,而②的电阻变化主要是由 温度效应造成的。 半导体 材料传感器的灵敏度较大。 3、在变压器式传感器中,原方和副方互感M 的大小与 绕组匝数 成正比,与 穿过 线圈的磁通_成正比,与磁回路中 磁阻成反比,而单个空气隙磁阻的大小可用公式 __ 表示。 1.热电偶所产生的热电势是由两种导体的接触电势和单一导体的温差电势组成的,其表达式 为E ab (T,T o )=T B A T T B A 0d )(N N ln )T T (e k 0σ-σ?+-。在热电偶温度补偿中,补偿导线法(即冷端延长线法)是在连接导线 和热电偶之间,接入延长线它的作用是将热电偶的参 考端移至离热源较远并且环境温度较稳定的地方,以减小冷端温度变化的影响。(7分) 3.电位器或电阻传感器按特性不同,可分为线性电位器和非线性电位器。线性电位器的

传感器的技术参数说明

关于传感器的技术参数 1.额定载荷:传感器的额定载荷是指在设计此传感器时,在规定技术指标范围内能够测量的最大负荷。但实际使用时,一般只用额定量程的2/3~1/3。 2.灵敏度/额定输出:加额定载荷时和无载荷时,传感器输出信号的差值。由于传感器的输出信号与所加的激励电压有关,所以灵敏度的以单位mV/V来表示。 3.灵敏度允差:传感器实际稳定输出对应的标称灵敏度之差对该标称灵敏度的百分比。例如,某称重传感器的实际灵敏度为2.002mV/V,与之相适应的标准灵敏度则为2 mV/V,则其灵敏度允差为:((2.002-2.000)/2.000)*100%=0.1%。 4.综合误差/精度等级:根据OIML R60,±%F.S额定输出,国内一般为C3级,分度数3000。 (5)蠕变:在负荷不变(一般为额定载荷),其它测试条件也保持不变的情况下,称重传感器输出随时间的变化量对额定输出的百分比。 (6)非线性:由空载荷的输出值和额定载荷时的输出值所决定的直线和增加负荷时实测曲线之间的最大偏差对额定输出的百比分。 线性度δ=ΔYmax/Yfs*100﹪其中,ΔYmax表示输出值的最大量,Yfs表示满量程输出,注意,线性度有正负之分,因此,前面带正负号。 7)重复性误差:在相同的环境条件下,对传感器反复加载荷到额定载荷并卸载,加载荷过程中同一负荷点上输出值的最大差值对额定输出的百分比。这项特性很重要,更能反映传感器的品质。 (8)滞后允差:从无载荷逐渐加载到额定载荷然后再逐渐卸载。在同一载荷点上加载和卸载输出量的最大差值对额定输出值的百分比。 (9)零点输出/零点平衡:在推荐激励电压下,未加载荷时传感器的输出值对额定输出的百分比。 (10)零点温漂:环境温度的变化引起的零点平衡变化。一般以温度每变化10℃时,引起的零点平衡变化量对额定输出的百分比来表示。 (11)灵敏度温漂:环境温度的变化引起的灵敏度变化。一般以温度每变化10℃时,引起的灵敏度变化量对额定输出的百分比来表示。 (12)允许使用温度:规定了此传感器能适用的场合。例常温传感器一般标注为:-20℃~+70℃。高温传感器标注为:-40℃~250℃。 (13)温度补偿范围:在此温度范围内,传感器的额定输出和零点平衡均经过严密补偿,不会超出规定的范围。例:常温传感器一般标注为-10℃~+55℃。 (14)安全过载:传感器允许施加的最大负荷。允许在一定范围内超负荷工作。一般为120%~150%。

