当前位置:文档之家› 气相色谱仪常见的故障及处理

气相色谱仪常见的故障及处理

气相色谱仪常见的故障及处理
气相色谱仪常见的故障及处理

气相色谱仪常见的故障及处理

摘要:气相色谱仪是分析绝缘油溶解气体含量的重要工具,由于仪器结构复杂,涉及到的部件多,在使用过程中通常会出现各种类型的故障,本文通过对常见类

型的故障进行分析,并介绍常见的各种故障排除方法,以供参考和借鉴。

关键词:气相色谱仪;故障;处理

1 色谱仪不升温故障

按色谱仪的正常操作步骤,检查温度设定值后升温,加热指示灯亮,升温部

件的温度也逐渐上升,直到实际温度达到设定值为止。如果按上述操作进行,部

件温度一直不上升,则认为存在不升温故障。出现该故障时,首先应检查仪器面

板上的温度显示值、设定值和保护值是否正常,如果参数设定未发现异常,可以

根据下面两种情况进行排查。

1)所有温控部件均不升温,可按下面方法进行检查:

a. 主控继电器是否吸合(可测量控制电压和输出电压是否正常);

b. 传输四路温度的导线是否接触良好;

c. 从控制板到固态继电器的导线是否接触良好,供电是否正常;

d. 连接在加热器件公共端的供电是否正常。

2)如果是一路温度出现问题,可按照下面的检查方法进行:

a. 检查温度设定值和保护值,可将温度设高一点观察效果;

b. 检查铂电阻和加热器对应的接线端子是否接触良好;

c. 测量加热器和铂电阻阻值是否正常;

d. 测试固态继电器是否正常;

e. 测试这一路对应的控制电路电压输出是否正常。

2 升温慢或升不到设定值故障

当色谱仪的加热系统启动后,在低温区温度控制正常,但在高温区却升温迟缓,并且无论怎样调节温度设定值,温度始终不能上升到设定值,此时称温度不

升高或升温缓慢故障。出现这种现象主要与以下方面有关:

1)加热器件功率不够或热循环不畅通;

2)继电器老化,频率控制能力降低;

3)控制程序智能化不够,需要改进;

4)控制对象散热太快,保温效果不好。

3 FID基线不稳定(热导稳定)

1)参数检查。TCD稳定,说明起源、温控等正常,应先检查仪器操作及与FID有关的参数是否正常,如果正常,进行下一步检查。

2)熄火检查。氢火焰熄火后,观察仪器基线记录情况,如果基线稳定,则

判断为气路、检测器故障;若基线记录仍不合格,说明电路部分、工作站有故障。

3)气路配比检查。气路中氮气、氢气和空气流量的相对大小对于稳定的火

焰来说关系很大,而火焰不稳定时基流和噪声也随之增大,一般氮气与氢气之比

为3:2,而空气的流量一般不低于250mL/min。

4)基线漂移与波动检查。检查基线不稳定性的表现,如果是单纯性的基线

漂移与波动,分别观察色谱柱室温度与检测器温度的变化,应特别注意观察柱室

与检测器的温度变化趋势和基线漂移趋势,核对两者周期是否一致,如两者有同

步现象,则是温控系统故障。

4 TCD基线不稳定(FID稳定)

气相色谱仪常见故障及处理办法

气相色谱仪常见故障及处理办法 故障故障判断检查方法及修理 1.没有峰(1)放大器电源断开(2)没 有载气流过(3)记录器接触 不良(4)记录器故障(5) 进样温度太低,样品没有汽化 (6)微量注射器堵塞(7)进 样器硅橡胶漏(8)色谱柱连 接松开(9)无火(FID)(10) FID极化电压没接或接触不良 (1)检查放大器,保险丝(2) 检查载气流路,是否阻塞,或 气瓶中气源用完(3)检查记 录器接线(4)看仪器说明书, 排除记录器故障(5)增加进 样器温度(6)更换注射器(7) 更换硅橡胶(8)拧紧层柱析 (9)点火(10)接上极化电 压,或排除极化电压连接不良 现象 2.正常滞留时间而灵敏度下降(1)衰减太大(2)没足够样 品量(3)样品进样过程中的 损耗(4)注射器漏或者堵(5) 载气漏特别是进样器漏(6) 氢气和空气流量选择不当 (FID)(7)检测器没有高压 (FID ) (1)降低衰减(2)增加进样 量(3)进样过程中尽可能保 证样品全部进入系统(4)更 换注射器或通注射器(5)探 漏(6)调整氢气和空气流量 (7)检查或者装上高压电 3.拖尾峰(1)进样温度太低(2)进样 管污染(样品或者硅橡胶残留) (3)层析柱炉温太低(4)进 样技术过低(5)层析柱选择 不当(样品与柱担体或固定液 起反应) (1)重新调节进样器温度(2) 用溶剂清洗进样器管子(3) 增加层析柱温度(4)提高进 样技术,做到进针快、出针快 (5)重新选择适当色谱柱 4.伸舌峰(1)柱超地负荷,样品量太大 (2)样品凝集在系统中 1)降低进样量(2)先提高柱 温,再选择适当的进样器,色 谱柱,检测器温度 5.没分离峰(1)柱温太高(2)柱过短(3) 固定液流失(4)固定液或者 担体选择不正确(5)载气流 速太高(6)进样技术太差 (1)降低柱温(2)选择较长 色谱柱(3)更换层析柱或老 化色谱柱(4)选择适当色谱 柱(5)降低载气流速(6) 提高进样技术 6.圆顶峰(1)超过检测器线性范围(2) 记录器阻尼太大(1)降低样品量(2)重新调节记录器阻尼 7.平顶峰(1)放大器输入饱和离子化检 测器 (2)记录器传动装置零点位置 变化 (1)降低样品量 (2)检查记录器零点位置,或 者用其他记录对比使用 8.锯齿型基线(1)稳流阀膜片疲劳(2)载 气瓶压阀输出压力变化(1)换膜片或者修理阀(2)调节载气瓶减压阀的压力在另一位置

