当前位置:文档之家› 开关量输入输出通道中抗干扰措施的分析与可实现方案设计

开关量输入输出通道中抗干扰措施的分析与可实现方案设计

开关量输入输出通道中抗干扰措施的分析与可实现方案设计
开关量输入输出通道中抗干扰措施的分析与可实现方案设计

课程设计报告

( 2010 -- 2011 年度第 2 学期)

名称:计算机控制系统A

题目:开关量I/O通道中抗干扰措施

的分析与可实现方案设计

院系:

班级:

学号:

学生姓名:

指导教师:

设计周数:

成绩:

日期:2011 年月日

《计算机控制系统A》课程设计

任务书

一、目的与要求

1.通过本课程设计教学环节,使学生加深对所学课程内容的理解和掌握;

2.结合工程问题,培养提高学生查阅文献、相关资料以及组织素材的能力;

3.培养锻炼学生结合工程问题独立分析思考和解决问题的能力;

4.要求学生能够运用所学课程的基本理论和设计方法,根据工程问题和实际应用方案的要求,进行方案的总体设计和分析评估;

5.报告原则上要求依据相应工程技术规范进行设计、制图、分析和撰写等。

二、主要内容

1、数字控制算法分析设计;

2、现代控制理论算法分析设计

3、模糊控制理论算法分析设计

4、过程数字控制系统方案分析设计;

5、微机硬件应用接口电路设计;

6、微机应用装置硬件电路、软件方案设计;

7、数字控制系统I/O通道方案设计与实现;

8、PLC应用控制方案分析与设计;

9、数据通信接口电路硬软件方案设计与性能分析;

10、现场总线控制技术应用方案设计;

11、数控系统中模拟量过程参数的检测与数字处理方法;

12、基于嵌入式处理器技术的应用方案设计

13、计算机控制系统抗干扰技术与安全可靠性措施分析设计

14、计算机控制系统差错控制技术分析设计

15、计算机控制系统容错技术分析设计

16、工程过程建模方法分析

三、进度计划

序号设计内容完成时间备注

1 选择课程设计题目,查阅相关文献资料

2 文献资料的学习根据所选题目进行方案设计

3 与指导老师讨论设计内容修改设计方案

4 撰写课程设计报告

5 课程设计答辩

四、设计成果要求

1.针对所选题目的国内外应用发展概述;

2.课程设计正文内容,包括设计方案、硬件电路和软件流程,以及综述、分析等;

3.课程设计总结或结论以及参考文献;

4.要求设计报告规范完整。

五、考核方式

《计算机控制系统》课程设计成绩评定依据如下:

1.撰写的课程设计报告;

2.独立工作能力及设计过程的表现;

3.答辩时回答问题情况。

成绩以五级分制综合评定分为优、良、中、及格、不及格五个等级。

指导教师:

学生姓名:

一、目的与要求

1.通过本课程设计教学环节,使学生加深对所学课程内容的理解和掌握;

2.结合工程问题,培养提高学生查阅文献、相关资料以及组织素材的能力;

3.培养锻炼学生结合工程问题独立分析思考和解决问题的能力;

4.要求学生能够运用所学课程的基本理论和设计方法,根据工程问题和实际应用方案的要求,进行方案的总体设计和分析评估;

5.报告原则上要求依据相应工程技术规范进行设计、制图、分析和撰写等。

二、设计正文

1干扰源的分析

计算机控制系统所受到的干扰源分为外部干扰和内部干扰。外部干扰的主要来源有:电源电网的波动、大型用电设备(如天车、电炉、大电机、电焊机等)的启停、高压设备和电磁开关的电磁辐射、传输电缆的共模干扰等。内部干扰主要有:系统的软件不稳定、分布电容或分布电感产生的干扰、多点接地造成的电位差给系统带来的影响等干扰是无时无处不存在的,并且可能导致系统不能正常运行,严重者造成不良后果。大部分干扰都是从过程通道引入的,所以很有必要在设计过程通道时就考虑抗干扰和系统可靠性问题。

MCS-51 系列及其它高挡单片芯的I/O口线都具有一定的驱动能力,一些开关量控制信号可以直接跨接到计算机芯片引脚或总线上(如键盘开关、限位开关或转速脉冲信号等),作为条件和状态检测环节,典型接法如图 1 所示,K键闭合、U1高电平表示检测信号有效。尽管开关量较模拟量信号要“干净”得多,但干扰依然存在,并以随机脉冲序列形式窜入电路,主要原因如下:

1.1 电源系统的干扰

我国电源噪声干扰主要表现在过压、欠压、停电、浪涌以尖峰电压等方面,容易形成开关量电平信号的浮动,使逻辑可靠性变差;而尖峰电压窜入电路,耦合到输入开关量上,会引起计算机检测失误。

1.2 信号传输线过长

任何电源及信号源电路都存在电阻和分布电容,是产生采样信号干扰噪声的主要因素,传输线越长,噪声越大;系统主振频率越高,传输噪声也越大。按照经验公式计算,计算机主频为1MHz、传输远于0.5 m,或主频为4 MHz、传输远于0.3 m时,都应做为长线传输入理。

1.3 控制电路中存在继电器元件

继电器主要领先对电流吸收、释放为基本工作条件,工作电流比微机芯片工作电流要大得多。因此,当继电器动作时,必然在电路中产生一些干扰脉冲。这些干扰主要有二个特点:一是脉冲为一串振幅不等的序列脉冲,二是脉冲序列宽度有限(一般小于10 ms)。如果在U1端脉冲耦合电压超过1V,就会作为错误的检测信号输入给计算机。如印染厂中平网印花

机的印花单元就是一种以开关量作为状态输入信号,以继电器做为控制输出信号的单片机控制系统,若不采取抑制干扰的措施,则很容易出现误动作。另外,控制系统附近大型电气设备的启动使用,也会产生类似的干扰现象。

2.干扰传播的途径

2.1静电耦合

导线之间的静电耦合

静电耦合是电场通过电容耦合途径窜入其它线路的。两根并排的导线之间会构成分布电容,如印制线路板上印制线路之间、变压器绕线之间都会构成分布电容。上图给出两根平行导线之间静电耦合的示意电路,Cl 2是两个导线之间的分布电容,C1g、C2g是导线对地的电容,R是导线2对地电阻。如果导线1上有信号U1存在,那么它就会成为导线2的干扰源,在导线2上产生干扰电压Un 。显然,干扰电压Un与干扰源U1、分布电容Cl2、C2g 的大小有关。

2.2磁场耦合

空间的磁场耦合是通过导体间的互感耦合进来的。在任何载流导体周围空间中都会产生磁场,而交变磁场则对其周围闭合电路产生感应电势。如设备内部的线圈或变压器的漏磁会引起干扰,还有普通的两根导线平行架设时,也会产生磁场干扰,如下图所示。如果导线1为承载着10kVA、220V的交流输电线,导线2为与之相距1米并平行走线10米的信号线,两线之间的互感M会使信号线上感应到的干扰电压Un高达几十毫伏。如果导线2是连接热电偶的信号线,那么这几十毫伏的干扰噪声足以淹没热电偶传感器的有用信号。

导线之间的磁场耦合

2.3公共阻抗耦合

公共阻抗耦合发生在两个电路的电流流经一个公共阻抗时,一个电路在该阻抗上的电压降会影响到另一个电路,从而产生干扰噪声的影响。下图给出一个公共电源线的阻抗耦合示意图。

公共电源线的阻抗耦合

在一块印制电路板上,运算放大器A1和A2是两个独立的回路,但都接入一个公共电源,电源回流线的等效电阻R1、R2是两个回路的公共阻抗。当回路电流i1变化时,在R1和R2上产生的电压降变化就会影响到另一个回路电流i2。反之,也如此。

