当前位置:文档之家› 考研数学高数习题—微分中值定理演示教学

考研数学高数习题—微分中值定理演示教学

考研数学高数习题—微分中值定理演示教学
考研数学高数习题—微分中值定理演示教学

一份好的考研复习资料,会让你的复习力上加力。中公考研辅导老师为考生准备了【高等数学-微分中值定理知识点讲解和习题】,同时中公考研网首发2017考研信息,2017考研时间及各科目复习备考指导、复习经验,为2017考研学子提供一站式考研辅导服务。

模块六 微分中值定理

1、 在区间[]1,1-上,判断下列函数是否满足罗尔定理及拉格朗日中值定理的条件,并说明理由。

(1)()f x x = (2),11()1,1x x f x x -≤

(3),01()1,10x e x f x x x ?≤≤=?+-≤

(),10

x x f x x x ?≤≤?=?-≤

2、假设()f x 为定义在R 上的可导函数,判断下列函数中一定在区间[]1,1-上满足罗尔定理及拉格朗日中值定理的有哪些,并说明理由。 (1)()1

()g x f

x = (2)()()2

2

g x f x =

(3)()

33()g x f x = (4)()4()cos g x f x = 3、假设()f x 可导并且在0x x =处取极值,证明:0'()0f x =。

4、假设()f x 在[],a b 上连续,在(),a b 上可导,且()()f a f b =,证明:(),a b ξ?∈,使得()'0f ξ=。

5、假设()f x 在[]0,1上连续,在()0,1上可导,且()(0)0,11f f ==,证明:()0,1ξ?∈,使得()'1f ξ=。

6、假设()f x 在[],a b 上连续,在(),a b 上可导,证明:(),a b ξ?∈,使得

()()()

'f b f a f b a

ξ-=

-。

7、不用求出函数()()()()()1234f x x x x x =----的导数,说明方程'()0

f x =的实根

个数并指明它们所在的区间。

提示:n 次多项式至多有n 个不同的实根。

8、设()f x 为定义在R 上的可导函数,且满足'()0,R f x x ≠∈,证明:()0f x =至多有一个实根。

9、若函数()f x 在[],a b 上具有二阶导数,并且()()()f a f c f b ==,其中a c b <<,证明:(),a b ξ?∈,使得()''0f ξ=。 10、(1)假设b a >,证明:()()a

b a b e

b a e e e b a -<-<-;

(2)证明:arctan arctan b a b a -≤-。 11、证明恒等式:arctan arctan 2

x

x

e e

π

-+=

参考答案

1、(1)()f x 在区间[]1,1-上不满足罗尔定理的条件,也不满足拉格朗日中值定理的条件。因为()f x 在

0x =处不可导。

(2)()f x 在区间[]1,1-上不满足罗尔定理的条件,也不满足拉格朗日中值定理的条件。

()f x 在1x =处非左连续。

(3)()f x 在区间[]1,1-上不满足罗尔定理的条件,但满足拉格朗日中值定理的条件。因为()f x 在[]1,1-上连续,在()1,1-上可导,但(1)(1)f f -≠。

(4)()f x 在区间[]1,1-上同时满足拉格朗日中值定理及罗尔定理的条件。因为()f x 在区间[]1,1-上连续,在区间()1,1-上可导,并且()()11f f -=。

2、 (1)1()g x 在区间[]1,1-上不一定满足罗尔定理的条件,也不一定满足拉格朗日中值定理的条件。因为()f

x 在0x =处不一定可导。

(2)2()g x 在区间[]1,1-上同时满足拉格朗日中值定理及罗尔定理的条件。因为2()

g x 在

区间

[]

1,1-上连续,在区间

()

1,1-上可导,并且()()2211g g -=。

(3)3()g x 在区间[]1,1-上不一定满足罗尔定理的条件,但一定满足拉格朗日中值定理的条件。因为3()g x 在区间[]1,1-上连续,在区间()1,1-上可导,但()3(1)1g f -=-和

