当前位置:文档之家› 【资料】污水处理厂低温等离子体恶臭治理技术

【资料】污水处理厂低温等离子体恶臭治理技术

【资料】污水处理厂低温等离子体恶臭治理技术
【资料】污水处理厂低温等离子体恶臭治理技术

2005年第31卷第8期工业安全与环保

August 2005Industrial S afety and Environmental Protec tion

#17#

污水处理厂低温等离子体恶臭治理技术

许晓俊阚亮亮

(丹阳市环境监测站厂江苏丹阳212300

摘要利用低温等离子体技术处理污水厂恶臭气体, 是一种新的技术。介绍了该技术处理恶臭的机理和相关工程的工艺流程以及处理效果, 实际应用表明该技术对污水处理厂恶臭气体的治理是十分有效的。关键词低温等离子体污水处理厂恶臭

Odor Contr ol in Wastewater Tr eatment Plant by Low Temper atur e Plasma

Xu Xiaojun Kan Li angliang

(Danyang Envi ronm ent Monitoring Stat ion Danyang , J iangsu 212300

Abstract It is a new way that l ow tem perature plasm a technology is used to treat odor in the was te water plant. The mechani sm of removing odor, process and fi nal effects are introduced and the fac tual application shows that this way is effective. Keywords low te mperature plasm a wastewater treatm ent plant odor

随着人们环保意识的增强, 对环境质量的要求也越来越高, 只注重粉尘、SO 2和NO X 的大气污染防治工作和研究已不能满足人们对大气的要求, 人们对恶臭带来的污染更加敏感。产生恶臭的物质不仅可使人产生不快和厌恶感, 而且许多恶臭物质还危害人们的健康甚至生命。

污水处理厂是城市恶臭的主要来源, 大多数污水处理厂在设计时很少考虑除臭

这一环节, 产生的恶臭影响了周围居民生活, 并是污染环境的公害。

若Fe 2+的投加量过高, 则在高催化剂浓度下, H 2O 2迅速产生大量的活性#O H, 但其同基质有机物的反应不那么快, 使未消耗的游离#O H 积聚, 这些#O H 相互反应生成水, 致使一部分最初产生的#O H 被消耗掉。2. 2. 5

1 污水处理厂恶臭的来源

在污水处理过程中厌氧微生物需消耗有机物、硫和氮, 而城市污水通常含足够

的有机硫和无机盐。恶臭气体通常是微生物活动的结果, 它们的呼吸、发酵过程的

产物和不完全产物形成了由各种有机气体和无机气体组成的恶臭。一般分为3类:

含硫化合物(硫化氢、甲硫醇、甲基硫醚等 , 含氮化合物(氨、三甲胺 , 碳、氢或

碳、氢、氧组成的化合物(低级醇、醛、脂肪酸 [1,2]。3 结论

(1 研究表明用絮凝

催化氧化法处理造纸中段废水是

一种有效的处理方法。其最佳工艺条件是:絮凝时, pH=6~7, PA C 投加量为1.

5g/L; 催化氧化时, 30%H 2O 2投加量为 1. 5g/L, t =80e , Q Fe 2+=0. 15g/L 。

(2 该法处理造纸中段废水, CO D 、色度去除率分别为97. 0%、98. 5%, 处理后的出水无色无味, 残余CO D 仅为52mg/L, 可直接排放或回收利用。

(3 该法具有去除率高, 不产生二次污染的优点。

参考文献

1 汤鸿霄, 钱易, 文湘华, 等. 水体颗粒物和难降解有机物的特性与控制技术原理. 北京:中国环境科学出版社, 2000. 141

2 王罗春, 闻人勤, 丁桓如. Fenton 试剂处理难降解有机废水及其应

用. 环境保护科学, 2001, (276

温度的影响

22

22

在Q H O =1. 5g/L, Q Fe 2+/Q H O =0. 1条件下改变温度进行催化氧化后, 结果

如图6

所示。

图6 温度的影响

3 王罗春, 沈丽蓉, 丁桓如, 等. Fenton 试剂处理电厂离子交换树脂再生废水. 环

境污染与防治, 2001, 23(5 :238

4 陈传好, 谢波. Fenton 试剂处理废水中各影响因子的作用机制. 环境科学, 2000, 21(3 :93

5 刘红, 周志辉, 吴克明. Fenton 试剂催化氧化

水. 环境科学与技术, 2002, 27(2:71

(废

由图6可知, 当t <80e 时, CO D 去除率随温度升高逐渐增加, 即温度对降解CO D 有正效应; 当t >80e 时, CO D 去除率略有下降, 原因可能是:对于Fenton 试剂反应体系, 适当的温度激活自由基, 而温度过高就会出现H 2O 2分解为O 2和2

#18#

在污水处理系统中, 主要产生污染源的地方是进水格栅、曝气沉砂池、曝气池

及最终储泥池等工序段。国外许多研究机构对污水中恶臭成分进行了测定, 日本某一污水处理厂进水中的恶臭成分如表1所示[3]。

表1 日本某污水厂进水中硫、氨类恶臭物质的情况化合物硫化氢二硫化碳甲硫

醇二甲基硫二甲基二硫二甲胺三甲胺异丙胺吲哚

甲基吲哚

平均质量浓度/(L g #L -1 质量浓度范围/(L g #L -1

23. 90. 814810. 652. 92107833570700

15~280. 2~1. 711~3223~2730~79

V OC S +O 2、O -O +2、2

3+C O 2+H 2O

从上述反应来看, 恶臭组分经过处理后, 转变为N O X 、SO 2、CO 2、H 2O 等小分子, 在一定的浓度下, 各种反应的转化率均在95%以上, 而且恶臭浓度较低, 因此产物的浓度极低, 均能被周边的大气所接受。 2. 2

低温等离子体除臭系统的工艺流程

污水处理厂平均流量较大, 恶臭气体浓度比较高, 根据

通风(一般每小时换气10次左右及废气治理工艺要求, 可计算出需要处理的恶

臭气体的量。整套低温等离子体除臭设备布置在污水厂设备房的上层, 而需要处理的臭气空间是安装污水处理设备的地下室, 设计时将吸风管和回风管穿越上层地平

进入中层空间, 需处理的恶臭气体由地下室内被风机抽出, 其中的空气被等离子体发射管激活, 与其中的活性粒子发生碰撞, 多数恶臭气体分子被激发、离解, 少数恶臭分子经等离子发射管时, 被高能电子和等离子体直接破坏。同时, 收集系统考虑在格栅间内布风管, 设置吸风口收集, 与回风及进风口形成良好气流组织, 将部分反应段风送回隔间作室内循环, 目的是将等离子体释放到隔间内, 形成隔间内的多级除臭净化, 降低隔间内臭气浓度, 提高整个系统的净化效率。

完整的除臭控制系统主要由集气系统、连接管道系统、净化设备、风机排气、

电气控制等构成。工艺流程见图1。

2 低温等离子体除臭系统 2. 1 低温等离子体除臭的机理

等离子体去除恶臭是通过两个途径实现的:一个是在高能电子的瞬时高能量作

用下, 打开某些有害气体分子的化学键, 使其直接分解成单质原子或无害分子; 另一个是在大量高能电子、离子、激发态粒子和氧自由基、氢氧自由基(自由基因带有不成对电子而具有很强的活性等作用下的氧化分解成无害产物[4]。主要有下面几个过程:

(1 在高能电子作用下, 强氧化性自由基O 、O H 、HO 2的产生;

(2 有机物分子受到高能电子碰撞被激发, 及原子键断裂形成小碎片基团和原子;

(3 O 、O H 、HO 2与激发原子、有机物分子、破碎的基团、其他自由基等发

生一系列反应, 有机物分子最终被氧化降解为CO 、CO 2、H 2O 。去除率的高低与电子能量和有机物分子结合键能的大小有关。

从除臭机理上分析, 主要发生以下反应

H 2S+O 2、O -O +2、2N H 3+

O 2、O -2

、O +2

[5]

图1 等离子体恶臭净化流程

2. 3

低温等离子体除臭系统的处理效果

以某工程为例说明该系统的处理效果。待处理的空间

:

3+H 2O x +H 2O

约为1600m 3, 采用8h 连续运行, 处理系统中气体流速达到0. 7m/s, 压降小于100Pa, 废气在反应区停留时间为2s, 入口流量9000m /h, 压降80Pa 下的净化数据如表2。

NH 3/(m g #m -3

臭气浓度(无量纲

效率/% 94. 1 92. 5 94. 4 92. 5 94. 5 90. 9 94. 9 93. 4

入口 367 596 476 298 650 869 1076 618

出口2354222642286937

效率/% 93. 7 90. 9 95. 4 91. 3 93. 5 96. 8 93. 6 93. 6

3

表2 流速0. 7m/s 下, 恶臭的净化效果

次数1234567平均

入口 1. 79 2. 67 2. 76 3. 58 2. 38 3. 27 2. 75 2. 35

H 2/(mg #m -3 出口 0. 1320. 1600. 2040. 3220. 230. 2780. 2370. 189

效率/% 92. 6 94. 0 92. 6 91. 0 90. 3 91. 5 91. 4 91. 9

入口 1. 32 1. 12 1. 21 1. 02 0. 952 0. 869 1. 06 1. 08

出口0. 0780. 0840. 0680. 0760. 0520. 0790. 0540. 070

在各组分处理过程中, 对H 2S 和甲硫醇的处理效果的测定, 采用了

(GB/T1467993 气相色谱仪法, 对N H 3处理过程的分析, 采用了稀硫酸吸收的次氯酸纳水杨酸分光光度计(G B/T146791993 测定其去除率。

上述结果得出, H 2S 去除率可达91. 9%, N H 3去除率可达, 。际污水处理厂的恶臭气体, 其中各种组分的浓度波动较大, 以上数据以平均值为判定依据。 3 总结

低温等离子体污水处理厂恶臭污染物净化系统处理效果明显。当参数得到优化时, 该技术去除恶臭中的H 2S 、N 390%理

2005年第31卷第8期工业安全与环保

August 2005Industrial S afety and Environmental Protec tion

#19#

臭氧在水处理中的应用

张水平董呈杰袁非亮

(江西理工大学环境与建筑工程学院江西赣州341000

摘要介绍了臭氧的性质, 在水处理中的机理, 在水处理中的应用现状及臭氧氧

化和其他联用技术, 国内外臭氧技术开发应用和发展趋势。

关键词臭氧水处理臭氧联用技术

The Application of Ozone in Water Tr eatment

Zhang Shui ping Dong Chengjie Yuan Feili ang

(School o f Env ironm ental and A rc hitect ural Enginee ring, J iangxi Universit y o

f S cienc e and Technology G anzhou , J iangxi 341000 Abstract In this paper, the applicati on of ozone is introduced, includin

g characteristics of oz one, applicati on m echanis m, current application si tuati on, oz one oxidati on and devel opment tendenc y at home and abroad, and so on. Keywords ozone water treatm ent combi ned technol ogy wi t

h ozone

1 臭氧(O 3 的性质

臭氧是氧气的同素异形体, 常温下是一种不稳定的淡紫色气体, 有刺激性气味。

臭氧在水中的氧化还原电位是 2. 07V, 仅次于氟(F 2, 电位是2. 87V , 臭氧在水中的

溶解度受温度、臭氧浓度影响很大。表1是臭氧在水中的溶解度。

表1 臭氧在水中的溶解度

臭氧气体质量浓度m g #L -12. 0718. 1124. 1436. 21

1

有微生物的程度, 原理是臭氧能破坏或者溶解微生物的细胞壁, 迅速扩散到细胞内部, 氧化破坏细胞内酶导致其死亡。与传统的氯气相比, 臭氧的杀菌能力是氯气的600~3000倍, 在臭氧水中的臭氧一旦达到灭菌的阈值后, 消毒、灭菌可以瞬时发生, 而pH 的变化范围大。臭氧的半衰期短(p H =7. 6时为41min, pH=10时为0. 5min , 容易分解, 不会对被处理水体造成污染。

25e

30e

溶解度/(m g #L -1

0e 8e 8. 31

10e

15e 5. 608. 40

20e

臭氧能将产生颜色的大分子降解成小分子, 最后有效除去(造纸废水的特点是高BO D 、CO D 、高色度和臭味 , 其原理是臭氧及其产生的活泼氢氧自由基(氧化还原电位为2. 80, 比臭氧还要高将产生颜色的大分子降解成小分子的酸和醛, 从而达到脱色、除臭的目的。

臭氧在低质量浓度时(0. 5~15mg/L 可以加强铝与臭氧氧化的有机物(所有这些产物比未经臭氧处理的化合物具有更高的极性的亲合力, 对有机物起聚合作用, 有效地提高它们的分子量, 如果接触到铁、铝这类多价阳离子就使氧化后的产物出现

絮凝现象。臭氧将Fe 2+氧化为Fe 3+, 生成Fe (O H 3, Fe(OH 3起到絮凝剂的作用。通常锰离子可以氧化成二氧化锰, 但是, 臭氧量大时生成高锰酸盐离子, 使水呈

淡红色, 同时还有毒性, 一般铁和锰可在混凝、沉淀时氧化, 生成氢氧化铁和二氧化锰, 在滤池中去除。

Water Environm ent &Technology, 1996, 21(6 :35384 Atkinson R. Kinetics and m ec hanis ms of the gas

phase reactions of the

@10-60449069

6

7. 396. 504. 293. 532. 706. 435. 094. 048. 577. 055. 39

12. 4711. 099. 75

1208818132

16. 6414. 7913. 0011. 19

24. 9222. 1819. 5016. 7912. 8610. 588. 09

注:20e 时, 101kPa 条件下测定[1]。

2

消毒、脱色、除臭、氧化难降解有机物与改善臭氧杀菌、

由于臭氧水处理速度快, 不产生二次污染, 操作方便, 可

絮凝效果的原理

以利用空气就地制备, 因此, 臭氧氧化法应用十分广泛, 它在杀菌、消毒、脱色、除臭、氧化难降解有机物与改善絮凝效果方面有明显的优势。

臭氧用于杀菌消毒可以达到彻底、永久地消灭其内部所能耗为0. 05~1k W

#h/m , 噪声小于60dB(A 。通过工程试验证明, 该技术应用于低浓度、高流速、大

风量恶臭气体的处理, 可以得到较高的去除效率, 如果在保证处理量的前提下, 增加

气体停留时间, 去除率还可以进一步提高。

参考文献

1 纪树满. 恶臭污染的防治. 重庆环境科学, 1999, 21(

2 :272 郭静, 梁娟, 等. 污水

处理厂恶臭污染物状况分析与评价. 中国给

水排水, 2002, 18(2 :41~42

3

gan et al. C s 3

hydroxyl radical with organic com pounds under atm ospheric conditions. Chem Re. 1985, 69201