3.抗干扰的措施和方案

干扰沿I/O通道进入计算机系统的主要原因是过程通道与主机之间存在公共地线,并且首当其冲的是A/D和各种输入装置。因此,除了要求I/O装置具有很强的抗干扰能力外,还要设法削弱和斩断来自公共地线的干扰,同时要保证信号回路畅通。

3.1 I/O通道的信号传输线路设计和接线施工中应该采取以下措施:

3.1.1高电平线和低电平线不要走同一电缆,也不要走同一插件,不得已时可以将高电平线和低电平线分立两边,中间留出备用线或地线。

3.1.2模拟信号与数字信号最好不要走同一根电缆。

3.1.3信号线与电源线要分开,并尽量避免平行敷设。有条件的地方应尽量使两者正交。这种正交的接线可使线路间的杂散电容降至0,也可将电场耦合及磁场耦合形成的干扰电压降至最小。

3.1.4采用双绞线(或带屏蔽的双线)或同轴电缆,可以大大减小电磁干扰。尤其是长距离信号传输时,必须选用屏蔽线或屏蔽电缆,其屏蔽层都要接地,以抑制静电感应干扰。有条件的话,还可以采用不受电磁干扰的光导纤维。

3.1.5不同类型的导线应分别装入不同的电缆管或电缆槽里,并尽量使其有最大可能的空间;信号线应尽量靠近地线或者用地线包围它。

3.1.6采用信号隔离措施,如用光电耦合装置或变压器耦合装置进行隔离。光电耦合装置用于数字信号或模拟信号的隔离,它的传输信号是单方向的,具有寄生反馈小、传传输信号频带宽、体积小、耐冲击、绝缘电压高、抗干扰能力强等优点,可有效地切断计算机与信号通道的电气联系,从而切断干扰引入传输线的通道。

变压器耦合装置又称隔离放大器,通常由滤波、放大、增益调节、调制、隔离变压器、解调、输出级等部分组成,具有精度高、输入失调电压漂移低、宽频带、功耗低、隔离电源输出,增益范围可调等优点。(注意:在使用光电隔离技术时,应特别注意各隔离部分要独立供电,既要有独立的地线和电源线,否则起不到隔离作用。)

3.1.6.1变压器隔离

隔离变压器是最常用的隔离元件之一,用来阻断干扰信号的传导通路,并抑制干扰信号的强度。是利用变压器把模拟信号电路与数字信号电路隔离开来,也就是把模拟地与数字地断开,以使共模干扰电压不成回路,从而抑制了共模干扰。原理图如下:

3.1.6.2光电隔离

光电隔离是利用光电耦合器完成信号的传送,实现电路的隔离,如下图所示。根据所用的器件及电路不同,通过光电耦合器可以实现模拟信号的隔离,也可以实现数字量的隔离。注意,光电隔离前后两部分电路应分别采用两组独立的电源。光耦合器具有强抗干扰能力的原因:光耦合器的输入阻抗很小,而干扰源内阻很大,所以能分压到光耦合器输入端的噪声很小。发光二极管在电流状态下工作,而干扰虽有较高的电压,但能量小,不能提供足够的电流而被抑制掉。密封条件下工作,不受外界光的干扰。分布电容小而绝缘电阻大,回路一边的干扰很难通过光耦合器馈送到另一边去。

原理图如下:

当用于模拟信号的隔离时,对光电耦合器的线性特性要求较高,而且一般要配以相应的校正电路来保证信号的线性传送。现已有专门用于传递模拟信号的线性光电耦合器,例如B-B 公司的ISO100。由于光电耦合器具有可靠的开关特性,所以用它来实现数字信号的隔离是

目前光电隔离的主要形式。对模拟信号的隔离也可以通过V/F变换器将其变成不同频率的数

字信号,然后由光电耦合器传送。

3.1.7采用输入滤波器,可以消除大部分干扰。如果干扰频率比有用频率高,则采用低通滤波器来抑制高频串模干扰。反之,则采用高通滤波器。如果干扰频率落在被测信号频谱的附近,则采用带通滤波器较为合适。一般情况下,干扰信号频率均比被测信号频率高,故采用采用输入滤波器,可以消除大部分干扰。如果干扰频率比有用频率高,则采用低通滤波器来抑制高频串模干扰。反之,则采用高通滤波器。如果干扰频率落在被测信号频谱的附近,则采用带通滤波器较为合适。一般情况下,干扰信号频率均比被测信号频率高,故采用二级阻容低通滤波网络作为A/D的输入滤波器。如下图所示。

3.1.8当干扰主要来自电磁感应时,应对被测信号尽可能早地进行前置放大,从而达到提高回路信噪比的目的。

3.1.9能早地完成A/D转换,例如将A/D转换放在智能变送器上完成,变送器与计算机剑客采用数字通信,以利用数字信号抗干扰性能强的特点。

3.1.10浮地屏蔽

采用浮地输入双层屏蔽放大器来抑制共模干扰,如下图所示。所谓浮地,就是利用屏蔽方法使信号的“模拟地”浮空,从而达到抑制共模干扰的目的。

3.2 I/O通道软件抗干扰措施

3.2.1开关量(数字量)输入抗干扰措施

对于开关量的输入,为了确保信息准确无误,在软件上可采取多次读取的方法(至少读两次),认为无误后再行输入,如下图所示。

3.2.2开关量(数字量)输出抗干扰措施

当计算机输出开关量控制闸门、料斗等执行机构动作时,为了防止这些执行机构由于外界干扰而误动作,比如已关的闸门、料斗可能中途打开;已开的闸门、料斗可能中途突然关闭。对于这些误动作,可以在应用程序中每隔一段时间发出一次输出命令,不断地关闭闸门或者开启闸门。这样,就可以较好地消除由于扰动而引起的误动作(开或关)。

三、课程设计总结

通过这次课程设计,加强了我们动手、思考和解决问题的能力。在整个设计过程中,我们这个方案设计了开关量通道的几个抗干扰措施。在设计过程中,经常会遇到这样那样的情况,就是心里想老着这样的接法可以行得通,但实际接上电路,总是实现不了,因此耗费在这上面的时间用去很多。

我觉得做课程设计同时也是对课本知识的巩固和加强,由于课本上的知识太多,平时课间的学习并不能很好的理解和运用各个元件的功能,而且考试内容有限,所以在这次课程设计过程中,我们了解了很多元件的功能。平时看课本时,有时问题老是弄不懂,做完课程设计,那些问题就迎刃而解了。而且还可以记住很多东西。通过这次课程设计使我懂得了理论

与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结

合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。

四、参考文献

[1] 汤楠,穆向阳.计算机控制技术. 西安:西安电子科技大学出版社,2009.8

[2] 李大中,周黎辉,焦嵩鸣.计算机控制技术与系统. 北京:中国电力出版社,2009.

[3] 潘新民. 微型计算机控制技术. 北京:电子工业出版社,2003.

[4] 李正军. 计算机控制系统. 北京:机械工业出版社,2005.

[5] 何立民. MCS51系列单片机应用系用设计系统配置与接口技术. 北京:北京航空航天大

学出版社,1991.