()3(1)1g f =不一定相等。

(4)4()g x 在区间[]1,1-上同时满足拉格朗日中值定理及罗尔定理的条件。因为4()g x 在区间[]1,1-上连续,在区间()1,1-上可导,并且()()

4411g g -=。

3、反证法

假设0'()0f x a =>,0,δ?>使得()0,o

x U x δ?∈有()()00

0f x f x x x ->-,

()00,x x x δ?∈+有()()0f x f x >

高等数学-中值定理证明

第三章中值定理证明

1.闭区间上连续函数定理① ② ③ ④ 2.微分中值定理 ① ② ③ ④ 3.积分中值定理 ① ② 不等式证明思路 ①构造函数(利用极值) ②拉格朗日中值定理 ③函数凹凸性定义

1.若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0 f f ξλξ'+=2.设,0a b >,证明:(,)a b ξ?∈,使得(1)() b a ae be e a b ξξ-=--3.设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0 F ξ''=4.设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.

5.若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

考研数学高数定理证明的知识点

考研数学高数定理证明的知识点考研数学高数定理证明的知识点 这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求 会证。 费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推 举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想 必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导” 和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得 函数在该点的导数为0。 前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直 接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔 定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连 续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。 那么最值和极值是什么关系?这个点需要想清楚,因为直接影响 下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若 最值均取在区间端点,则最值不为极值。那么接下来,分两种情况 讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条 告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值 和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在 开区间上任取一点都能使结论成立。 拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,

若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过 程中体现出来的基本思路,适用于证其它结论。 以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑 在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗 尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子 是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现 场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函 数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值 换成x,再对得到的函数求不定积分。 2015年真题考了一个证明题:证明两个函数乘积的导数公式。 几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的.较为 陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公 式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急 功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可 能从未认真思考过该公式的证明过程,进而在考场上变得很被动。 这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中 未考过的重要结论的证明,有可能考到,不要放过。 当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写 出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则, 因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。 利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有” 的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了 f(x)*g(x)在任意点的导数公式。 类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。 该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

考研数学中值定理五大注意事项

考研数学中值定理五大注意事项 来源:文都图书 中值定理是考研数学得分较低的一块,可以说是考生的“灾难区”,看到一个题目怎么思考处理是个问题,下面,就给大家就这一部分讲解一下事项。 1. 所有定理中只有介值定理和积分中值定理中的ξ所属区间是闭区间。 2. 拉格朗日中值定理是函数f(x)与导函数f'(x)之间的桥梁。 3. 积分中值定理是定积分与函数之间的桥梁。 4. 罗尔定理和拉格朗日中值定理处理的对象是一个函数,而柯西中值定理处理的对象是两个函数,如果结论中有两个函数,形式与柯西中值定理的形式类似,这时就要想到我们的柯西中值定理。 5. 积分中值定理的加强版若在定理证明中应用,必须先证明。 其次对于中值定理证明一般分为两大类题型:第一应用罗尔定理证明,也可又分为两小类:证明结论简单型和复杂型,简单型一般有证明f'(ξ)=0,f'(ξ)=k (k为任意常数),f'(ξ1)=g'(ξ2),f''(ξ)=0,f''(ξ)=g''(ξ),像这样的结论一般只需要找罗尔定理的条件就可以了,一般罗尔定理的前两个条件题目均告知,只是要需找两个不同点的函数值相等,需找此条件一般会运用闭区间连续函数的性质、积分中值定理、拉格朗日中值定理、极限的性质、导数的定义等知识点。复杂型就是结论比较复杂,需要建立辅助函数,再使辅助函数满足罗尔定理的条件。辅助函数的建立一般借助于解微分方程的思想。第二就是存在两个点使之满足某表达式。这样的题

目一般利用拉格朗日中值定理和柯西中值定理,处理思想把结论中相同字母放到等是一侧首先处理。 上述就是值定理需要注意的事项。希望大家在做题的过程中多加注意,可以配套着汤家凤的《2016考研数学绝对考场最后八套题》来进行对应的训练,掌握好上述的知识点。