5 白希尧, 等. 脉冲活化一次全部治理CO, S O 2, NO X 和烟尘研究

(?, ò. 环境科学研究, 1995, 8(3 :1~5;8(4 :14~18

作者简介许晓俊, 男, 1972年生, 助理工程师, 江苏丹阳人, 从事环境保护工程设

计和环境影响评价项目的咨询服务工作。

(

DDBD低温等离子废气治理技术

双介质阻挡放电低温等离子体废气治理技术 ■技术简介 拥有自主知识产权的DDBD技术采用双介质阻挡放电(Double Dielectric Barrier Discharge,简称DDBD)形式产生等离子体,所产生等离子体的密度是其他技术产生等离子体密度的1500倍,该技术是派力迪公司与复旦大学共同研发成功的。自1994年由复旦大学开始研发,最初用于氟利昂类(Freon)、哈隆类(Halong)物质的分解处理,是国家为了研究保护地球臭氧层而设立的科研项目。后来与派力迪合作研发拓宽其应用领域,延伸至工业恶臭、异味、有毒有害气体处理。派力迪开创了DDBD技术大规模化工业应用的先河,该技术节能、环保,应用范围广,所有化工生产环节产生的恶臭异味几乎都可以处理,并对二恶英有良好的分解效果,侯立安院士评价说:“DDBD技术的发明,为化工清洁生产奠定基础,是近代化学工业生产的一次技术革命”,该技术世界首创、国际领先,属于真正的中国创造。 DDBD等离子体工业废气处理技术是派力迪公司由复旦大学引进吸收,已研制出标准化废气治理设备,利用所产生的高能电子、自由基等活性粒子激活、电离、裂解工业废气中的各组成份,使之发生分解,氧化等一些列复杂的化学反应,再经过多级净化,从而消除各种污染源排放的异味、臭味污染物,使有毒有害气体达到低毒化、无毒化,保护人类生存环境。 DDBD等离子体工业废气处理技术作为一种新的环境污染治理技术,由于其对污染物分子的高效分解且处理能耗低等特点,为工业废气的处理开辟了一条新的思路。该技术的应用,具有现代化工业生产里程碑的意义。 ■技术作用原理 低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。(注:低温等离子体相对于高温等离子体而言,属于常温运行。) DDBD等离子体反应区富含极高的物质,如高能电子、离子、自由基和激发态分子等,废气中的污染物质可与这些具有较高能量的物质发生反应,使污染物质在极短的时间内发生分解,并发生后续的各种反应以达到讲解污染物的目的。与传统的电晕放电形势产生的低温

过氧化氢等离子体灭菌器

过氧化氢等离子体灭菌器(强生200型)操作流程 一、操作程序 1、显示器屏幕上显示出“touch screen to start”(触屏开始)字样,用手随意点击屏幕任何位置,进入下一操作。 2、如需插入新卡匣,屏幕则会显示出“Please insert new cassette”,此时插入新卡匣后继续下一操作。 3、点击“keyboard”(键盘),进行操作人员登陆:触摸operation空格处,使光标出现在此栏,键入小写字母“o”;点击“enter”,使光标跳至“password”处,键入密码小写字母“o”。 4、点击“open door”(开门),将需灭菌物品按装载要求放入灭菌舱;点击“close door”(关门),完成物品的装载。 5、点击“Keyboard”键盘,输入装载物品的数据:触摸item此栏,键入每一个物品名称和其跟踪编号;物品输入后,点击“enter”,键入的名单即进入名单框,数据输入完毕,点击“done”。 6、选择并开始灭菌循环:点击屏幕右下角“go to”可以进入其他选项,例如选择长短循环(长循环long,短循环short);点击“start cycle”启动灭菌循环,此时屏幕右下角https://www.doczj.com/doc/8f4929664.html,pletion之后显示时间为完成该循环所需时间;灭菌进行中点击“cancle cycle”可随时取消当前循环。 7、灭菌循环运行完成屏幕左上方显示“cycle completed”,设备将自动打印灭菌循环记录;至无菌区取出灭菌物品,点击“done”键确认循环完成,屏幕回到开始状态,重新进入并点击屏幕“open door”键开门取出物品,按“close door”键设备回到备用状态。 二、日常维护与保养 1、每日用软布清洁灭菌舱内部及舱门,避免使用粗糙的清洁工具如:金属刷或钢丝球等。 2、定期清理蒸发器,处理时应确定蒸发器是冷却的并戴天然橡胶手套以避免碰触到任何残余的过氧化氢。 3、以反时针方向转动蒸发器,拆除后用流水冲洗干净。 4、用湿布擦拭蒸发器外罩的内部表面,然后用无绒的布擦干。 5、用无绒的布擦干蒸发器,然后安装。 三、注意事项 1、应使用专用特卫强灭菌袋和无纺布包装材质。 2、适用于不耐热、不耐湿的医疗用品。如各种内镜、电子电源器材、金属器材、导线及光学设备、陶瓷制品等。

低温等离子体消毒

低温等离子体消毒 1.消毒灭菌的定义 2.低温等离子体灭菌技术 3.低温等离子体的消毒机理 4.低温等离子灭菌的优缺点 5.低温等离子体杀菌消毒技术的应用 消毒灭菌的定义 消毒:消毒是指用化学的或物理的方法杀灭或消除传播媒介上的病原微生物,使之达到无传播感染水平的处理即不再有传播感染的危险。灭菌:灭菌是指杀灭或去除外界环境中一切微生物的过程。包括致病性微生物和不致病的微生物,如细菌(含芽胞)、病毒、真菌(含孢子)等,一般认为不包括原虫和寄生虫卵,以及藻类。灭菌是获得纯培养的必要条件,也是食品工业和医药领域中必需的技术。 灭菌是个绝对的概念,意为完全杀灭所处理微生物,经过灭菌处理的物品可以直接进入人体无菌组织内而不会引起感染,因此,灭菌是最彻底的消毒。然而事实上要达到这样的程度是困难的,因此国际上通用方法规定,灭菌过程必须使物品污染的微生物的存活概率减少到E-6 (灭菌保证水平),换句话说,要将目标微生物杀灭率达到 99.9999%。 在当前面对如此严苛的灭菌要求,理想的灭菌器应该具有如下的特点和性能: ( 1 )灭菌速度应尽量快,时间要短;