传感器与检测技术总复习精华

传感器与检测技术总复 习精华 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

填空: 1.传感器是把外界输入的非电信号转换成(电信号)的装置。 2.传感器是能感受规定的(被测量)并按照一定规律转换成可用(输出信号)的器件或装置。 3.传感器一般由(敏感元件)与转换元件组成。 (敏感元件)是指传感器中能直接感受被测量的部分 (转换元件)是指传感器中能将敏感元件输出量转换为适于传输和测量的电信号部分。 4.半导体应变片使用半导体材料制成,其工作原理是基于半导体材料的(压阻效应)。 5.半导体应变片与金属丝式应变片相比较优点是(灵敏系数)比金属丝高50~80倍。 6.压阻效应是指半导体材料某一轴向受到外力作用时,其(电阻率ρ)发生变化的现象。 7.电阻应变片的工作原理是基于(应变效应),即在导体产生机械变形时,它的电阻值相应发生变化。 8.金属应变片由(敏感栅)、基片、覆盖层和引线等部分组成。 9.常用的应变片可分为两类:(金属电阻应变片)和(半导体电阻应变片)。 半导体应变片工作原理是基于半导体材料的(压阻效应)。金属电阻应变片的工作原理基于电阻的(应变效应)。 10.金属应变片有(丝式电阻应变片)、(箔式应变片)和薄膜式应变片三种。 11.弹性敏感元件及其基本特性:物体在外力作用下而改变原来尺寸或形状的现象称为(变形),而当外力去掉后物体又能完全恢复其原来的尺寸和形状,这种变形称为(弹性变形)。 12.直线电阻丝绕成敏感栅后,虽然长度相同,但应变不同,园弧部分使灵敏系数K↓下降,这种现象称为(横向效应)。 13.为了减小横向效应产生的测量误差,现在一般多采用(箔式应变片)。 14.电阻应变片的温度补偿方法 1)应变片的自补偿法 这种温度补偿法是利用自身具有温度补偿作用的应变片(称之为温度自补偿应变片)来补偿的,应变片的自补偿法有(单丝自补偿)和(双丝组合式自补偿)。 15.产生应变片温度误差的主要因素有下述两个方面。 1)(电阻温度系数)的影响 2)试件材料和电阻丝材料的(线膨胀系数不同)的影响 16.写出三种能够测量加速度的传感器(电阻应变片式传感器)(电容传感器)(压电传感器)

传感器与检测技术期末考试试题与答案

第一章传感器基础 l.检测系统由哪几部分组成? 说明各部分的作用。 答:一个完整的检测系统或检测装置通常是由传感器、测量电路和显示记录装置等几部分组成,分别完成信息获取、转换、显示和处理等功能。当然其中还包括电源和传输通道等不可缺少的部分。下图给出了检测系统的组成框图。 检测系统的组成框图 传感器是把被测量转换成电学量的装置,显然,传感器是检测系统与被测对象直接发生联系的部件,是检测系统最重要的环节,检测系统获取信息的质量往往是由传感器的性能确定的,因为检测系统的其它环节无法添加新的检测信息并且不易消除传感器所引入的误差。 测量电路的作用是将传感器的输出信号转换成易于测量的电压或电流信号。通常传感器输出信号是微弱的,就需要由测量电路加以放大,以满足显示记录装置的要求。根据需要测量电路还能进行阻抗匹配、微分、积分、线性化补偿等信号处理工作。 显示记录装置是检测人员和检测系统联系的主要环节,主要作用是使人们了解被测量的大小或变化的过程。 2.传感器的型号有几部分组成,各部分有何意义? 依次为主称(传感器)被测量—转换原理—序号 主称——传感器,代号C; 被测量——用一个或两个汉语拼音的第一个大写字母标记。见附录表2; 转换原理——用一个或两个汉语拼音的第一个大写字母标记。见附录表3; 序号——用一个阿拉伯数字标记,厂家自定,用来表征产品设计特性、性能参数、产品系列等。若产品性能参数不变,仅在局部有改动或变动时,其序号可在原序号后面顺序地加注大写字母A、B、C等,(其中I、Q不用)。 例:应变式位移传感器:C WY-YB-20;光纤压力传感器:C Y-GQ-2。 3.测量稳压电源输出电压随负载变化的情况时,应当采用何种测量方法? 如何进行? 答:测定稳压电源输出电压随负载电阻变化的情况时,最好采用微差式测量。此时输出电压认可表示为U0,U0=U+△U,其中△U是负载电阻变化所引起的输出电压变化量,相对U来讲为一小量。如果采用偏差法测量,仪表必须有较大量程以满足U0的要求,因此对△U,这个小量造成的U0的变化就很难测准。测量原理如下图所示: 图中使用了高灵敏度电压表——毫伏表和电位差计,R r和E分别表示稳压电源的内阻和电动势,凡表示稳压电源的负载,E1、R1和R w表示电位差计的参数。在测量前调整R1使电位差计工作电流I1为标准值。然后,使稳压电源负载电阻R1为额定值。调整RP的活动触点,使毫伏表指示为零,这相当于事先用零位式测量出额定输出电压U。正式测量开始后,只需增加或减小负载电阻R L的值,负载变动所引起的稳压电源输出电压U0的微小波动值ΔU,即可由毫伏表指示出来。根据U0=U+ΔU,稳压电源输出电压在各种负载下的值都可以准确地测量出来。微差式测量法的优点是反应速度快,测量精度高,特别适合于在线控制参数的测量。