跳频通信系统抗干扰性能分析

题目:跳频通信系统抗干扰性能分析 姓名: 学院:信息科学与技术学院 系:通信工程系 专业: 年级: 学号: 教师: 2012年7月10日

跳频通信系统抗干扰性能分析 摘要 扩频技术是一种信息传送技术,它利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传送信息所需的最小带宽。而跳频技术以其良好的抗干扰性能和衰落性及较低的信号被截获概率,成为战术通信领域应用最广的一种抗干扰手段。本文在介绍跳频通信基础原理的基础上,并借助计算机仿真工具Matlab /Simulink 搭建仿真模型,得到了在多径信道下的误码率-信噪比曲线,从而分析跳频通信系统的抗干扰性能。 关键字:跳频、Simulink 仿真、多径、抗干扰 一.引言 跳频通信时现代通信中采用的最常用的扩频方式之一,其基本原理是指收发双方传输信号的载波频率按照预定规律进行离散变化。与定频通信相比,由于发送的信号调制在多个伪随机跳变的频率上,敌方不容易捕获到所发送的信息,有利于信号的隐藏,可以有效躲避干扰。因此,跳频技术在通信对抗尤其是卫星通信中处于特别有利的位置。扩频技术正在取代常规通信技术成为军事通信的一种主要抗干扰通信技术。因此,对扩频通信的研究,成为通信对抗中的重要部分。本文通过Matlab 软件仿真跳频通信系统的基本过程,在多径信道下分析其抗干扰能力。 二.跳频通信的基本原理 扩频通信系统是一种信息处理传输系统,这种系统是利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传输信息所必需的最小带宽。在接收机中利用同一码对接收信号进行同步相关处理以解扩和恢复数据。现有的扩频系统可分为:直接序列扩频、跳频、跳时,以及上述几种方式的组合。其中跳频系统是如今使用最多的扩频技术。 跳频扩频的调制方式可以为二进制或M 进制的FSK(MFSK)。如果采用二进制FSK ,调制器选择两个频率中的一个,设为0f 或1f ,对应于待传输的信号0或1.得到的二进制FSK 信号是由PN 码生成器输出序列输出觉得的频率平移量,选择

抗干扰的措施主要包括屏蔽、隔离、滤波、接地和软件

数控车床如何抗干扰 数控车床作为cnc机床自然也会像其他的电子仪器仪表一样受到众多的干扰,所以面对有可能发生的干扰我们必须有应对的措施,抗干扰的措施主要包括屏蔽、隔离、滤波、接地和软件处理等。 ①屏蔽技术:屏蔽是目前采用最多也是最有效的一种方式。屏蔽技术切断辐射电磁噪声的传输途径通,常用金属材料或磁性材料把所需屏蔽的区域包围起来,使屏蔽体内外的场相互隔离,切断电磁辐射信号,以保护被屏蔽体免受干扰,屏蔽分为电场屏蔽、磁场屏蔽及电磁屏蔽。在实际工程应用时,对于电场干扰时,系统中的强电设备金属外壳(伺服驱动器、变频器、驱动器、开关电源、电机等)可靠接地实现主动屏蔽;敏感设备如智能纠错装置等外壳应可靠接地,实现被动屏蔽;强电设备与敏感设备之间距离尽可能远;高电压大电流动力线与信号线应分开走线,选用带屏蔽层的电缆,对于磁场干扰,选用高导磁率的材料,如玻莫合金等,并适当增加屏蔽体的壁厚;用双绞线和屏蔽线,让信号线与接地线或载流回线扭绞在一起,以便使信号与接地或载流回线之间的距离最近;增大线间的距离,使得干扰源与受感应的线路之间的互感尽可能地小;敏感设备应远离干扰源强电设备变压器等。 ②隔离技术:隔离就是用隔离元器件将干扰源隔离,以防干扰窜入设备,保证电火花机床的正常运行。常见的隔离方法有光电隔离、变压器隔离和继电器隔离等方法。 (1)光电隔离:光电隔离能有效地抑制系统噪声,消除接地回路的干扰。在智能纠错系统的输入和输出端,用光耦作接口,对信号及噪声进行隔离;在电机驱动控制电路中,用光耦来把控制电路和马达高压电路隔离开。 (2)变压器隔离是一种用得相当广泛的电源线抗干扰元件,它最基本的作用是实现电路与电路之间的电气隔离,从而解决地线环路电流带来的设备与设备之间的干扰,同时隔离变压器对于抗共模干扰也有一定作用。隔离变压器对瞬变脉冲串和雷击浪涌干扰能起到很好的抑制作用,对于交流信号的传输,一般使用变压器隔离干扰信号的办法。 (3)继电器隔离,继电器的线圈和触点之间没有电气上的联系。因此,可以利用继电器的线圈接受电气信号,而用触点发送和输出信号,从而避免强电和弱电信号之间的直接联系,实现

抗干扰措施

抗干扰技术 在电路设计当中,抗干扰占有一个特别重要的地位。在一切的电子技术当中,都是重点。(或许你会说你是玩单片机的,感觉没这方面的必要,其实是因为数字电路就两种信号,一个高电平,一个低电平,本身就有一定的抗干扰性能,而模拟信号是连续的,容易被干扰,这也是现在的产品都数字化的原因之一,但是玩单片机的就不玩模拟信号?加点抗干扰技术以防万一也没错吧!)举个例子来说,如果要放大一个微弱的信号,当电源不是很好,有较大的纹波,经常4.5V到6V之间跳,工频信号又很强,你的电路有没有什么防护措施,你想想,当这个信号到最后,还是你想要的信号吗?打个比方,如果唐僧身边没有那么多能干的徒弟,菩萨,神仙,他到得了西天吗?那些妖精就是干扰源,徒弟什么的就是抗干扰措施,当然唐僧自身也有一定的抗干扰能力。这就是我们要讲的抗干扰技术。(请各位懒人直接跳到最后的总结) 理论上来说,抗干扰分为3个方面:1、干扰源。2、传输途径。3、敏感原件。也就是我们需要下功夫的地方。按照优先考虑的顺序,也是如上的1、2、3。你要是能把干扰抑制在源头,扼杀在摇篮里,那就不用其他的措施了。但是干扰源来自四面八方,说不定自己后院还起火(比如运放的自激振荡),所以3个方面都是需要加强的。 一般来说,电源的干扰时最普遍的,所以电源做得好就是一切的基础,尽量降低电源的纹波系数,电容可以滤去交流信号,因此在一些用运放的地方电源和地端可以并联10uF、1uF、0.1uF的电容,以滤去不同频率的波。小电容通低频,大电容通高频,但注意电解电容不要正负极接反了,那样也会产生噪声。再就是布线时,电源线和地线要尽量粗点(减小导线的电阻),避免90°折线;模拟电路和数字电路用不同的电源,;数字电路与模拟电路避免使用公共地线;最多模拟地与数字地仅有一点相连,信号连接时,可用光电隔离,防止互相干扰。接地线越短越好,避免地线形成环路。 在传输途径上下功夫,各模块之间连接线尽量短,远离干扰;高频信号传输可使用同轴电缆或多芯屏蔽电缆,对可能的干扰源输出线进行滤波,产生噪声的导线与地线绞合,信号地线、其它可能造成干扰的电路的地线分开,敏感电路加屏蔽罩(屏蔽罩是要接地才有用的),把干扰源围闭在屏蔽罩内也是允许的。隔离也是常用的,隔离分变压器隔离,继电器隔离,光电隔离,光电隔离比较常用。 有的继承电路 而加强自身的抗干扰性能,大部分是靠原件本省的性质和所用的材料等等,我们自己难以决定。 总而言之,想要抗干扰,可采取以下措施: 1、提高电源的稳定性,减小纹波。各个模块的电源可以和地之间用不同的电容 相连。 2、在信号线容易受到干扰的地方,使用滤波电路。 3、各级模块相连的信号线尽量短,也可以用同轴电缆相连。 4、使用屏蔽盒屏蔽各个模块,或者干扰源。 5、模拟电路与数字电路使用不同的电源,信号之间使用光电隔离。 6、布线时,避免地线成环状,接线尽量短,但避免交叉、飞线。各种模块布局 时分开,模拟电路与数字电路分开。电源线与地线要尽量粗一点。原件排列