( 2 )灭菌温度应该低于5 5℃左右,对器械、物品损伤尽量小;( 3 )灭菌时对整个环境无影响,灭菌残留物是无害的; ( 4 )能够满足多种物品的灭菌要求; ( 5 )使用耗材价格不能过高。 现如今所使用的灭菌方法多为热力灭菌、辐射灭菌、环氧乙烷灭菌、低温甲醛蒸汽灭菌以及使用各种灭菌剂如戊二醛、二氧化氯、过氧乙酸和过氧化氢等长时间浸泡的方法。 这些灭菌方法存在着许多限制条件,如会对环境造成危害、灭菌时间过长、灭菌温度过高致使器械损伤较大、食品营养流失等 随着对消毒、灭菌的处理要求越来越高。传统灭菌方法的局限性正在促使新的灭菌技术的产生和发展。 低温等离子体灭菌技术 等离子体灭菌技术是新一代的高科技灭菌技术,它能克服现有灭菌方法的一些局限性和不足之处,提高消毒灭菌效果。 例如对于不适宜用高温蒸汽法和红外法消毒处理的塑胶、光纤、人工晶体及光学玻璃材料、不适合用微波法处理的金属物品,以及不易达到消毒效果的缝隙角落等地方,采用本技术,能在低温下很好地达到消菌灭菌处理而不会对被处理物品造成损坏。本技术采用的等离子体工作物质无毒无害。本技术还可应用到生产流水线上对产品进行消毒灭菌处理。

低温等离子体技术在表面改性中的应用

低温等离子体技术在表面改性中的应用低温等离子体中粒子的能量一般约为几个至几十电子伏特,大于聚合物材料的结合键能(几个至十几电子伏特),完全可以破裂有机大分子的化学键而形成新键;但远低于高能放射性射线,只涉及材料表面,不影响基体的性能。处于非热力学平衡状态下的低温等离子体中,电子具有较高的能量,可以断裂材料表面分子的化学键,提高粒子的化学反应活性(大于热等离子体),而中性粒子的温度接近室温,这些优点为热敏性高分子聚合物表面改性提供了适宜的条件。 1 形成装置及影响因素 选择适宜的放电方式可获得不同性质和应用特点的等离子体,通常,热等离子体是气体在大气压下电晕放电产生,冷等离子体由低压气体辉光放电形成。 热等离子体装置是利用带电体尖端(如刀状或针状尖端和狭缝式电极)造成不均匀电场,称电晕放电,使用电压和频率、电极间距、处理温度和时间对电晕处理效果都有影响。电压升高、电源频率增大,则处理强度大,处理效果好。但电源频率过高或电极间隙太宽,会引起电极间过多的离子碰撞,造成不必要的能量损耗;而电极间距太小,会有感应损失,也有能量损耗。处理温度较高时,表面特性的变化较快。处理时间延长,极性基团会增多;但时间过长,表面则可能产生分解物,形成新的弱界面层。 冷等离子体装置是在密封容器中设置两个电极形成电场,用真空泵实现一定的真空度,随着气体愈来愈稀薄,分子间距及分子或离子

的自由运动距离也愈来愈长,受电场作用,它们发生碰撞而形成等离子体,这时会发出辉光,故称为辉光放电处理。辉光放电时的气压大小对材料处理效果有很大影响,另外与放电功率,气体成分及流动速度、材料类型等因素有关。 不同的放电方式、工作物质状态及上述影响等离子体产生的因素,相互组合可形成各种低温等离子体处理设备。 2 在表面改性中的应用 低温等离子体技术具有工艺简单、操作方便、加工速度快、处理效果好、环境污染小、节能等优点,在表面改性中广泛的应用。 2.1 表面处理 通过低温等离子体表面处理,材料表面发生多种的物理、化学变化,或产生刻蚀而粗糙,或形成致密的交联层,或引入含氧极性基团,使亲水性、粘结性、可染色性、生物相容性及电性能分别得到改善。 用几种常用的等离子体对硅橡胶进行表面处理,结果表明N2、Ar、O2、CH4-O2及Ar-CH4-O2等离子体均能改善硅橡胶的亲水性,其中CH4-O2和Ar-CH4-O2的效果更佳,且不随时间发生退化[6]。英国派克制笔公司将等离子体技术用于控制墨水流量塑料元件的改性工艺中,提高了塑料的润湿率。 文献表明,用低温等离子体在适宜的工艺条件下处理PE、PP、PVF2、LDPE等材料,材料的表面形态发生的显著变化,引入了多种含氧基团,使表面由非极性、难粘性转为有一定极性、易粘性和亲水性,有利于粘结、涂覆和印刷。

低温等离子体表面处理技术

低温等离子体表面处 理技术

Plasma and first wall Introduction Today I will talk about something about my study on the first wall in the tokamak. Firstly, I will show you that what the plasma is in our life thought the following pictures such as: Fig.1 Lighning Fig.2 Aurora Fig.3 Astrospace Just as the pictures mentioned above , they are all consist of plasma. But, what does have in the plasma, now our scientist had given a definition that the plasma state is often referred to as the fourth state of matter and contains enough free charged particles(negative ions 、positive ions)and electronics. Like the photo below. Fig.4 Plasma production Plasma production In our research, we produce the plasma through an ICP (inductively coupled plasma)

低温等离子废气处理工艺

低温等离子体是继固态、液态、气态之后的物质第四态,当达到气体的放电电压时,气体被击穿,放电过程中整个体系呈现低温状态,所以称为低温等离子体,目前这种技术主要应用于废气处理工业中,有些小伙伴对于整个处理工艺和流程比感兴趣,下面就来一起学习一下。 低温等离子体的工艺技术原理: 异味气体从气体收集系统收集后首先进入除水器中进行水气分离,然后再排入等离子体反应器单元,在该区域由于高能电子的作用,使异味分子受激发,带电粒子或分子间的化学键被打断,产生自由基等活性粒子,这些活性粒子和O2反应达到消除异味目的。同时空气中的水和氧气在高能电子轰击下也会产生OH 自由基、活性氧等强氧化性物质,这些强氧化性物质也会与异味分子反应,使其分解,从而促进异味消除。净化后的气体经排气筒高空排放。 低温等离子处理工艺主要是利用放电来产生很多的高能粒子,然后对分子进行降解、氧化、裂解以及电离。近年来,低温等离子处理工艺成为国内外重视的

一个重点问题。将低温等离子处理工艺应用到低浓度、大风量有机废气处理中,具有处理量大、低能耗等优点。但是,这种处理工艺在应用的过程中会产生很多副产物,不能够完全将有机废气降解为水和二氧化碳。 低温等离子废气处理工艺,低温等离子废气处理技术采用双介质阻挡放电形式产生等离子体,所产生等离子体的密度是其他技术产生等离子体密度的1500倍,初用于氟利昂类、哈隆类物质的分解处理,后延伸恶臭、异味、有毒有害气体处理。该技术节能、环保,应用范围广,所有化工生产环节产生的恶臭异味几乎都可以处理,并对二恶英有良好的分解效果。 低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。