称重传感器常用技术参数_百度文库.

称重传感器常用技术参数 一、用分项指标表示法在介绍称重传感器技术参数时,传统的方法是采用分项指标,其优点是物理意义明确,沿用多年,熟悉的人较多。我们现在列出其主要项目如下:*额定容量生产厂家给出的称量范围的上限值。 *额定输出 (灵敏度加额定载荷时和无载荷时, 传感器输出信号的差值。由于称重传感器的输出信号与所加的激励电压有关,所以额定输出的单位以 mV/V来表示。并称之为灵敏度。 *灵敏度允差传感器的实际稳定输出与对应的标称额定输出之差对该标称额定输出的百分比。例如, 某称重传感器的实际额定输出为 2. 002mV/V,与之相适应的标准额定输出则为2mV/V,则其灵敏度允差为:((2. 002 – 2。 000 /2.000 *100% = 0.1% *非线性由空载荷的输出值和额定载荷时输出值所决定的直线和增加负荷之实测曲线之间最大偏差对于额定输出值的百分比。 *滞后允差从无载荷逐渐加载到额定载荷然后再逐渐卸载。在同一载荷点上加载和卸载输出量的最大差值对额定输出值的百分比。*重复性误差在相同的环境条件下, 对传感器反复加荷到额定载荷并卸载。加荷过程中同一负荷点上输出值的最大差值对额定输出的百分比。 *蠕变在负荷不变(一般取为额定载荷 ,其它测试条件也保持不变的情形下,称重传感器输出随时间的变化量对额定输出的百分比。 *零点输出在推荐电压激励下,未加载荷时传感器的输出值对额定输出的百分比。 *绝缘阻抗传感器的电路和弹性体之间的直流阻抗值。 *输入阻抗信号输出端开路, 传感器未加负荷时, 从电源激励输入端测得的阻抗 值。 *输出阻抗电源激励输入端短路,传感器未加载荷时,从信号输出端测得的阻抗。 *温度补偿范围在此温度范围内,传感器的额定输出和零平衡均经过严密补偿, 从而不会超出规定的范围。 *零点温度影响环境温度的变化引起的零平衡变化。一般以温度每变化 10 K 时,引起的零平衡变化量对额定输出的百分比来表示。*额定输出温度影响环境温度的变化引起的额定输出变化。一般以温度每变化 10K 引起额定定输出的变化量额定输出的百分比来表示。 *使用温度范围传感器在此温度范围内使用其任何性能参数均不会产生永久性有害变化二、在《 OIML60号国际建议》中采用的术语。以《 OIML 60号国际建议》92年版为基础,参考 《 JJG669--90称重传感器检定规程》新的技术参数大致有:*称重传感器输出被测