交流接触器常见故障与案例分析

交流接触器常见故障与案例分析 【摘要】本文对交流接触器的常见故障进行分析,并总结相应的故障判断方法,同时结合相关案例对交流接触器故障的分析、排除和处理方法进行介绍。 【关键词】交流接触器;故障 1.引言 交流接触器是一种用来自动地接通或断开大电流电路的电器,它可以频繁地接通或分断交流电路,并可实现远距离控制。其主要控制对象是电动机,也可用于其它负载,具有控制容量大、过载能力强、寿命长、设备简单经济等特点,因此在电器控制中应用十分广泛。然而,交流接触器因其特殊的工作环境,难免会发生各种故障,如果不能及时有效的发现故障并排除之,必然会对电气设备的正常工作带来影响,甚至导致电气设备烧毁的严重后果。 2.交流接触器常见故障 2.1常见故障分析 (1)线圈故障 线圈故障可分为过热烧毁和断线。线圈烧毁的原因很多,如电压过高或过低等。另外,电源频率与额定值不符、机械部分卡阻致使不能吸合、铁心极面不平造成吸合磁隙过大,环境方面的因素如通风不良、过分潮湿、环境温度过高等,都会引起这种故障。 (2)交流接触器响声过大 电源电压过低、触头弹簧压力过大、铁心歪斜都可造成响声过大。交流接触器产生较大的响声,主要原因是线圈通入的是交流电,吸力是脉动的,因此可在极面上加短路环,以避免噪声的产生,而短路环的断裂会造成响声过大。 (3)接触器触头烧损太快 有本身的质量问题,也有选用不当造成触头烧蚀太快的原因。遇到这种问题,首先应该检查负荷电流是否超过接触器额定电流太多,或者是否用于频繁起动的场合,确属这种情况,则应更换大容量的交流接触器。另外,还应检查触头压力是否正常,触头压力太小,会造成触头接触电阻增大,引起触点严重发热。 (4)吸不上或不释放 吸不上或吸不足的原因除了机械故障外,电源电压过低、内阻过大、线圈断

TRACE1300气相色谱仪操作规程

TRACE1300气象色谱操作规程 一,仪器设备: 1.1仪器组成 a、TRACE 1300 GC b、氮气瓶 c、JM-3型空气发生器 d、JM-3型氢气发生器 e、AI 1310自动进样器 1.2 TRACE1300机身基本构造 a、仪器正面

b、仪器背面: c、仪器内部

二,仪器基本操作: 2.1色谱柱安装: a、进口端安装顺序:带上橡胶手套,取出红色垫片、螺帽、石墨垫依次套入毛细管,毛细管插入进样端(分流进样留出10mm,不分流进样留出5mm),拧紧螺丝; b、出口端(接入检测器),烧杯中倒入少量丙酮,将出口端插入丙酮,检测是否有载气流出(有气泡出来说明载气通过),然后将螺帽、石墨垫依次传入毛细管柱,用丙酮润湿的滤纸将毛细管柱前端擦拭干净,将毛细管柱接入检测器至顶,拧上螺丝(不可拧紧),将柱子抽回约2mm,拧紧螺丝。 注意:如果是新色谱柱,可只接进口端,出口端先不接入检测器,已老化色谱柱,待老化完成后柱温箱温度降下来后再行接入。 2.2开机: a、打开电脑,打开载气(氮气),保证载气压力在13.5Mpa,分压在0.5-0.6Mpa,打开主机电源(power),依次打开氢气、空气发生器开关。 b、在电脑主界面上,找到右下角的chromeleon服务管理器,在chromeleon服务管理器未打“ⅹ”的前提下才能保证仪器启动。 c、双击桌面上的“Chromeleon 7”变色龙图标,进入Chromeleom console界面 在该界面下依次有“Thermo Scientific GC Home”、“Sample”、“Front-Inlet”、“Oven”、“Channel-1”、“审计(I)”、“队列(Q)”;根据要求依次在各界面下设置相关参数。

GC-2030岛津气相色谱仪操作规程

GC-2030 岛津气相色谱仪操作规程 1. 目的 1.1. 建立GC-2030气相色谱标准操作规程,以保证检验工作正常进行。 2. 范围 2.1. GC-2030气相色谱仪的日常操作。 3. 参考 3.1. 气相色谱仪Nexis GC-2030操作指南 4. 职责 4.1. 质量控制部检验员负责按照本文规定进行使用和清洁维护。 4.2. 质量控制部现场QA负责检查监督本规程的执行情况。 5. 内容 5.1. 开机前准备 5.1.1. 供气:打开载气和其他气体的主阀以向气相色谱仪供气; 5.1.2. 依次打开气相色谱、电脑和打印机的电源; 5.2. 账户登录 5.2.1. 在windows用户帐户登录界面选择相应的个人账户,输入登录密码进入 windows操作系统; 5.2.2. 双击桌面上的快捷方式,启动LabSolutions工作站。在登录界面 用户ID下拉列表中选择相应的个人账户,输入登录密码进入LabSolutions 工作站操作界面; 5.3. 启动分析程序

5.3.1. 登录后点击左上角的【选择项目】,在弹出的对话框中根据需要检测的样 品选择相应的项目,点击确定自动切换至对应的项目。 5.3.2. 点击左上角的【仪器】图标,双击右侧对应的仪器图标启动分析程 序(注意:仪器图标蓝色代表联机,黄色代表脱机); 5.3.3. 点击分析程序左上角的【文件】,在下拉列表中选择【打开方法文件】, 在弹出的对话框中选择相应的方法文件,点击打开,分析程序自动读取相 应的方法文件的仪器参数;

5.3.4. 点击分析程序左侧的【数据采集】,单击下拉列表中的图标,仪器根 据设定的GC启动顺序开始启动; 5.3.5. 仪器在确认达到方法要求的温度和其他预设值后,仪器状态显示为绿色的 【就绪】。 5.4. 设置仪器参数 5.4.1. 打开【数据采集】窗口中的【控制面板】

气相色谱仪(GC)常见问题处理方法

气相色谱仪(GC)常见问题处理 A所有组分峰变小 可能原因建议措施 1进样针缺陷使用新针或无缺陷的针 2进样后漏夜判断漏夜点,维修之 3 MAE UP过大:分流比过大调整气体流速和分流比 4 分析物质分子量过大,底挥发样品时提高INJ。OVEN(主要柱子的最高使 样品的汽化温度过低,或柱温度低用温度) 5 NPD被污染物(二氧化硅)覆盖更换铷珠 6NPD温度过高(使用或环境温度),气体不纯更换铷珠:避免高温使用 7不分流进样,分流阀关闭快:初始OVEN温高 8 检测器与样品不匹配 9样品的挥发调整样品的的浓度或选择合适的溶剂 B峰伸舌 峰伸舌多右色谱柱过载减小进样量(可能需提高仪器的sensitivity 使用大容量柱子:提高OVEN,INJ温度: 增大气体流速 C峰高峰面积不重复 1进样不重复,偏差大自动进样器:加强手动进样的练习 2其他峰型变化引起的峰错位,干扰