老肯过氧化氢低温等离子体灭菌器

警告及重要注意事项 使用与老肯过氧化氢低温等离子体灭菌器 (一)警告 1.老肯牌过氧化氢低温等离子灭菌器(以下简称灭菌器)专用过氧化氢卡匣内装有高 浓度的过氧化氢(H2O2)溶液,具有强氧化性和刺激性。任何时候插入或退出卡匣,都必须戴上防护手套。若不慎与H2O2接触,请立即用大量的清水冲洗,重者立即就医。 2.请勿拆卸卡匣,用完的卡匣按照医院固体废弃物处理办法进行处理。 3.禁止对不适合用于本灭菌器的物品进行灭菌。 4.对使用说明书未提及的器械灭菌,请参阅器械原制造厂商的灭菌指导说明进行操作 或咨询老肯公司售后服务部,否则可能会导致器械的损坏。 5.老化.表面有破损,材质不确定的软式内镜请勿使用LK/MJQ产品进行灭菌。 6.如果不清楚某种器械能否在LK/MJQ灭菌器中灭菌,请与老肯公司售后部联系。 7.如因违反灭菌设备操作规程而造成损坏的,公司概不承担赔偿责任。 (二)使用注意事项 1.灭菌前,必须将所有器械彻底清洗和干燥,否则可能导致灭菌不彻底或灭菌程序被 取消。 2.请使用老肯牌灭菌器专用的器械盒,无纺布,灭菌袋。化学指示卡,生物培养指示 剂等耗材。 3.医用无纺布建议重复使用次数不要超过2次。 包裹器械盒时,建议医用无纺布的包裹层数为2层,具体方法请参照WS310.2- 2009进行操作。 自含化学指示灭菌包装袋不能重复使用,具体方法请参照WS310.2-2009进行操作。 4 .如灭菌程序未运行完成或被终止,必须将器械重新打包,并使用新化学指示条,化 学指示胶贴和生物培养指示剂重新灭菌和培养。 5 ,对于之前一直采用化学浸泡或甲醛熏蒸方法消毒灭菌的器械,现使用本设备灭菌,请仔细检查器械的完好性,若有破损,请立即取出,不可采用本设备灭菌。(因为 破损的器械不能承受压力以致无法达到灭菌效果)

低温等离子体介绍

低温等离子体介绍 基本概念 等离子体是物质存在的第四种状态。它由电离的导电气体组成,其中包括六种典型的粒子,即电子、正离子、负离子、激发态的原子或分子、基态的原子或分子以及光子。 事实上等离子体就是由上述大量正负带电粒子和中性粒子组成的,并表现出集体行为的一种准中性气体,也就是高度电离的气体。无论是部分电离还是完全电离,其中的负电荷总数等于正电荷总数,所以叫等离子体。 等离子体的分类 1、按等离子体焰温度分: (1)高温等离子体:温度相当于108~109 K完全电离的等离子体,如太阳、受控热核聚变等离子体。 (2)低温等离子体: 热等离子体:稠密高压(1大气压以上),温度103~105K,如电弧、高频和燃烧等离子体。 冷等离子体:电子温度高(103~104K)、气体温度低,如稀薄低压辉光放电等离子体、电晕放电等离子体、DBD介质阻挡放电等离子体、索梯放电等离子体等。 2、按等离子体所处的状态: (1)平衡等离子体:气体压力较高,电子温度与气体温度大致相等的等离子体。如常压下的电弧放电等离子体和高频感应等离子体。 (2)非平衡等离子体:低气压下或常压下,电子温度远远大于气体温度的等离子体。如低气压下DC辉光放电和高频感应辉光放电,大气压下DBD介质阻挡放电等产生的冷等离子体。 什么是低温(冷)等离子体? 冰升温至0℃会变成水,如继续使温度升至100℃,那么水就会沸腾成为水蒸气。随着温度的上升,物质的存在状态一般会呈现出固态→液态→气态三种物态的转化过程,我们把这三种基本形态称为物质的三态。那么对于气态物质,温度升至几千度时,将会有什么新变化呢? 由于物质分子热运动加剧,相互间的碰撞就会使气体分子产生电离,这样物质就变成由自由运动并相互作用的正离子和电子组

低温等离子体废气处理

有机、无机废气和恶臭处理技术 市场拓展人员培训教程 (宋文国,男,1968年出生,高级工程师,从事于节能环保项目多年。邮箱:,手机:) 一、行业废气概况 煤化工废气 煤制焦过程废气 焦化废气主要来源于装煤、炼焦、化产回收等过程。装煤初期,煤料在高温条件下与空气接触,形成大量黑烟及烟尘、荒煤气及对人体健康有害的多环芳烃。炼焦时,废气一方面来自化学转化过程中未完全炭化的细煤粉及其析出的挥发组分、焦油、飞灰和泄漏的粗煤气,另一方面来自出焦时灼热的焦炭与空气接触生成的CO、CO2、NOx等,主要污染物包括苯系物(如苯并芘)、酚、氰、硫氧化物以及碳氢化合物等。 煤制气过程废气 煤制气废气的来源主要是气化炉开车过程中由于炉内结渣、火层倾斜等非正常停车而产生的逸散,另外,还有炉内的排空气形成部分废气、固定床气化炉的卸压废气、粗煤气净化工序中的部分尾气、硫和酚类物质回收装置的尾气及酸性气体、氨回收吸

收塔的排放气。这些废气的主要成分包括碳氧化物、硫氧化物、氨气、苯并芘、CO、CH4等,有些还夹杂了煤中的砷、镉、汞、铅等有害物质,对环境及人体健康有较大的危害。 煤制油过程废气 煤的液化可分为直接液化和间接液化。煤直接液化时,经过加氢反应,所有异质原子基本被脱除,也无颗粒物,回收的硫可以获得元素硫,氮大多转化为氨。煤间接液化时,催化合成过程中的排放物不多,未反应的尾气(主要是CO)可以在燃烧器中燃烧,排放的废气中CO2和硫很少,也没有颗粒物的生成。煤液化过程对环境造成的影响较小,主要的污染物是液化残渣,这是一种高碳、高灰和高硫物质,在某些工艺中占到液化原料煤总量的40%左右,需进一步处理。 煤燃烧过程废气 煤燃烧过程主要污染物有粉尘与烟雾、SO2为主的硫化物、N2O、NO、NO2、N2O3、 N2O4等氮氧化物、Hg、Cd、Pb、Cr、As、Se、F等有害微量元素、产生温室效应的CO2等。煤直接燃烧的能量利用率低,环境污染严重。 石油化工厂废气 化工厂在生产过程中会产生大量的废气,比如:氨、三甲胺、硫化氢、二氧化硫、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和硫化氢等无机废气;还有VOC类:苯、甲苯、二甲苯、丙

精简的低温等离子体灭菌器的原理和过程

低温等离子体灭菌概述 一、概述及灭菌原理 消毒:消毒(disinfection)从医院除污染的意义上是指用化学的或物理的方法杀灭或消除传播媒介上的病原微生物,使之达到无传播感染水平的处理即不再有传播感染的危险。杀灭或清除医院内环境中和传播媒介上的病原微生物称之为“医院消毒”。 灭菌:灭菌是指杀灭或去除外环境中一切微生物的过程。包括致病性微生物和不致病的微生物,如细菌(含芽胞)、病毒、真菌(含孢子)等,一般认为不包括原虫和寄生虫卵,以及藻类。 灭菌是个绝对的概念,意为完全杀灭所处理微生物,经过灭菌处理的物品可以直接进入人体无菌组织内而不会引起感染,因此,灭菌是最彻底的消毒。然而事实上要达到这样的程度是困难的,因此国际上通用方法规定,灭菌过程必须使物品污染的微生物的存活概率减少到10-6 (灭菌保证水平),换句话说,要将目标微生物杀灭率达到99.9999%。 1、概述 等离子体(Plasma)是物质的第四态,它是正、负带电粒子、中性原子、他子所形成的一团物质。就像云一样的存在状态,具