考研高数各章重点总结

一、一元函数微分学 求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论; 利用洛比达法则求不定式极限; 讨论函数极值,方程的根,证明函数不等式; 利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数; 几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间; 利用导数研究函数性态和描绘函数图形,求曲线渐近线。 二、一元函数积分学 计算题:计算不定积分、定积分及广义积分; 关于变上限积分的题:如求导、求极限等; 有关积分中值定理和积分性质的证明题; 定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等; 综合性试题。 三、函数、极限与连续 求分段函数的复合函数; 求极限或已知极限确定原式中的常数; 讨论函数的连续性,判断间断点的类型; 无穷小阶的比较; 讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。 四、向量代数和空间解析几何

计算题:求向量的数量积,向量积及混合积; 求直线方程,平面方程; 判定平面与直线间平行、垂直的关系,求夹角; 建立旋转面的方程; 与多元函数微分学在几何上的应用或与线性代数相关联的题目。 五、多元函数的微分学 判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续; 求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数; 求二元、三元函数的方向导数和梯度; 求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习; 多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。 六、多元函数的积分学 二重、三重积分在各种坐标下的计算,累次积分交换次序; 第一型曲线积分、曲面积分计算; 第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用; 第二型(对坐标)曲面积分的计算,高斯公式及其应用; 梯度、散度、旋度的综合计算; 重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。 七、无穷级数 判定数项级数的收敛、发散、绝对收敛、条件收敛;

考研数学中值定理总结

中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。 1、所证式仅与ξ相关 ①观察法与凑方法 ②原函数法 ③一阶线性齐次方程解法的变形法 2、所证式中出现两端点 ①凑拉格朗日 ②柯西定理 ③k值法 ④泰勒公式法 老陈常说的一句话,管它是什么,先泰勒展开再说。当定理感觉都起不上作用时,泰勒法往往是可行的,而且对于有些题目,泰勒法反而会更简单。 3、所证试同时出现ξ和η ①两次中值定理 ②柯西定理(与之前所举例类似) 有时遇到ξ和η同时出现的时候还需要多方考虑,可能会用到柯西定理与拉氏定理的结合使用,在老陈书的习题里就出现过类似的题。 一、高数解题的四种思维定势 1、在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 2、在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分

中值定理对该积分式处理一下再说。 3、在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。 4、对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。 二、线性代数解题的八种思维定势 1、题设条件与代数余子式A ij 或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E 。 2、若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。 3、若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。 4、若要证明一组向量a 1,a 2 ,…,a s 线性无关,先考虑用定义再说。 5、若已知AB=0,则将B的每列作为Ax=0的解来处理再说。 6、若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 7、若已知A的特征向量ζ 0,则先用定义Aζ =λ ζ 处理一下再说。 8、若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

高数中值定理

第三章中值定理与导数 的应用

中值定理与导数的应用的结构 洛必达法则 Rolle 定理 Lagrange 中值定理 常用的泰勒公式 型 0,1,0∞∞型 21∞-∞型 ∞?0型00型∞ ∞Cauchy 中值定理 Taylor 中值定理 x x F =)() ()(b f a f =0 =n g f g f 1= ?2 11 2 21111∞∞∞-∞=∞-∞取对数 令g f y =单调性,极值与最值,凹凸性,拐点,函数图形的描绘;曲率;求根方法. 导数的应用

第三章中值定理与导数的应用 1. 中值定理 2. 常用麦克劳林公式 3. 洛必达法则 4. 函数的单调性、凹凸性、极值与拐点 5. 函数图形性质的讨论 6. 判定极值的充分条件 7. 最值问题 8. 典型例题