3基线的干扰 仪器系统参数设定的改变参数标准化,规范化 D负峰 1 Detector有数据处理系统信号极性接反信号连接倒置 2 TCD中,样品导热系数大于载气导热系数选择数据处理中的“负峰处理” 3 ECD被污染,可能在正峰后跟随负峰清洗ECD,更换之(若有必要) E样品的检测灵敏度下降 1色谱柱,衬管被污染,使活性物质灵敏度小将清洗衬管:用溶剂(优级纯甲醇)清洗色谱柱:更换之(如有必要) 2进样时样品渗漏(对易挥发物质更甚)查找渗漏点 3 在split汽化进样中,OVEN初始温度过高用低于样品溶剂的初始温度;致使样品汽化后扩散加剧,导致撕沸点样品灵敏度下降使用高沸点溶剂 F 峰分叉 1 进样过激,不稳定,形成二次进样练习手动进样:使用自动进样器 2色谱柱安装失败重新安装 3 split less或柱头进样,样品溶剂的混合使用相同的溶剂 4柱子温度波动修理稳控系统 5 split less进样,量大,时间长。希望用“溶剂在毛细管色谱柱前

制冷设备常见故障及处理方法

制冷系统及设备常见的故障原因及排除方法 1、冷系统安全运行必要的三个条件是什么? 2、什么叫蒸发温度? 3、什么叫冷凝温度? 4、什么叫再冷却( 或称过冷) 温度? 5、什么叫中间温度? 6、什么叫压缩机的吸气温度? 7、什么叫压缩机的排气温度? 8、什么叫潮车? 9、什么原因能造成潮车? 10、潮车后能造成什么后果? 11、如何排除潮车? 12、排气压力超高什么原因? 13、压缩机不能启动 14、压缩机启动后即停机 15、气缸内有敲击声(活塞机) 16、曲轴箱内有敲击声(活塞机) 17、压缩机启动后无油压 18、润滑油油压过低(活塞机) 19、压缩机耗油量增大 20、轴封漏油或漏气 21、压缩机卸载装置机构失灵 22、压缩机吸气温度比蒸发温度高(比规定值高) 23、压缩机排气温度相对压力下温度偏高 24、压缩机吸入压力太低 25、机组发生不正常振动(螺杆机) 26、制冷能力不足 27、机器运转中出现不正常的响声(螺杆机) 28、排气温度或油温过高 29、排气温度或油温下降 30、滑阀动作不灵活或不动作 31、螺杆压缩机体温度过高 32、压缩机及油泵轴封泄漏 33、油压过低 34、油消耗量大

35、油面上升 36、停车时压缩机反转 37、吸气温度低于应用温度 38、制冷系统及设备的调整压力值( 供参考) 39、高压系统试验压力是多少? 40、低压系统试验压力是多少? 41、系统真空试验压力是多少? 42、设备的检修期要求 43、螺杆压缩机组检修期限 1、冷系统安全运行必要的三个条件是什么? 答:(1) 系统内的制冷剂压力不得出现异常高压,以免设备破裂。 (2) 不得发生湿冲程、液爆、液击等误操作,以免设备被破坏。 (3) 运动部件不得有缺陷或紧固件松动,以免损坏机械。 2 、什么叫蒸发温度? 答:蒸发器内的制冷剂在一定压力下沸腾汽化时的温度称为蒸发温度。 3、什么叫冷凝温度? 答:冷凝器内的气体制冷剂,在一定的压力下凝结成液体的温度称为冷凝温度。 4 、什么叫再冷却( 或称过冷) 温度? 答:冷凝后的液体制冷剂在高温、高压下被冷却到低于冷凝温度后的温度称冷却温度( 或过冷温度) 。 5 、什么叫中间温度? 答:中问冷却器中制冷剂在中问压力(P2) 下所对应的饱和温度称中间温度。 6 、什么叫压缩机的吸气温度? 答:压缩机的吸气温度,可以从压缩机的吸气阀前面的温度计测得, 吸气温度一般都高于蒸发温度,其高出差值取决于回气管的长度与管道保温情况,一般应较蒸发温度高5~10 ℃( 称过热度) 。 7 、什么叫压缩机的排气温度? 答:压缩机的排气温度可以从排气管路上的温度计测得。排气温度的高低与压力比(PK/P·) 及吸气温度成正比,如果吸气的过热度越高, 压力比愈大, 则排气温度也就愈高, 否则相反, 一般排气压力稍高于冷凝压力。 8 、什么叫潮车? 答:制冷工质因未能或未充分吸热而将液体或湿蒸汽被压缩机吸入机内称为潮车 9 、什么原因能造成潮车? 答:(1) 系统中的气液分离器标高是否低于标准( 要求 1.2m 以上)。 (2) 系统中的自动控制液位失灵。 (3) 手动供液过大、过急( 或节流阀内漏或开启过大)。

