当前位置:文档之家› 高等流体力学讲义

高等流体力学讲义

高等流体力学讲义
高等流体力学讲义

高等流体力学

授课提纲

第一章概论

§1.1 流体力学的研究对象

§1.2 流体力学发展简史

§1.3 流体力学的研究方法

§1.3.1 一般处理途径

§1.3.2 应用数学过程

§1.3.3 流体力学方法论:一般方法

§1.3.4 流体力学方法论:特殊方法

●Lagrange描述和Euler描述

●无量纲化

●线性化

●分离变量法

●积分变换法

●保角映射法

●奇点法(孤立奇点法、分布奇点法、Green函数法)

●控制体积法

●微元法

第一章概论

§1.1 流体力学的研究对象

(1)物质四态:

●四态:固态—液态—气态—等离子态;等离子体=电离气体

●界限:彼此无明确界限(高温下的沥青;冰川),取决于时间尺度;

●流体力学的具体研究对象:液体、气体、等离子体(电磁流体力学、

等离子体物理学);

●液体与气体的差别:

液体—有固定容积、有自由面、不易压缩、有表面张力;

气体—无固定容积、无自由面、易压缩、无表面张力。

(2)流体的基本性质:

易流动性:静止流体无剪切抗力;

压缩性(膨胀性):压差、温差引起的体积改变,判据:马赫数;

粘性:运动流体对剪切的抗力,判据:雷诺数;

热传导性:温差引起的热量传递,普朗特数。

(3)流体的分类:

i)按有无粘性、热传导性分:

真实流体(有粘性、有热传导、与固体有粘附性无温差);

理想流体(无粘性、无热传导、与固体无粘附性有温差);

ii)按压缩性分:

不可压缩流体,可压缩流体;

iii)按本构关系分:

牛顿流体(牛顿粘性定律成立),

非牛顿流体(牛顿粘性定律不成立),下分

纯粘性流体(拟塑性流体,涨塑性流体);

粘塑性流体(非宾汉流体、宾汉流体);

时间依存性流体(触变流体、振凝流体);

粘弹性流体

拟塑性流体(剪切流动化流体):剪切应力随剪切速度增加而减

小,如淀粉浆糊、玻璃溶液、

高分子流体、纤维树脂;

涨塑性流体(剪切粘稠化流体):剪切应力随剪切速度增加而减

小,如淀粉中加水、某些水-

砂混合物;

粘塑性(非宾汉和宾汉流体):存在屈服应力,小于该应力无流

动,如粘土泥浆、沥青、油漆、

润滑脂等,所有粘塑性流体为

非宾汉流体,宾汉流体为近似;

触变流体(摇溶流体):粘性或剪切应力随时间减小,如加入高

分子物质的油、粘土悬浊液;

振凝流体:粘性或剪切应力随时间增大,如矿石浆料、膨润土溶

胶、五氧化钒溶液等;

粘弹性流体:兼有粘性和弹性性质的流体,能量不像弹性体守恒,

也不像纯粘性体全部耗散。

(4)流体力学学科的研究对象

流体力学——研究流体的机械运动以及它与其它运动形态相互作用的科

学。

其它运动形态:固体运动-与界面的相互作用;热运动-传热、传质;电

磁-电磁流体力学。

§1.2 流体力学发展简史

流体力学大事年表

公元前3世纪阿基米德(287-212BC)发现浮力定律(阿基米德原理);发明阿基米德螺旋提水机;

1644 托里拆里(E.Torricelli,1608-1647)制成气压计;导出小孔出流公式;

1650 帕斯卡(B.Pascal,1623-1662)提出液体中压力传递的帕斯卡原理;

1662 波义尔(R.Boyle,1627-1691)建立气体的波义尔定律;

1668马略特(E.Mariotte,1620-1684),出版专著《论水和其它流体的运动》奠定流体静力学和流体运动学的基础;

1678 牛顿(I.Newton,1642-1727)研究在流体中运动物体所受的阻力,并建立牛顿粘性定律;

1732 皮托(H.Pitot,1695-1771)发明测量流体压力的皮托管;

1738丹尼尔·伯努利(D.Bernoulli,1700-1782)出版《流体动力学》,将力学中的活力(能量)守恒原理引入流体力学,建立伯努利定

理(伯努利方程);

1752 达朗贝尔(J. le R. D’Alembert,1717-1783)提出理想流体运动的达朗贝尔佯谬;

1755欧拉(L.Euler,1707-1783)导出流体平衡方程和流体运动方程(欧拉方程);

1763 玻尔达(J-C.Borda,1733-1799)进行流体阻力试验,给出阻力公式,开粘性流体力学研究先河;

1777 玻素(C.Bossut,1730-1814)等完成第一个船池船模试验;

1802 盖·吕萨克(J.L.Gay-Lussac,1778-1850)建立完全气体的状态方程;

1809 凯利(G.Cayley,1773-1858)建立航空飞行器概念;

1822 纳维(C-L-M-H.Navier,1785-1836)导出粘性流体动力学的动量方程;

1822 傅立叶(J-B-J Fourier,1768-1830)建立傅立叶导热定律; 1834 罗素(J,S.Russell)在苏格兰的联合运河上发现孤立波;

1839 哈根(G.H.L.Hagen,1797-1884)和泊肃叶(J.L.M.Poiseuille, 1797-1969)研究圆管内的粘性流动给出哈根-泊肃叶公式;1845 斯托克斯(G.G.Stokes,1819-1903)更简洁严谨地导出粘性流体动力学的动量方程(纳维-斯托克斯方程);

1845 亥姆霍兹(H. von Helmholtz,1821-1894)建立涡旋的基本概念,奠定涡动力学基础;

1851 斯托克斯研究小球在粘性流体中的运动,给出斯托克斯阻力公式;1860 亥姆霍兹建立流体运动的速度分解定理;

1878 兰姆(https://www.doczj.com/doc/8017848270.html,mb,1849-1934)出版流体力学经典著作《流体运动的数学理论》,1895年增订再版时改名《流体动力学》;

1878 瑞利(Lord Rayleigh,1842-1919)研究有环量的圆柱绕流问题,发现升力,从理论上解释了马格努斯效应;

1883 雷诺(O.Reynolds,1842-1912)完成著名的雷诺转捩实验,提出雷诺数(Sommerfeld于1908年命名);

1887 马赫(E.Mach,1838-1916)提出马赫数的概念

1891 兰彻斯特(https://www.doczj.com/doc/8017848270.html,nchester,1868-1946)提出速度环量概念,建立升力理论,并发展了有限翼展理论;

1895 科特沃赫(D.J.Korteweg)和德弗里斯(G.de Vries)建立KdV方程;

1901 贝纳尔(H.Benard)研究对流传热稳定性,发现贝纳尔腔;

1902-儒科夫斯基(N.E.Joukovsky,1847-1921)导出儒科夫斯基公式,奠定机翼理论基础;

1902 库塔(M.W.Kutta,1867-1944)提出机翼流动的库塔条件;

1902 瑞利建立流体力学的量纲分析和相似理论;

1903 莱特兄弟(W.Wright,1867-1912;O.Wright,1871-1948)人类第一次飞行成功;

1903 齐奥尔可夫斯基(K.A.Tsiolkovsky,1857-1835)导出火箭运动基本公式和第一宇宙速度;

1904 普朗特(L.Prandtl,1875-1953)建立边界层理论;

1905 普朗特建成超音速风洞(马赫数为1.5);

1910 冯卡门(Th.von Karman,1881-1963)建立卡门涡街理论;

1908 瑞利和索末费尔德(A.Sommerfeld,1868-1951)研究平行流的稳定性,导出索末费尔德方程;