有能量密度高、化学活性成分丰富的特点。利用待离子体这样的特点进行灭菌,效果非常明显。而且速度快。等离子体灭菌的关键技术是:灭菌腔体中等离子体必须均匀,不存在死角。有一定的能量要求。 2、等离子体的形成: 等离子体属于物理概念,是自然界中存在的一种物质状态(即固体、液体和气体之外的第四态)。低温等离子体的产生通常是在几帕到几百帕的真空环境下,利用特定电磁电场作用,使某些中性气体的分子产生连续不断的电离,形成带负电荷和等量带正电荷的离子相互共存的物质状态,当电离率与复合率达到平衡时,这种稳定存在的物质形态就称之为等离子体。 同一种物质的不同状态,表示这种物质中粒子所具有不同的能量,例如固体冰获得能量融化成水,水获得能量汽化成水蒸汽,水蒸汽在特定的物理条件下又可形成等离子体,由此可知等离子体是一种能量更高的物质聚集态。组成等离子体的不仅有分子和原子,还有许多带电粒子,其粒子的能量约从几eV(电子福特)到几千eV不等,因而,其具有特殊的理化性能,在与物质的相互作用中会产生许多特殊的物理和化学效应。例如:过氧化氢(双氧水)是普通的临床消毒液,但需要将器械完全浸泡2小时以上,才能达到高级消毒水平;而等离子体灭菌器将极少量双氧水(2~5ml/次)激发成过氧化氢等离子体,可在几十秒钟的时间内、35~45℃条件下将106cpu/片的枯草杆菌芽孢全部杀灭,达到

低温等离子废气处理项目设计方案

喷漆废气低温等离子处理项目 设 计 方 案 低温等离子废气处理技术(简单.高效.经济.) 江苏山淼环境工程有限公司 2016年3月13号 中国盐城 1/ 45

公司简介 江苏山淼环境工程有限公司是一家集科研、设计、生产、维护和销售于一体的综合性高新技术环保设备生产厂家,解决方案涵盖:VOC有机废气处理、喷漆废气处理、焊烟处理、油雾处理、油烟处理和粉尘处理等,主要产品有:低温等离子废气处理设备、UV光氧催化氧化设备、活性炭吸附设备、活性碳吸附脱附催化燃烧、催化燃烧、焊接烟尘净化器、工业废气净化设备、油烟净化器等江苏山淼自创立以来,以独特的技术、先进的工艺,严谨的态度和不断创新的理念,坚持深入客户现场,不断了解客户的工况和需求,在工业喷涂车间、4S店、机械加工、装备制造、汽车制造、电子电气、食品加工、餐饮、家具制造、化工、造纸、印刷等领域的废气/粉尘治理方面积累丰富的理论和实践经验。坚持专业化、国际化发展的江苏山淼,以发展名族环保事业为己任,为了让二十一世纪的天空更加蔚蓝,我们将不断超越与完善 公司自创业以来,始终坚持以:“以人为本、利益均占、合作共赢”为经营宗旨,以“简单、速度、团队、超越”为企业灵魂,在日趋激烈的市场竞争中,不断吸取国外先进技术,秉着自身强大的技术研发力量,卓越的产品性能,颇具竞争力的价格,全方位的优质服务,制造客户最满意的各类设备,并根据用户需求设计与制造各类环保设备,您的满意是我们持之以恒的奋斗目标。公司销售经理徐中山先生恭候阁下的光临 山淼环境文化: 愿景:致力于改善大气质量,美化人们的生活 目标:成为中国最优世界领先的环保设备制造商、服务商 核心价值观:合作专注诚信简单超越利益均沾 核心竞争力:高效的团队管理与协作能力;

低温等离子体灭菌器的原理和过程

低温等离子体灭菌设备概述 发布时间:2011-4-6 21:03:14 一、概述及灭菌原理 消毒:消毒(disinfection)从医院除污染的意义上是指用化学的或物理的方法杀灭或消除传播媒介上的病原微生物,使之达到无传播感染水平的处理即不再有传播感染的危险。杀灭或清除医院内环境中和传播媒介上的病原微生物称之为“医院消毒”。 灭菌:灭菌是指杀灭或去除外环境中一切微生物的过程。包括致病性微生物和不致病的微生物,如细菌(含芽胞)、病毒、真菌(含孢子)等,一般认为不包括原虫和寄生虫卵,以及藻类。 灭菌是个绝对的概念,意为完全杀灭所处理微生物,经过灭菌处理的物品可以直接进入人体无菌组织内而不会引起感染,因此,灭菌是最彻底的消毒。然而事实上要达到这样的程度是困难的,因此国际上通用方法规定,灭菌过程必须使物品污染的微生物的存活概率减少到10-6 (灭菌保证水平),换句话说,要将目标微生物杀灭率达到99.9999%。 1、概述 等离子体(Plasma)是物质的第四态,它是正、负带电粒子、中性原子、他子所形成的一团物质。就像云一样的存在状态,具有能量密度高、化学活性成分丰富的特点。利用待离子体这样的

特点进行灭菌,效果非常明显。而且速度快。等离子体灭菌的关键技术是:灭菌腔体中等离子体必须均匀,不存在死角。有一定的能量要求。 2、等离子体的形成: 等离子体属于物理概念,是自然界中存在的一种物质状态(即固体、液体和气体之外的第四态)。低温等离子体的产生通常是在几帕到几百帕的真空环境下,利用特定电磁电场作用,使某些中性气体的分子产生连续不断的电离,形成带负电荷和等量带正电荷的离子相互共存的物质状态,当电离率与复合率达到平衡时,这种稳定存在的物质形态就称之为等离子体。 同一种物质的不同状态,表示这种物质中粒子所具有不同的能量,例如固体冰获得能量融化成水,水获得能量汽化成水蒸汽,水蒸汽在特定的物理条件下又可形成等离子体,由此可知等离子体是一种能量更高的物质聚集态。组成等离子体的不仅有分子和原子,还有许多带电粒子,其粒子的能量约从几eV(电子福特)到几千eV不等,因而,其具有特殊的理化性能,在与物质的相互作用中会产生许多特殊的物理和化学效应。例如:过氧化氢(双氧水)是普通的临床消毒液,但需要将器械完全浸泡2小时以上,才能达到高级消毒水平;而等离子体灭菌器将极少量双氧水(2~5ml/次)激发成过氧化氢等离子体,可在几十秒钟的时间内、35~45℃条件下将106cpu/片的枯草杆菌芽孢全部杀灭,达到灭菌水平;而用环氧乙烷杀灭同样的芽孢菌片,需要2小时以上。由此

低温等离子体技术及其在环保领域的应用

Advances in Environmental Protection 环境保护前沿, 2014, 4, 136-145 Published Online August 2014 in Hans. https://www.doczj.com/doc/8f4929664.html,/journal/aep https://www.doczj.com/doc/8f4929664.html,/10.12677/aep.2014.44019 Non-Thermal Plasma Technique and Its Application in the Field of Environmental Protection Zhiwei Ding, Yunlong Xie*, Kai Yan, Hongjuan Xu, Yijun Zhong Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua Email: *xieyunlong@https://www.doczj.com/doc/8f4929664.html, Received: May 24th, 2014; revised: Jun. 20th, 2014; accepted: Jun. 29th, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/8f4929664.html,/licenses/by/4.0/ Abstract In the last thirty years, non-thermal plasma (NTP) technology has been developed for the envi-ronmental protection, which has been more and more widely used in air pollutants, especially in volatile organic compounds (VOCs), NO x, SO2, etc. This work systematically introduces the me-chanism of producing NTP and eliminating pollutants, and highlights its application to the treat-ment of air pollutants. Furthermore, the influencing factor of treatment efficiency of the NTP and the current research situation of the NTP combined with other technologies are further summa-rized and analyzed. At last, this paper puts forward a promising viewpoint to better use the Non-thermal Plasma technology. Keywords Non-Thermal Plasma (NTP), Air Pollution Treatment, Environmental Protection, Synergistic Effect 低温等离子体技术及其在环保领域的应用 丁志威,谢云龙*,颜凯,许红娟,钟依均 浙江师范大学先进催化材料教育部重点实验室,金华 Email: *xieyunlong@https://www.doczj.com/doc/8f4929664.html, *通讯作者。