1. 中值定理 泰勒中值定理 设f (x )在含0x 的某开区间(a ,b )内具有(n +1)阶 导数, 则当),(b a x ∈时,在 x 与0x 之间存在 ξ ,使 (柯西中值公式) ) () ()()()()('' ξξg f b g a g b f a f =--(拉氏中值公式) )()()(ξf b f a f '=-柯西中值定理 设f (x ), g (x )在闭区间[a ,b ]上连续,在开区间 (a ,b )内可导且g '(x )≠0, 那末),(b a ∈?ξ,使 罗尔中值定理 设f (x )在闭区间[a ,b ]上连续,在开区间(a ,b )内 可导且f (a )= f (b ), 那末),(b a ∈?ξ,使f '(ξ )=0 1 0)1(0 00)() ()!1()()(!)()(++=-++-=∑n n n k n n x x n f x x n x f x f ξ拉氏中值定理 设f (x )在闭区间[a ,b ]上连续,在开区间(a ,b )内 可导, 那末),(b a ∈?ξ,使

高等数学第三章微分中值定理与导数的应用题库(附带答案)

第三章 微分中值定理与导数的应用 一、选择题 1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( ) 是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A ( 2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( ) 0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''= 3、的凸区间是 x e y x -=( ) ) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞ 4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( ) (A)x x sin )x (f = (B)2)1x ()x (f += (C) 3 2 x )x (f = (D)1x )x (f 2+= 5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值 6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( ) (A) [-1,1] (B) [0,1] (C) [-2,2] (D) ] 5 4, 5 3[- 7、x 2 e x y -=的凹区间是( ) (A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-, 8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) . (A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3 x 3sin3x asinx f(x )π=+ =( ) (A) 1 (B) 2 (C) 3 π (D) 0 10、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( ) ] 5 4 , 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( ) 的极值 必定不是的极值点为必定为曲线的驻点 , 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000 二、填空题 1、__________________e y 82 x 的凸区间是曲线-=. 2、______________ 2 x y x 的极小值点是函数=.

高数重要知识点汇总

高等数学上册重要知识点 第一章 函数与极限 一. 函数的概念 1 两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x) = 0[)(x g ],称g(x) 是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x )与g (x )是同阶无穷小。 (3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x ) 2 常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二 求极限的方法 1.两个准则 准则1.单调有界数列极限一定存在 准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-=

考研数学专题训练:中值定理

1 中值定理 【本章定位】 本部分内容属于考研数学中的难点内容,而且经常被考生所忽略,往往受到课本中的误导,低估了其难度和重要性,事实证明,在历年考研中,虽不是年年必考,但是出现的几率很大,且一般作为区分题加大了试卷的难度,如 201年的真题中“证明拉格朗日中值定理”的题目,让人无从下手,有人将此归结为看书不仔细,实际上是对本该好好研究学习的内容没有认真把握和总结,没有掌握中值定理的方法和技巧。所以,请考生务必重视! 1、 所证式仅与ξ相关 ①观察法与凑方法 1 ()[0,1](0)(1)(0)0 2() (,)()1 ()()2()0(1) ()() [()]()f x f f f f a b f x f x xf x f x f x xf x xf x xf x '==='ζ''ζ∈ζ=-ζ '''''ζ--='''''''= 例设在上二阶可导,试证至少存在一点使得分析:把要证的式子中的换成,整理得由这个式可知要构造的函数中必含有,从找突破口 因为()(1) ()()[()()]0()()[()]0 ()(1)()() f x f x f x xf x f x f x f x xf x F x x f x f x '+'''''''''''--+=?--='=--,那么把式变一下: 这时要构造的函数就看出来了②原函数法 ?-?-? ===?=?+=?='ζζζ=ζ'∈ζ?==?dx x g dx x g dx x g e x f x F C C e x f Ce x f C dx x g x f x g x f x f x g f f g f b a b a x g b f a f b a b a x f )()()()()( )( )(ln )()(ln )() ()( ) ()()(),( ],[)()()( ),(],[)( 2 很明显了 ,于是要构造的函数就现在设换成把有关的放另一边,同样有关的放一边,与现在把与方法 造的函数,于是换一种是凑都不容易找出要构分析:这时不论观察还使得求证:上连续在,又内可导,上连续,在在设例两边积分00