1921 泰勒(G.I.Taylor,1886-1975)提出湍流统计理论基本概念;1923 泰勒研究同心圆筒间旋转流动稳定性,发现泰勒涡;

1940 周培源(1902-1993)创建湍流模式理论;

1926 普朗特提出湍流的混合长度理论;

1941 钱学森(1911-)和冯卡门导出机翼理论的卡门-钱公式;1963 洛伦兹(E.Lorenz)发现混沌和奇怪吸引子。

§1.3 流体力学的研究方法

§1.3.1 一般处理途径

(1)实验途径

(2)分析途径

(3)数值模拟途径

§1.3.2 应用数学过程

实验、实测结果—>数学、物理建模—>寻找工具、求解—>结果检验—>总结规律。

§1.3.3 流体力学方法论:一般方法

●实验观察

实验目的:

1)观察迄今未知或未加解释的新事实(例如雷诺实验、普

朗特的边界层实验、法拉第实验);

2)检验新的假说、理论和结果(例如儒科夫斯基升力实验)。

实验手段:实验室实验(缩尺实验)、现场实验(原型实验)、现场观测。

实验步骤:

1)制定详尽的实验方案;

2)准备相应的设备和仪器;

3)科学地记录数据;

4)数据处理;

5)制作图表;

6)理论分析。

实验要领:1)有目的性和限定性;

2)有准确性和排他性;

3)有简单性和可行性;

4)有再现性和鲁棒性;

5)注意结果的正常性和反常性。

●发现机遇

机遇无处不在。机遇只垂青于有准备的头脑。

抓住机遇的必要条件:

1)扎实的知识基础(如卡门涡街的发现);

2)对反常现象的迅速反应能力(如孤立波的发现、内波的

发现);

3)充分的发散思维能力。

●提出假说

假说是研究工作中最重要的智力活动手段,没有大胆的猜测就没有伟大

的发现。

假说要领:

1)发挥想象能力,大胆假设(例如各向同性湍流理论);

2)尊重科学事实,求真务实(例如孤立波理论);

3)运用各种技巧,小心求证(例如奇怪吸引子假设);

4)随时摒弃谬误,服从真理(例如湍流拟序结构);

5)不断更新观念,修正设想(例如相对论流体力学);

6)及时总结经验,推陈出新。

●大胆想象

想象=创造性思考

创造力=知识量×发散型思维

想象的来源:

1)困难的刺激;

2)好奇心的激励;

3)锲而不舍的思考;

4)讨论的启迪。

●细致推理

推理的种类:

1)演绎型推理(纯数学推理大多如此):假设—公理—命题

—引理—定理—推论;

2)归纳型推理(流体力学问题大多如此):观察事实—归纳

—定理或定律—求证—验证—总结。

3)类比型推理;

4)証谬型推理。

推理要领:

1)有充分的事实基础;

2)基于正确的假设;

3)基于正确的逻辑;

4)分清事实和对事实的解释。

●总结规律

总结规律是掌握并推进流体力学学科的关键步骤。

总结的要领:

1)基于经过证明或验证的事实;

2)提炼最基本的函数关系或因果关系或数值结果;

3)论述准确、清晰、简练。

§1.3.4 流体力学方法论:特殊方法

●Lagrange描述和Euler描述

Lagrange描述:基于流体质点运动轨迹的描述;

Euler描述:基于场论的描述。

●无量纲化

量纲分析:流体力学的基础;

流体力学的基本量纲:时间、长度、质量、温度;

无量纲化:解决一切已建模的流体力学问题的首要步骤。

无量纲化的主要步骤:

1)确定问题中的特征量;

2)给出所有物理量(自变量、因变量)的无量纲形式;

3)将问题中的方程无量纲化;

4)提炼无量纲方程和定解条件中的无量纲组合(无量纲

数);

5)对问题做简化或直接求解。

实例:Navier-Stokes 方程的无量纲化:

0=??v

v k v v v 21?+?--=??+??νρ

p g t 1)引进特征量:特征时间T ,特征长度L ,特征速度V ,特

征压力P ;

2)给出无量纲量:t ’=t/T ,L r r =',v ’=v /V ,p ’=p/P ;

3)基本方程无量纲化:

0''=??v

''Re

1''1'''''2v k v v v ?+?--=??+??p E Fr t St 4)提炼无量纲数:

Strouhal 数:VT L St /=,表征问题的非定常性;

Froude 数: gL V Fr /2=,表征惯性力与重力之比;

Euler 数:2/V P E ρ=,表征压力与动能之比;

Reynolds 数:ν/Re VL =,表征惯性力与粘性力之比。

5)简化问题:

● 低速情形:Strouhal 数很小,流动可近似地视为定常

流动;

● 高速情形:Froude 数很大,重力可忽略不计;

● 小粘性情形:Reynolds 数很大,粘性力可忽略不计(方

程退化为Euler 方程—无粘流动);

● 大粘性情形(或小尺度情形):Reynolds 数很小,惯

性力可忽略不计(Stokes 流动)。

流体力学中其它重要的无量纲数:

Mach 数:M=V /a ,当地流速与当地音速之比,可压缩性

的量度;超音速流动与亚音速流动的量度;

Nuselt 数:Nu =hL/k ,总传热与导热传热之比;

Prandtl 数:Pr=k c p /μ,动量扩散率与热扩散率之比; Weber 数:We=σρ/2L V ,惯性力与表面张力之比; Knudsen 数:Kn=l/L ,分子平均自由程与特征长度之比。

注记:1)无量纲化过程中,特征量的取法有非唯一性,特别是,经

常取不同的长度尺度(例如,在边界层问题、浅水波问题

中),这种问题经常伴随着奇异摄动;

2)量纲分析中的π定理有着重要的作用,特别在流体力学实

验研究中,π定理指出,问题的无量纲数之间有函数关系,

亦即,它们不是彼此独立的;

3)根据π定理可知,如果问题中不含特征长度,则一定存在

相似性解,例如,半无限长平板的边界层问题、扩散问题。

线性化

流体力学的主要困难在于控制方程(对流项)和界面(如自由面)边界条件的非线性,因此,线性化近似是常用的研究方法。例如,上述的Stokes 流动。

注意:线性化必须在无量纲化的基础上进行,方可保证过程的万无一失,且对产生的误差心中有数。

实例:水波问题的线性化

基本假设:1)流体不可压、无粘;

2)流动无旋;

3)水平方向无界;

4)自由面无扰动;

5)水波向一个方向传播;

6)底部是水平的(静水深h =const.)。

控制方程:

???<<-∞<<∞-=??+??z h x z

x ,,02222 边界条件:

?????=??=????+??z z

x x t , ?ρ????=-=+??+??+??z P g z

x t a ,/])()[(2122 h z z

-==??,0? 这是一个非线性问题,非线性出现在自由面边界条件中,而自由面方程又是事先未知的,这是水波问题的困难所在:它本质上是非线性自由板结问题。

取特征量:特征长度1/k (k 为波数),特征波高A ,特征频率ω,

特征速度V 。

取无量纲量:x ’=kx, z ’=kz, t ’=ωt, ?’= ?/A, ?’=k ?/ωA

无量纲方程和边界条件:

'',',0'

'''2222???kA z kh x z x <<-∞<<∞-=??+??

'','

'''''''?????kA z z x x kA t =??=????+??

?ρω?ω

???kA z A kP kg z x kA t a =-=+??+??+??',/'])''()''[(21''222 kh z z -==??',0'

'? 考虑无穷小振幅波的情形,即令波陡

1<<=εkA

忽略上述各式中含ε的各项,边界条件得到线性化,问题变成有固定边界的线性问题。回到原来的有量纲变量,问题化为

0,,02222<<-∞<<∞-=??+??z h x z

x ??