直接序列扩频通信系统抗干扰性能分析教学提纲

直接序列扩频通信系统抗干扰性能分析

直接序列扩频通信系统抗干扰性能分析 在现代战争中,通信对抗扮演着越来越重要的角色。随 着计算机技术、微电子技术等大量高新技术的应用,军事通信获得了长足的发展,尤其是跳频、扩频等一些新的通信手段应用之后,使得通信频谱越来越宽,通信的反侦察、抗干扰能力越来越强,迫使各国加紧对通信对抗技术以及装备的研制。直接序列扩频通信由于其优良的多址接入、低截获概率、抗干扰和强保密等特性,使得它在军事通信、卫星通信和民用领域得到了广泛应用。在电子对抗中,对扩频通信的有效干扰成为制胜关键。 第一章研究背景介绍 1.1直扩通信研究背景 现代战争首先是电子战,在电子战中失去优势的一方,将导致通信中断,指挥失灵等,从而丧失战争主导权。两次海湾战争,前南斯拉夫战争以及阿富汗战争都是很好的佐证。因此,通信对抗作为C4ISR系统的核心,越来越受到各国的重视。通信对抗属于电子对抗,它包括通信侦察、通信干扰等主要对抗措施。通信对抗的目的在于:侦收和截获敌方信息,测量有关技战术参数;采用各种干扰方式阻止敌方正常通信并抑制敌方对我方的干扰,保证我方通信系统有效工作。

扩频通信作为新型的通信方式,具有优良的抗干扰、抗衰落和抗多径性能及频谱利用率高、多址通信等诸多优点,并被广泛地应用于军事通信领域,极大地提高了通信系统的抗截获和抗干扰能力。因此,扩频通信系统成为干扰方的首要作战目标,同时,扩频通信的抗干扰、抗截获、抗侦破特性给干扰方带来了巨大的困难。为取得现代电子战的胜利,针对扩频通信系统研究高效的干扰方式,如何有效的干扰成为取得现代电子战胜利的重要一环,对战时通信对抗具有重要意义。 1.2直扩通信的军事应用情况 1)直扩通信技术在舰艇卫星通信系统上应用广泛。国外舰艇卫星通信系统和国内舰艇卫星通信系统均采用码分多址通信方式,使用C波段。这样网络组织与撤收灵活,通信质量高,频道使用少。从目前使用看,这种方式充分发挥了直接序列扩频通信的特点,是扩频通信应用成功的范例。另外,美军使用的联合战术信息分发系统也使用直接扩频技术,主要用于在战术作战环境中进行抗干扰、发布保密数字信息,具有容纳用户数多和交互数据量大的特点,能快速保密地交换指挥控制信息和敌方战术设备的状态参数。 2)直扩通信技术在军用战术移动通信电台、数据分发系统中发挥重要作用。1996年美军演示了SICOM公司研制

第五章 过程输入输出通道技术汇总

第五章过程通道 在计算机控制系统中,为了实现对生产过程的控制,要将对象的控制参数及运行状态按规定的方式送入计算机,计算机经过计算、处理后,将结果以数字量的形式输出,此时需将数字量变换为适合生产过程控制的量,因此在计算机和生产过程之间,必须设置完成信息的传递和变换装置,这个装置称为过程输入输出通道,也叫I/O通道。 5.1过程输入输出通道概述 过程输入输出通道由模拟量输入输出通道和开关量输入输出通道组成。过程输入输出通道在微型计算机和工业生产过程之间起着信号传递与变换的纽带作用。 5.1.1 模拟量输入通道的一般结构 过程参数由传感元件和变送器测量并转换为电压(或电流)形式后送至多路开关;在微机的控制下,由多路开关将各个过程参数依次地切换到后级,进行放大、采样和A/D转换,实现过程参数的巡回检测。 5.1.2 模拟量输出通道的基本结构 多D/A结构的模拟量输出通道中的D/A转换器除承担数字信号到模拟信号转换的任务外,还兼有信号保持作用,即把微机在t=kT 时刻对执行机构的控制作用维持到下一个输出时刻t=(k+1)T。这是一种数字保持方式,送给D/A转换器的数字信号不变,其模拟输出信号便保持不变。 共享D/A结构的模拟量输出通道中的D/A转换器只起数字信号到模拟信号的转换作用,信号保持功能靠采样保持器完成。这是一种模拟保持方式,微机对通路i(i=1,2,...,n)的控制信号被D/A转换器转换为模拟形式后,由采样保持器将其记忆下来,并保持到下一次控制信号的到来。 多D/A形式输出速度快、工作可靠、精度高,是工业控制领域普遍

采用的形式。 5.1.3 开关量(数字量)输入通道的基本结构 开关量输入通道又称为数字量输入通道,该通道的任务是把被控对象的开关状态信号(或数字信号)送给计算机、或把双值逻辑的开关量变换为计算机能够接收的数字量送给计算机,简称DI通道。 典型的开关量输入通道通常由以下几部分组成: 1.信号变换器:将生产过程的非电量开关量转换为电压或电流的双值逻辑值。 2.整形变换电路:将混有毛刺之类干扰的输入双值逻辑信号或其信号前后沿不符合要求的输入信号整形为接近理想状态的方波或矩形波,然后再根据系统要求变换为相应形状的脉冲信号。 3.电平变换电路:将输入的双值逻辑电平转换为与CPU兼容的逻辑电平。 4.总线缓冲器:暂存数字量信息并实现与CPU数据总线的连接。 5.接口逻辑电路:协调各通道的同步工作,向CPU传递状态信息并控制开关量的输入、输出。 5.1.4 开关量(数字量)输出通道的基本结构 开关量(数字量)输出通道的任务是把计算机输出的数字信号(或开关信号)传送给开关型的执行机构(如继电器或指示灯等),控制它们的通、断或亮、灭,简称DO通道。其典型结构中锁存输出的主要作用是锁存CPU输出的数据或控制信号,供外部设备使用;隔离部件的作用是为防止干扰;功放的作用则是为把计算机输出的微弱数字信号转换成能对生产过程进行控制的驱动信号。 下面分别展开说明四种过程通道的组成及应用。

浅谈单片机应用系统的软件抗干扰措施

浅谈单片机应用系统的软件抗干扰措施 摘要分析单片机应用系統的软件干扰因素以及实现抗干扰必要条件,并针对单片机应用系统易出现的软件失控、软件数据出错、数字量输入错误等问题提出可行的软件抗干扰措施。 关键词单片机;软件;抗干扰 引言 单片机应用系统产生故障的最主要的原因在于干扰问题。干扰对于单片机应用系统产生的影响一方面会造成测量与控制精度失衡,另一方面也会造成应用系统完全失效。所以对于单片机应用系统软件的干扰问题必须进行解决。 1 单片机应用系统的软件抗干扰措施的必要条件[1] 1.1 干扰因素及影响分析 随着科学技术的不断发展,单片机系统应用的领域越来越广泛,因而对单片机系统的稳定性要求也变得越来越高。但是受到单片机应用系统结构复杂性以及工作环境的多变性的影响,决定单片机系统性能的因素相对来说也比较复杂,尤其是软件的抗干扰措施就是其中比较重要的组成部分。从专业角度分析,单片机系统稳定性影响因素主要分为四种,即浪涌干扰、放电干扰、电磁干扰和高频振荡干扰。在这些干扰因素的影响下单片机系统会发生采集的数据出现失真、程序的运行受到干扰、硬件控制发生失效等现象,而更加直观的表现就是视频图像发生串色、网纹,音频信号失真或者是声音发生串扰现象等。 1.2 软件抗干扰的必要条件分析 在对单片机软件抗干扰稳定性进行设计时,从安全角度考虑,将软件的程序数据放在了ROM中。而一般情况下,单片机抗干扰软件应当具有以下几个方面的条件:①当单片机系统受到外界干扰后,在抗干扰软件的作用下系统的硬件组成不应受到损坏,另外为了方便对系统运行状态的监控,应当在关键核心的位置设置相应的检测状态;②当程序区因外界因素受到干扰后不会产生一定的损坏。一般情况下,在RAM中与系统有关的表格、常数等即使在受到干扰后也不会发生损坏,但是RAM程序中的系统可能因外界等的干扰发生一定的故障。而一旦RAM区的有关程序受到外界干扰,为了从根本上消除干扰带来的不利影响,应当向RAM区重新输入有关的程序。 2 单片机应用系统的软件抗干扰措施[2] 2.1 失控软件的抗干扰措施