气相色谱常见问题及处理方法

问题解答:气相色谱常见问题及处理方法 一、气相色谱系统的基本组成是什么? 气相色谱系统的基本组成有: 1.气源:常用的有N2、H2、Air、Ar、He等高压气体钢瓶,也可采用氢气发生器、氮气发生器、无油空气泵; 2.气路控制系统:由开关阀、稳定阀、针形(调节)阀、切换阀和气阻、压力表、流量计等组成; 3.进样系统:即汽化室,可以根据不同的分析要求,装置不同的进样器内衬。对于气体样品,最好采用六通阀定体积进样,可获好的重复性,对液体样品,一般采用微量注射器进样,对固体样品,多用裂解器或脉冲炉配合; 4.色谱分离系统:色谱柱是解决样品组份分离的关键,有填充柱和毛细柱二大类,根据不同的分析要求来具体配置; 5.检测器:是将样品中的化学组份转化为电讯号,灵敏度和稳定性是关系到整个仪器性能的心脏部件,常用有TCD、FID、ECD、FPD、NPD; 6.色谱工作站 7.温度控制器:有恒温控制和程序升温控制二种方式; 8.检测器电路;每种类型检测器都必须配置一个控制和测量的电路,从而实现非电量转换。例如,配合高灵敏度TCD,就要配置一个热导池恒流电源,对FID就需配置一个微电流发大器。 二、气体为什么要净化? 气体纯度要影响灵敏度、稳定性。净化工作主要是脱除水份、氧(TCD、ECD)和碳氢化合物,碳氢化合物将影响基线稳定性。对于高纯气体分析,要求载气纯度要比被测气体纯度高一个数量级才能正常工作,否则要出倒峰,例如分析高纯Ar(O2≤2PPm,N2≤5PPm),就要求高纯Ar载气中O2、N2都要小于1 PPm才行。应用ECD时,载气中内的H2O和O2将严重影响灵敏度。 三、对进样的五点基本要求是什么? 为保证定性定量精度,进样的基本要求是: 1.快速:是指取样要快,取样后送进仪器要快,样品应进入汽化室中载气流速的区域; 2.重复:是指取样要重复、送入仪器的操作也要重复,对气体样品,要控制住气体样品的流量和压力恒定,以便保证进样和进被测气体的进样量一致性; 3.进样器温度要正确设置;对液体样品,进样汽化温度要设置正确,要高于试样的平均沸点,温度太低会造成高沸点组份汽化不完全,温度太高,可能会引起某些组份的分解; 4.进样死体积要尽量小;指汽化室到色谱柱的连接气路体积要尽可能小,气体进样阀到色谱柱的连接管尽量短,从而减少死体积对峰变宽的影响; 5.对不同柱型要配置不同的进样器结构,以便获得理想的柱效和好的峰形。例如:对填充柱和细口径毛细柱分流进样,衬管内径要适当大些,而对大口径毛细柱柱头进样,衬管内径要适当小些(中间有窄小收口)。 四、填充柱的基本要素是什么? 对一个具体的被测样品,就必需应用一根适用的色谱柱,要考虑到组份的全部分离,也要考虑分析速度和检测器灵敏度。分离、速度、灵敏度是与填充柱的基本要素有关: 1.柱长:柱子越长,分离越好,但分析周期会很长,检测灵敏度也会降低; 2.柱内径:柱的内径越细,分离越好,但制备会困难,柱容量也会减少,造成高含量组份定量偏低; 3.固定液:根据具体样品来选择,“相似性原理”是选择固定液的基本原则,特殊的、复杂的样品也可采用混合型固定液。例如,分离二甲苯,采用DNP+有机皂土;分离白酒,常用DNP+吐温; 4.担体:担体目数大,颗粒细小,分离效果好,但柱压会太高,造成进样压力波动大,对有极性较强的组份,就必须应用硅烷化处理的担体,以利减小峰形拖尾; 5.固定液与担体的配比:固定液配比越高,分离越好,柱容量也会提高,但分析周期会加长,基流会增加,从而增加噪音和基线漂流,柱子老化时间要很长。 五、气相色谱柱的安装 色谱柱的正确安装才能保证发挥其最佳的性能和延长使用寿命。正确的安装请参考以下步骤:

锅炉分离器事故现象及处理措施

锅炉分离器事故现象及处理措施 一、事故现象: 1、水位高于最高安全水位16m。或者看不见水位; 2、发出储水罐高报警信号; 3、低过入口、出口、屏过进出口、过热蒸汽温度急剧下降; 4、给水流量不正常地增大 5、严重时蒸汽大量带水。蒸汽管道内发生水击,法兰连接处向外冒汽、滴水。 二、事故原因: 1、给水调节系统发生故障或失灵; 2、分离器水位变送器故障,虚假水位造成满水; 3、锅炉负荷增加过快; 4、运行人员疏忽大意,对水位监视不够,调整不及时或操作不当。 三、事故处理: 1、核对现场实际水位与DCS上水位,正确判断是否满水。当看不见水位时,打开排水阀,检查储水罐是满水还是缺水 2、判断是满水后,判断是否是DCS虚假水位造成的自动给水满水,若是,则现场处理水位变送器(排汽、排污操作),恢复其正常工作,手动给水操作,打开事故放水阀或排污阀放水; 3、判断是否是给水调节系统发生故障或失灵,造成给水过大,处理措施同样打开事故放水阀或排污阀放水,手动减小给水流量; 4、判断锅炉已严重满水,过热蒸汽温度急剧下降,进行放水处理后仍未恢复,停止锅炉给水,打开事故放水阀放水,待水位恢复正常化后,重新按锅炉投入运行程序操作, 5、锅炉负荷增加过快造成的满水事故,应暂缓加负荷,水位恢复正常后缓慢加负荷。 四、控制建议 几个关键点: 工质膨胀:工质膨胀产生于启动初期,水冷壁中的水开始受热初次达到饱和温度产生蒸汽阶段,此时蒸汽会携带大量的水进入分离器,造成贮水罐水位快速升高,锅炉有较大排放量,此过程较短一般在几十秒之内,具体数值及产生时间与锅炉点火前压力、温度、水温度、投入油枪的数量等有关。此时要及时排水,同时减少给水流量,在工质膨胀阶段附近,应保持燃料量的稳定,此时最好不要增投油枪。

气相色谱日常维护

第一篇 气相色谱维修维护经验 要分析和判断色谱仪的故障所在,就必须要熟悉气相色谱的流程和气、电路这两大系统,特别是构成这两个系统部件的结构、功能。色谱仪的故障是多种多样的,而且某一故障产生的原因也是多方面的,必须采用部分检查的方法,即排除法,才可能缩小故障的范围。对于气路系统出的故障,不外乎是各种气体(特别是载气)有漏气的现象、气体不好、气体稳压稳流不好等等,气路产生的“鬼峰”和峰的丢失较为普遍。另外,色谱柱的“老化”过程没有充分或柱温过高,产生的“液相遗失”等“鬼峰”也会频频出现。所以,首先应该解决气路问题,若气路无问题,则看电路问题,色谱气路上的故障,分析工作者可以找出并排除,但要排除电路上的故障则并非易事,就需要分析工作者有一定的电子线路方面的知识,并且要弄清楚主机接线图和各系统的电原理图(尤其是接线图)。在这些图上清楚的画出了控制单元和被控对象间的关系,具体的标明了各接插件引线的编号和去向,按图去检查电路、找寻故障是非常方便的。色谱电路系统的故障,一般是温度控制系统的故障和检测放大系统的故障,当然不排除供给各系统的电源的故障。温控系统(包括柱温、检测器温控、进样器温控)的主回路由可控硅和加热丝所组成,可控硅导通角的变化,使加热功率变化,而使温度变化(恒定或不恒定)。而控制可控硅导通角变化的是辅回路(或称控温电路),包括铂电阻(热敏元件)和线性集成电路等等。 由上所述可知,若是温控系统的毛病,则应首先要检查可控硅是否坏,加热丝是否坏(断或短路),铂电阻是否坏(断或短路)或是否接触不良。其次检查辅回路的其它电子部件。。放大系统常见故障是离子讯号线受潮或断开、高阻开关(即灵敏度选择)受潮、集成运算放大器(如:AD515JH、OP07等)性能变差或坏等等。 色谱故障的排除既要做到局部又要考虑到整体,有“果”必有“因”,弄清线路的走向,逐步排除产生“果”(故障)的“因”,把故障范围缩小。例如:若出现基线不停的抖动或基线噪音很大时,可先将放大器的讯号输入线断开,观察基线情况,如果恢复正常,则说明故障不在放大器和处理机(或记录仪),而在气路部分或温度控制单元;反之,则说明故障发生在放大器、记录仪(或处理机)等单元上。这种部分排除的检查故障方法,在实际中是非常有用的。 第二篇 一、气相色谱故障分析基础 1、了解气相色谱的相关组成部分; 2、通晓气相色谱各部分的作用; 3、清楚气相色谱各部分是如何工作的; 4、能够清楚判别各部分工作的正常与否; 5、要严格按照有关规程检修,了解检修过程中应该注意的事项。 二、故障分析的思路 1、检修时应该注意的问题:要有安全用电常识,注重自我保护意识,防止触电事故的发生;