0,0==??-??z z

t ?? 0,/=-=+??z P g t

a ρ?? h z z

-==??,0? 我们明确地知道,线性化带来的误差为ε量级。

● 分离变量法

有规则边界(如矩形、圆、球等)的线性问题经常可用分离变量法求解。 力学家与数学家应用分离变量法的差别:力学家更多地利用物理直观, 直捷地获得问题的解。

实例:无限长直圆柱的无环量绕流问题

问题提法: ∞→→==??+??+??r Ur a r r r r ,

sin 0),(01122222θψθψθ

ψψψ

因边界条件中只含sin θ因子,故令

θψs i n

)(r R = 代入方程和边界条件,解得 θψs i n )(2

r

a r U -=

● 积分变换法

对于线性问题(尤其是涉及波动和振动的问题)经常可用Fourier 变换(对无界空间区域)、Laplace 变换(对时间变量)、Hankel 变换(含柱

面的问题)。例如,上述线性水波问题,可用Fourier-Laplace变换求解。

●保角映射法

适用于平面流动问题,引进复变量经常可使求解大大简化。

●变数变换法

这是流体力学最常用的方法之一,包括

1)自变量变换(例如相似性变量等)

2)自变量与因变量互换(如空气动力学中的速度图法、水波动力学中的流函数坐标法等)

●奇点法(孤立奇点法、分布奇点法、Green函数法)

孤立奇点法指的是:用孤立奇点来取代物体(如圆柱绕流问题)

分布奇点法指的是:用连续分布的奇点来取代物体(如源汇分布法、旋涡分布法等),数学上对应的是:Green函数法、基本解法,结果经常导致积分方程。

●摄动法

摄动法是非线性流体力学求解的最常用方法,经常应用的有:

1)匹配渐近展开法(边界层理论等),适用于存在明显不同的流动特征的区域;

2)变形坐标法(PLK方法),适用于无耗散的波动和振动问题;

3)多尺度法,应用最为广泛,尤其适用于水波动力学问题;

4)WKB方法,适用于有转向点的问题(如流动稳定性问题)。

●控制体积法

适用于仅需要掌握宏观特性,而忽略流场细节的情形,采用积分形式或代数形式的质量、动量、能量守恒定律(例如,动量定理、激波前后变量的关系演绎)。

控制体积的选法:涵盖最需要了解的几何和物理部分,尽可能取简单的几何位形。

●微元法

在宏观小、微观大的微元内考虑质量、动量、能量的守恒。

流体力学公式总结(完整资料).doc

【最新整理,下载后即可编辑】 工程流体力学公式总结 第二章 流体的主要物理性质 ? 流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。 1.密度 ρ = m /V 2.重度 γ = G /V 3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g 4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m 5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水 6.热膨胀性 7.压缩性. 体积压缩率κ 8.体积模量 9.流体层接触面上的内摩擦力 10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律) 11..动力粘度μ: T V V ??=1αp V V ??-=1κV P V K ??- =κ1n A F d d υμ=dn d v μτ±=n v d /d τμ=

12.运动粘度ν :ν = μ/ρ 13.恩氏粘度°E :°E = t 1 / t 2 第三章 流体静力学 ? 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。 1.常见的质量力: 重力ΔW = Δmg 、 直线运动惯性力ΔFI = Δm ·a 离心惯性力ΔFR = Δm ·rω2 . 2.质量力为F 。:F = m ·am = m (f xi+f yj+f zk) am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度 实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为 fx = 0 , fy = 0 , fz = -mg /m = -g 式中负号表示重力加速度g 与坐标轴z 方向相反 3流体静压强不是矢量,而是标量,仅是坐标的连续函数。即: p = p (x ,y ,z ),由此得静压强的全微分为: 4.欧拉平衡微分方程式 z z p y y p x x p p d d d d ??????++=d d d d d d 0x p f x y z x y z x ??-=ρd d d d d d 0y p f x y z x y z y ??-=ρd d d d d d 0z p f x y z x y z z ??- =ρ

流体力学期末考试作图

1、作出标有字母的平面压强分布图并注明各点相对压强的大小(3分) 2、作出下面的曲面上压力体图并标明垂直方向分力的方向(4分) h1 A B h2 γ γ1=2γ h1 h2 A B γ

3、请定性作出下图总水头线与测压管水头线(两段均为缓坡)(4分) 28.试定性画出图示等直径管路的总水头线和测压管水头线。 4、转速n=1500r/min 的离心风机,叶轮内径D 1=480mm 。叶片进口处空气相对速度ω1=25m/s, 与圆 周速度的夹角为 β1=60°,试绘制空气在叶片进口处的速度三角形。 题13图

5、画出两台性能相同的离心泵并联工作时的性能曲线,并指出并联工作时每台泵的工作点。 答案:两台性能相同的离心泵并联工作时的性能曲线如图所示,图中B点为并联工作时每台泵的工作点,A点为总的工作点。 1.绘出如图球体的压力体并标出力的方向。 2.试绘制图示AB壁面上的相对压强分布图,并注明大小。 28.试定性画出图示等直径管路的总水头线和测压管水头线。

试定性分析图中棱柱形长渠道中产生的水面曲线。假设流量、粗糙系数沿程不变。 28.有断面形状、尺寸相同的两段棱柱形渠道如图示,各段均足够长,且i1>i c,i2 h'',试绘出水面 01 曲线示意图,并标出曲线类型。 1.试做出下图中的AB壁面上的压强分布图。 1.画出如图示曲面ABC上的水平压强分布图与压力体图。

2.画出如图短管上的总水头线与测压管水头线。 3.有三段不同底坡的棱柱体渠道首尾相连,每段都很长,且断面形状、尺度及糙率均相同。试定性画出各段渠道中水面曲线可能的连接形式。 (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考, 感谢您的配合和支持) 0≠上V 0≠下V i 1=i c i 2i c K K

32学时工程流体力学复习题与答案

32学时流体力学课复习题 一、填空题 1、流体是一种受任何微小的剪切力作用时都会产生连续变形的物质。 2、牛顿内摩擦定律=μ其中的比例系数称为动力黏性系数(动力粘度) 。 3、作用于流体上的力按其性质可以分为表面力力和质量力 4、水力学中,单位质量力是指作用在单位_质量_ 液体上的质量力。 5、单位质量力的量纲是L/T2。 6、对于不同的流体,体积弹性系数的值不同,弹性模量越大,流体越不易被压缩。 7、某点处的绝对压强等于该处的大气压强减去该处的真空度。 8、某点处的真空等于该处的大气压强减去该处的绝对压强。 9、某点处的相对压强等于该处的绝对压强减去该处的一个大气压。 10、根据粘性的大小,粘性流体的流动状态可分为层流和紊流。 11、根据流体是否有粘性,流体可分为粘性流体和理想流体。 12、根据流动参数随时间的变化,流体流动可分为定常流动和非定常流动。 13、连续性方程是质量守恒定律在流体力学上的数学表达形式。 14、总流伯努利方程是机械能守恒定律在流体力学上的数学表达形式。 15、计算局部阻力的公式为:;计算沿程阻力的公式为:。 16、相似条件包括几何相似、运动相似和动力相似。 17、沿程阻力主要是由于流体内摩擦力引起的,而局部阻力则主要是由于流动边界局部形状急剧变化引起的。 18、连续性方程表示控制体的__质量_____守恒。 19、液体随容器作等角速度旋转时,重力和惯性力的合力总是与液体自由面_垂直。 20、圆管层流中断面平均流速等于管中最大流速的1/2