高等数学中值定理的题型与解题方法

高等数学中值定理的题型与解题方法 高数中值定理包含: 1.罗尔中值定理 (rolle); 2. 拉格朗日中值定理 (lagrange); 3. 柯西中值定 理(cauchy); 还有经常用到的泰勒展开式 (taylor), 其中 (a,b) ,一定是开区间 . 全国考研的学生都害怕中值定理, 看到题目的求解过程看得懂, 但是自己不会做, 这里往往是在构造函数不会处理, 这里给总结一下中值定理所涵盖的题型, 保证拿到题目就会做。 题型一:证明: f n ( ) 0 基本思路,首先考虑的就是罗尔定理 (rolle) ,还要考虑极值的问题。 例 1. f ( x) C[ a, b] 在 ( a, b) 可导, f (a) f (b) 0, f ( ) f (a b ) 0 , a 2 证明:存在 (a,b) ,使得 f '( ) 0 . 分析:由 f ( a) f (b) 0 , f (a) f ( a b ) 0 ,容易想到零点定理。 2 证明: f (a) f ( a b ) 0, 存在 x 1 (a, a b ) ,使得 f (x 1 ) 0 , 2 2 f (b) f ( a b ) 又 f (a) f (b) 0 , f ( a), f (b) 同号, 0 , ( a b , b) ,使得 f ( x 2 ) 2 存在 x 2 0 , 2 f ( x 1 ) f ( x 2 ) 0,所以根据罗尔中值定理:存在 (a,b) ,使得 f '( ) 0 . 例 2. f ( x) C[0,3] 在 (0,3) 内可导, f (0) f (1) f (2) 3 , f (3) 1 , 证明:存在 (0,3) ,使得 f '( ) 0 证明:( 1) f ( x) C[0,3] , f ( x) 在 [0,3] 使得上有最大值和最小值 M , m , 根据介值性定理 f (0) f (1) f (2) M ,即 m 1 M m 3 存在 c [0,3] ,使得 f (c) 1 , ( 2) f (c) f (3) 1,所以根据罗尔中值定理:存在 (c,3) (0,3) , 使得 f '( ) 0 . 例 3. f ( x) 在 (0,3) 三阶可导, x [0,1] , f (1) 0 , F (x) x 3 f ( x) 证明:存在 (0,1) ,使得 F '''( ) 0 证明:( 1) F (0) F(1) 0, 存在 1 (0,1),使得 F '( 1 ) 0 ,

总结拉格朗日中值定理的应用

总结拉格朗日中值定 理的应用

总结拉格朗日中值定理的应用 以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的理论基础,尤其是拉格朗日中值定理。他建立了函数值与导数值之间的定量联系,因而可用中值定理通过导数研究函数的性态。中值定理的主要作用在于理论分析和证明,例如为利用导数判断函数单调性、取极值、凹凸性、拐点等项重要函数性态提供重要理论依据,从而把握函数图像的各种几何特征。总之,微分学中值定理是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的工具。而拉格朗日中值定理作为微分中值定理中一个承上启下的一个定理,我们需要对其能够熟练的应用,这对高等数学的学习有着极大的意义! 拉格朗日中值定理的应用主要有以下几个方面:利用拉格朗日中值定理证明(不)等式、利用拉格朗日中值定理求极限、研究函数在区间上的性质、估值问题、证明级数收敛。首先我想介绍几种关于如何构造辅助函数的方法。 凑导数法。:这种方法主要是把要证明的结论变形为罗尔定理的结论形式, 凑出适当的函数做为辅助函数,即将要证的结论中的换成X,变形后观察法凑成F’(X),由此求出辅助函数F(x).如例1. 常数值法:在构造函数时;若表达式关于端点处的函数值具有对称性,通 常用常数k值法来求构造辅助函数,这种方法一般选取所证等式中含的部分