低温等离子体技术介绍

技术介绍 --低温等离子体 低温等离子体是继固态、液态、气态之后的物质的第四态,当外加电压达到气体的着火电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到分解污染物的目的。 “QHDD-Ⅱ”低温等离子体工业废气处理成套设备和技术作为一种新型的气态污染物的治理技术是一个集物理学、化学、生物学和环境科学于一体的交叉综合性电子化学技术,由于能很容易使污染物分子高效分解且处理能耗低等特点,是目前国内外大气污染治理中最富有前景、最行之有效的技术方法之一,其使用和推广前景广阔,为工业领域VOC类有机废气及恶臭气体的治理开辟了一条新的思路。 低温等离子体废气处理技术与其他废气治理方法优缺点对比 表1-2 几种废气处理工艺的适用范围及优缺点 工艺名称原理适用范围优点缺点 掩蔽法采用更强烈的芳香气味与臭气掺和,以掩蔽臭气,使之能被人接收适用于需立即、暂时地消除低浓度恶臭气体影响地场合,恶臭强度左右,无组织排放源可尽快消除恶臭影响,灵活性大,费用低恶臭成分并没有被去除,麻痹了对原有污染物的感知 热力燃烧法在高温下恶臭物质与燃料气充分混和,实现完全燃烧适用于处理高浓度、小气量的可燃性气体净化效率高,恶臭物质被彻底氧化分解设备易腐蚀,消耗燃料,处理成本高,易形成二次污染,催化剂中毒 催化燃烧法

水吸收法利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的水溶性、有组织排放源的恶臭气体工艺简单,管理方便,设备运转费用低产生二次污染,需对洗涤液进行处理;净化效率低,应与其他技术联合使用,对水溶性差的物质等处理效果差 药液吸收法利用臭气中某些物质和药液产生化学反应的特性,去除某些臭气成分适用于处理大气量、高中浓度的臭气能够有针对性处理某些臭气成分,工艺较成熟净化效率不高,消耗吸收剂,易形成而二次污染 吸附法利用吸附剂的吸附功能使恶臭物质由气相转移至固相适用于处理低浓度,高净化要求的恶臭气体净化效率很高,可以处理多组分恶臭气体吸附剂费用昂贵,再生较困难,要求待处理的恶臭气体有较低的温度和含尘量 生物滤池恶臭气体经过除尘增湿或降温等预处理工艺后,从滤床底部由下向上穿过由滤料组成的滤床,恶臭气体由气相转移至水—微生物混和相,通过固着于滤料上的微生物代谢作用而被分解掉目前研究最多,工艺最成熟,在实际中也最常用的生物脱臭方法,又可细分为土壤脱臭法、堆肥脱臭法、泥炭脱臭法等。净化效率高,处理费用低占地面积大,易堵塞,填料需定期更换,脱臭过程很难控制,受温度和湿度的影响大,生物菌培训需要较长时间,遭到破坏后恢复时间较长。 生物滴滤池原理同生物滤池式类似,不过使用的滤料是诸如聚丙烯小球、陶瓷、木炭、塑料等不能提供营养物的惰性材料。只有针对某些恶臭物质而降解的微生物附着在填料上,而不会出现生物滤池中混和微生物群同时消耗滤料有机质的情况池内微生物数量大,能承受比生物滤池大的污染负荷,惰性滤料可以不用更换,造成压力损失小,而且操作条件极易控制占地面积大,需不断投加营养物质,而且操作复杂,受温度和湿度的影响大,生物菌培训需要较长时间,遭到破坏后恢复时间较长。 洗涤式活性污泥脱臭法将恶臭物质和含悬浮物泥浆的混和液充分接触,使之在吸收器中从臭气中去除掉,洗涤液再送到反应器中,通过悬浮生长的微生物代谢活动降解溶解的恶臭物质有较大的适用范围可以处理大气量的臭气,同时操作条件易于控制,占地面积小设备费用大,操作复杂而且需要投加营养物质 曝气式活性污泥脱臭法将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质适用范围广,目前日本已用于粪便处理场、污水处理厂的臭气处理活性污泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达%以上。受到曝气强度的限制,该法的应用还有一定局限

低温等离子除臭设备

低温等离子体废气净化设备 本工艺在电催化总的设计概念下,分三个即独立又混成的激发系统:微波激发区、等离子激发区、极板激发去。每个激发区有它特定的功能,但在原理上有它相似的地方。 1:微波激发区 本工艺有3至9个微波激发单位,根据被处理风量的不同数量不同,微波由于它的频率相对比较高,在纳秒的时间内有效作用于被处理空间(区域),由于微波的功率相对较小,因此在激发能力上也就是说电子的获能跃迁能力上有限,本设计只是把微波作为初频激发源,在处理过程中作为一种预激发能。由于微波的预激功能,极大的提高等离子体区,极板区的激发能力和处理效果,由于微波技术的运用,本工艺在同类设备的比较中显得设备精炼而效果优越。 2:低温等离子体激发 本工艺有40支至240支充有特殊气体的无极管组成的低温等离子体激发区,低温等离子体区是工艺的核心技术,国外诸多科研机构室称在常压下实现低温等离子体。从大量的试验分析,常压低温等离子体要在工业中应用存在的困难仍旧很大,本工艺借助低气压的无极灯作为低温等离子体的激发体,最大限度地在无极管区实现低温等离子体区,由于低温等离子体在能量跃迁过程中具有极强的能量平衡性,在粒子撞击中失能极少,所以低温等离子体作为原子激发是最理想的一种能。在实践应用中,最大的科题在于低气压究竟是多少帕?管内充什么样的气体最有经济价值?这没有理论模型可言,只有通过实践、实验、分析。 3:极板区 根据被处理气体的流量,极板间的电压分12KV、16KV至42KV,极板间加以足够高的电压,在引风的作用下,极区由于负压的作用,按照法拉第暗区理论、光致电离理论、自由离理论,在常压或接近常压的条件下有相当概率的粒子可能实现低温等离子体。 根据三类的功能区,集中的目的是实现低温等离子体,由于理论和实际使用条件上的区别,单一的方法获得低温等离子体,从功率上,外部条件上都存在差距。本工艺集三种技术与一体,经山东、江苏、浙江三地多家医药、化工企业的实地