二、简答题 1、简述液体与气体的粘性随温度的变化规律,并说明为什么? 答: 温度升高时液体的黏性降低,因为液体的粘性主要是分子间的内聚力引起的,温度升高时,内聚力减弱,故粘性降低,而造成气体粘性的主要原因在于气体分子的热运动,温度越高,热运动越强烈,所以粘性就越大 2、请详细说明作用在流体上的力。 作用在流体上的力按其性质可分为表面力和质量力,表面力是指作用在所研究流体表面上的力,它是由流体的表面与接触的物体的相互作用差生的,质量力是流体质点受某种力场的作用力,它的大小与流体的质量成正比 3、简述连续介质假说。 连续介质假设将流体区域看成由流体质点连续组成,占满空间而没有间隙,其物理特性和运动要素在空间是连续分布的。从而使微观运动的不均匀性、离散性、无规律性与宏观运动的均匀性、连续性、规律性达到了和谐的统一。(宏观无限小微观无限大) 4、何谓不可压缩流体?在什么情况下可以忽略流体的压缩性? 除某些特殊流动问题,工程实际中将液体看作是密度等于常数的不可压缩流体,当气体的速度小于70m/s 且压力和温度变化不大时也可近似地将气体当作不可压缩流体处理 5、流体静压力有哪两个重要特征? 特征一:在平衡的流体中,通过任意一点的等压面,必与该点所受的质量力互相垂直。 特征二:当两种互不相混的液体处于平衡时,它们的分界面必为等压面。 6、不同形状的敞开的贮液容器放在桌面上,如果液深相同,容器底部的面积相同,试问作用于容器底部的总压力是否相同?桌面上受到的容器的作用力是否相同?为什么? 容器底部的总压力=液体压强x面积,而压强由液深决定(同种液体),所以作用于容器底部的总压力相同; 桌面上所受力是整个储有液体容器的重力,桌面上受到的容器的作用力因容器总重量不同而不同。 本题目也有漏洞:不同形状的敞开的贮液容器,体积关系不能确定,其总重量不一定相同或也不一定不同。 7、相对平衡的液体的等压面形状与什么因素有关? 质量力(在平衡点流体中,通过任意一点的等压面必须与该店所受的质量力互相垂直) 8、静力学的全部内容适用于理想流体还是实际粘性流体?或者两者都可?为什么? 流体处于静止或相对静止状态时,各流体质点间没有相对运动,速度梯度等于零,切向应力也等于

流体力学期末复习资料(精选.)

1、流体运动粘度的国际单位为m^2/s 。 2、流体流动中的机械能损失分为沿程损失和局部损失两大类。 3、当压力体与液体在曲面的同侧时,为实压力体。 4、静水压力的压力中心总是在受压平面形心的下方。 5、圆管层流流动中,其断面上切应力分布与管子半径 的关系为线性关系。 6、当流动处于紊流光滑区时,其沿程水头损失与断面 平均流速的1.75 次方成正比。 7、当流动处于湍流粗糙区时,其沿程水头损失 与断面平均流速的2 次方成正比。 8、圆管层流流动中,其断面平均流速与最大流速的比值为1/2 。 9、水击压强与管道内流动速度成正比关系。 10、减轻有压管路中水击危害的措施一般有:延长阀门关闭时间, 采用过载保护,可能时减低馆内流速。 11、圆管层流流动中,其断面上流速分布与管子半径的关系为二次抛物线。 12、采用欧拉法描述流体流动时,流体质点的加速度由当地加速度和迁移加速度组成。 13流体微团的运动可以分解为: 平移运动、线变形运动、角变形运动、旋转运动。 14、教材中介绍的基本平面势流分别为:点源、点汇、点涡、均匀直线流。 15、螺旋流是由点涡和点汇两种基本势流 所组成。 16、绕圆柱体无环量流动是由偶极流和 平面均匀流两种势流所组成。 17、流动阻力分为压差阻力和摩擦阻力。 18、层流底层的厚度与雷诺数成反比。 19、水击波分为直接水击波和间接水击波。 20、描述流体运动的两种方法为 欧拉法和拉格朗日法。 21、尼古拉兹试验曲线在对数坐标中的图像分为5个区域,它们依次为: 层流层、层流到紊流过渡区、紊流区、 紊流水力粗糙管过渡区、紊流水力粗糙管平方阻力区。 22、绕流物体的阻力由和两 部分组成。 二、名词解释 1、流体:在任何微小剪力的持续作用下能够连续不断变形的物质 2、牛顿流体:把在作剪切运动时满足牛顿内摩擦定律的流体称为牛顿流体。 3、等压面:在流体中,压强相等的各点所组成的面称为等压面。 4、流线:流线是某一瞬时在流场中所作的一条曲线,在这条曲线上的各流体的速度方向都与该曲线相切。 5、流管:过流管横截面上各点作流线,则得到充满流管的医术流线簇 6、迹线:流场中某一质点的运动轨迹。

《高等流体力学》习题集

《高等流体力学》复习题 一、 基本概念 1. 什么就是理想流体?正压流体,不可压缩流体? [答]:教材P57 当流体物质的粘度较小,同时其内部运动的相对速度也不大,所产生的粘性应力比起其它类型的力来说可以忽略不计时,可把流体近似地瞧为就是无粘性的,这样无粘性的流体称为理想流体。 内部任一点的压力只就是密度的函数的流体,称为正压流体。 流体的体积或密度的相对变化量很小时,一般可以瞧成就是不可压缩的,这种流体就被称为不可压缩流体。 2. 什么就是定常场;均匀场;并用数学形式表达。 [答]:如果一个场不随时间的变化而变化,则这个场就被称为定常场。其数学表达式为:)(r ??= 如果一个场不随空间的变化而变化,即场中不显含空间坐标变量r ,则这个场就被称为均匀场。其数学表达式为:)(t ??= 3. 理想流体运动时有无切应力?粘性流体静止时有无切应力?静止时无切应力就是否无粘性?为什 么? [答]:理想流体运动时无切应力。 粘性流体静止时无切应力。但就是,静止时无切应力,而有粘性。因为,粘性就是流体的固有特性。 4. 流体有势运动指的就是什么?什么就是速度势函数?无旋运动与有势运动有何关系? [答]:教材P119-123 如果流体运动就是无旋的,则称此流体运动为有势运动。 对于无旋流动来说,其速度场V 总可以由某个速度标量函数(场)),(t r φ的速度梯度来表示,即φ?=V ,则这个标量函数(场)),(t r φ称为速度场V 的速度势函数。 无旋运动与有势运动的关系: 势流运动与无旋运动就是等价的,即有势运动就是无旋的,无旋运动的速度场等同于某个势函数的梯度场。 5. 什么就是流函数?存在流函数的流体具有什么特性?(什么样的流体具有流函数?) [答]:

(完整版)流体力学期末试题(答案)..