作为k,即使常数部分分离出来并令其为k,恒等变形使等式一端为a与f(a)构成的代数式,另一端为b与.f(b)构成的代数式,将所证式中的端点值(a或b)改为变量x移项即为辅助函数f(x),再用中值定理或待定系数法等方法确定k,一般来说,当问题涉及高阶导数时,往往考虑多次运用中值定理,更多时要考虑用泰勒公式.如例3. 倒推法::这种方法证明方法是欲证的结论出发,借助于逻辑关系导出已知的条件和结论.如例4。

高等数学同济第七版上册知识点总结归纳

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法

1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! )) 1()...(1(...! 2) 1(1)1(2n n x o x n n x x x +---+ +-+ +=+ααααααα )(1 2)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x

文科高等数学(4.中值定理)

第四章 中值定理与导数的应用 §4. 1 中值定理 一、罗尔定理 费马引理 设函数f (x )在点x 0的某邻域U (x 0)内有定义, 并且在x 0处可导, 如果对任意x ∈U (x 0), 有 f (x )≤f (x 0) (或f (x )≥f (x 0)), 那么f '(x 0)=0. 罗尔定理 如果函数y =f (x )在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 且有f (a )=f (b ), 那么在(a , b )内至少在一点ξ , 使得f '(ξ)=0. 简要证明: (1)如果f (x )是常函数, 则f '(x )≡0, 定理的结论显然成立. (2)如果f (x )不是常函数, 则f (x )在(a , b )内至少有一个最大值点或最小值点, 不妨设有一最大值点ξ∈(a , b ). 于是 0) ()(lim )()(≥--='='- →-ξξξξξ x f x f f f x , 0)()(lim )()(≤--='='+ →+ξ ξξξξ x f x f f f x , 所以f '(x )=0. 罗尔定理的几何意义: 二、拉格朗日中值定理 拉格朗日中值定理 如果函数f (x )在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 那么在(a , b )内至少有一点ξ(a <ξ

高等数学中值定理的题型与解题方法

高等数学中值定理的题型与解题方法 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

高等数学中值定理的题型与解题方法 高数中值定理包含:1.罗尔中值定理(rolle); 2.拉格朗日中值定理(lagrange); 3.柯西中值定理(cauchy); 还有经常用到的泰勒展开式(taylor), 其中(,)a b ξ∈,一定是开区间. 全国考研的学生都害怕中值定理,看到题目的求解过程看得懂,但是自己不会做,这里往往是在构造函数不会处理,这里给总结一下中值定理所涵盖的题型,保证拿到题目就会做。 题型一:证明:()0n f ξ= 基本思路,首先考虑的就是罗尔定理(rolle),还要考虑极值的问题。 例1. ()[,]f x C a b ∈在(,)a b 可导,()()0f a f b >>,()()02 a b f a f +<, 证明:存在(,)a b ξ∈,使得'()0f ξ=. 分析:由()()0f a f b >>,()( )02 a b f a f +<,容易想到零点定理。 证明:()()02a b f a f +<,∴存在1(,)2 a b x a +∈,使得1()0f x =, 又()()0f a f b >>,∴(),()f a f b 同号,∴()()0 2 a b f b f +<, ∴存在2(,)2a b x b +∈,使得2()0f x =, ∴12()()0f x f x ==,所以根据罗尔中值定理:存在(,)a b ξ∈,使得'()0f ξ=. 例2. ()[0,3]f x C ∈在(0,3)内可导,(0)(1)(2)3f f f ++=,(3)1f =, 证明:存在(0,3)ξ∈,使得'()0f ξ= 证明:(1) ()[0,3]f x C ∈,∴()f x 在[0,3]使得上有最大值和最小值,M m , ∴根据介值性定理(0)(1)(2) 3 f f f m M ++≤ ≤,即1m M ≤≤ ∴存在[0,3]c ∈,使得()1f c =, (2)()(3)1f c f ==,所以根据罗尔中值定理:存在(,3)(0,3)c ξ∈?, 使得'()0f ξ=. 例3. ()f x 在(0,3)三阶可导,[0,1]x ∈,(1)0f =,3()()F x x f x = 证明:存在(0,1)ξ∈,使得'''()0F ξ=