低温等离子体的产生方法

辉光放电电晕放电介质阻挡放电射频放电滑动电弧放电射流放电大气压辉光放电次大气压辉光放电 辉光放电(Glow Discharge) 辉光放电属于低气压放电(low pressure discharge),工作压力一般都低于 10mbar,其构造是在封闭的容器內放置两个平行的电极板,利用电子将中性原子和分子激发,当粒子由激发态(excited state)降回至基态(ground state)时会以光的形式释放出能量。电源可以为直流电源也可以是交流电源。每种气体都有其典型的辉光放电颜色(如下表所示),荧光灯的发光即为辉光放电。因此,实验时若发现等离子的颜色有误,通常代表气体的纯度有问题,一般为漏气所至。辉光放电是化学等离子体实验的重要工具,但因其受低气压的限制,工业应用难于连续化生产且应用成本高昂,而无法广泛应用于工业制造中。目前的应用范围仅局限于实验室、灯光照明产品和半导体工业等。 部分气体辉光放电的颜色 Gas He Ne(neon) Ar Kr Xe H2N2O2 Air Cathode Layer red yellow pink --

red-brown pink red pink Negative Glow pink orange dark-blue green orange-green thin-blue blue yellow-white blue Positive Column Red-pink red-brown dark-red blue-purple white-green pink red-yellow red-yellow red-yellow 次大气压下辉光放电(HAPGD)产生低温等离子体 由于大气压辉光放电技术目前虽有报道但技术还不成熟,没有见到可用于工业生产的设备。而次大气压辉光放电技术则已经成熟并被应用于工业化的生产中。次大气压辉光放电可以处理各种材料,成本低、处理的时间短、加入各种气体的气氛含量高、功率密度大、处理效率高。可应用于表面聚合、表面接枝、金属渗氮、冶金、表面催化、化学合成及各种粉、粒、片材料的表面改性和纺织品的表面处理。次大气压下辉光放电的视觉特征呈现均匀的雾状放电;放电时电极两端的电压低而功率密度大;处理纺织品和碳纤维等材料时不会出

低温等离子灭菌器国家标准

低温等离子灭菌器国家标准 前言 本标准由山东新华医疗器械股份有限公司提出。 本标准由国家食品药品监督管理局广州医疗器械质量监督检验中心归口。 本标准由山东新华医疗器械股份有限公司、国家食品药品监督管理局广州医疗器械质量监督检验中心、中国疾病预防控制中心环境所负责起草。 本标准的附录A是规范性附录 本标准的附录B是规范性附录 本标准主要起草人:王俊杰黄鸿新罗伊凡朱晓明王洪敏孟宪礼王久儒 低温等离子体灭菌器 1 范围 本标准规定了低温等离子体灭菌器(以下简称灭菌器)的术语和定义、要求、试验方法和标志、标签。 本标准适用于低温等离子体灭菌器。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 4793.1-2007 测量、控制和实验室用电气设备的安全要求第1部分:通用要求 GB/T 14710-1993 医用电气设备环境要求及试验方法 YY 0466-2003 医疗器械用于医疗器械标签、标记和提供信息的符号 GBZ2-2002工作场所有害因素职业接触限值 国家食品药品监督管理局令第10号医疗器械说明书、标签和包装标识管理规定 3 术语和定义 3.1 等离子体(Plasma) 等离子体是由气体分子发生电离反应,部分或全部被电离成正离子和电子,这些离子、电子和中性的分子、原子混合在一起,正负电荷在数值上总是相等,构成了等离子体。 3.2 灭菌室(sterilized room) 用来装载灭菌负载的灭菌器的一个部分[EN554:1994,定义3.27] 3.3 灭菌负载 (Sterilization load) 同时放在同一个灭菌室内的被灭菌物品 [EN554:1994,定义3.28] 3.4 通风(aeration)ventilation 灭菌过程的一部分或几部分,在特定的条件下将过滤空气进入灭菌室内消除负压。 3.5 装载门(loading door) 双门灭菌器中的门,灭菌负载在灭菌前通过此门进入灭菌室。(EN285:1996,3.21) 3.6 卸载门(unloading door) 双门灭菌器中的门,通过此门灭菌负载在完成灭菌循环后从灭菌室中取出。(EN285:1996, 3.21) 3.7 室内温度 (Room temperature) 灭菌室内最低点的温度[EN554:1994,定义3.3] 3.8 灭菌室门(sterilized room door) 使灭菌器容器关闭或密封的盖子或类似的装置[EN285:1996,定义3.12] 3.9 染菌载体(Bacterial vector) 已经沉淀了规定数量的测试生物体的载体[EN866-1:1997,定义3.8] [ISO/FDIS 13485:2003,定义3.7] 3.10 测试循环 为测试灭菌性能而设置的专门的自动程序,该程序不能用于正常灭菌。 3.11 无菌 (sterile) 使微生物不能在医疗器械上存活的条件 [EN556-1:2001,定义3.4] 3.12 灭菌 (sterilization)

低温等离子废气净化器 实用案例

低温等离子废气净化器 说 明 书

河北清大明骏环保设备有限公司 公司简介 河北清大明骏环保设备有限责任公司 是一家集科研、设计、生产、维修、和销售集成为一体的高新技术企业,、凭借在环保领域的专业水平和成熟的技术,正在迅速崛起。依靠科技求发展,不断为用户提供满意的高科技产品,是我们始终不变的追求。 在充分引进吸收国外先进技术的基础上,我公司已成功开发出环保净化设备、粉尘处理设备、废气处理设备、等系列产品,

并已广泛应用于冶金、化工、焊接、制药、垃圾处理、喷涂等众多领域。以一流的产品质量和精湛的技术服务受到了用户的一致 好评。河北廊坊山东滨州 明骏环保全体员工奉行“进取求实严 谨团结”的方针,不断开拓创新,以技术为核心、视质量为生命、奉用户为上帝,竭诚为您提供性价比最高的环保产品、高质量的废气粉尘工程设计改造及无微不至的售后 服务。 本公司拥有专业的设计团队、生产团队可根据客户要求进行定做。欢迎前来询。一:产品外观

1.箱体。 2.进出风口。 3.门锁。 4.配电箱。 5.支架 6.指示灯

7.电源开关8.漏油换气口9.电源线 10.过滤网11.高压电解模块 12.高频绝缘陶瓷 二:低温等离子净化工作原理 采用低温等离子体分解油雾、废气等污染介质时,等离子体中的高能离子起决定性的作用。流星雨状的高能离子与介质内分子(原理)发生非弹性碰撞,将能量转化成基态分子(原子)的内能,发生激发、离解、电离等一系列过程使污染介质处于活化状态。污染介质在等离子体的作用下,产生活性自由基,活化后的污染物分子经过等离子体定向链化学反应后被脱除。当离子平均能量超过污染介质中化学键结合能时,分子链断裂,污染介质分解,并在等离子发生器吸附场的作用下被收集。在低温等离子体中,可能发生各类型的化学反应,这主要取决于等离子的平均能量、离子密度、气体温度、污染物介质内分子浓度及共存的介质成分。 对气态有机污染物的降解机理 有足够的能量来产生自由基,引发一系列复杂的物理、化学反应。由低温等离子体引起的气体有机物化学反应是在气相中进行的电离、离解、激发、原子.分子间的相互结合及加成反应。这个能量足以使大多数气态有机物中的化学键发生断裂,从而使其降解。 从净化空气效率考虑,我们选择了电晕电流较高化

相关主题
文本预览
相关文档 最新文档