中北大学 《流体力学》 期末题

目录 第四模块期末试题 (3) 中北大学2013—2014学年第1学期期末考试 (3) 流体力学考试试题(A) (3) 流体力学考试试题(A)参考答案 (6) 中北大学2012—2013学年第1学期期末考试 (8) 流体力学考试试题(A) (8) 流体力学考试试题(A)参考答案 (11)

第四模块 期末试题 中北大学2013—2014学年第1学期期末考试 流体力学考试试题(A ) 所有答案必须做在答案题纸上,做在试题纸上无效! 一、 单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符 合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.交通土建工程施工中的新拌建筑砂浆属于( ) A 、牛顿流体 B 、非牛顿流体 C 、理想流体 D 、无黏流体 2.牛顿内摩擦定律y u d d μ τ =中的 y u d d 为运动流体的( ) A 、拉伸变形 B 、压缩变形 C 、剪切变形 D 、剪切变形速率 3.平衡流体的等压面方程为( ) A 、0=--z y x f f f B 、0=++z y x f f f C 、 0d d d =--z f y f x f z y x D 、0d d d =++z f y f x f z y x 4.金属测压计的读数为( ) A 、绝对压强 p ' B 、相对压强p C 、真空压强v p D 、当地大气压a p 5.水力最优梯形断面渠道的水力半径=R ( ) A 、4/h B 、3/h C 、2/h D 、h 6.圆柱形外管嘴的正常工作条件是( ) A 、m 9,)4~3(0>=H d l B 、m 9,)4~3(0<=H d l C 、m 9,)4~3(0>>H d l D 、m 9,)4~3(0<

流体力学资料复习整理

流体复习整理资料 第一章 流体及其物理性质 1、流体的特征——流动性: 在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。也可以说能够流动的物质即为流体。 流体在静止时不能承受剪切力,不能抵抗剪切变形。 流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。 只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。 运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不就是变形的大小(与弹性体的不同之处)。 2、流体的重度:单位体积的流体所的受的重力,用γ表示。 g 一般计算中取9、8m /s 2 3、密度:=1000kg/,=1、2kg/,=13、6,常压常温下,空气的密度大约就是水的1/800 3、 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。通常液体与低速流动的气体(U<70m /s)可作为不可压缩流体处理。 4、压缩系数: 弹性模数:21d /d p p E N m ρβρ== 膨胀系数:)(K /1d d 1d /d T V V T V V t ==β 5、流体的粘性:运动流体内存在内摩擦力的特性(有抵抗剪切变形的能力),这就就是粘滞性。流体的粘性就就是阻止发生剪切变形的一种特性,而内摩擦力则就是粘性的动力表现。温度升高时,液体的粘性降低,气体粘性增加。 6、牛顿内摩擦定律: 单位面积上的摩擦力为: 内摩擦力为: 此式即为牛顿内摩擦定律公式。其中:μ为动力粘度,表征流体抵抗变形的能力,它与密度的比值称为流体的运动粘度ν 内摩擦力就是成对出现的,流体所受的内摩擦力总与相对运动速度相反。为使公式中的τ值既能反映大小,又可表示方向,必须规定:公式中的τ就是靠近坐标原点一侧(即,其大小为μ du/dy,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。 粘性受温度影响明显: 气体粘性:分子热运动, 温度升高,粘性增加;液体粘性:分子间吸引力,温度升高,粘性下降。 7、理想流体:粘性系数很小,可以忽略粘性的流体 , 第二章 流体静力学 3 /g N m γρ=p V V p V V p d d 1d /d -=-=β21d 1d /d d p V m N V p p ρβρ=-=h U μτ=dy du A h U A A T μμτ===ρ μν=0=μ

流体力学期末复习,计算部分

三计算题 一、粘性 1.一平板在油面上作水平运动,如图所示。已知平板运动速度V=1.0m/s,板与固定边界的距离δ=1mm,油的粘度μ=0.09807Pa·s。 试求作用在平板单位面积上的切向力。 2. 一底面积为2 cm 50 45?,质量为6kg的木块,沿涂有润滑油的斜面向下作等速运动,木块运动速度s m 2.1 = u,油层厚度mm 1 = δ,斜面角C 02ο = θ(如图所示),求油的动力粘度μ。 δ u θ 二静力学 1.设有一盛水的密闭容器,如图所示。已知容器内点A的相对压强为4.9×104Pa。若在该点左侧壁上安装一玻璃测压管,已知水的密度ρ=1000kg/m3,试问需要多长的玻璃测压管?若在该点的右侧壁上安装一水银压差计,已知水银的密度ρHg=13.6×103kg/m3,h1=0.2m,试问水银柱高度差h2是多大? 2.如图所示的半园AB 曲面,宽度m 1= b,直径m 3= D,试求曲AB 所受的静水总压力。 D /2 A B 水 水D

α O B O A H p a 3. 如下图,水从水箱经管路流出,管路上设阀门K ,已知L=6m,α=30°,H=5m, B 点位于出口断面形心点。假设不考虑能量损失,以 O-O 面为基准面,试问:阀门K 关闭时,A 点的位置水头、压强水头、测压管水头各是多少? 4. 位于不同高度的两球形容器,分别贮有 2m kN 9.8=g A ρ的 油 和2 m kN 00.10=g B ρ的盐水,差压计内工作液体为水银。 m 21=h ,m 32=h ,m 8.03=h ,若B 点压强2cm N 20=B p ,求A 点压强A p 的大小。 ? ? M M A B 汞 h h h γγA B 1 2 3 5. 球形容器由两个半球面铆接而成,有8个铆钉,球的半径m 1=R ,内盛有水, 玻璃管中液面至球顶的垂直距离2m . 1=H ,求 每个铆钉所受的拉力。 R H 6.设有一盛静水的密闭容器,如图所示。由标尺量出水银压差计左肢内水银液面距A 点的高度h 1=0.46m ,左右两侧液面高度差 h 2=0.4m ,试求容器内液体中A 点的压强,并说明是否出现了真空。已知水银的密度ρHg =13.6×103kg/m 3。

10高等流体力学练习题

高等流体力学练习题 第一章 场论基本知识 第一节 场的定义及其几何表达 1、(RX21)设点电荷q 位于坐标原点,则在其周围空间的任一点M(x, y, z)处所 产生的电场强度,由电学知为:3 4q E r r πε= ,其中ε为介质系数,r xi yj zk =++ 为M 点的矢径,r r = 。求电场强度的矢量线。 2、(RX22)求矢量场22 ()A xzi yzj x y k =+-- ,通过点M(2, -1, 1)的矢量线方程。 第二节 梯度 1、(RX32)设r =M(x, y, z)的矢径的模,试证明:r gradr r = 。 2、(RX33)求数量场u=xy 2+yz 3 在点(2,-1,1)处的梯度及在矢量22l i j k =+- 方向的方向导数。 3、(RX34)设位于坐标原点的点电荷q ,由电学知,在其周围空间的任一点 M(x, y, z)处所产生的电位为:4q v r πε=,其中ε为介质系数,r xi yj zk =++ 为M 点的矢径,r r = 。求电位v 的梯度。 4、(BW7)试证明d dr grad ??=? ,并证明,若d dr a ?=? ,则a 必为grad ?。 5、(BW8)若a =grad ?,且?是矢径r 的单值函数,证明沿任一封闭曲线L 的线积分0L a dr ?=? ,并证明,若矢量a 沿任一封闭曲线L 的线积分 0L a dr ?=? ,则矢量a 必为某一标量函数?的梯度。 第三节 矢量的散度 1、 (RX39)设由矢径r xi yj zk =++ 构成的矢量场中,有一由圆锥面x 2+y 2=z 2及平面z=H(H>0)所围成的封闭曲面S 。试求矢量场从S 内穿出S 的通量。 2、 (RX41)在点电荷q 所产生的电场中,任何一点M 处的电位移矢量为 3 4q D r r π= ,其中,r 为从点电荷q 指向M 点的矢径,r r = 。设S 为以点电荷为中心,R 为半径的球面,求从内穿出S 的电通量。