软件抗干扰的几种办法

软件抗干扰的几种办法 在提高硬件系统抗干扰能力的同时,软件抗干扰以其设计灵活、节省硬件资源、可靠性好越来越受到重视。下面以MCS-51单片机系统为例,对微机系统软件抗干扰方法进行研究。 1、软件抗干扰方法的研究 在工程实践中,软件抗干扰研究的内容主要是:一、消除模拟输入信号的噪声(如数字滤波技术);二、程序运行混乱时使程序重入正轨的方法。本文针对后者提出了几种有效的软件抗干扰方法。 (1) 指令冗余 CPU取指令过程是先取操作码,再取操作数。当PC受干扰出现错误,程序便脱离正常轨道“乱飞”,当乱飞到某双字节指令,若取指令时刻落在操作数上,误将操作数当作操作码,程序将出错。若“飞”到了三字节指令,出错机率更大。 在关键地方人为插入一些单字节指令,或将有效单字节指令重写称为指令冗余。通常是在双字节指令和三字节指令后插入两个字节以上的NOP。这样即使乱飞程序飞到操作数上,由于空操作指令NOP的存在,避免了后面的指令被当作操作数执行,程序自动纳入正轨。 此外,对系统流向起重要作用的指令如RET、RETI、LCALL、LJMP、JC等指令之前插入两条NOP,也可将乱飞程序纳入正轨,确保这些重要指令的执行。 (2) 拦截技术

所谓拦截,是指将乱飞的程序引向指定位置,再进行出错处理。通常用软件陷阱来拦截乱飞的程序。因此先要合理设计陷阱,其次要将陷阱安排在适当的位置。 软件陷阱的设计 当乱飞程序进入非程序区,冗余指令便无法起作用。通过软件陷阱,拦截乱飞程序,将其引向指定位置,再进行出错处理。软件陷阱是指用来将捕获的乱飞程序引向复位入口地址0000H的指令。通常在EPROM中非程序区填入以下指令作为软件陷阱: NOPNOPLJMP 0000H其机器码为0000020000。 陷阱的安排 通常在程序中未使用的EPROM空间填0000020000。最后一条应填入020000,当乱飞程序落到此区,即可自动入轨。在用户程序区各模块之间的空余单元也可填入陷阱指令。当使用的中断因干扰而开放时,在对应的中断服务程序中设置软件陷阱,能及时捕获错误的中断。如某应用系统虽未用到外部中断 1,外部中断1的中断服务程序可为如下形式: NOPNOPRETI返回指令可用“RETI”,也可用“LJMP0000H”。如果故障诊断程序与系统自恢复程序的设计可靠、完善,用“LJMP0000H”作返回指令可直接进入故障诊断程序,尽早地处理故障并恢复程序的运行。 考虑到程序存贮器的容量,软件陷阱一般1K空间有2-3个就可以进行有效拦截。 (3)软件“看门狗”技术

现场总线抗干扰措施

根据国际电工委员会IEC1158定义,安装在制造或过程区域的现场装置与控制室内的动控制装置之间的数字式、串行、多点通信的数据总线称为现场总线。当今全球最流行的现总线有FF总线(FieldbusFoundation)、Profibus、Modbus等,在造纸行业,ABB公司AF100应用也很多。但是无论哪一种现场总线,都是数字信号,当在介质上传输时,由于干扰噪音的原因,使得“1”变成了“0”,“0”变成了“1”,从而影响现场总线性能,以至于不能正常工作。因此研究现场总线的抗干扰问题并提高现场总线的抗干扰能力非常重要。 1 纸机车间存在的干扰源 (1)纸机传动系统是纸机车间最大的干扰源。纸机传动系统的总负荷约占造纸车间总负荷的1/3以上,在系统的整流和逆变中,大功率电力电子元器件(IGBT等)高速开和关转换,产生大量的高频电磁波,污染整个车间,并且产生大量高次谐波,污染工频电网。 (2)变压器、MCC柜、电力电缆和动力设备。这些设备均为工频,频率较低,干扰一般发生在近场,而近场中随着干扰源的特性不同,电场分量和磁场分量有很大差别。特别是动力设备启动时,瞬间电流能够达到额定电流的6~1倍,会产生大电流冲击的暂态干扰。 (3)来自工频电源的干扰。工频电源波形畸变和高次谐波若未加隔离或滤波,便会通过向纸机控制系统供电而进入控制系统,影响现场总线的信号。 (4)导线接触不良产生的火花、电弧等。 (5)三相供电不平衡产生的地电流、屏蔽层不共地产生的接地环流。 2 干扰的传播途径 (1)由导线传输,称为传导干扰。在现场总线中,主要表现为地线阻抗干扰和来自工频电源的干扰。 (2)通过空间以辐射的形式传输,称为辐射干扰。 3 现场总线的抗干扰措施 (1)远离干扰源动力设备和电力电缆对现场总线的干扰,与距离的平方成反比,即随距离的增大,干扰衰减非常快。所以,现场总线设备远离用电设备,现场总线电缆与动力缆分层桥架布置,都能起到很好的防干扰作用。远离干扰源,是防止辐射干扰的重要措施。 (2)现场总线设备和电缆的屏蔽现场总线屏蔽的机理,一是外来电磁波在金属表面产生涡流,从而抵消原来的磁场;二是电磁波在金属表面产生反射损耗,另一部分透射波在金属屏蔽层内传播过程中,衰减产生吸收损耗。现场总线的屏蔽是利用由导电材料制成的屏蔽并结合接地,来切断干扰源。 (3)采用UPS电源或隔离变压器可防止来自工频电源的干扰。 (4)采用光缆传输信号在现场总线传输速度高!传输距离远干扰大的情况下,尽可能地采用光缆。采用光缆后,有效解决了辐射扰和传导干扰的众多问题。若在不共地两点之间,或者在

电磁抗干扰来源及电路与软件抗干扰(EMC)措施

电磁抗干扰来源及电路与软件抗干扰(EMC)措施 概述 可靠性是用电设备的基木要求之一,也是所有控制单元最基木的要求。它包括两方面的含义:故障时不拒动和正常时不误动。之所以会存在这两个方面的隐患是因为电磁干扰的存在。因此为了保障控制单元可靠的工作,除了采用合适的保护原理外,本章主要考虑抗干扰设计。 电磁干扰的传播方式主要有两种:(1)辐射:电磁干扰的能量通过空间的磁场、电场或者电磁波的形式使干扰源与受干扰体之间产生藕合。(2)传导:电磁干扰的能量可以通过电源线和信号电缆以电压或电流的方式进行传播。电磁干扰的频率包括(1)低频干扰(DC10~20Hz);(2)高频干扰(几百兆赫,辐射干扰和达几千兆赫):(3)瞬变干扰(持续周期从几毫秒到几纳秒)。 造成电力系统中形成电磁干扰的原因有诸多方面,我们知道,同一电力系统中的各种电力设备通过电和磁紧密的联系起来,相互影响,由于运行方式的改变、故障、开关设备的操作等引起的电磁振荡会对智能控制单元产生影响:另外,软起动工作在环境恶劣的煤矿井下,空气非常潮湿,到处充满着煤尘,电磁干扰尤为严重。控制单元在工作时不仅要受到从电网上传来的“噪声”干扰,其木身也是一个很强的干扰源,比如负载上电流的频繁变化和通过导线空间进入单片机系统内部,造成程序跑飞,使系统工作不正常,甚至损坏系统。所以对控制单元各个部分的抗干扰性能提出了较高的要求,尤其是单片机系统的抗干扰问题。因此,在整个单片机应用系统的研发过程中,始终将抗干扰性能作为系统设计时首先考虑的问题之一。 电磁干扰的来源 所谓干扰,简单来说就是指电磁干扰(Electro-Magnetic Interference 简称EMI),它在一定条件下干扰电子设备、通信电路的正常工作。 电源干扰 电源干扰是单片机应用系统的主要干扰源,据统计,实时系统的干扰约70%来自