2017考研数学七大中值定理精讲

2017考研数学七大中值定理精讲 来源:文都图书 高数占据了考研数学的半壁江山,而在高等数学中七大中值定理(零点定理、介值定理、三大微分中值定理、泰勒定理与积分中值定理)是学生在学习过程中认为最难的部分。七大定理的难主要在于难 理解、难应用。在历次考试,包括研究生入学考试中,与中值有关的问题一直是考试中得分最少的题,我们应如何更好的理解与掌握定理,灵活有效的使用定理呢?我们来详细的分析一下这几大定理。 第一,七大定理的归属。 零点定理与介值定理属于闭区间上连续函数的性质。三大中值定理与泰勒定理同属于微分中值定理,并且所包含的内容递进。积分中值定理属于积分范畴,但其实也是微分中值定理的推广。 第二,对使用每个定理的体会。 学生在看到题目时,往往会知道使用某个中值定理,因为这些问题有个很明显的特征—含有某个中值。关键在于是对哪个函数在哪个区间上使用哪个中值定理。 1、使用零点定理问题的基本格式是“证明方程f(x)=0在a,b之间有一个(或者只有一个)根”。从题目中我们一目了然,应当是对函数f(x)在区间[a,b]内使用零点定理。应当注意的是零点定理只能说明零点在某个开区间内,当要求说明根在某个闭区间或者半开半闭区间内时,需要对这些端点做例外说明。 2、介值定理问题可以化为零点定理问题,也可以直接说明,如“证明在(a,b)内存在ξ,使得f(ξ)=c”,仅需要说明函数f(x)在[a,b]内连续,以及c位于f(x)在区间[a,b]的值域内。 3、用微分中值定理说明的问题中,有两个主要特征:含有某个 函数的导数(甚至是高阶导数)、含有中值(也可能有多个中值)。应用微分中值定理主要难点在于构造适当的函数。在微分中值定理证明问题时,需要注意下面几点:

高等数学微分中值定理应用举例

微分中值定理应用举例 单调性与极值 1.函数)(x f 在[]0,1上//()0f x >,比较//(1),(0),(1)(0)f f f f -的大小. 解:)(x f 在[]0,1上满足拉氏中值定理条件,存在()0,1ξ∈,使得/(1)(0)()f f f ξ-=.由于//()0f x >,所以/()f x 单调增加,而01ξ<<,所以///(0)()(1)f f f ξ<<, 即//(0)(1)(0)(1)f f f f <-<. 2.函数)(x f 在[]0,1上/////()0,(0)0f x f >=,比较//(1),(0),(1)(0)f f f f -的大小. 解:由于///()0f x >,所以//()f x 单调增加,而//(0)0f =,所以在[]0,1上//()0f x >,同上题讨论有//(0)(1)(0)(1)f f f f <-< 3.()()f x f x =--在()0,+∞内///()0,()0f x f x >>,判断在(),0-∞内///(),()f x f x 的符号. 解:()()f x f x =--,所以)(x f 在(),-∞+∞内为奇函数,/()f x 为偶函数,//()f x 为奇函数,在()0,+∞内///()0,()0f x f x >>,所以在(),0-∞内///()0,()0f x f x ><. 4.已知函数)(x f 在区间()1,1δδ-+内具有二阶导数,且/()f x 严格递增, /(1)(1)1f f ==,则:A.在()1,1δδ-+内均有()f x x <;B.在()()1,1,1,1δδ-+内均有()f x x >;C. 在()1,1δ-内均有()f x x <,在()1,1δ+内均有()f x x >; D. 在()1,1δ-内均有()f x x >,在()1,1δ+内均有()f x x <. 解:令()()F x f x x =-,则(1)(1)10F f =-=,//()()1F x f x =- 选择B.