流体力学资料复习整理

流体复习整理资料 第一章 流体及其物理性质 1.流体的特征——流动性: 在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。也可以说能够流动的物质即为流体。 流体在静止时不能承受剪切力,不能抵抗剪切变形。 流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。 只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。 运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不是变形的大小(与弹性体的不同之处)。 2.流体的重度:单位体积的流体所的受的重力,用γ表示。 g 一般计算中取9.8m /s 2 3.密度:=1000kg/,=1.2kg/,=13.6,常压常温下,空气的密度大约是水的1/800 3. 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。通常液体和低速流动的气体(U<70m /s )可作为不可压缩流体处理。 4.压缩系数: 弹性模数:21d /d p p E N m ρβρ== 膨胀系数:)(K /1d d 1d /d T V V T V V t ==β 5.流体的粘性:运动流体存在摩擦力的特性(有抵抗剪切变形的能力),这就是粘滞性。流体的粘性就是阻止发生剪切变形的一种特性,而摩擦力则是粘性的动力表现。温度升高时,液体的粘性降低,气体粘性增加。 6.牛顿摩擦定律: 单位面积上的摩擦力为: 摩擦力为: 此式即为牛顿摩擦定律公式。其中:μ为动力粘度,表征流体抵抗变形的能力,它和密度的比值称为流体的运动粘度ν 摩擦力是成对出现的,τ值既能反映大小,又可表示方向,必须规定:公式中的τ是靠近坐标原点一侧(即t -t 线以下)的流体所受的摩擦应力,其大小为μ du/dy ,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。 3 /g N m γρ=p V V p V V p d d 1d /d -=-=β21d 1d /d d p V m N V p p ρβρ=-=h U μτ=dy du A h U A A T μμτ===ρ μν=

06级研究生高等流体力学期末考试试题及参考答案

06级研究生高等流体力学期末考试试题 一、 概念题: 1. 什么是边界层厚度,位移厚度和动量损失厚度,并解释其物理意义。 边界层中速度为99%主流速度的位置到壁面的垂直距离。 位移厚度00 1 *u dy u δ∞ ? ? =? ??? ? ∫由于壁面存在,使得流量减少,相当于壁面向外推移了一定的厚度。 动量亏损厚度0 001 u u dy u u θ∞ ?? =????? ∫由于由于壁面存在, 使得动量通量减少,相当于壁面向外推移了一定的厚度。 2. 什么是牛顿传热定律,试解释自然对流不满足牛顿传热定律的原因。 单位时间单位面积的换热量正比于温差。 自然对流中温差不仅影响换热,而且影响速度场,从而改变换热系数,换热量与温差的关系不是线性的。 3. 分析Ekman 层和静止坐标系中壁面边界层的相同点与不同点。 相同点:Ekman 层和边界层都是自由流与固壁之间的运动,需要考虑粘性力的影响。Ekman 层坐标系是旋转的,边界层的坐标系是不旋转的。 不同点:Ekman 层中粘性力和科氏力平衡,U ,仅是的函数,与V z x,y 无关,Ekman 层厚度是常数。边界层中惯性力与粘性力平衡,速度沿流动方向是变化的,边界层的厚度是变化的。 4. 什么是Kelvin-Helmholtz 不稳定,举例说明哪些流动可以产生K-H 不稳定。 剪切流中,由于速度分布有拐点引起的不稳定性过程。平面混合层、自由射流,尾流中都可以产生K-H 不稳定。 5. 湍流粘性系数的定义,并说明它与分子粘性系数的区别。 湍流应力张量和平均流场应变率之间的线性关系,比例系数为湍流粘性系数。湍流粘性系数不是物性参数,与流场结构有关。分子粘性系数是物性参数。 二、 密度为ρ的不可压缩均质流体以均匀速度1u 进入半径为R 的水平直圆管, 出口处的速度分布为( )2 2 21r u C R =?,式中 C 为待定常数,r 是点到管轴的距离。 如果进口和出口处的压强分别为1P 和2P ,求管壁对流体的作用力。

重庆科技学院流体力学期末考试卷

一、选择题: 1、从力学的角度分析,一般流体和固体的区别在于流体_________。 A 、能承受拉力,平衡时不能承受切应力 B 、不能承受拉力,平衡时能承受切应力 C 、不能承受拉力,平衡时不能承受切应力 D 、能承受拉力,平衡时也能承受切应力 2、液体在重力场中作加速直线运动时,其自由面与( )处处正交。 A 、重力 B 、惯性力 C 、重力和惯性力的合力 D 、压力 3、图示容器内盛有两种不同的液体,密度分别为1ρ,2ρ,则有 A 、g p z g p z B B A A 11ρρ+=+ B 、g p z g p z C C A A 21ρρ+=+ C 、g p z g p z D D B B 21ρρ+=+ D 、g p z g p z C C B B 21ρρ+=+ O 4、流线与流线,在通常情况下: A .能相交,也能相切; B .仅能相交,但不能相切; C .仅能相切,但不能相交; D .既不能相交,也不能相切。 5、输水管道在流量和水温一定时,随着直径的增大,水流的雷诺数Re 就 A 、增大; B 、减小; C 、不变; D 、不定 6、圆管流动中,过流断面上速度分布为 (a)(b)(c)(d) 7、虹吸管最高处的压强_________。 A 、大于大气压 B 、等于大气压 C 、小于大气压 D 、无法确定 8、在变截面喷管内,亚声速等熵气流随截面面积沿程减小,则有( )。

A 、v 减小 B 、p 增大 C 、ρ增大 D 、T 下降。 9、圆管突然扩大的水头损失可表示为( )。 A 、g v v 22 2 21- B 、g v v 22 1- C 、 ()g v v 22 21- D 、g v v 22 122- 10、在安排管道阀门阻力试验时,首先考虑要满足的相似准则是( )。 A 、雷诺数Re B 、弗劳德数Fr C 、斯特劳哈尔数Sr D 、欧拉数Eu 二、判断题:对的打“√”,错的打“×”( 1、液体粘度随温度升高而降低;气体粘度随温度升高而升高。 ( ) 2、研究流体的运动规律是应用拉格朗日法分析流体运动的轨迹。 ( ) 3、作为由层流向紊流过度的临界雷诺数,在水中和煤油中是不同的。 ( ) 4、根据尼古拉茨实验结果,管流湍流区沿程摩阻系数随雷诺数增大而呈现 减小的趋势,因此实际工程中为了减小水头损失应该增大管道中流体速度。 ( ) 5、在过流断面突变处一般发生局部水头损失。 ( ) 6、压力管路中的水击现象通常有害,开关阀门时速度一定要足够快速。 ( ) 7、应用总流的伯努利方程时,两过水断面之间不能出现急变流。 ( ) 8、薄壁孔的收缩系数对其出流性能没有影响。 ( ) 9、长度超过10米的管道,通常称为长管;反之称为短管。 ( ) 10、气体运动速度小于当地声速时,气体中某点的微弱扰动理论上可以传播

流体力学-总复习-名词解释

流体力学概念总结 1.连续介质模型:在流体力学的研究中,将实际由分子组成的结构用流体微元代替。流体 微元有足够数量的分子,连续充满它所占据的空间,这就是连续介质模型。 2.质量力:处于某种力场中的流体,所有质点均受有与质量成正比的力,这个力称为质量 力。 3.表面力:相邻流体作用于此流体微团各表面的力,包括:压力、剪力和表面张力。 4.粘性:当流体在外力作用下,流体微元间出现相对运动时,随之产生阻碍流体层间相对 运动的内摩擦力,流体产生内摩擦力的这种性质称为粘性。 5.动力粘度:单位速度梯度时内摩擦力的大小μ=τ∕(dv∕dh) 6.运动粘度:动力粘度和流体密度的比值。υ=μ/ρ 7.恩氏粘度:被测液体与水粘度的比较值。 8.理想流体:一种假想的没有粘性的流体。 9.牛顿流体:在流体力学的研究中,凡切应力与速度梯度成线性关系,即服从牛顿内摩擦 定律的流体,称为牛顿流体。 10.表面张力:引起液体自由表面欲成球形的收缩趋势的力称为表面张力。 11.湿润现象:液体分子与固体分子之间的相互吸引力(附着力)大于液体分子之间的相互 吸引力(内聚力)时产生的湿润固体的现象。 12.毛细现象:液体和固体接触时,液体沿壁面上升或下降的现象。毛细管越细,液面差越大。