抗干扰措施

抗干扰措施的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。 1、抑制干扰源 抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: (1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。 (2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。 (3)给电机加滤波电路,注意电容、电感引线要尽量短。 (4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。 (5)布线时避免90度折线,减少高频噪声发射。 (6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。 2、切断干扰传播路径的常用措施 (1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。 (2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。 (3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。此措施可解决许多疑难问题。 (4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离。 (5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求。(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘。 (7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能。

关于CBTC系统无线通信抗干扰技术的研究

技术装备 52 MODERN URBAN TRANSIT 6/2009现代城市轨道交通 0引言 列车控制系统在地铁信号的发展过程中,经历了从单向轨道电路到双向无线通信的变革。目前广泛应用于地铁列车控制系统的是基于无线通信的列车控制系统(CBTC)(图1)。而无论基于无线局域网还是专用无线网的通信,都存在同频或邻频干扰的问题。为此,如何引入技术手段,提高CBTC系统的抗干扰能力,保证其可靠、稳定运行十分重要。 1无线局域网 1.1结构 无线局域网(WLAN)是计算机 网络与无线通信技术相结合的产物,它以无线多址信道作为传输媒介,利用电磁波完成数据交互,实现传统有线局域网的功能。WLAN的核心结构如图2所示。 从图2可以看到,WLAN的工作层有介质访问控制层(MAC)和物 理层(PHY),其中物理层分为PLCP(物理层收敛过程)子层和PMD(物理机制相关)子层。PLCP子层通过将MAC层信息映射到PMD子层,使MAC层对物理层的依赖减到最低,而PMD子 层则提供了控制无线介质 的方法和手段。WLAN的物理层采用扩频工作方式,包括FHSS(跳频扩频)、DSSS(直接序列扩频)、HR/DSSS(高速直接序列扩频)和OFDM(正交分复用),无线工作频段为ISM:2.4~2.4875GHz以及U-NII:5.725~5.850 GHz(取决于采用的标准)。在IEEE802.11结构内还包含两个管理实体(MAC层管理实体MLME和PHY 物理层管理实体PLME)和管理信息库(MIB),从而控制MAC层和PHY层的工作状态。 1.2MAC层干扰问题 无线局域网的MAC层的载波监听多路访问/冲突检测方法(CSMA/CD)协议问题,从理论上讲,MAC层的CSMA/CD协议完全能够满足局域网级的多用户信道竞争问题,但是,对应无线环境而 邱鹏:南京恩瑞特实业有限公司轨道交通事业部,助理工程师,南京 211106 关于CBTC系统无线通信 抗干扰技术的研究 邱鹏 李亮 摘 要:研究基于无线传输的CBTC系统车-地通信抗干扰技术,通过 分析无线局域网中的同频干扰,结合重复累积码、感知无线电、一致性测试3项技术,提出1套在CBTC系统设计和系统运营两个阶段抑制同频干扰的完整解决方案。 关键词:车地通信;同频干扰;重复累积码;感知无线电;一致性测试 注:LLC即逻辑链路控制;WEP即有线等效保密 图2WLAN 的核心结构 图1CBTC 系统框图 车载部分 车载ATC定位 数据通信部分 无线传输系统 轨旁网络装置 ATS 轨旁ATC系统 LLC WEPMAC PHY DSSS FH IR OFDMMACMgmt MIB LLC MAC 业务接口 MAC管理业务接口MAC子层 MAC管理层 PHY业务接口 PHY管理业务接口PHY管理层 PLCP子层PMD 子层

第二章 过程输入通道与接口

第二章过程输入通道与接口 过程通道是在微机和生产过程之间设置的信息传送和转换的连接通道,它包括数字量输入通道、模拟量输入通道、数字量输出通道、模拟量输出通道。 主要知识点: ? 2.1 输入通道的结构与信号交换:A/D转换器、D/A转换器、光电耦合隔离器的工作原理、模拟量输入通道的结构组成、香农定理 ? 2.2 模拟量输入通道中的常用放大器 ? 2.3 A/D转换器与单片机接口电路 2.1 输入通道的结构与信号交换 根据信号来源及种类的不同,输入通道相应分为数字量输入通道和模拟量输入通道。(P17 表2.1.1 输入信号分类与通道对照表) 数字信号,包括开关信号、脉冲信号。它们是以二进制的逻辑“1”和“0”或电平的高和低出现的。如开关触点的闭合和断开,指示灯的亮和灭,继电器或接触器的吸合和释放,马达的启动和停止,晶闸管的通和断,阀门的打开和关闭,仪器仪表的BCD 码,以及脉冲信号的计数和定时等。 模拟信号,包括电流信号、电压信号。用来描述被控对象的过程参数如温度、压力、流量、液位、重量等。 在微机的各种接口中,完成外设信号到微机所需数字信号转换的,称为模拟∕数字转换(A/D 转换Analog to Digital Converter)器;完成微机输出数字信号到外设所需信号转换的,称为数字∕模拟转换(D/A转换Digital to Analog Converter)器。 2.1.1 数字量输入通道 数字量输入通道(DI 通道)的任务是把生产过程中的数字信号转换成计算机易于接受的形式。 信号调理电路:虽然都是数字信号,不需进行A/D 转换,但对通道中可能引入的各种干扰必须采取相应的技术措施,即在外部信号与单片机之间要设置输入信号调理电路。 凡在电路中起到通、断作用的各种按钮、触点、开关,其端子引出均统称为开关信号。在开关输入电路中,主要是考虑信号调理技术,如调理、防抖、光电隔离、整形、电平转换、RC滤波、过电压保护、反电压保护等。 1、输入信号调理电路 典型的输入信号调理电路如P18,图2.1.1所示。功能如下: 稳压管D2把过压和瞬态尖峰电压嵌位在安全电平上

卫星通信抗干扰系统

卫星通信抗干扰系统 一般可理解为,通信装备及系统为对抗干扰方利用电磁能和定向能控制、攻击通信电磁频谱,以提高其在通信对抗中的生存能力所采取的通信反对抗技术体系、方法和措施。 一般说,通信抗干扰的基本体系、方法、措施可分为三类: 1、信号处理。如直接序列扩频技术(DS-SS),其关键参量是作为时间函数的相位;跳频技术(FH-SS)其关键参量是作为时间函数的载频;等等。 2、空间处理。如采用自适应天线调零技术,当接收端受到干扰时,使其天线方向图零点自动指向干扰方向,以提高通信接收机的信干比。 3、时间处理。如猝发传输技术,由于通信信号在传输过程中暴露的时间很短暂,从而大大降低了被干扰方侦察、截获的概率。 通信抗干扰技术研究的就是在已知或预测敌方的干扰手段情况下,在上述技术基础上(当然不排除以后有新的技术类别)选取适当的技术手段来消除或减轻敌方干扰,而使我方需要进行的通信能够延续的一项技术。对敌方的干扰性质,强度、种类、手段、采用的体系,了解得越清楚,采取的措施越有针对性,取得的效果也越好。由于敌方的对抗手段往往是综合的、多变的,有的可能是完全新颖的,所以抗干扰的手段也必须采取多种方式的结合才能取得较好的效果。 通信抗干扰技术的特点: 1、对抗性强,技术综合性强,难度高,发展快,某种程度上说是敌我双方智慧和技术的斗争。通信的成败关系着战争的胜负,所以此技术对抗性很强。通信抗 干扰有了新技术,搞对抗的就想新的对策,反过来也一样,这样就促进了技术的发展和难度的提高。 2、对技术的实用性和可靠性的要求高,通信抗干扰必须在战场上实际解决问题。指标高而不可靠或不实用是不能容忍的,其后果不堪设想。 [相关技术]通信对抗;扩频技术;抗干扰电台;卫星通信抗干扰 [技术难点] 1、提高跳频速率有利于抗干扰,但跳速提高需解决如下问题:接收机中频滤 波器产生的瞬时扰动问题;发射机功率输出截止状态产生的过渡问题;频率合成器