气相色谱仪常见故障分析及处理

气相色谱仪常见故障分析及处理 在使用气相色谱仪的过程中,难免会碰到各种各样的故障,本文从气路系统、检测系统、温控系统等几个方面介绍了色谱仪的常见故障排除方法,供从事气相色谱仪维修和使用的人员参考。 近年来,气相色谱分析仪以其分离效能高,分析速度快,样品用量少,可进行多组分测量等优点广泛应用于石油化工行业中,在化工分析中占有十分重要的地位。但是,由于工作人员维护不到位,样品预处理系统的不完善以及仪器本身有缺陷等原因,造成仪表在使用过程中出现各种故障,从而影响了正常的生产秩序。因此,能够及时准确地分析排除故障非常重要。 气相色谱仪的构成及工作原理 一般气相色谱仪是由六个基本系统组成,即:载气系统,进样系统,分离系统,温控系统,检测系统及记录系统。 气相色谱仪利用物理分离技术,对多个组分在色谱柱中进行分离,分离后进入检测器中进行检测。为了避免工艺介质中含有对色谱柱有害的组分或不需检测的某些成分以及为了缩短分析周期,色谱仪常常配合柱切技术将不需检测的组分切除掉,然后由微处理器根据进入检测器的组分产生的信号大小自动计算出组分含量值。 气相色谱仪的常见故障及排除方法 3.1气路系统故障 气相色谱仪的气路系统,是一个载气连续运行、管路密闭的系统。气路系统的气密性、载气流速的稳定性以及流量的准确性都会对气相色谱检测结果产生影响。 气路系统故障主要表现为流量不能稳定地调节到预定值,分析其可能原因为:(1) 气路系统有漏气或堵塞;(2)减压阀或稳压阀故障;(3)气源压力不足或波动;(4)流量控制阀件被污染或损坏。 针对以上各种原因处理方法如下: 在气路中按照气体走向顺序查到具体故障发生位置进行消漏或清堵。 更换减压阀或稳压阀。 调整气源压力至合适范围内,并有稳定的输出。 清洗阀件,必要时更换。 3.2 检测器故障 热导检测器(TCD) 热导检测器是利用被测气体与载气间及被测气体各组分间热导率的差别,使测量电桥产生不平衡电压,从而测出组分浓度。 又热导检测器的常见故障:a.桥电流不能调到预定值此种故障产生的原因:(1)热导单元连线没接对;(2)热丝断开或引线开路;(3)桥路稳压电源有故障;(4)桥路配置电路断开;(5) 电流表有故障。 检测器基线不能调零故障产生原因:(1)热丝阻值不对称或引线接错;(2)热丝碰壁或污染严重;(3)调零电位器引线开路;(4)记录仪开路或无反应; (5)测量气路与参比气路流量相差太大。3.2.2氢火焰离子化检测器(FID) 氢火焰离子化检测器是根据含碳有机物在氢火焰中燃烧产生碎片离子,在电场作用下形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离的组分。氢火焰离子化检测器常见故障 检测器点不着火 故障产生原因:(1)检测器点火线圈断线;(2)气路中氢气、空气和载气的流量配比不当;(3)极化电压不稳;(4)喷嘴堵塞。解决办法: 更换点火线圈 重新调节氢气、空气和载气的流量 配比。 提供稳定的电压源,并排除接线故

气相色谱仪使用过程中常见故障及处理措施

气相色谱仪使用过程中常见故障及处理措施 摘要:气相色谱仪作为一种常用的分析仪器,由载气带入,通过对欲检测混合物中组分有不同保留性能的色谱柱,使各组分分离,依次导入检测器,以得到各组分的检测信号。文章主要对气相色谱仪使用过程中常见的故障及处理措施进了分析。 关键词:气相色谱仪;常见故障;处理措施 气相色谱仪是一种对混合气体中各组成分进行分析检测的仪器,广泛应用于食品检验、卫生检疫、化工产品质量控制、油品分析、烟洒成分检验等领域。它除用于定量和定性分析外,还能测定样品在固定相上的分配系数、活度系数、分子量和比表面积等物理化学常数。一般的气相色谱仪在使用一段时间后,仪器系统的一些性能就偏离了仪器的技术指标。凡不能按照计量检定规程的检定方法进行到底或检定结果达不到规程技术要求的都可以认为仪器系统发生故障。本文以检测器为热导的气相色谱仪为例,对仪器的系统故障进行分析和排除。 1载气流速不稳定故障及处理措施 载气流速不稳定可用皂膜流量计测量色谱柱后或检测器之后的实际流速加以证实。 1.1气源压力值太低或波动 当载气压力值太低或载气快用完,减压阀输出压力值小于0.05 MPa时,就不能满足稳压、稳流阀的工作条件,导致输出流量不稳。用换新瓶或充气的方法来解决。 1.2柱温漂移 由于柱温的变化能明显改变色谱柱中固定相对气流的阻力,因此柱温的漂移能引起载气流速不稳定。 1.3气路上减压阀前的漏气 对减压阀前的漏气,可在关断阀路及高压阀之后观察减压阀上低压表的指示值在5 min内是否有下降来证实。如漏气,对气路中净化器接头及气源入口用皂液的涂抹来确定漏气处,并及时堵漏。 1.4阀件内部漏气、松动或沾污 从阀件入口供气,堵死出口,并将阀件浸于乙醇内仔细观察各处是否有气泡出现。如有气泡,可拆开阀件清洗,并在清洗过程中对阀件中的污染、堵塞和松动现象加以处理。