13.静压强:当流体处于绝对静止或相对静止状态时,流体中的压强称为流体静压强。 14.有势质量力:质量力所做的功只与起点和终点的位置有关,这样的质量力称为有势质量 力。 15.力的势函数:某函数对相应坐标的偏导数,等于单位质量力在相应坐标轴上的投影,该 函数称为力的势函数。 16.等压面:在充满平衡流体的空间,连接压强相等的各点所组成的面称等压面。 17.压力体:由所研究的曲面,通过曲面周界所作的垂直柱面和流体的自由表面(或其延伸 面)所围成的封闭体积叫做压力体。 18.实压力体:当所讨论的流体作用面为压力体的内表面时,称该压力体为实压力体。 19.虚压力体:当所讨论的流体作用面为压力体的外表面时,称该压力体为虚压力体。 20.浮力:液体对潜入其中的物体的作用力称为浮力。 21.时变加速度(当地加速度):位于所观察空间的流体质点的速度随时间的变化率。 22.位变加速度(迁移加速度):流体质点所在空间位置的变化所引起的速度变化率。 23.全加速度(质点导数或随体导数):时变加速度与位变加速度的和称为全加速度。 24.恒定流动(定常流动):流场中每一空间点上的运动参数不随时间变化,这样的流动称 为恒定流动。 25.非恒定流动(非定常流动):流场中运动参数不但随位置改变而改变,而且也随时间变 化,这种流动称为非恒定流动。

流体力学复习知识讲解

流体力学(机械类)第1次作业 一、单项选择题(只有一个选项正确,共5道小题) 1. 在研究流体运动时,按照是否考虑流体的粘性,可将流体分为 (A) 牛顿流体及非牛顿流体 (B) 可压缩流体与不可压缩流体 (C) 均质流体与非均质流体 (D) 理想流体与实际流体 正确答案:D 解答参考: 2. 相对压强是指该点的绝对压强与的差值 (A) 标准大气压 (B) 当地大气压 (C) 工程大气压 (D) 真空压强 正确答案:B 解答参考: 3. 粘性流体总水头线沿程的变化是 (A) 沿程下降 (B) 沿程上升 (C) 保持水平 (D) 前三种情况都有可能 正确答案:A 解答参考: 4. 雷诺数Re反映了( )的对比关系 (A) 粘滞力与重力 (B) 重力与惯性力 (C) 惯性力与粘滞力 (D) 粘滞力与动水压力 正确答案:C 解答参考: 5. 圆管均匀层流过流断面上切应力分布为 (A) 抛物线分布,管壁处为零,管轴处最大 (B) 直线分布,管壁处最大,管轴处为零 (C) 均匀分布 (D) 对数分布 正确答案:B 解答参考: 四、主观题(共5道小题)

6. 参考答案:7. 参考答案:

8.有一贮水装置如图所示,贮水池足够大,当阀门关闭时,压强计读数为2.8个大气压强。而当将阀门全开,水从管中流出时,压强计读数是0.6个大气压强,试求当水管直径 参考答案: 9.

参考答案: 10.水平管路路直径由 d1=10cm ,突然扩大到 d2=15cm ,水的流量。(1)试求突然扩大的局部水头损失; (2)试求突然扩大前后的压强水头之差。 参考答案: 流体力学(机械类)第2次作业 一、单项选择题(只有一个选项正确,共5道小题)

《工程流体力学》综合复习资料(DOC)

《工程流体力学》综合复习资料 一、 单项选择 1、实际流体的最基本特征是流体具有 。 A 、粘滞性 B 、流动性 C 、可压缩性 D 、延展性 2、 理想流体是一种 的流体。 A 、不考虑重量 B 、 静止不运动 C 、运动时没有摩擦力 3、作用在流体的力有两大类,一类是质量力,另一类是 。 A 、表面力 B 、万有引力 C 、分子引力 D 、粘性力 4、静力学基本方程的表达式 。 A 、常数=p B 、 常数=+γ p z C 、 常数=+ +g 2u γp z 2 5、若流体内某点静压强为at p 7.0=绝,则其 。 A 、 at p 3.0=表 B 、Pa p 4 108.93.0??-=表 C 、 O mH p 27=水 真 γ D 、 mmHg p 7603.0?=汞 真 γ 6、液体总是从 大处向这个量小处流动。 A 、位置水头 B 、压力 C 、机械能 D 、动能 7、高为h 的敞口容器装满水,作用在侧面单位宽度平壁面上的 静水总压力为 。 A 、2 h γ B 、 2 2 1h γ C 、22h γ D 、h γ 8、理想不可压缩流体在水平圆管中流动,在过流断面1和2截面()21d d >上 流动参数关系为 。 A 、2121,p p V V >> B 、2121,p p V V << C 、2121,p p V V <> D 、2121,p p V V >< A 、2121,p p V V >> B 、2121,p p V V << C 、2121,p p V V <> D 、2121,p p V V >< 9、并联管路的并联段的总水头损失等于 。 A 、各管的水头损失之和 B 、较长管的水头损失

流体力学学习资料

《工程流体力学》典型习题(二) 1.已知转轴直径360mm d =,轴承长度1000mm L =,轴与轴承间隙 0.2mm δ=,其中充满动力黏度0.72pa.s μ=的润滑油,若轴的转速200rpm n =, 试求克服润滑油黏性阻力所消耗的功率 N 。 2.水塔供水系统如图所示。已知C 点供水流量为Q C =0.022m 3/s ,B 点出流量

4.如图所示,在40mm h =的两平行固定壁面间充满动力黏度=0.7Pa s μ?的液体,其中有一面积23600mm A =的薄板(平行于壁面)以15m/s U =的速度沿薄板所在平面内运动,假定壁面间速度呈线性分布。 试求当10mm y =时,薄板运动的液体阻力F 。 5.如题图所示的密封容器内盛有油(与水的相对密度0.8)和水两层液体,在油层中有一扇圆弧形闸门,其半径0.2m R =,宽0.4m B =,油水厚度均为0.2m h =,水银测压计中的液柱高也为0.2m h =,闸门的铰接点位于O 点。为使闸门关闭,试求所需的锁紧力F 。 6.如图所示的具有并联、串联管路的虹吸管,已知H =40m ,l 1=200m ,l 2=100m ,l 3=500m ,d 1=0.2m ,d 2=0.1m ,d 3=0.25m ,02.021==λλ,025.03=λ,求总流量Q 。 7.如图所示底宽b 1=b 2=2.0m 的矩形断面变坡棱柱形渠道(n 1=n 2),上游接水库,下游接跌坎。已知渠道进口断面水深h 1=1m ,部分渠段的水面曲线如图所示。 ① 试完成下游渠段的水面曲线连接(定性); ② 试根据水面曲线形状确定上、下游渠段坡度的缓急状态(急、缓坡); ③ 试求该渠道的通过流量Q ;

流体力学期末考试题(题库+答案)

1、作用在流体的质量力包括 ( D ) A压力B摩擦力C表面张力D 惯性力 2、层流与紊流的本质区别是: ( D ) A. 紊流流速>层流流速; B. 流道截面大的为湍流,截面小 的为层流; C. 层流的雷诺数<紊流的雷诺数; D. 层流无径向脉动,而紊流 有径向脉动 3、已知水流的沿程水力摩擦系数 只与边界粗糙度有关,可判断 该水流属于( D ) A 层流区; B 紊流光滑区; C 紊流过渡粗糙区; D 紊流粗糙区。 4、一个工程大气压等于( B )Pa; ( C )Kgf.cm-2。 A 1.013×105 B 9.8×104 C 1 D 1.5 5、长管的总水头线与测压管水头线 ( A ) A相重合; B相平行,呈直线; C相平行,呈阶梯状; D以上答案都不对。 6、绝对压强p abs、相对压强p 、真空值p v、当地大气压强p a之间的 关系是( C ) A p abs=p+p v B p=p abs+p a C p v=p a-p abs D p