通信抗干扰技术

工控系统的通信抗干扰技术 0 引言 一个工控系统常常由几台、几十台甚至更多的工业控制机组成各种形式的分布式测控系统。直接控制级(DDC)可以独立完成本地的数据采集和控制任务,主站负责系统的管理。所有的机器连接成网络互通信息,就可以完成以整体目标为宗旨的相互协调配合,达到更高的控制水平和管理层次。系统的通信因此就成为所有的机器协调一致的关键环节。对于工控系统的设计者来说,面对工业现场严重的干扰,提高通信网络的抗干扰能力无疑是非常重要的事。 1 给RS232C通信接口加装光隔电流环的抗干扰措施 RS232C是微机之间最常用的点对点串行通信接口,但RS232C的抗干扰能力很差。这是由于RS232C采用单端信号传输,而它的连接电缆把它所连接的两台机器的地又连接在了一起,因此,当两个地线之间的地电位不一致时,就有共模干扰电压产生。于是就造成了严重的干扰,甚至烧毁接口器件。如果给RS232C加装一个光隔电流环,就可以隔断两个地之间的联系,从而极大地提高其抗干扰能力。图1是RS232C加光隔电流环的电路原理图。图中,U1是工控机1的RS232C发送接口芯片1488,U2是工控机2的RS232C接收接口芯片1489。它们之间的通信信道已经由T1、T2组成的光隔电流环驱动。当工控机1发送“0”时,U1输出约+11 V,它使光隔管T1的发光二极管发光,使得T1的光电三极管导通,其发射极输出电流i。电流i通过通信线路,驱动光隔管T2的发光二极管发光,使得T2的光电三极管导通,其发射极输出电压约+11 V,接收芯片U2转换该电压成为TTL电平“0”。当工控机1发送“1”时,T1、T2截止,通信线路没有电流,T2的发射极输出-12 V,U2转换它成为TTL电平“1”。图中的C1、D2,C2、D3起加速作用。本电路经实际使用,可以构成几公里的通信。需要注意的是,光隔电流环的电源一定要选用与工控机电源隔离的电源。接地点D1、D2、D3各自独立于各自的体系,不能混接!由于工控机和外电路完全隔离,因此显著地提高了工控机的抗干扰水平。 图1 RS232C光隔电流环电路原理图 对RS232C进行光隔电流环改造,隔断了工控机与外界的电的联系,显著地提高了工控机的抗干扰能力。而且这种改造只是在插口上进行,不涉及到工控

传感器干扰问题及抗干扰措施详解

模拟传感器在现代化工农业生产,消防应急,国防建设及科学研究中有重非常重要的作用。作为传感器最重要的指标是测量精度,现实环境又对传感器测量精度产生了很大的干扰,如果降低干扰是各传感器行业的命脉所在。那么我们就了解一下传感器的干扰及抗干扰措施。 干扰源、干扰种类及干扰现象 传感器及仪器仪表在现场运行所受到的干扰多种多样,具体情况具体分析,对不同的干扰采取不同的措施是抗干扰的原则。这种灵活机动的策略与普适性无疑是矛盾的,解决的办法是采用模块化的方法,除了基本构件外,针对不同的运行场合,仪器可装配不同的选件以有效地抗干扰、提高可靠性。在进一步讨论电路元件的选择、电路和系统应用之前,有必要分析影响模拟传感器精度的干扰源及干扰种类。 1、主要干扰源 (1)静电感应 静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,因此又称电容性耦合。 (2)电磁感应 当两个电路之间有互感存在时,一个电路中电流的变化就会通过磁场耦合到另一个电路,这一现象称为电磁感应。例如变压器及线圈的漏磁、通电平行导线等。 (3)漏电流感应 由于电子线路内部的元件支架、接线柱、印刷电路板、电容内部介质或外壳等绝缘不良,特别是传感器的应用环境湿度较大,绝缘体的绝缘电阻下降,导致漏电电流增加就会引起干扰。尤其当漏电流流入测量电路的输入级时,其影响就特别严重。 (4)射频干扰 主要是大型动力设备的启动、操作停止的干扰和高次谐波干扰。如可控硅整流系统的干扰等。 (5)其他干扰 现场安全生产监控系统除了易受以上干扰外,由于系统工作环境较差,还容易受到机械干扰、热干扰及化学干扰等。 2、干扰的种类

完整word版抗干扰措施

6 抗干扰措施 系统总的增益为0?20dB,因此抗干扰措施必须要做得很好才能避免自激和减少噪声。我们采用下述方法减少干扰,避免自激: 1、设计制作稳定供电电源,减少电源外部干扰。 2、电源、前级放大、后级功放分级隔离,减少相互干扰。 3、将输入部分和增益控制部分装在屏蔽盒中,避免级间干扰和高频自激。 4、电源隔离,输入级和功率输出级采用隔离供电,输入级电源靠近屏蔽盒 就近接上1000uF电解电容,盒内接高频瓷片电容,通过这种方法可避免低频自激。 5、所有信号耦合用电解电容两端并接高频瓷片电容以避免高频增益下降。 6、构建闭路环。在输入级,将整个运放用较粗的地线包围,可吸收高频信 号减少噪声。在增益控制部分和后级功率放大部分也都采用了此方法。在功率级,这种方法可以有效的避免高频辐射。 7、使用同轴电缆, 输入级和输出级使用BNC 接头,输入级和功率级之间用同轴电缆连接。 8、注意整机电路PCB 排版、布线设计及其电磁兼容EMC 设计,提高整机抗干扰能力,工作稳定。(详见第9 章专题介绍) 实践证明,电路的抗干扰措施比较好,在1KHZ?6MHz的通频带范围和0? 58dB增益范围内都没有自激。

[8] 7 PCB 和电磁兼容设计 7.1 电磁兼容 EMC 电磁兼容(Electromagnetic Compatibility,简称EMC ),是研究在有限的空间、 时间和频谱资源的功能条件下, 各种电气设备共同工作, 并不发生降级的科学 另外一种解释, EMC 是一种技术,这种技术的目的在于,使电气装置或系统在 共同的电磁环境条件小, 既不受电磁环境的影响, 也不会给环境以这种影响。 句话说,就是它不会因为周边的电磁环境而导致性能降低、 功能丧失和损坏, 不会在周边环境中产生过量的电磁能量, 以致影响周边设备的正常工作。 (这是 EMC 的终极目标) 7.1.1 电磁兼容 EMC 研究的目的和意义 1、 确保系统内部的电路正常工作,互不干扰,以达到预期的功能; 2、 降低电子系统对外的电磁能量辐射,使系统产生的电磁干扰强度低于特 定的限定值; 3、减少外界电磁能量对电子系统的影响,提高系统自身的抗扰能力 7.1.2 EMC 的主要研究内容 EMC 是研究在给定的时间、空间、频谱资源的条件下: 同一设备内部各电路模块的相容性,互不干扰、能正常工作; 2、不同设备之间的兼容性。 总体讲,EMC 分为 EMI (Electromagnetic Interferenee 电磁干扰)、EMS (Electro Magnetic Susceptibility ,电磁敏感度)两部分。 7.1.3 EMC 三要素及对策 EMC 三要素为:干扰源, 耦合途径,耦合装置。任何 EMC 问题的处理都是 围绕三要素进行的: 1、降低干扰源; 1、