传感器与检测技术课程教学大纲

《传感器与检测技术》课程教学大纲 一、课程的性质、课程设置的目的及开课对象 本课程是机械设计制造及其自动化专业(机械电子工程方向)学生的重要专业课程。本课程设置的目的是通过对传感器的一般特性与分析方法,传感器的工作原理、特性及应用,检测系统的基本概念的学习,通过本课程的学习,使学生掌握检测系统的设计和分析方法,能够根据工程需要选用合适的传感器,并能够对检测系统的性能进行分析、对测得的数据进行处理。 开课对象:机械设计制造及其自动化专业(机械电子工程方向)本科生。 二、先修课程:高等数学、工程数学、电子技术、数字电子技术等。 三、教学方法与考核方式 1.教学方法:理论教学与实验教学相结合。 2.考核方式:闭卷考试。 四、学时分配 总学时48学时。其中:理论38学时,实验10学时 五、课程教学内容与学时 (一)传感器与检测技术概念 传感器的组成、分类及发展动向,技术的定义及应用。 重点:传感器与检测技术的目的和意义。 教学方法:课堂教学和现场认识教学相结合。 (二)传感器的特性 1.传感器的静态特性 2.传感器的动态特性及其响; 重点:传感器的静态特性与动态特性的性质。 难点:工艺计算与平面布置;微机联网控制系统。 广度:本章主要讲述传感器特性的基础知识。 深度:主要讲述传感器的特性,不涉及复杂的内容。 教学方法、手段:课堂教学、多媒体教学,强化实际操作。 (三)电阻式传感器 1.电位器式传感器的主要特性及其应用 2.应变片的工作原理 3.应变片式电阻传感器的主要特性及应用 重点:理解电位器式传感器、应变片式传感器的工作原理,掌握它们的性能特点,了解其常用结构形式及应用。 难点:线性与非线性电位器的测量原理,应变片式传感器的测量原理、温度误差及其补偿。

传感器与检测技术(重点知识点总结)

传感器与检测技术知识总结 1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。 一、传感器的组成 2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。 ③基本转换电路是将该电信号转换成便于传输,处理的电量。 二、传感器的分类 1、按被测量对象分类 (1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。 2、传感器按工作机理 (1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。 (2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。 3、按被测物理量分类 如位移传感器用于测量位移,温度传感器用于测量温度。 4、按工作原理分类主要是有利于传感器的设计和应用。 5、按传感器能量源分类 (1)无源型:不需外加电源。而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型; (2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。 6、按输出信号的性质分类 (1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF); (2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性; (3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。其代码“1”为高电平,“0”为低电平。 三、传感器的特性及主要性能指标 1、传感器的特性主要是指输出与输入之间的关系,有静态特性和动态特性。 2、传感器的静态特性是当传感器的输入量为常量或随时间作缓慢变化时,传感器的输出与输入之间的关系,叫静态特性,简称静特性。 表征传感器静态特性的指标有线性度,敏感度,重复性等。 3、传感器的动态特性是指传感器的输出量对于随时间变化的输入量的响应特性称为动态特性,简称动特性。传感器的动态特性取决于传感器的本身及输入信号的形式。传感器按其传递,转换信息的形式可分为①接触式环节;②模拟环节; ③数字环节。评定其动态特性:正弦周期信号、阶跃信号。 4、传感器的主要性能要求是:1)高精度、低成本。2)高灵敏度。3)工作可靠。4)稳定性好,应长期工作稳定,抗腐蚀性好;5)抗干扰能力强;6)动态性能良好。7)结构简单、小巧,使用维护方便等; 四、传感检测技术的地位和作用 1、地位:传感检测技术是一种随着现代科学技术的发展而迅猛发展的技术,是机电一体化系统不可缺少的关键技术之一。 2、作用:能够进行信息获取、信息转换、信息传递及信息处理等功能。应用:计算机集成制造系统(CIMS)、柔性制造系统(FMS)、加工中心(MC)、计算机辅助制造系统(CAM)。 五、基本特性的评价 1、测量范围:是指传感器在允许误差限内,其被测量值的范围; 量程:则是指传感器在测量范围内上限值和下限值之差。2、过载能力:一般情况下,在不引起传感器的规定性能指标永久改变条件下,传感器允许超过其测量范围的能力。过载能力通常用允许超过测量上限或下限的被测量值与量程的百分比表示。 3、灵敏度:是指传感器输出量Y与引起此变化的输入量的变化X之比。 4、灵敏度表示传感器或传感检测系统对被测物理量变化的反应能力。灵敏度越高越好,因为灵敏度越高,传感器所能感知的变化量越小,即被测量稍有微小变化,传感器就有较大输出。K值越大,对外界反应越强。 5、反映非线性误差的程度是线性度。线性度是以一定的拟合直线作基准与校准曲线作比较,用其不一致的最大偏差△Lmax与理论量程输出值Y(=ymax—ymin)的百分比进行计算。 6、稳定性在相同条件,相当长时间内,其输入/输出特性不发生变化的能力,影响传感器稳定性的因素是时间和环境。 7、温度影响其零漂,零漂是指还没输入时,输出值随时间变化而变化。长期使用会产生蠕变现象。 8、重复性:是衡量在同一工作条件下,对同一被测量进行多次连续测量所得结果之间的不一致程度的指标;(分散范围