高等数学(上)第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积? (1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. y =f x =a x =b y =f

第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max {()(lim 1 n i x x f S i n i i i =?=?=∑=→λξλ 抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<= 10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i =?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点 i , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式.

考研数学中值定理题型答题技巧分析

2016考研数学中值定理题型答题技巧分析在考研数学中,有关中值定理的证明题型是一个重要考点,也是一个让很多同学感到比较困惑的考点,不少同学在读完题目后不知从何下手,不会分析证明,找不到思路,之所以会出现这样的情况,主要是因为这些同学对中值定理证明题型的特点缺乏清晰的认识,对其分析和证明方法没有完全理解和掌握,为了协助这样的同学克服这方面的困难,下面文都网校考研数学老师对这类题的特点和证明方法做些分析总结,供各位2016考研的考生参考。 一、中值定理证明题的特点 中值定理证明题主要有以下一些特点: 1.中值定理证明题常常需要作辅助函数; 2.中值定理证明题经常在一个题中需要结合运用三个知识点,分别是:连续函数在闭区间上的性质(包括最大值和最小值定理、零点定理和介质定理),微分中值定理和积分中值定理; 3.中值定理证明题可能需要在一个问题的证明中反复运用同一个微分中值定理两次甚至三次,比如罗尔中值定理或拉格朗日中值定理; 4.从历年考研数学真题变化规律来看,证明中用得最多的主要是罗尔中值定理和拉格朗日中值定理,而泰勒中值定理和柯西中值定理则用得很少。 二、中值定理证明题的常用方法

中值定理证明题有不同的类型,对不同的类型需要运用不同的方法,主要的和常用的方法包括以下几种: 1.如果题目条件中出现关于函数值的等式,而函数是连续的,则可能需要运用连续函数在闭区间上的性质进行证明;对导数是连续的情况也可以对导函数运用连续函数的性质; 2.如果题目条件中出现关于定积分的等式,则可能需要运用积分中值定理; 3.对于以下这类问题一般使用罗尔中值定理进行证明:

6、如果是要证明两函数差值比的中值等式,或证明两函数导数比的中值等式,则可能需要利用柯西中值定理进行证明。 对于上面总结介绍的各种证明方法,在实际问题中要根据具体情况灵活运用,另外,对于需要作辅助函数的证明题,常常通过还原法分析找出需要的辅助函数,对于含积分等式的证明题,常常需要作变积分限的函数作为辅助函数,这种方法也是证明积分等式或不等式的主要方法之一,这些分析总结希望对大家提高中值定理证明题的解题能力有所帮助。最后预祝各位考研成功、金榜题名!

高等数学第三章微分中值定理及导数的应用题库(附带答案)

第三章 微分中值定理与导数的应用 一、选择题 1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( ) 2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( ) 3、的凸区间是 x e y x -=( ) 4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( ) (A)x x sin )x (f = (B)2)1x ()x (f += (C) 3 2 x )x (f = (D)1x )x (f 2+= 5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值 6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( ) (A) [-1,1] (B) [0,1] (C) [-2,2] (D) ] 5 4, 5 3[- 7、x 2 e x y -=的凹区间是( ) (A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-, 8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) . (A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3 x 3sin3x asinx f(x)π=+=( ) (A) 1 (B) 2 (C) 3 π (D) 0 10、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( ) 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( ) 二、填空题 1、__________________e y 82 x 的凸区间是曲线-=. 2、______________ 2 x y x 的极小值点是函数=. 3、的凸区间为曲线 x 3 e y x += _____________________ . 4、函数f (x )=x x 3-在[0,3]上满足罗尔定理的条件,由罗尔定理确定的罗尔中值点ξ= .

相关主题
文本预览
相关文档 最新文档