空气压缩机常见故障分析及处理方法

1、故障原因:缺油 维修方法:首先对空气消声器进行检查,并对其进行清洗,然后观察油位,发现油位低于1/3油标位,马上加注了相同牌号的机油,再启动电源开关,试开,还是有敲击声。后来将运动机构部件的曲轴、连杆、活塞、汽缸一一拆开进行检查,发现是曲轴产生了裂纹,看得出快折断了,想必缺油已经有一段时间了。由于缺油,运动部件发生干摩擦,超负荷运行使各部件不同程度地受到损伤。我们对损伤的各运动部件进行清洗、研磨,严重的更换,再重新安装、试机,敲缸声消失了,排气量也正常了。可见机油是绝对不能缺少的,否则后患无穷。2、故障原因:空气消声滤清器及气阀严密性不好维修方法:排气量的降低还与空气消声滤清器及气阀的严密性有关。必须对空气消声滤清器勤清冼。对气阀板、阀片上的污垢进行清洗是有利于空压机保证正常排气量的。常规下每200小时就应清洗一次滤清器,每500~800小时应清洗一次气阀。 2、故障原因:润滑油质量不好 维修方法:润滑油质量不好会造成活塞环被吸住,从而降低排气量。因此,应选择高质量的润滑油。长期工作后,润滑油内会含有杂质、灰尘等,因此还要进行过滤。一般来说,每500~800小时应更换一次机油,并对前一次使用的机油进行过滤。 3、故障原因:排气温度超高 维修方法:排气温度超高也会造成活塞环被吸住,导致排气量降低。只要降低温度,便可以解决问题。这里要注意两点:(1)环境温度不宜偏高,一般不超过40℃。(2)若气阀漏气,排出的高温气体又会返回汽缸。这时我们应仔细检查气阀,研磨阀板或更换阀片,排除漏气现象,这样才有可能解决温度超高问题。压缩机一旦发生故障,对压缩机原理和结构有比较熟悉的了解,那么对故障原因的分析及排除是不困难的。对故障的分析应从最容易、最方便的地方着手。以下介绍几种常见故障的分析及处理方法。 压缩机不加载: 1) 气管路上压力超过额定负荷压力,压力调节器断开。不必采取措施,气管路上的压力低于压力调节器加载(位)压力时,压缩机会自动加载; 2) 电磁阀失灵,拆下检查,必要时更换;

7890B气相色谱仪的操作规程

1、目的:建立安捷伦7890B GC气相色谱仪的操作规程,使检验人员能够正确的使用安捷伦7890B GC气相色谱仪。 2、适用范围:气态有机化合物或较易挥发的液体、固体有机化合物样品。 3、责任人:检测员 4、正文: 4.1 操作步骤 4.1.1 操作前准备 4.1.1.1 色谱柱的检查与安装首先打开柱温箱门看是否是所需用的色谱柱,若不是则旋下毛细管柱按进样口和检测器的螺母,卸下毛细管柱。取出所需毛细管柱,放上螺母,并在毛细管柱两端各放一个石墨环,然后将两侧柱端截去1~2mm,进样口一端石墨环和柱末端之间长度为4~6mm,检测器一端将柱插到底,轻轻回拉1mm左右,然后用手将螺母旋紧,不需用板手,新柱老化时,将进样口一端接入进样器接口,另一端放空在柱温箱内,检测器一端封住,新柱在低于最高使用温度20~30℃以下,通过较高流速载气连续老化24小时以上。 4.1.1.2 气体流量的调节 4.1.1.2.1 载气(氮气)开启氮气钢瓶高压阀前,首先检查低压阀的调节杆应处于释 (400-690kPa)放状态,打开高压阀,缓缓旋动低压阀的调节杆,调节至约0.55MPa。 4.1.1.2.2 氢气打开氢气钢瓶,调节输出压至0.41MPa。(400-690kPa) 4.1.1.2.3 空气打开空气钢瓶,调节输出压至0.55MPa。(550-690kPa) 4.1.1.3 检漏用检漏液检查柱及管路是否漏气。 4.1.2 主机操作 4.1.2.1 接通电源,打开电脑,进入windows 主菜单界面。然后开启主机,主机进行自检,自检通过主机屏幕显示power on successul,进入Windows系统后,双击电脑桌面的(Instrument Online)图标,使仪器和工作联接。 4.1.2.2 编辑新方法 4.1.2.2.1 从“Method”菜单中选择“Edit Entire Method”,根据需要钩选项目,“Method Information”(方法信息),“Instrument/Acquisition”(仪器参数/数据采集条件),“Data Analysis”(数据分析条件),“Run Time Checklist”(运行时间顺

GC7900气相色谱仪故障处理分析

GC7900气相色谱仪故障处理分析 摘要:GC7900型气相色谱仪在日常工作使用中出现的故障包括:色谱电路故障 和气路故障,电路故障是温度控制系统故障和检测放大系统故障;气路故障是气 路纯度不够,气体稳压稳流不好,漏气现象。本文就以上故障进行了分析和处理。 关键词:气相色谱仪故障分析处理 引言 GC7900型气相色谱仪是分别配有热导池氢火焰检测器,其特点温度梯度小、 控温稳定、分离效果好。仪器可根据试样的实际情况,可接填充柱,也可接毛细 管柱。本文以氢火焰检测器为例,就以下故障进行分析处理。 1电路故障分析与处理 1.1温度控制异常 温度控制原理是由感温元件(铂电阻)产生的热敏电阻信号传递给温控电路 中的集成放大器,放大器将电阻信号变成电压信号转变后实现模数转换,即A/D 转换,送给微处理放大器CPU进行计算,最后由可控硅的导通角改变而精确控温,可控硅铂电阻元件可用万用表测量好坏。温度异常表现为两种形态,一种是不能 升温,一种是温度不稳定。温控系统电路故障,一般就GC7900型气相色谱仪而言,常见是铂电阻断、短路和可控硅元件损坏,辅助回路电路元件故障。 (1)找出温度异常检测室、汽化室、柱箱。首先测量其铂电阻的好坏,再检测各加热丝是否损坏。 (2)用万用表电压档测量选定的加热部份后加热元件两端的电压值,若无200-220V电压为温度控制电路故障,若有电压时,关闭电源测量各加热元件电阻值,柱箱电阻为26Ω,气化室、检测室为340Ω,若测量电阻偏大,则加热件损坏。 1.2进样不出峰 1.2.1常规中FID检测器不出峰的维护 首先判定仪器的电路是否有故障,将仪器控制面板中的粗调电位器(10K阻 值的)做任意方向的调节,如果在记录仪上有发生基线变动的情况,证明仪器的 电路放大部份基本正常。 1.2.2微电流放大器损坏 微电流放大器接入的信号是由FID检测器在高压电极电离后产生的微弱信号源,损坏后表现为电平在0-1800mv之间不断地跳动,判定FID微电流放大器好 坏方法是: (1)有输入信号(用万用表红表笔触碰信号收集器),但无输出,放大器损坏。 (2)有输入也有输出信号,微电流放大器运行正常。 (3)微电流放大器常见故障是检测室极化电极损坏(用万用表测量无240V 直流电压),集成电路AD549JH损坏。 1.2.3微电流放大器产生的基线波动 放大器自激检查,发现基线呈有规律的往复摆动时,即可判定放大内部自激,此时应降低直流稳压电源的内阻值用一个容量为47μF的电容,并连在电源输出 和地之间即可消除噪声。 2气路故障分析与处理 2.1点不着火 遇到火点不着:一般情况下首先判定仪器FID检测器的喷嘴是否堵塞。如没