通信干扰

通信干扰与抗干扰技术综述 班级: 0108** 学号: 0108**** 姓名: ******

目录 一、通信干扰 (2) 1.1 通信干扰的特点 (2) 1.2 通信干扰的分类 (3) 1.3 信干扰的一般过程和影响因素 (5) 二、通信抗干扰 (6) 2.1概述 (6) 2.2通信抗干扰原理 (7) 2.3抗干扰技术 (8) 三、直接序列扩频 (8) 3.1 DS扩频技术基本原理 (8) 3.2 DS抗干扰性能分析 (10) 四、小结 (12)

一、通信干扰概述 1.1 通信干扰的特点 对无线电通信过程的干扰是在无线电通信技术诞生之前就已经客观存在了,如天线干扰和工业干扰等,但是人为有意的无线电干扰却是在无线电通信技术成功应用于战争研究之后才发展起来的。其特点可归纳如下。 1.对抗性 通信干扰是为了破坏或扰乱敌方的无线电通信。其信号发射目的不在于传送某种信息,而在于用干扰中携带的信息去压制和破坏敌方的通信。 2.进攻性 无线电通信是有源的、积极地、主动地,他千方百计的“杀入”到敌方通信系统内部,所以干扰是有进攻性的。 3.先进性 通信干扰每时每刻都以敌方为对象,因此它必须跟踪敌方通信技术的最新发展,并且设法超过敌方,只有这样才能开发出克敌制胜的通信干扰设备。 4.灵活性和预见性 作为对抗性武器,通信干扰系统逆序具备敌变我变的能力,现代战场瞬息万变,为了立于不败之地,通信干扰系统的开发和研究必须注重功能的灵活性和发展的预见性。 5.技战综合性 通信干扰系统有如其他武器一样,其作用不仅取决于技术性能的优良,在很大程度上还取决于其战术使用方法。 6.综合对抗性 无线电通信系统随着现代化战争的发展,已从过去单独的、分散的、局部的发展成为联合的、一体的、全局的通信指挥系统。 7.工作频带宽 无线电通信干扰设备随着现代军事无线电技术的发展,需要覆盖的频率范围

过程输入输出通道技术模板

第五章过程输入输出通道技术 在计算机控制系统中, 为了实现对生产过程的控制, 要将对象的控制参数及运行状态按规定的方式送入计算机, 计算机经过计算、处理后, 将结果以数字量的形式输出, 此时需将数字量变换为适合生产过程控制的量, 因此在计算机和生产过程之间, 必须设置完成信息的传递和变换装置, 这个装置称为过程输入输出通道, 也叫I/O通道。 5.1过程输入输出通道概述 过程输入输出通道由模拟量输入输出通道和开关量输入输出通道组成。过程输入输出通道在微型计算机和工业生产过程之间起着信号传递与变换的纽带作用。 5.1.1 模拟量输入通道的一般结构 过程参数由传感元件和变送器测量并转换为电压( 或电流) 形式后送至多路开关; 在微机的控制下, 由多路开关将各个过程参数依次地切换到后级, 进行放大、采样和A/D转换, 实现过程参数的巡回检测。 5.1.2 模拟量输出通道的基本结构 多D/A结构的模拟量输出通道中的D/A转换器除承担数字信号到模拟信号转换的任务外, 还兼有信号保持作用, 即把微机在t=kT 时刻对执行机构的控制作用维持到下一个输出时刻t=(k+1)T。这是一种数字保持方式, 送给

D/A转换器的数字信号不变, 其模拟输出信号便保持不变。 共享D/A结构的模拟量输出通道中的D/A转换器只起数字信号到模拟信号的转换作用, 信号保持功能靠采样保持器完成。这是一种模拟保持方式, 微机对通路i( i=1, 2, ..., n) 的控制信号被D/A转换器转换为模拟形式后, 由采样保持器将其记忆下来, 并保持到下一次控制信号的到来。 多D/A形式输出速度快、工作可靠、精度高, 是工业控制领域普遍采用的形式。 5.1.3 开关量( 数字量) 输入通道的基本结构 开关量输入通道又称为数字量输入通道, 该通道的任务是把被控对象的开关状态信号( 或数字信号) 送给计算机、或把双值逻辑的开关量变换为计算机能够接收的数字量送给计算机, 简称DI通道。 典型的开关量输入通道一般由以下几部分组成: 1.信号变换器: 将生产过程的非电量开关量转换为电压或电流的双值逻辑值。 2.整形变换电路: 将混有毛刺之类干扰的输入双值逻辑信号或其信号前后沿不符合要求的输入信号整形为接近理想状态的方波或矩形波, 然后再根据系统要求变换为相应形状的脉冲信号。 3.电平变换电路: 将输入的双值逻辑电平转换为与CPU兼容的逻辑电平。 4.总线缓冲器: 暂存数字量信息并实现与CPU数据总线的连接。 5.接口逻辑电路: 协调各通道的同步工作, 向CPU传递状态信息并控制开

抗干扰措施

提高变电所自动化系统可靠性的措施 一、概述 变电所综合自动化系统具有功能强、自动化水平高、可节约占地面积、减轻值班员操作及监视的工作量、缩短维修周期以及可实现无人值班等优越性。这已为越来越多的电力部门的专家和技术人员所共识。但一方面,由于它是高技术在变电所的应用,是一种新生事物,很多人对它还不够了解,因此也不放心。特别是目前不少工作在变电所第一线的技术人员与运行人员,对综合自动化系统的技术和系统结构还不了解,对其可靠性问题比较担心。另一方面,变电所综合自动化系统内部各个子系统都为低电平的弱电系统,但它们的工作环境是电磁干扰极其严重的强电场所,在研制综合自动化系统的过程中,如果不充分考虑可靠性问题,没有采取必要的措施,这样的综合自动化系统在强电磁场干扰下,也确实很容易不能正工作,甚至损坏元器件。因此,综合自动化系统的可靠性是个很重要的问题。 可靠性是指综合自动化系统内部各子系统的部件、元器件在规定的条件下、规定的时间内,完成规定功能的能力。不同功能的自动装置有不同的反映其可靠性的指标和术语。例如,保护子系统的可靠性通常是指在严重干扰情况下,不误动、不拒动。远动子系统的可靠性通常以平均无故障间隔时间MTBF来表示。 提高综合自动化系统可靠性的措施涉及的内容和方面较多,本章将从电磁兼容性、抗电磁干扰的措施和自动化系统本身的自纠错和故障自诊断等方面讨论提高变电所综合自动化系统的可靠性措施问题。 二、变电所内的电磁兼容 (一)电磁兼容意义 变电所内高压电器设备的操作、低压交、直流回路内电气设备的操作、雷电引起的浪涌电压、电气设备周围静电场、电磁波辐射和输电线路或设备短路故障所产生的瞬变过程等都会产生电磁干扰。这些电磁干扰进入变电所内的综合自动化系统或其他电子设备,就可能引起自动化系统工作不正常,甚至损坏某些部件或元器件。 电磁兼容的意义是,电气或电子设备或系统能够在规定的电磁环境下不因电磁干扰而降低工作性能,它们本身所发射的电磁能量不影响其他设备或系统的正常工作,从而达到互不干扰,在共同的电磁环境下一起执行各自功能的共存状态。

相关主题
文本预览
相关文档 最新文档