传感器技术期末考试试题库

一、填空题(每题3分) 1、传感器静态性是指 传感器在被测量的各个值处于稳定状态时 ,输 出量和输入量之间的关系称为传感器的静态特性。 2、静态特性指标其中的线性度的定义是指 。 3、静态特性指标其中的灵敏度的定义是指 。 4、静态特性指标其中的精度等级的定义式是 传感器的精度等级是允许的最大绝对误差相对于其测量范围的百分数 ,即A =ΔA/Y FS *100%。 5、最小检测量和分辨力的表达式是 。 6、我们把 叫传感器的迟滞。 7、传感器是重复性的物理含意是 。 8、传感器是零点漂移是指 。 9、传感器是温度漂移是指 。 10、 传感器对随时间变化的输入量的响应特性 叫传感器动态性。 11、动态特性中对一阶传感器主要技术指标有 时间常数 。 12、动态特性中对二阶传感器主要技术指标有 固有频率 、阻尼比。 13、动态特性中对二阶传感器主要技术指标有 固有频率、 阻尼比。 14、传感器确定拟合直线有 切线法、端基法和最小二乘法 3种方法。 max *100% L F S Y Y σ??=±

15、传感器确定拟合直线切线法是将过实验曲线上的初始点的切线作为按惯例直线的方法。 16、传感器确定拟合直线端基法是将把传感器校准数据的零点输出 的平均值a 0和满量程输出的平均值b 连成直线a b 作为传感器特性的拟合 直线。 17、传感器确定拟合直线最小二乘法是用最小二乘法确定拟合直线的截距和斜率从而确定拟全直线方程的方法。 25、传感器的传递函数的定义是H(S)=Y(S)/X(S) 。 29、幅频特性是指传递函数的幅值随被测频率的变化规 律。 30、相频特性是指传递函数的相角随被测频率的变化规 律。 31、传感器中超调量是指超过稳态值的最大值A(过冲)与稳态值之比的百分数。 32、我们制作传感器时总是期望其输出特性接近零阶传感器。 33、零阶传感器的幅频特性是直线。 34、当待测频率远小于传感器的固有频率时,传感器测得的动态参数与静态参数一致。 35、当待测频率远大于传感器的固有频率时,传感器没有响应。