= p a b s - p V 7、将管路上的阀门关小时,其阻力系数( C ) A. 变小 B. 变大 C. 不变 8、如果忽略流体的重力效应,则不需要考虑哪一个相似性参数?( B ) A弗劳德数 B 雷诺数 C.欧拉数 D马赫数 9、水泵的扬程是指 ( C ) A 水泵提水高度; B 水泵提水高度+吸水管的水头损失; C 水泵提水高度 + 吸水管与压水管的水头损失。 10、紊流粗糙区的水头损失与流速成( B ) A 一次方关系; B 二次方关系; C 1.75~2.0次方关系。 11、雷诺数是判别下列哪种流态的重要的无量纲数( C ) A 急流和缓流; B 均匀流和非均匀流; C 层流和紊流; D 恒定流和非恒定流。 12、离心泵的性能曲线中的H-Q线是在( B )情况下测定的。 A. 效率一定; B. 功率一定; C. 转速一定; D. 管路(l+∑le)一定。

高等流体力学考试大纲

《高等流体力学》考试大纲 一、考试性质 《高等流体力学》是我校相关专业博士入学专业基础课考试科目。 二、考试形式与试卷结构 1、答卷方式:闭卷,笔试 2、答题时间;180分钟 3、题型比例 概念20% 计算与应用80% 4、参考书目 《高等流体力学》高学平,天津大学出版社,2005. 《高等工程流体力学》张鸣远等,西安交通大学出版社,2006. 三、考试要点 1、流体力学的基本概念 连续介质、欧拉法质点加速度、质点随体导数、体积分的随体导数、变形率张量、旋转角速度、判断有旋流与无旋流、涡量与速度环量的关系、应力张量的概念(包括切应力的特性、压应力的特性)、牛顿流体的本构方程(本构方程的概念、切应力和法向应力与变形的关系)。 2、流体运动的基本方程 微分形式的连续方程的表达形式、不可压缩流体的确切定义、理解其含义。N-S方程的各种表示形式、流体的能量包括哪几种形式,

并对各种形式进行解释,写出单位质量流体能量的表达式、流体运动微分形式的基本方程组有哪些方程组成,通常有几个未知量,方程组是否封闭、对于不可压缩流体,如何求解速度场、压强场以及温度场,说明其求解步骤。 3、势流运动 势流运动控制方程及求解步骤;势流求解常用的方法有哪些。速度势函数与流函数;复势与复速度;恒定平面势流的解析方法有哪几种途径;保角变换法的思路。 4、粘性流体运动 基本方程及求解途径;黏性流体运动的基本性质;黏性流体运动的解析解(如两平行板间的层流、普阿塞流的流速分布的推导)、小雷诺数流动近似解的思路;边界层的概念;边界层厚度(名义厚度、位移厚度);边界层方程的相似性解的概念;边界层的分离现象。5、紊流运动 紊流的特征及分类;壁面剪切紊流的发生过程及紊流结构;时间平均法和系综平均法的概念。紊流运动方程—雷诺方程的推导思路,雷诺方程的形式及与N-S方程的区别,雷诺应力项的意义。紊流模型的用途,紊流模型通常有哪几类(零方程模型、一方程模型、二方程模型、其他模型);紊流动能k、能量耗散率ε。 6、涡旋运动 涡旋的运动学性质、涡旋运动的基本方程;涡旋的形成。

流体力学讲义

流体力学讲义 课程简介:流体力学是动力、能源、航空、环境、暖通、机械、力学等专业的重要基础课。本课程的任务是系统介绍流体的力学性质、流体力学的基本概念和观点、基础理论和常用分析方法、有关的工程应用知识等;培养学生具有对简单流体力学问题的分析和求解能力,掌握一定的实验技能,为今后学习专业课程,从事相关的工程技术和科学研究工作打下坚实基础。 流体力学学科既是基础学科,又是用途广泛的应用学科;既是古老的学科,又是不断发展、充满活力的学科。当前,流体力学进入了一个新的发展时期:分析手段更加先进,与各类工程专业结合更为密切,与其他学科的交叉渗透更加广泛深入。但由于流体力学理论性较强,概念抽象,学生普遍缺乏对流体的感性认识,使流体力学课程历来被认为是教师难教、学生难学的课程之一。为改进流体力学教学质量,所以,我们采用多媒体教学的方式,尽可能多地给学生提供大量的图片,增加感性认识。 学生在学习的过程中,要特别注意学习目标、学习方法、重点内容、注意事项等问题。 第一章绪论 第一节工程流体力学的研究对象、内容和方法 一、研究对象和内容 研究对象和内容:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。 自然界存在着大量复杂的流动现象,随着人类认识的深入,开始利用流动规律改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体力学是一门基础性很强和应用性很广的学科,是力学的一个重要分支。它的研究对象随着生产的需要与科学的发展在不断地更新、深化和扩大。60年代以前,它主要围绕航空、航天、大气、海洋、航运、水利和各种管路系统等方面,研究流体运动中的动量传递问题,即局限于研究流体的运动规律,和它与固体、液体或大气界面之间的相互作用力问题。60年代以后,能源、环境保护、化工和石油等领域中的流体力学问题逐渐受到重视,这类问题的特征是:尺寸小、速度低,并在流体运动过程中存在传热、传质现象。这样,流体力学除了研究流体的运动规律以外,还要研究它的传热、传质规律。同样,在固体、液体或气体界面处,不仅研究相互之间的作用力,而且还需要研究它们之间的传热、传质规律。

流体力学考试复习资料考点(1)

一、流体力学及其研究对象 流体:液体和气体的总称。 流体力学:是研究流体的科学,即根据理论力学的普遍原理,借助大量的实际资料,运用数学和实验方法来研究流体的平衡和运动规律及其实际应用的一门科学。 流体力学研究的对象:液体和气体 流 二、流体的力学特性 1、流体与固体的区别主要在于受剪应力后的表现有很大的差异。 固体--能承受剪应力、压应力、张应力,没有流动性。 流体--只能承受压应力,不能承受拉力和剪力,否则就会变形流动,即流体具有流动性。 2、液体与气体的主要差别在于受压后的表现上的差异。

液体:受压后体积变化很小,常称不可压缩流体;液体的形状随容器的形状而变,但其体积不变。 气体:受压后体积变化很大,常称可压缩流体;气体的形状和体积都随容器而变。 注:气体的体积变化小于原体积的20%时,可近似看作不可压缩流体。 1.1.1流体的密度 1、流体密度的定义及计算 定义:单位体积流体的质量,以ρ表示,单位为kg/m3 (1)均质流体: 标态(2)混合流体: 混合气体: 混合液体: 2、流体的密度与温度、压力的关系 (1)液体:工程上,液体的密度看作与温度、压力无关。 (2)气体:与温度和压力有关。

理想气体: 或 工业窑炉:P=P0 分析:t↑ρ↓;t↓ρ↑ 1.1.2流体的连续性 流体的连续性:流体看成是由大量的一个一个的连续近质点组成的连续的介质,每个质点是一个含有大量分子的集团,质点之间没有空隙。质点尺寸:大于分子平均自由程的100倍。 连续性假设带来的方便: (1)它使我们不考虑复杂的微观分子运动,只考虑在外力作用下的宏观机械运动。 (2)能运用数学分析的连续函数工具。 【例题】已知烟气的体积组成百分组成为:H2O12%,CO218%,N270%,求此烟气标态在及200℃的密度。

相关主题
文本预览
相关文档 最新文档