气相色谱仪常见故障及检修

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/8f3238344.html,) 气相色谱仪常见故障及检修 一、进样后不出色谱峰的故障 气相色谱仪在进样后检测信号没有变化,仪不出峰,输出仍为直线。遇到这种情况时,应按从样品进样针、进样口到检测器的顺序逐一检查。 1、首先检查注射器是否堵塞,如果没有问题, 2、再检查进样口和检测器的石墨垫圈是否紧固、不漏气, 3、然后检查色谱柱是否有断裂漏气情况, 4、最后观察检测器出口是否畅通。 5、检测器出口的畅通是很重要的,有人在工作中会遇到这样的问题:前一天仪器工作还一切正常,第二天开机后却无响应峰信号。检查进样口、注射器、垫圈和色谱柱都正常,可就是不出峰,无意中发现进样口柱头压达不到设定值,总是偏高,这时才怀疑是ECD检验器出口不畅通。由于ECD的排放物有一定的放射性,所以ECD出口是引到室外的。当时是秋冬之交,雨水进入到ECD排出口之后冻住了,因此造成仪器ECD的出口堵塞,柱头压居高不下,气体在气路中无法流动,也就无法载样品到检测器,所以不出峰。 二、基线问题 气相色谱基线波动、飘移都是基线问题,基线问题可使测量误差增大,有时甚至会导致仪器无法正常使用。

1、遇到基线问题时应先检查仪器条件是否有改变,近期是否新换气瓶及设备配件。 2、如果有更换或条件有改变,则要先检查基线问题是不是由这些改变造成的,一般来说,这种变化往往是产生基线问题的原因。有些人在工作中就遇到过这种情形:新载气纯度不够,换过载气之后,基线逐渐上升(由于载气净化管的原因,基线不是马上变化的)。第二天开机之后,基线非常高,并伴有基线强烈抖动,所有峰都湮没在噪音中,无法检测。经过检查,问题出现在新换的载气上,重新更换载气后,立即恢复了正常。 3、当排除了以上可能造成基线问题的原因后,则应当检查进样垫是否老化(应养成定期更换进样垫的好习惯); 4、石英棉是不是该更换了; 5、衬管是否清洁。值得一提的是,清洗衬管时可先用试验最后定容的溶剂充分浸泡,再用超声波清洗几分钟,然后放入高温炉中加热到比工作温度略高的温度,最后再重新安装。 6、此外,检测器污染也可能造成基线问题,其可以通过清洗或热清洗的方法来解决。 三、造成峰丢失的故障 造成峰丢失的原因有两种:一是气路中有污染,另一可能是峰没有分开。 1、第一种情况可通过多次空运行和清洗气路(进样口、检测器等)来解决。 ①为了减少对气路的污染,可采用以下的措施:程序升温的最后阶段应有一个高温清洗过程;

电磁阀常见故障及解决办法精编版

电磁阀常见故障及解决办法 电磁阀常见故障及解决办法 怎么处理电磁阀的故障 电磁阀线圈的额定电压有DC12V、DC24V、AC24V(50/60 Hz)、AC110V(50/60Hz)、AC220V(50/60Hz)、AC380V(50/60Hz)。一般在电气设计时要么采用AC220V(不需加装开关电源,成本低、线路简单而便于维护)、要么采用DC24V(常用的的安全电压、开关电源/电磁阀线圈都易于维修更换)。 检测电磁阀好坏的方法:先给电磁阀通上被控制的介质(带压力的液体、气体<空气>,压力值为电磁阀使用压力范围的中间值),再给电磁阀线圈通电,如果被控制介质有从通到断或从断到通的状态的变化,那么电磁阀就是好的,否则就是有问题的。 电磁阀常见故障有: 1、线圈短路或断路: 检测方法:先用万用表测量其通断,阻值趋近于零或无穷大,那说明线圈短路或断路。如果测量其阻值正常(大概是几十欧),还不能说明线圈一定是好的(我有一次测得一个电磁阀线圈阻值大概50欧姆,但电磁阀无法动作,更换该线圈后一切正常),请进行如下最终测试:找一个小螺丝刀放在穿于电磁阀线圈中的金属杆的附近,然

后给电磁阀通电,如果感觉到有磁性,那么电磁阀线圈是好的,否则是坏的。 处理方法:更换电磁阀线圈。 2、插头/插座有问题: 故障现象: 如果电磁阀是有插头/插座的那种,有可能出现插座的金属簧片问题(笔者就碰到过)、插头上接线的问题(比如将电源线接到接地线上去了)等原因无法将电源送到线圈中。最好养成一个习惯:插头插在插座上之后把固定螺丝拧上,线圈上在阀芯杆之后把固定螺母拧上。 如果电磁阀线圈的插头配备有发光二极管电源指示灯,那么采用DC电源驱动电磁阀时即行就要接对,否则指示灯不会亮。另外,不要将不同电压等级的带发光二级管电源指示的电源插头调换使用,这样会导致发光二极管被烧毁/电源(换用低电压等级的插头)出现短路或发光二极管发光很微弱(换用高电压等级的插头)。 如果不带电源指示灯,电磁阀线圈是不用区分极性的(不象线圈电压为直流的晶体管时间继电器以及线圈上并联有二极管/电阻泄漏回路的线圈电压为直流的中间继电器<这种中间继电器以原装小日本的居多>,需要区分极性)。 处理方法:修正接线错误、修复或更换插头、插座。 3、阀芯问题:

交流接触器结构与工作基础学习知识原理

交流接触器结构与工作原理 (一)如图l所示为交流接触器的外形与结构示意图。交流接触器由以下四部分组成: 图1 CJ10-20型交流接触器 1一灭弧罩2一触点压力弹簧片3一主触点4一反作用弹簧 5一线圈6一短路环7一静铁心8一弹簧9一动铁心 10一辅助常开触点11一辅助常闭触点 (1)电磁机构电磁机构由线圈、动铁心(衔铁)和静铁心组成,其作用是将电磁能转换成机械能,产生电磁吸力带动触点动作。 (2)触点系统包括主触点和辅助触点。主触点用于通断主电路,通常为三对常开触点。辅助触点用于控制电路,起电气联锁作用,故又称联锁触点,一般常 开、常闭各两对。

(3)灭弧装置容量在10A以上的接触器都有灭弧装置,对于小容量的接触器,常采用双断口触点灭弧、电动力灭弧、相间弧板隔弧及陶土灭弧罩灭弧。对于大容量的接触器,采用纵缝灭弧罩及栅片灭弧。 (4)其他部件包括反作用弹簧、缓冲弹簧、触点压力弹簧、传动机构及外壳 等。 电磁式接触器的工作原理如下:线圈通电后,在铁芯中产生磁通及电磁吸力。此电磁吸力克服弹簧反力使得衔铁吸合,带动触点机构动作,常闭触点打开,常开触点闭合,互锁或接通线路。线圈失电或线圈两端电压显著降低时,电磁吸力小于弹簧反力,使得衔铁释放,触点机构复位,断开线路或解除互锁。 (二)直流接触器 直流接触器的结构和工作原理基本上与交流接触器相同。在结构上也是由电磁机构、触点系统和灭弧装置等部分组成。由于直流电弧比交流电弧难以熄灭,直 流接触器常采用磁吹式灭弧装置灭弧。 交流接触器的分类及基本参数 1.交流接触器的分类 交流接触器的种类很多,其分类方法也不尽相同。按照一般的分类方法,大致有以下几种。 ①按主触点极数分可分为单极、双极、三极、四极和五极接触器。单极接触器主要用于单相负荷,如照明负荷、焊机等,在电动机能耗制动中也可采用;双极接触器用于绕线式异步电机的转子回路中,起动时用于短接起动绕组;三极接

气相色谱仪操作规程完全版

气相色谱仪操作规程 GC9790气相色谱仪操作规程(一) (1) SP1000气相色谱仪操作规程 (1) Agilent4890D气相色谱仪操作规程 (2) HP-5890A气相色谱仪操作规程 (3) GC-9790气相色谱仪操作规程(二) (4) SP2100气相色谱仪操作规程 (5) GC-920色谱操作规程 (5) Agilent6890气相色谱仪操作规程 (6) GC9800TT型气相色谱仪操作步骤 (7) GC9800FF型气相色谱仪操作步骤 (8) 9001型气相色谱仪操作规程 (10) SP6800A气相色谱仪的操作说明 (12) GC-930色谱操作规程 (13) GC112A气相色谱操作规程 (14) GC122气相色谱操作规程 (14) GC1690气相色谱仪说明书 (15) 惠普4890D型气相色谱仪标准操作程序 (16) HP6890气相色谱仪操作规程 (19) SP-6890气相色谱仪操作规程 (20) HP-5890A气相色谱仪操作规程 (21) GC-14A气相色谱仪操作规程 (23) HP4890D气相色谱仪操作说明(二) (24) GC9890气相色谱仪操作步骤 (25) 岛津气相色谱GC-2010操作规程 (26) 岛津GC-14CPFID气相色操作规程 (27) GC-14C气相色谱简易操作规程 (27) Agilent6820-GC(ForCerityNDS) (29) 瓦里安CP3800气相色谱操作规程 (33) 安捷伦GC-6820使用规程 (35)

GC9790气相色谱仪操作规程(一) 1.检查仪器电源线连接是否正常、气路管线连接是否正常。 2.打开载气(N2)钢瓶总阀,并调节减压阀开关,使得输出的载气压力在0.3~0.5Mpa之间。 3.调节仪器上的载气调压阀,使得柱前压处在分析工作所需要的压力(一般来说,柱前压在0.05~0.1Mpa之间)。 4.打开电源开关,根据分析要求设置柱温、汽化温度、检测温度等参数,按确定键后仪器升温。同时打开色谱工作站电源。 5.仪器升温到设置温度后,打开空气发生器电源;同时扭开氢气钢瓶阀门,调节氢气减压阀压力在0.3Mpa左右。 6.调节仪器正面右下侧的针形阀,使空气压力在0.05MPa左右,氢气压力在0.15~0.2MPa之间,用点火枪点着FID的火焰,用玻璃片或铁片等冷的物体靠近检测器的盖帽,有水珠凝结表明点火成功(也可以通过观察工作站所显示的基线是否在点火瞬间开始上升来确定是否点火成功)。 7.将仪器右下侧空气、氢气的针形阀压力都缓慢调节到0.1MPa。 8.待基线稳定后开始分析测试工作。 9.分析工作结束后,可以立即关闭氢气钢瓶总阀以及空气发生器电源。 10.调低各路设定温度,使柱温箱、汽化室、检测器温度下降,待柱箱温度低于70℃即可关闭仪器电源。 11.关闭载气钢瓶上的总阀。清理仪器室的进样针、样品等物品,结束GC9790的操作。 SP1000气相色谱仪操作规程 1仪器组成 1.1气源部分,包括氮气钢瓶,氢气源发生器,空气源发生器。 1.2气相主机,包括氢火焰离子化检测器(FID)。 1.3计算机及C-21色谱数据采集单位组成。 2采样操作步骤 2.1选择合适的色谱柱安装于进样器一端,另一端安装于所用的检测器口。 2.2打开载气钢瓶的总阀及减压阀至0.4-0.5Mpa,确定有载气流量后,打开气相主机电源开关。在面板上按“设定”键进入设定参数界面,设定柱温(恒温、程序升温)、设定进样器温度,设定检测器温度。程序升温包括起始温度、起始时间、升温速率、结束温度、结束时间等。仪器在升温状态中,等待指示灯亮,到达所设状态,就绪指示灯亮,即可进样。2.3打开氢气发生器和空气发生器开关,平衡10分钟。按住气相主机上“点火”钮数秒钟即可。按“状态”键切换到状态界面可观察到信号显示及仪器各部件状态。 2.4打开电脑,双击BF-2002色谱工作站图标进入色谱工作站。

相关主题
文本预览
相关文档 最新文档