传感器与检测技术第二知识点总结

、电阻式传感器 1) 电阻式传感器的 原理:将被测量转化为传感器 电阻值的变化,并加上测量电路。 2) 主要的种类:电位器式、 应变式、热电阻、热敏电阻 应变电阻式传感器 1) 应变:在外部作用力下发生形变的现象。 2) 应变电阻式传感器:利用电阻应变片将应变转化为电阻值的变化 a. 组成:弹性元件+电阻应变片 b. 主要测量对象:力、力矩、压力、加速度、重量。 c. 原理:作用力使弹性元件形变发生应变或位移应变敏感元件电阻值变化通过测量电路变成电压等 点的输出。 PL 3) 电阻值:R (电阻率、长度、截面积)。 A 4) 应力与应变的关系: 打二E ;(被测试件的应力=被测试件的材料弹性模量 *轴向应变) 应注意的问题: a. R3=R4; b. R1与 R2应有相同的温度系数、线膨胀系数、应变灵敏度、初值; c. 补偿片的材料一样,个参数相同; d. 工作环境一样; 、电感式传感器 1) 电感式传感器的 原理:将输入物理量的变化转化为线圈 自感系数L 或互感系数 M 的变化 2) 种类:变磁阻式、变压器式、电涡流式。 3) 主要测量 物理量:位移、振动、压力、流量、比重。 变磁阻电感式传感器 1) 原理:衔铁移动导致气隙变化导致 电感量变化,从而得知位移量的大小方向。 点 八、、 5) 应力与力和受力面积的关系: 二(应力) F (力)

2)自感系数公式: 2 N 4 (( 磁导率)Ao (截面积) L 二2;(气隙厚度) 3) 种类:变气隙厚度、变气隙面积 4) 变磁阻电感式传感器的灵敏度取决于工作使得 当前厚度。 5) 测量电路:交流电桥、变压器式交变电桥、谐振式测量电桥。 P56 6) 应用:变气隙厚度电感式压力传感器(位移导致气隙变化导致自感系数变化导致电流变化) 差动变压器电感式传感器 1) 原理:把非电量的变化转化为互感量的变化。 2) 种类:变隙式、变面积式、螺线管式。 3) 测量电路:差动整流电路、相敏捡波电路。 电涡流电感式传感器 1) 电涡流效应:块状金属导体置于变化的磁场中或在磁场中做切割磁感线的运动,磁通变化,产生电动 势,电动势将在导体表面形成闭合的电流回路。 Z W 「,r ,f ,x ) 等效阻抗 (电阻率、磁导率、尺寸 、励磁电流的频率、距 离) 2) 趋肤效应:电涡流只集中在导体表面的现象。 3) 原理:产生的感应电流产生新的交变磁场来反抗原磁场,式传感器的等效阻抗变化 4) 测量电路:调频式测量电路、调幅式测量电路。 5) 测量对象:位移、厚度、表面温度、速度、应力、材料损伤、振幅、转速。 三、电容式传感器 1) 原理:将非电量的变化转化为电容量的变化。 2) 特点:结构简单、体积小、分辨率高、动态响应好、温度稳定性好、电容量小、负载能力差、易受外 界环境的影响。 3) 测量对象:位移、振动、角度、加速度、压力,差压,液面、成分含量。 结构分类:平板和圆筒电容式传感器 1) 公式: >0 zr A d 2) 平板式电容器可分为三类:变极板覆盖面积的 的变极距型。 变面积型,变介质介电常数的 变介质型、变极板间距离 3) 测量电路:调频电路、运算放大器、变压器是交流电桥、二极管双 T 型交流电路、脉冲宽度调制电路 4) 典型应用 四、压电式传感器(有源) 1) 正压电效应:对某些电介质沿一定方向加外力使之形变,其内部产生极化而在表面产生 电荷聚集的现

相关主题
文本预览
相关文档 最新文档